title | summary |
---|---|
用 EXPLAIN 查看子查询的执行计划 |
了解 TiDB 中 EXPLAIN 语句返回的执行计划信息。 |
TiDB 会执行多种子查询相关的优化,以提升子查询的执行性能。本文档介绍一些常见子查询的优化方式,以及如何解读 EXPLAIN
语句返回的执行计划信息。
本文档所使用的示例表数据如下:
CREATE TABLE t1 (id BIGINT NOT NULL PRIMARY KEY auto_increment, pad1 BLOB, pad2 BLOB, pad3 BLOB, int_col INT NOT NULL DEFAULT 0);
CREATE TABLE t2 (id BIGINT NOT NULL PRIMARY KEY auto_increment, t1_id BIGINT NOT NULL, pad1 BLOB, pad2 BLOB, pad3 BLOB, INDEX(t1_id));
CREATE TABLE t3 (
id INT NOT NULL PRIMARY KEY auto_increment,
t1_id INT NOT NULL,
UNIQUE (t1_id)
);
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM dual;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
UPDATE t1 SET int_col = 1 WHERE pad1 = (SELECT pad1 FROM t1 ORDER BY RAND() LIMIT 1);
INSERT INTO t3 SELECT NULL, id FROM t1 WHERE id < 1000;
SELECT SLEEP(1);
ANALYZE TABLE t1, t2, t3;
以下示例中,IN
子查询会从表 t2
中搜索一列 ID。为保证语义正确性,TiDB 需要保证 t1_id
列的值具有唯一性。使用 EXPLAIN
可查看到该查询的执行计划去掉重复项并执行 Inner Join
内连接操作:
EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t2);
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+
| IndexJoin_14 | 5.00 | root | | inner join, inner:IndexLookUp_13, outer key:test.t2.t1_id, inner key:test.t1.id, equal cond:eq(test.t2.t1_id, test.t1.id) |
| ├─StreamAgg_49(Build) | 5.00 | root | | group by:test.t2.t1_id, funcs:firstrow(test.t2.t1_id)->test.t2.t1_id |
| │ └─IndexReader_50 | 5.00 | root | | index:StreamAgg_39 |
| │ └─StreamAgg_39 | 5.00 | cop[tikv] | | group by:test.t2.t1_id, |
| │ └─IndexFullScan_31 | 50000.00 | cop[tikv] | table:t2, index:t1_id(t1_id) | keep order:true |
| └─IndexLookUp_13(Probe) | 1.00 | root | | |
| ├─IndexRangeScan_11(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t2.t1_id)], keep order:false |
| └─TableRowIDScan_12(Probe) | 1.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+
8 rows in set (0.00 sec)
由上述查询结果可知,TiDB 通过索引连接操作 | IndexJoin_14
将子查询做了连接转化。该执行计划首先在 TiKV 侧通过索引扫描算子 └─IndexFullScan_31
读取 t2.t1_id
列的值,然后由 └─StreamAgg_39
算子的部分任务在 TiKV 中对 t1_id
值进行去重,然后采用 ├─StreamAgg_49(Build)
算子的部分任务在 TiDB 中对 t1_id
值再次进行去重,去重操作由聚合函数 firstrow(test.t2.t1_id)
执行;之后将操作结果与 t1
表的主键相连接,连接条件是 eq(test.t1.id, test.t2.t1_id)
。
在上述示例中,为了确保 t1_id
值在与表 t1
连接前具有唯一性,需要执行聚合运算。在以下示例中,由于 UNIQUE
约束已能确保 t3.t1_id
列值的唯一:
EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t3);
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+
| IndexJoin_17 | 1978.13 | root | | inner join, inner:IndexLookUp_16, outer key:test.t3.t1_id, inner key:test.t1.id, equal cond:eq(test.t3.t1_id, test.t1.id) |
| ├─TableReader_44(Build) | 1978.00 | root | | data:TableFullScan_43 |
| │ └─TableFullScan_43 | 1978.00 | cop[tikv] | table:t3 | keep order:false |
| └─IndexLookUp_16(Probe) | 1.00 | root | | |
| ├─IndexRangeScan_14(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t3.t1_id)], keep order:false |
