-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
133 lines (103 loc) · 3.96 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import shutil
from typing import Any, Callable, Optional, Tuple
import glob
import hashlib
import torch
import torchvision
import torchvision.transforms as T
from torchvision.datasets.utils import download_and_extract_archive
from torchvision.datasets.vision import VisionDataset
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = 100000001
def get_dataset(cfg):
imsize = cfg.imsize
batchsize = cfg.batchsize
transform = T.Compose(
[
T.Resize(imsize),
T.CenterCrop(imsize),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
if cfg.dataset == "flowers102":
data = _get_flowers_dataset(transform)
elif cfg.dataset == "wojaks":
data = _get_wojak_dataset(transform)
dataloader = torch.utils.data.DataLoader(
data, batch_size=batchsize, shuffle=True, num_workers=2
)
return dataloader
def _get_flowers_dataset(transform):
train_data = torchvision.datasets.Flowers102(
root="data", download=True, split="train", transform=transform
)
val_data = torchvision.datasets.Flowers102(
root="data", download=True, split="val", transform=transform
)
test_data = torchvision.datasets.Flowers102(
root="data", download=True, split="test", transform=transform
)
data = torch.utils.data.ConcatDataset([train_data, val_data, test_data])
return data
def _get_wojak_dataset(transform):
return Wojaks(root="data", download=True, transform=transform)
class Wojaks(VisionDataset):
def __init__(
self,
root: str = "data",
transform: Optional[Callable] = None,
download: bool = False,
force_download: bool = False,
) -> None:
self.url = "https://archive.org/download/wojak-collections/Wojak%20MEGA%20Collection.zip"
self.root = root
self.filename = "Wojak MEGA Collection.zip"
self.unpacked_folder = os.path.join(root, "Wojak MEGA Collection")
self.unpacked_folder_rename = os.path.join(root, "wojaks")
self.transparent_images = ["1596506322786.png", "1590018617967.png"]
self.md5hash = "1b548acd7b1da5dd9bfe81db10e82e50"
super().__init__(root, transform=transform)
if download:
self.data = self.download(force_download)
else:
self.data = self._get_data()
def _get_data(self):
data = []
for ext in [".jpg", "jpeg", ".png"]:
files = glob.glob(f"{self.unpacked_folder_rename}/*{ext}")
data.extend(files)
return data
def __getitem__(self, index: int) -> Tuple[Any, Any]:
target = []
imfile = self.data[index]
img = Image.open(imfile)
if os.path.basename(imfile) in self.transparent_images:
img = img.convert("RGBA")
img = img.convert("RGB")
if self.transform is not None:
img = self.transform(img)
return img, target
def __len__(self) -> int:
return len(self.data)
def download(self, force_download) -> None:
if not force_download and os.path.exists(self.unpacked_folder_rename):
_data = self._get_data()
md5hash = hashlib.md5(str(sorted(_data)).encode()).hexdigest()
if md5hash == self.md5hash:
print(
"Data already exists. Skipping download. To download"
" anyway, set force_download=True"
)
return _data
download_and_extract_archive(
self.url, self.root, filename=self.filename, md5=None
)
# cleanup
shutil.rmtree(os.path.join(self.unpacked_folder, "Transparent Template Wojaks"))
os.rename(self.unpacked_folder, self.unpacked_folder_rename)
os.remove(os.path.join(self.root, "Wojak MEGA Collection.zip"))
shutil.rmtree(os.path.join(self.root, "__MACOSX"))
return self._get_data()