Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Handle initial guess (ColabFold) #8

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
212 changes: 212 additions & 0 deletions alphafold/common/mmcif_metadata.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""mmCIF metadata."""

from typing import Mapping, Sequence
import numpy as np


_DISCLAIMER = """ALPHAFOLD DATA, COPYRIGHT (2021) DEEPMIND TECHNOLOGIES LIMITED.
THE INFORMATION PROVIDED IS THEORETICAL MODELLING ONLY AND CAUTION SHOULD BE
EXERCISED IN ITS USE. IT IS PROVIDED "AS-IS" WITHOUT ANY WARRANTY OF ANY KIND,
WHETHER EXPRESSED OR IMPLIED. NO WARRANTY IS GIVEN THAT USE OF THE INFORMATION
SHALL NOT INFRINGE THE RIGHTS OF ANY THIRD PARTY. DISCLAIMER: THE INFORMATION IS
NOT INTENDED TO BE A SUBSTITUTE FOR PROFESSIONAL MEDICAL ADVICE, DIAGNOSIS, OR
TREATMENT, AND DOES NOT CONSTITUTE MEDICAL OR OTHER PROFESSIONAL ADVICE. IT IS
AVAILABLE FOR ACADEMIC AND COMMERCIAL PURPOSES, UNDER CC-BY 4.0 LICENCE."""

# Authors of the Nature methods paper we reference in the mmCIF.
_MMCIF_PAPER_AUTHORS = (
'Jumper, John',
'Evans, Richard',
'Pritzel, Alexander',
'Green, Tim',
'Figurnov, Michael',
'Ronneberger, Olaf',
'Tunyasuvunakool, Kathryn',
'Bates, Russ',
'Zidek, Augustin',
'Potapenko, Anna',
'Bridgland, Alex',
'Meyer, Clemens',
'Kohl, Simon A. A.',
'Ballard, Andrew J.',
'Cowie, Andrew',
'Romera-Paredes, Bernardino',
'Nikolov, Stanislav',
'Jain, Rishub',
'Adler, Jonas',
'Back, Trevor',
'Petersen, Stig',
'Reiman, David',
'Clancy, Ellen',
'Zielinski, Michal',
'Steinegger, Martin',
'Pacholska, Michalina',
'Berghammer, Tamas',
'Silver, David',
'Vinyals, Oriol',
'Senior, Andrew W.',
'Kavukcuoglu, Koray',
'Kohli, Pushmeet',
'Hassabis, Demis',
)

# Authors of the mmCIF - we set them to be equal to the authors of the paper.
_MMCIF_AUTHORS = _MMCIF_PAPER_AUTHORS


def add_metadata_to_mmcif(
old_cif: Mapping[str, Sequence[str]], model_type: str
) -> Mapping[str, Sequence[str]]:
"""Adds AlphaFold metadata in the given mmCIF."""
cif = {}

# ModelCIF conformation dictionary.
cif['_audit_conform.dict_name'] = ['mmcif_ma.dic']
cif['_audit_conform.dict_version'] = ['1.3.9']
cif['_audit_conform.dict_location'] = [
'https://raw.githubusercontent.com/ihmwg/ModelCIF/master/dist/'
'mmcif_ma.dic'
]

# License and disclaimer.
cif['_pdbx_data_usage.id'] = ['1', '2']
cif['_pdbx_data_usage.type'] = ['license', 'disclaimer']
cif['_pdbx_data_usage.details'] = [
'Data in this file is available under a CC-BY-4.0 license.',
_DISCLAIMER,
]
cif['_pdbx_data_usage.url'] = [
'https://creativecommons.org/licenses/by/4.0/',
'?',
]
cif['_pdbx_data_usage.name'] = ['CC-BY-4.0', '?']

