-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
143 lines (108 loc) · 5.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import logging
import os
import sys
from pathlib import Path
import torch
from core.preprocess import preprocess_datasets
from core.setup import setup_cfg, setup_logging, setup_saving, setup_seed
root_logger = logging.getLogger()
from detectron2.engine import launch
from detectron2.engine.defaults import _highlight
from detectron2.utils import comm
from detectron2.utils.collect_env import collect_env_info
import models
from core.trainer import Trainer
from utils.logging_utils import get_logger_name
from utils.tempdir import OptionalTemporaryDirectory
# torch.autograd.set_detect_anomaly(True)
def get_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Main file for Layout Analysis")
detectron2_args = parser.add_argument_group("detectron2")
detectron2_args.add_argument("-c", "--config", help="config file", required=True)
detectron2_args.add_argument("--opts", nargs="+", action="extend", help="optional args to change", default=[])
io_args = parser.add_argument_group("IO")
io_args.add_argument("-t", "--train", help="Train input folder/file", nargs="+", action="extend", type=str, required=True)
io_args.add_argument(
"-v", "--val", help="Validation input folder/file", nargs="+", action="extend", type=str, required=True
)
tmp_args = parser.add_argument_group("tmp files")
tmp_args.add_argument("--tmp_dir", help="Temp files folder", type=str, default=None)
tmp_args.add_argument("--keep_tmp_dir", action="store_true", help="Don't remove tmp dir after execution")
# other_args.add_argument("--img_list", help="List with location of images")
# other_args.add_argument("--label_list", help="List with location of labels")
# other_args.add_argument("--out_size_list", help="List with sizes of images")
# From detectron2.engine.defaults
gpu_args = parser.add_argument_group("GPU launch")
gpu_args.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
gpu_args.add_argument("--num-machines", type=int, default=1, help="total number of machines")
gpu_args.add_argument("--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)")
# PyTorch still may leave orphan processes in multi-gpu training.
# Therefore we use a deterministic way to obtain port,
# so that users are aware of orphan processes by seeing the port occupied.
port = 2**15 + 2**14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2**14
gpu_args.add_argument(
"--dist-url",
default="tcp://127.0.0.1:{}".format(port),
help="initialization URL for pytorch distributed backend. See "
"https://pytorch.org/docs/stable/distributed.html for details.",
)
args = parser.parse_args()
return args
def setup_training(args: argparse.Namespace):
"""
Setup and start training
Args:
args (argparse.Namespace): arguments used to load a config file, also used for overwriting values directly (--opts)
Returns:
OrderedDict|None: results, if evaluation is enabled. Otherwise None.
"""
cfg = setup_cfg(args)
setup_logging(cfg)
setup_seed(cfg)
setup_saving(cfg)
logger = logging.getLogger(get_logger_name())
rank = comm.get_rank()
logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size()))
logger.info("Environment info:\n" + collect_env_info())
if args is not None:
logger.info("Command line arguments: " + str(args))
if hasattr(args, "config") and args.config != "":
with Path(args.config).open("r") as f:
config_contents = f.read()
logger.info(
"Contents of args.config: {}:\n{}".format(
args.config,
_highlight(config_contents, args.config),
)
)
if cfg.INPUT.ON_GPU:
torch.multiprocessing.set_start_method("spawn", force=True)
# Temp dir for preprocessing in case no temporary dir was specified
with OptionalTemporaryDirectory(name=args.tmp_dir, cleanup=not (args.keep_tmp_dir)) as tmp_dir:
preprocess_datasets(cfg, args.train, args.val, tmp_dir)
trainer = Trainer(cfg=cfg)
if not cfg.TRAIN.WEIGHTS:
if cfg.MODEL.RESUME and not trainer.checkpointer.has_checkpoint():
raise FileNotFoundError(f"No checkpoint found in {cfg.OUTPUT_DIR}")
trainer.resume_or_load(resume=cfg.MODEL.RESUME)
else:
trainer.checkpointer.load(cfg.TRAIN.WEIGHTS)
trainer.start_iter = trainer.iter + 1
results = trainer.train()
return results
def main(args: argparse.Namespace) -> None:
assert (
args.num_gpus <= torch.cuda.device_count()
), f"Less GPUs found ({torch.cuda.device_count()}) than specified ({args.num_gpus})"
launch(
setup_training,
num_gpus_per_machine=args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
if __name__ == "__main__":
args = get_arguments()
main(args)