forked from ADonazzan/20356_Statistics-Preparatory-Course
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL6.tex
607 lines (501 loc) · 20.2 KB
/
L6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
% \newpage
% \setchapterabstract{ }
% \chapter{Conditional Probability}
% \vspace{-1.5cm}
% %%%%%%INSERT TOC BELOW 1ST SECTION%%%%%%%%%%%%
% {\chaptoc\noindent\begin{minipage}[inner sep=0,outer sep=0]{0.9\linewidth}\section{Conditional Probability}\end{minipage}}
% \Example{Consider an experiment where a coin is flipped three times. Let the probability of getting heads in each coin flip be $p$.}
% Consider two random variables, \\
% - $X$ representing the probability of getting heads in the $1^{st}$ and $2^{nd}$ coin flips;\\
% - $Y$ representing the probability of getting tails in the $2^{nd}$ and $3^{rd}$ coin flips.
% $$ X \sim \text{Bin}(2, p) \qquad Y \sim \text{Bin}(2, q) \qquad q=1-p $$
% The following matrix represents the distribution of $X$ and $Y$, with the number of heads in the $1^{st}$ and $2^{nd}$ coin flips on the rows and the number of tails in the $2^{nd}$ and $3^{rd}$ coin flips on the columns. The marginal distribution of $X$ and $Y$ are given on the right and bottom of the matrix, respectively.
% \[
% \begin{array}{c|ccc|c}
% & 0 & 1 & 2 & \\
% \hline
% 0 & 0 & pq^2 & q^3 & q^2 \\
% 1 & p^2q & pq & pq^2 & 2pq\\
% 2 & p^2 & p^2q & 0 & p^2\\
% \hline
% & p^2 & 2pq & q^2 &
% \end{array}
% \]
\newpage
\setchapterabstract{In day 6, we discuss the concept of conditional probability distributions in the context of discrete and continuous random variables. We then introduce the concept of sample mean and variance of a set of random variables. Finally, we discuss the concept sequences of random variables and their convergence.}
\chapter{Conditional Probability and Sequences of R.V.s}
\vspace{-1.5cm}
{\chaptoc\noindent\begin{minipage}[inner sep=0,outer sep=0]{0.9\linewidth}\section{Exercise}\end{minipage}}
\[
X \sim \text{Gamma}(\alpha, \lambda) \qquad Y \sim \text{Gamma}(\beta, \lambda)
\]
\[
\begin{cases}
V = \frac{x}{y} \\
W = X + Y
\end{cases}
\]
\[
\begin{cases}
V = \frac{x}{y} \\
W = Y(1+V)
\end{cases}
\]
\[
\begin{cases}
X = \frac{VW}{1+V} \\
Y = \frac{W}{1+V}
\end{cases}
\]
\[
J = det \begin{vmatrix}
\frac{W(1+V)-vw}{(1+V)^2} & \frac{v}{1+v} \\
-\frac{w}{(1+v)^2} & \frac{1}{1+v}
\end{vmatrix} = \frac{w}{(1+v)^2}
\]
The density of $X$ and $Y$ is given by:
\[
f_{X, Y}(x, y) = \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \frac{\lambda^\beta}{\Gamma(\beta)} y^{\beta-1} e^{-\lambda y}
\]
X and Y are two independent random variables, therefore the joint distribution of V and W is given by:
\[
f_{V, W}(v, w) = f_{X, Y}(x, y) \left|J\right| = f_X\left(\frac{vw}{1+v}\right) f_Y\left(\frac{w}{1+v}\right) \frac{w}{(1+v)^2}
\]
\[
f_{V, W}(v, w) = \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha)\Gamma(\beta)} (\frac{vw}{1+v})^{\alpha-1} e^{-\lambda \frac{vw}{1+v}} (\frac{w}{1+v})^{\beta-1} e^{-\lambda \frac{w}{1+v}} \frac{w}{(1+v)^2}
\]
\[
f_{V, W}(v, w) = \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha)\Gamma(\beta)} \frac{v^{\alpha-1}}{(1+v)^{\alpha + \beta}} w^{\alpha + \beta-1} e^{-\lambda w} \mathbbm{1}_{(0, +\infty)}(v) \mathbbm{1}_{(0, +\infty)}(w)
\]
If the joint density is the product of two functions, then the two random variables are independent.
The joint density is therefore
\[
f_{V, W}(v, w) = \frac{\gamma^{\alpha+\beta}}{\Gamma(\alpha)\Gamma(\beta)} \frac{v^{\alpha-1}}{(1+v)^{\alpha + \beta}} \frac{\lambda^{\alpha +\beta}}{(1+v)^(\alpha + \beta)} e^{-\lambda w} \mathbbm{1}_{(0, +\infty)}(v) \mathbbm{1}_{(0, +\infty)}(w)
\]
\section{Conditional Distributions}
\subsection*{Discrete Case}
Consider two random variables $X$ and $Y$ with the following joint distribution:
\[
\begin{array}{c|ccc}
& 1 & 2 & 3 \\
\hline
0 & 0.1 & 0.2 & 0.1 \\
1 & 0.2 & 0.1 & 0.3
\end{array}
\]
We can calculate the conditional distribution\sn{
\textbf{Conditional Distribution:} the probability distribution of a random variable, calculated according to the rules of conditional probability after observing the realization of another random variable.
