This repository has been archived by the owner on Jun 22, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhack.txt
244 lines (212 loc) · 10 KB
/
hack.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
How to hack TinyScheme
----------------------
TinyScheme is easy to learn and modify. It is structured like a
meta-interpreter, only it is written in C. All data are Scheme
objects, which facilitates both understanding/modifying the
code and reifying the interpreter workings.
In place of a dry description, we will pace through the addition
of a useful new datatype: garbage-collected memory blocks.
The interface will be:
(make-block <n> [<fill>]) makes a new block of the specified size
optionally filling it with a specified byte
(block? <obj>)
(block-length <block>)
(block-ref <block> <index>) retrieves byte at location
(block-set! <block> <index> <byte>) modifies byte at location
In the sequel, lines that begin with '>' denote lines to add to the
code. Lines that begin with '|' are just citations of existing code.
Lines that begin with X denote lines to be removed from the code.
First of all, we need to assign a typeid to our new type. Typeids
in TinyScheme are small integers declared in the scheme_types enum
located near the top of the scheme.c file; it begins with T_STRING.
Add a new entry at the end, say T_MEMBLOCK. Remember to adjust the
value of T_LAST_SYTEM_TYPE when adding new entries. There can be at
most 31 types, but you don't have to worry about that limit yet.
| T_ENVIRONMENT=14,
X T_LAST_SYSTEM_TYPE=14
> T_MEMBLOCK=15,
> T_LAST_SYSTEM_TYPE=15
| };
Then, some helper macros would be useful. Go to where is_string()
and the rest are defined and add:
> INTERFACE INLINE int is_memblock(pointer p) { return (type(p)==T_MEMBLOCK); }
This actually is a function, because it is meant to be exported by
scheme.h. If no foreign function will ever manipulate a memory block,
you can instead define it as a macro:
> #define is_memblock(p) (type(p)==T_MEMBLOCK)
Then we make space for the new type in the main data structure:
struct cell. As it happens, the _string part of the union _object
(that is used to hold character strings) has two fields that suit us:
| struct {
| char *_svalue;
| int _keynum;
| } _string;
We can use _svalue to hold the actual pointer and _keynum to hold its
length. If we couln't reuse existing fields, we could always add other
alternatives in union _object.
We then proceed to write the function that actually makes a new block.
For conformance reasons, we name it mk_memblock
> static pointer mk_memblock(scheme *sc, int len, char fill) {
> pointer x;
> char *p=(char*)sc->malloc(len);
>
> if(p==0) {
> return sc->NIL;
> }
> x = get_cell(sc, sc->NIL, sc->NIL);
>
> typeflag(x) = T_MEMBLOCK|T_ATOM;
> strvalue(x)=p;
> keynum(x)=len;
> memset(p,fill,len);
> return (x);
> }
The memory used by the MEMBLOCK will have to be freed when the cell
is reclaimed during garbage collection. There is a placeholder for
that staff, function finalize_cell(), currently handling strings only.
| static void finalize_cell(scheme *sc, pointer a) {
| if(is_string(a)) {
| sc->free(strvalue(a));
> } else if(is_memblock(a)) {
> sc->free(strvalue(a));
| } else if(is_port(a)) {
There are no MEMBLOCK literals, so we don't concern ourselves with
the READER part (yet!). We must cater to the PRINTER, though. We
add one case more in atom2str().
| } else if (iscontinuation(l)) {
| p = "#<CONTINUATION>";
> } else if (is_memblock(l)) {
> p = "#<MEMORY BLOCK>";
| } else {
Whenever a MEMBLOCK is displayed, it will look like that.
Now, we must add the interface functions: constructor, predicate,
accessor, modifier. We must in fact create new op-codes for the virtual
machine underlying TinyScheme. Since version 1.30, TinyScheme uses
macros and a single source text to keep the enums and the dispatch table
in sync. The op-codes are defined in the opdefines.h file with one line
for each op-code. The lines in the file have six columns between the
starting _OPDEF( and ending ): A, B, C, D, E, and OP.
Note that this file uses unusually long lines to accomodate all the
information; adjust your editor to handle this.
The purpose of the columns is:
- Column A is the name of the subroutine that handles the op-code.
- Column B is the name of the op-code function.
- Columns C and D are the minimum and maximum number of arguments
that are accepted by the op-code.
- Column E is a set of flags that tells the interpreter the type of
each of the arguments expected by the op-code.
- Column OP is used in the scheme_opcodes enum located in the
scheme-private.h file.
Op-codes are really just tags for a huge C switch, only this switch
is broken up in to a number of different opexe_X functions. The
correspondence is made in table "dispatch_table". There, we assign
the new op-codes to opexe_2, where the equivalent ones for vectors
are situated. We also assign a name for them, and specify the minimum
and maximum arity (number of expected arguments). INF_ARG as a maximum
arity means "unlimited".