# Structure author details.
cif['_audit_author.name'] = []
cif['_audit_author.pdbx_ordinal'] = []
for author_index, author_name in enumerate(_MMCIF_AUTHORS, start=1):
cif['_audit_author.name'].append(author_name)
cif['_audit_author.pdbx_ordinal'].append(str(author_index))

# Paper author details.
cif['_citation_author.citation_id'] = []
cif['_citation_author.name'] = []
cif['_citation_author.ordinal'] = []
for author_index, author_name in enumerate(_MMCIF_PAPER_AUTHORS, start=1):
cif['_citation_author.citation_id'].append('primary')
cif['_citation_author.name'].append(author_name)
cif['_citation_author.ordinal'].append(str(author_index))

# Paper citation details.
cif['_citation.id'] = ['primary']
cif['_citation.title'] = [
'Highly accurate protein structure prediction with AlphaFold'
]
cif['_citation.journal_full'] = ['Nature']
cif['_citation.journal_volume'] = ['596']
cif['_citation.page_first'] = ['583']
cif['_citation.page_last'] = ['589']
cif['_citation.year'] = ['2021']
cif['_citation.journal_id_ASTM'] = ['NATUAS']
cif['_citation.country'] = ['UK']
cif['_citation.journal_id_ISSN'] = ['0028-0836']
cif['_citation.journal_id_CSD'] = ['0006']
cif['_citation.book_publisher'] = ['?']
cif['_citation.pdbx_database_id_PubMed'] = ['34265844']
cif['_citation.pdbx_database_id_DOI'] = ['10.1038/s41586-021-03819-2']

# Type of data in the dataset including data used in the model generation.
cif['_ma_data.id'] = ['1']
cif['_ma_data.name'] = ['Model']
cif['_ma_data.content_type'] = ['model coordinates']

# Description of number of instances for each entity.
cif['_ma_target_entity_instance.asym_id'] = old_cif['_struct_asym.id']
cif['_ma_target_entity_instance.entity_id'] = old_cif[
'_struct_asym.entity_id'
]
cif['_ma_target_entity_instance.details'] = ['.'] * len(
cif['_ma_target_entity_instance.entity_id']
)

# Details about the target entities.
cif['_ma_target_entity.entity_id'] = cif[
'_ma_target_entity_instance.entity_id'
]
cif['_ma_target_entity.data_id'] = ['1'] * len(
cif['_ma_target_entity.entity_id']
)
cif['_ma_target_entity.origin'] = ['.'] * len(
cif['_ma_target_entity.entity_id']
)

# Details of the models being deposited.
cif['_ma_model_list.ordinal_id'] = ['1']
cif['_ma_model_list.model_id'] = ['1']
cif['_ma_model_list.model_group_id'] = ['1']
cif['_ma_model_list.model_name'] = ['Top ranked model']

cif['_ma_model_list.model_group_name'] = [
f'AlphaFold {model_type} v2.3.2 model'
]
cif['_ma_model_list.data_id'] = ['1']
cif['_ma_model_list.model_type'] = ['Ab initio model']

# Software used.
cif['_software.pdbx_ordinal'] = ['1']
cif['_software.name'] = ['AlphaFold']
cif['_software.version'] = [f'v2.3.2']
cif['_software.type'] = ['package']
cif['_software.description'] = ['Structure prediction']
cif['_software.classification'] = ['other']
cif['_software.date'] = ['?']

# Collection of software into groups.
cif['_ma_software_group.ordinal_id'] = ['1']
cif['_ma_software_group.group_id'] = ['1']
cif['_ma_software_group.software_id'] = ['1']

# Method description to conform with ModelCIF.
cif['_ma_protocol_step.ordinal_id'] = ['1', '2', '3']
cif['_ma_protocol_step.protocol_id'] = ['1', '1', '1']
cif['_ma_protocol_step.step_id'] = ['1', '2', '3']
cif['_ma_protocol_step.method_type'] = [
'coevolution MSA',
'template search',
'modeling',
]

# Details of the metrics use to assess model confidence.
cif['_ma_qa_metric.id'] = ['1', '2']
cif['_ma_qa_metric.name'] = ['pLDDT', 'pLDDT']
# Accepted values are distance, energy, normalised score, other, zscore.
cif['_ma_qa_metric.type'] = ['pLDDT', 'pLDDT']
cif['_ma_qa_metric.mode'] = ['global', 'local']
cif['_ma_qa_metric.software_group_id'] = ['1', '1']

# Global model confidence metric value.
cif['_ma_qa_metric_global.ordinal_id'] = ['1']
cif['_ma_qa_metric_global.model_id'] = ['1']
cif['_ma_qa_metric_global.metric_id'] = ['1']
global_plddt = np.mean(
[float(v) for v in old_cif['_atom_site.B_iso_or_equiv']]
)
cif['_ma_qa_metric_global.metric_value'] = [f'{global_plddt:.2f}']

cif['_atom_type.symbol'] = sorted(set(old_cif['_atom_site.type_symbol']))

return cif
Loading