| └─TableRowIDScan_15(Probe) | 1.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+
6 rows in set (0.01 sec)
从语义上看,因为约束保证了 t3.t1_id
列值的唯一性,TiDB 可以直接执行 INNER JOIN
查询。
在前两个示例中,通过 HashAgg
聚合操作或通过 UNIQUE
约束保证子查询数据的唯一性之后,TiDB 才能够执行 Inner Join
操作。这两种连接均使用了 Index Join
。
下面的例子中,TiDB 优化器则选择了一种不同的执行计划:
EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t2 WHERE t1_id != t1.int_col);
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+
| MergeJoin_9 | 45446.40 | root | | semi join, left key:test.t1.id, right key:test.t2.t1_id, other cond:ne(test.t2.t1_id, test.t1.int_col) |
| ├─IndexReader_24(Build) | 180000.00 | root | | index:IndexFullScan_23 |
| │ └─IndexFullScan_23 | 180000.00 | cop[tikv] | table:t2, index:t1_id(t1_id) | keep order:true |
| └─TableReader_22(Probe) | 56808.00 | root | | data:Selection_21 |
| └─Selection_21 | 56808.00 | cop[tikv] | | ne(test.t1.id, test.t1.int_col) |
| └─TableFullScan_20 | 71010.00 | cop[tikv] | table:t1 | keep order:true |
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+
6 rows in set (0.00 sec)
由上述查询结果可知,TiDB 执行了 Semi Join
。不同于 Inner Join
,Semi Join
仅允许右键 (t2.t1_id
) 上的第一个值,也就是该操作将去除 Join
算子任务中的重复数据。Join
算法也包含 Merge Join
,会按照排序顺序同时从左侧和右侧读取数据,这是一种高效的 Zipper Merge
。
可以将原语句视为关联子查询,因为它引入了子查询外的 t1.int_col
列。然而,EXPLAIN
语句的返回结果显示的是关联子查询去关联后的执行计划。条件 t1_id != t1.int_col
会被重写为 t1.id != t1.int_col
。TiDB 可以从表 t1
中读取数据并且在 └─Selection_21
中执行此操作,因此这种去关联和重写操作会极大提高执行效率。
在以下示例中,除非子查询中存在 t3.t1_id
,否则该查询将(从语义上)返回表 t3
中的所有行:
EXPLAIN SELECT * FROM t3 WHERE t1_id NOT IN (SELECT id FROM t1 WHERE int_col < 100);
+----------------------------------+---------+-----------+-----------------------------+-------------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+---------+-----------+-----------------------------+-------------------------------------------------------------------------------------------------------------------------------+
| IndexJoin_14 | 1582.40 | root | | anti semi join, inner:IndexLookUp_13, outer key:test.t3.t1_id, inner key:test.t1.id, equal cond:eq(test.t3.t1_id, test.t1.id) |
| ├─TableReader_35(Build) | 1978.00 | root | | data:TableFullScan_34 |
| │ └─TableFullScan_34 | 1978.00 | cop[tikv] | table:t3 | keep order:false |
| └─IndexLookUp_13(Probe) | 1.00 | root | | |
| ├─IndexRangeScan_10(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t3.t1_id)], keep order:false |
| └─Selection_12(Probe) | 1.00 | cop[tikv] | | lt(test.t1.int_col, 100) |
| └─TableRowIDScan_11 | 1.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------------+---------+-----------+-----------------------------+-------------------------------------------------------------------------------------------------------------------------------+
7 rows in set (0.00 sec)
上述查询首先读取了表 t3
,然后根据主键开始探测 (probe) 表 t1
。连接类型是 anti semi join,即反半连接:之所以使用 anti,是因为上述示例有不存在匹配值(即 NOT IN
)的情况;使用 Semi Join
则是因为仅需要匹配第一行后就可以停止查询。