-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathStep2_3DCNN_combine_3.py
128 lines (102 loc) · 5.64 KB
/
Step2_3DCNN_combine_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import sys, os,random,numpy,zipfile
from numpy import log
from shutil import copyfile
import matplotlib.pyplot as plt
import cv2
from ChalearnLAPEvaluation import evalGesture,exportGT_Gesture
from ChalearnLAPSample import GestureSample
from utils import normalize
from utils import imdisplay
from utils import viterbi_colab_clean
from utils import createSubmisionFile
import time
import cPickle
import numpy
import scipy.io as sio
############### viterbi path import
from utils import viterbi_path, viterbi_path_log
#########################
outPred_cropped=os.path.join(r"./ConvNet_3DCNN\training\Depth_ConvNet__2014-05-28_01.59.00_150/")
outPred_cropped_2=os.path.join(r"./ConvNet_3DCNN\training\Depth_ConvNet__2014-06-25_18.56.59_162/")
outPred_depth =r'.\ConvNet_3DCNN\training\Depth_ConvNet__2014-06-25_18.21.33_250/'
samples_cropped = os.listdir(outPred_cropped)
samples_cropped_2 = os.listdir(outPred_cropped_2)
samples_depth = os.listdir(outPred_depth)
predPath='./ConvNet_3DCNN/training/combined_3_depth_pred/'
if not os.path.exists(predPath):
os.makedirs(predPath)
## only for ploting
data_path=os.path.join("I:\Kaggle_multimodal\Training\\")
## Load Prior and transitional Matrix
dic=sio.loadmat('Transition_matrix.mat')
Transition_matrix = dic['Transition_matrix']
Prior = dic['Prior']
for file_count, file in enumerate(samples_cropped):
if True:#file_count==26:
if file == samples_depth[file_count] and outPred_cropped_2[file_count]:
print("\t Processing file " + file)
smp=GestureSample(os.path.join(data_path,file))
time_tic = time.time()
load_path_cropped= os.path.join(outPred_cropped,file)
load_path_cropped_2= os.path.join(outPred_cropped_2,file)
load_path_depth= os.path.join(outPred_depth,file)
dic_cropped= cPickle.load( open(load_path_cropped, "rb" ) )
dic_cropped_2= cPickle.load( open(load_path_cropped_2, "rb" ) )
dic_depth = cPickle.load( open(load_path_depth, "rb" ) )
log_observ_likelihood_cropped= dic_cropped['log_observ_likelihood']
log_observ_likelihood_cropped_2= dic_cropped_2['log_observ_likelihood']
log_observ_likelihood_depth = dic_depth['log_observ_likelihood']
log_observ_likelihood = log_observ_likelihood_cropped + log_observ_likelihood_depth + log_observ_likelihood_cropped_2
print "Viterbi path decoding " + file
# do it in log space avoid numeric underflow
[path, predecessor_state_index, global_score] = viterbi_path_log(log(Prior), log(Transition_matrix), log_observ_likelihood)
#[path, predecessor_state_index, global_score] = viterbi_path(Prior, Transition_matrix, observ_likelihood)
# Some gestures are not within the vocabulary
[pred_label, begin_frame, end_frame, Individual_score, frame_length] = viterbi_colab_clean(path, global_score, threshold=-100, mini_frame=19)
### In theory we need add frame, but it seems that the groutnd truth is about 3 frames more, a bit random
end_frame = end_frame + 3
print "Elapsed time %d sec" % int(time.time() - time_tic)
prediction=[]
for i in range(len(begin_frame)):
prediction.append([ pred_label[i], begin_frame[i], end_frame[i]] )
if True:
import matplotlib.pyplot as plt
im = imdisplay(global_score)
plt.clf()
plt.imshow(im, cmap='gray')
plt.plot(range(global_score.shape[-1]), path, color='c',linewidth=2.0)
plt.xlim((0, global_score.shape[-1]))
# plot ground truth
gesturesList=smp.getGestures()
for gesture in gesturesList:
# Get the gesture ID, and start and end frames for the gesture
gestureID,startFrame,endFrame=gesture
frames_count = numpy.array(range(startFrame, endFrame+1))
pred_label_temp = ((gestureID-1) *10 +5) * numpy.ones(len(frames_count))
plt.plot(frames_count, pred_label_temp, color='r', linewidth=5.0)
# plot clean path
for i in range(len(begin_frame)):
frames_count = numpy.array(range(begin_frame[i], end_frame[i]+1))
pred_label_temp = ((pred_label[i]-1) *10 +5) * numpy.ones(len(frames_count))
plt.plot(frames_count, pred_label_temp, color='#ffff00', linewidth=2.0)
from pylab import *
if True:
save_dir=r'.\ConvNet_3DCNN\training\Depth_path_combined_3'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path= os.path.join(save_dir,file)
savefig(save_path, bbox_inches='tight')
#plt.show()
else:
plt.show()
#def exportPredictions(self, prediction,predPath):
""" Export the given prediction to the correct file in the given predictions path """
output_filename = os.path.join(predPath, file + '_prediction.csv')
output_file = open(output_filename, 'wb')
for row in prediction:
output_file.write(repr(int(row[0])) + "," + repr(int(row[1])) + "," + repr(int(row[2])) + "\n")
output_file.close()
TruthDir='./training/gt/'
final_score = evalGesture(predPath,TruthDir)
print("The score for this prediction is " + "{:.12f}".format(final_score))
# The score for this prediction is 0.701750820513!!!!!!!!!! Combine two depth!!!!!