forked from aaron-xichen/pytorch-playground
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantize.py
99 lines (87 loc) · 4.81 KB
/
quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import argparse
from utee import misc, quant, selector
import torch
import torch.backends.cudnn as cudnn
cudnn.benchmark =True
from collections import OrderedDict
def main():
parser = argparse.ArgumentParser(description='PyTorch SVHN Example')
parser.add_argument('--type', default='cifar10', help='|'.join(selector.known_models))
parser.add_argument('--quant_method', default='linear', help='linear|minmax|log|tanh')
parser.add_argument('--batch_size', type=int, default=100, help='input batch size for training (default: 64)')
parser.add_argument('--gpu', default=None, help='index of gpus to use')
parser.add_argument('--ngpu', type=int, default=8, help='number of gpus to use')
parser.add_argument('--seed', type=int, default=117, help='random seed (default: 1)')
parser.add_argument('--model_root', default='~/.torch/models/', help='folder to save the model')
parser.add_argument('--data_root', default='/data/public_dataset/pytorch/', help='folder to save the model')
parser.add_argument('--logdir', default='log/default', help='folder to save to the log')
parser.add_argument('--input_size', type=int, default=224, help='input size of image')
parser.add_argument('--n_sample', type=int, default=20, help='number of samples to infer the scaling factor')
parser.add_argument('--param_bits', type=int, default=8, help='bit-width for parameters')
parser.add_argument('--bn_bits', type=int, default=32, help='bit-width for running mean and std')
parser.add_argument('--fwd_bits', type=int, default=8, help='bit-width for layer output')
parser.add_argument('--overflow_rate', type=float, default=0.0, help='overflow rate')
args = parser.parse_args()
args.gpu = misc.auto_select_gpu(utility_bound=0, num_gpu=args.ngpu, selected_gpus=args.gpu)
args.ngpu = len(args.gpu)
misc.ensure_dir(args.logdir)
args.model_root = misc.expand_user(args.model_root)
args.data_root = misc.expand_user(args.data_root)
args.input_size = 299 if 'inception' in args.type else args.input_size
assert args.quant_method in ['linear', 'minmax', 'log', 'tanh']
print("=================FLAGS==================")
for k, v in args.__dict__.items():
print('{}: {}'.format(k, v))
print("========================================")
assert torch.cuda.is_available(), 'no cuda'
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# load model and dataset fetcher
model_raw, ds_fetcher, is_imagenet = selector.select(args.type, model_root=args.model_root)
args.ngpu = args.ngpu if is_imagenet else 1
# quantize parameters
if args.param_bits < 32:
state_dict = model_raw.state_dict()
state_dict_quant = OrderedDict()
sf_dict = OrderedDict()
for k, v in state_dict.items():
if 'running' in k:
if args.bn_bits >=32:
print("Ignoring {}".format(k))
state_dict_quant[k] = v
continue
else:
bits = args.bn_bits
else:
bits = args.param_bits
if args.quant_method == 'linear':
sf = bits - 1. - quant.compute_integral_part(v, overflow_rate=args.overflow_rate)
v_quant = quant.linear_quantize(v, sf, bits=bits)
elif args.quant_method == 'log':
v_quant = quant.log_minmax_quantize(v, bits=bits)
elif args.quant_method == 'minmax':
v_quant = quant.min_max_quantize(v, bits=bits)
else:
v_quant = quant.tanh_quantize(v, bits=bits)
state_dict_quant[k] = v_quant
print(k, bits)
model_raw.load_state_dict(state_dict_quant)
# quantize forward activation
if args.fwd_bits < 32:
model_raw = quant.duplicate_model_with_quant(model_raw, bits=args.fwd_bits, overflow_rate=args.overflow_rate,
counter=args.n_sample, type=args.quant_method)
print(model_raw)
val_ds_tmp = ds_fetcher(10, data_root=args.data_root, train=False, input_size=args.input_size)
misc.eval_model(model_raw, val_ds_tmp, ngpu=1, n_sample=args.n_sample, is_imagenet=is_imagenet)
# eval model
val_ds = ds_fetcher(args.batch_size, data_root=args.data_root, train=False, input_size=args.input_size)
acc1, acc5 = misc.eval_model(model_raw, val_ds, ngpu=args.ngpu, is_imagenet=is_imagenet)
# print sf
print(model_raw)
res_str = "type={}, quant_method={}, param_bits={}, bn_bits={}, fwd_bits={}, overflow_rate={}, acc1={:.4f}, acc5={:.4f}".format(
args.type, args.quant_method, args.param_bits, args.bn_bits, args.fwd_bits, args.overflow_rate, acc1, acc5)
print(res_str)
with open('acc1_acc5.txt', 'a') as f:
f.write(res_str + '\n')
if __name__ == '__main__':
main()