For reasons of consistency, we add the new op-codes right after those
for vectors:
| _OP_DEF(opexe_2, "vector-set!", 3, 3, TST_VECTOR TST_NATURAL TST_ANY, OP_VECSET )
> _OP_DEF(opexe_2, "make-block", 1, 2, TST_NATURAL TST_CHAR, OP_MKBLOCK )
> _OP_DEF(opexe_2, "block-length", 1, 1, T_MEMBLOCK, OP_BLOCKLEN )
> _OP_DEF(opexe_2, "block-ref", 2, 2, T_MEMBLOCK TST_NATURAL, OP_BLOCKREF )
> _OP_DEF(opexe_2, "block-set!", 1, 1, T_MEMBLOCK TST_NATURAL TST_CHAR, OP_BLOCKSET )
| _OP_DEF(opexe_3, "not", 1, 1, TST_NONE, OP_NOT )
We add the predicate along with the other predicates in opexe_3:
| _OP_DEF(opexe_3, "vector?", 1, 1, TST_ANY, OP_VECTORP )
> _OP_DEF(opexe_3, "block?", 1, 1, TST_ANY, OP_BLOCKP )
| _OP_DEF(opexe_3, "eq?", 2, 2, TST_ANY, OP_EQ )
All that remains is to write the actual code to do the processing and
add it to the switch statement in opexe_2, after the OP_VECSET case.
> case OP_MKBLOCK: { /* make-block */
> int fill=0;
> int len;
>
> if(!isnumber(car(sc->args))) {
> Error_1(sc,"make-block: not a number:",car(sc->args));
> }
> len=ivalue(car(sc->args));
> if(len<=0) {
> Error_1(sc,"make-block: not positive:",car(sc->args));
> }
>
> if(cdr(sc->args)!=sc->NIL) {
> if(!isnumber(cadr(sc->args)) || ivalue(cadr(sc->args))<0) {
> Error_1(sc,"make-block: not a positive number:",cadr(sc->args));
> }
> fill=charvalue(cadr(sc->args))%255;
> }
> s_return(sc,mk_memblock(sc,len,(char)fill));
> }
>
> case OP_BLOCKLEN: /* block-length */
> if(!ismemblock(car(sc->args))) {
> Error_1(sc,"block-length: not a memory block:",car(sc->args));
> }
> s_return(sc,mk_integer(sc,keynum(car(sc->args))));
>
> case OP_BLOCKREF: { /* block-ref */
> char *str;
> int index;
>
> if(!ismemblock(car(sc->args))) {
> Error_1(sc,"block-ref: not a memory block:",car(sc->args));
> }
> str=strvalue(car(sc->args));
>
> if(cdr(sc->args)==sc->NIL) {
> Error_0(sc,"block-ref: needs two arguments");
> }
> if(!isnumber(cadr(sc->args))) {
> Error_1(sc,"block-ref: not a number:",cadr(sc->args));
> }
> index=ivalue(cadr(sc->args));
>
> if(index<0 || index>=keynum(car(sc->args))) {
> Error_1(sc,"block-ref: out of bounds:",cadr(sc->args));
> }
>
> s_return(sc,mk_integer(sc,str[index]));
> }
>
> case OP_BLOCKSET: { /* block-set! */
> char *str;
> int index;
> int c;
>
> if(!ismemblock(car(sc->args))) {
> Error_1(sc,"block-set!: not a memory block:",car(sc->args));
> }
> if(isimmutable(car(sc->args))) {
> Error_1(sc,"block-set!: unable to alter immutable memory block:",car(sc->args));
> }
> str=strvalue(car(sc->args));
>
> if(cdr(sc->args)==sc->NIL) {
> Error_0(sc,"block-set!: needs three arguments");
> }
> if(!isnumber(cadr(sc->args))) {
> Error_1(sc,"block-set!: not a number:",cadr(sc->args));
> }
> index=ivalue(cadr(sc->args));
> if(index<0 || index>=keynum(car(sc->args))) {
> Error_1(sc,"block-set!: out of bounds:",cadr(sc->args));
> }
>
> if(cddr(sc->args)==sc->NIL) {
> Error_0(sc,"block-set!: needs three arguments");
> }
> if(!isinteger(caddr(sc->args))) {
> Error_1(sc,"block-set!: not an integer:",caddr(sc->args));
> }
> c=ivalue(caddr(sc->args))%255;
>
> str[index]=(char)c;
> s_return(sc,car(sc->args));
> }
Finally, do the same for the predicate in opexe_3.
| case OP_VECTORP: /* vector? */
| s_retbool(is_vector(car(sc->args)));
> case OP_BLOCKP: /* block? */
> s_retbool(is_memblock(car(sc->args)));
| case OP_EQ: /* eq? */