-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathquick_plot.py
executable file
·205 lines (159 loc) · 5.51 KB
/
quick_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python
#First import the netcdf4 library
from netCDF4 import Dataset # http://code.google.com/p/netcdf4-python/
import numpy as np # http://code.google.com/p/netcdf4-python/
import matplotlib
import math
import os
matplotlib.use("GTKAgg")
from pylab import *
#import matplotlib.pyplot as plt
import pdb
import netCDF4 as nc
import sys
import argparse
def transpose_matrix(data):
M=data.shape
data_new=np.zeros([M[1],M[0]])
for i in range(M[0]):
for j in range(M[1]):
data_new[j,i]=data[i,j]
print 'After rotation' ,data.shape
return data_new
def load_data_from_file(filename,field,dim_num,layer_number,rotated=None):
with nc.Dataset(filename) as file:
if dim_num==2:
data = file.variables[field][:]
if dim_num==3:
data = file.variables[field][:]
if dim_num==4:
data = file.variables[field][:]
print 'Data size:' ,data.shape
if len(data.shape)==3:
#data=np.squeeze(np.mean(data,axis=0)) #Mean over first variable
data=np.squeeze(data[-1,:,:]) #Final time
if len(data.shape)==4:
#data=np.squeeze(np.mean(data,axis=0)) #Mean over first variable
data=np.squeeze((data[-1,:,:,:])) #Mean over first variable
data=np.squeeze(data[layer_number,:,:])#Layer choice over second
if rotated=='rotated':
data=transpose_matrix(data)
return data
def plot_data_field(data,field,vmin=None,vmax=None):
print 'Starting to plot...'
if vmin==None:
vmin=np.min(data)
else:
vmin=float(vmin)
if vmax==None:
vmax=np.max(data)
else:
vmax=float(vmax)
cmap='jet'
print vmin
print vmax
cNorm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
#cNorm = mpl.colors.Normalize(vmin=600, vmax=850)
plt.pcolormesh(data,norm=cNorm,cmap=cmap)
plt.colorbar()
plt.grid(True)
plt.title(field)
def plot_operated_fields(data1,data2,field,operation,vmax_lim=None):
print 'Starting to plot...'
#Temp lines to subtract maximum
#temp_val=np.max(data1)
#data1=data1-temp_val ; data2=data2-temp_val
vmin=min(np.min(data1),np.min(data2))
vmax=max(np.max(data1),np.max(data2))
#vmin=-vmax
cmap='jet'
cNorm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
#Data from file 1:
plt.subplot(1,3,1)
plt.pcolormesh(data1,norm=cNorm,cmap=cmap)
plt.colorbar()
plt.title('File 1: ' + field)
#Data from file 2:
plt.subplot(1,3,2)
plt.pcolormesh(data2,norm=cNorm,cmap=cmap)
plt.colorbar()
plt.title('File 2: ' + field)
#Data from difference:
data3=data1-data2 #subtraction is the default
if operation=='divide':
data3=data1/data2
if operation=='relative':
data3=(data1-data2)/data1
if vmax_lim==None:
vmax=np.max(abs(data3))
else:
vmax=float(vmax_lim)
vmin=-vmax
cmap='bwr'
cNorm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
if operation=='divide':
cNorm = mpl.colors.Normalize(vmin=0, vmax=2)
if operation=='relative':
cNorm = mpl.colors.Normalize(vmin=-1, vmax=1)
plt.subplot(1,3,3)
plt.pcolormesh(data3,norm=cNorm,cmap=cmap)
plt.colorbar()
plt.title('Difference')
print 'Max/Min data3=', np.max(data3), np.min(data3)
####################################################################################################################################################
########################################################## Main Program #########################################################################
####################################################################################################################################################
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--file1', default=None, help='The input data file1 in NetCDF format.')
parser.add_argument('--file2', default=None, help='The input data file2 in NetCDF format.')
parser.add_argument('--field', default=None, help='Feild to plot')
parser.add_argument('--field2', default=None, help='Feild to plot')
parser.add_argument('--operation',default=None, help='Operation betweeen fields')
parser.add_argument('--layer_number', default=0, help='Operation betweeen fields')
parser.add_argument('--dim_num', default=2, help='Number of dimensions of data')
parser.add_argument('--vmax', default=None, help='Maximum for plotting')
parser.add_argument('--vmin', default=None, help='Minimum for plotting')
parser.add_argument('--rotated', default=None, help='Minimum for plotting')
args = parser.parse_args()
#Converting input
field=args.field
field2=args.field
if args.field2 is not None:
field2=args.field2
layer_number=int(args.layer_number)
dim_num=int(args.dim_num)
operation=args.operation
filename1=args.file1
rotated=args.rotated
print 'File 1 = ' , filename1
#filename3='../../ocean_only/Alistair_ISOMIP/rho/ISOMIP_IC.nc'
#filename1='/lustre/f1/unswept/Alon.Stern/MOM6-examples_Alon/ocean_only/Alistair_ISOMIP/rho/ISOMIP.nc'
#if filename1==filename3:
# print 'BOOM'
#else:
# print 'NO'
plt.figure(figsize=(15,10))
#fig = plt.figure(1)
#Loading data from file1
data1=load_data_from_file(filename1,field,dim_num,layer_number,rotated)
if args.file2!=None:
filename2=args.file2
print 'File 2 = ' ,filename2
#Loading data from file1
data2=load_data_from_file(filename2,field2,dim_num,layer_number,rotated)
if operation=='subtract':
print 'Subtracting fields'
#data=data-data2
#operation='subtract'
if args.file2==None:
plot_data_field(data1,field,args.vmin,args.vmax)
else:
plot_operated_fields(data1,data2,field,operation,args.vmax)
#Plotting flags
#fig.set_size_inches(9,4.5)
plt.show()
print 'Script complete'
if __name__ == '__main__':
main()
#sys.exit(main())