} of $Y$ given $X$:
\[
P(Y = 1 | X = 0) = \frac{P(Y=1, X=0)}{P(X=0)} = \frac{0.1}{0.4}
\]
More in general:
\[
P_{Y|X}(y_i | x_i) = \frac{P_{XY}(y_i, x_i)}{P_{X}(x_i)}
\]
Expected values can be evaluated in the same way:
\[
E(Y|X = 0) = 1 \cdot 0.25 + 2 \cdot 0.5 + 3 \cdot 0.25 = 2
\]
The same can be done for the variance:
\[
Var(Y|X = 0) = E(Y^2|X = 0) - E(Y|X = 0)^2
\]
\[
E(Y^2|X = 0) = 1^2 \cdot 0.25 + 2^2 \cdot 0.5 + 3^2 \cdot 0.25 = 4.5
\]
\[
Var(Y|X = 0) = 4.5 - 2^2 = 0.5
\]
\subsection*{Continuous Case}
\begin{equation*}
f_{XY}(x,y) = \begin{cases}
\frac{15}{8}xy^2 \qquad (x,y) \in T \qquad = \frac{15}{8} \mathbbm{1}_{(0,1)}(x) \mathbbm{1}_{(0,2x)}(y) \\
0 \qquad \text{otherwise}
\end{cases}
\end{equation*}
Can we construct the conditional distribution of $X$ and $Y$?
In this case, we cannot use the formula $P_{Y|X}(y_i | x_i) = \frac{P_{XY}(y_i, x_i)}{P_{X}(x_i)}$ because the probability of $X$ is zero. We can, however, use the formula for the continuous case:
\[
f_{Y|X}(y|x) = \frac{\frac{15}{8}xy^2\mathbbm{1}_{(0,1)}(x) \mathbbm{1}_{(0,2x)}(y)}{5x^4 \mathbbm{1}_{(0,1)}(x)} = \frac{3}{8}\frac{y^2}{x^3} \mathbbm{1}_{(0,2x)}(y)
\]
We can now calculate the expected value of $Y$ given $X$, as the integral of $y$ times the conditional density of $Y$ given $X$:
\[
E(Y|X = x) = \int_{-\infty}^{+\infty} y f_{Y|X}(y|x) dy = \int_{-\infty}^{+\infty} y \frac{3}{8}\frac{y^2}{x^3} \mathbbm{1}_{(0,2x)}(y) dy
\]
\[
E(Y|X = x) = \int_{0}^{2x} \frac{3}{8} y^3 x^{-3} dy = \frac{3}{8} x^{-3} \frac{y^4}{4} \Big|_{0}^{2x} = \frac{3}{8} x^{-3} \frac{16x^4}{4} = \frac{3}{2}x
\]
The variance can be calculated in the same way:
\[
Var(Y|X = x) = E(Y^2|X = x) - E(Y|X = x)^2
\]
\[
E(Y^2|X = x) = \int_{-\infty}^{+\infty} y^2 f_{Y|X}(y|x) dy = \int_{0}^{2x} \frac{3}{8} y^4 x^{-3} dy
\]
\[
= \frac{3}{8} x^{-3} \frac{y^5}{5} \Big|_{0}^{2x} = \frac{12}{5}x^2
\]
So the variance is:
\[
Var(Y|X = x) = \frac{12}{5}x^2 - \left(\frac{3}{2}x\right)^2 = \frac{3}{20}x^2
\]
\Remark{
If, in the discrete or continuous case, you construct the conditional distribution of $Y$ given $X$, the expected value and variance of $Y$ given $X$ are functions of $X$. This holds true unless $X$ and $Y$ are independent.
}
\Example{
Let's go back to the previous example:
\[
\begin{array}{c|ccc}
& 1 & 2 & 3 \\
\hline
0 & 0.1 & 0.2 & 0.1 \\
1 & 0.2 & 0.1 & 0.3
\end{array}
\]
We know that $ E(Y|X = 0) = 2 $, what is $ E(Y|X = 1) $?
}
\[
E(Y|X = 1) = 1 \cdot \frac{0.2}{0.6} + 2 \cdot \frac{0.1}{0.6} + 3 \cdot \frac{0.3}{0.6} = \frac{13}{6}
\]
As in the continuous case, the expected value of $Y$ given $X$ is a function of $X$.
\[
E(X|Y = x) = h(x) = \begin{cases}
2 \qquad x = 0 \\
\frac{13}{6} \qquad x = 1
\end{cases}
\]
\subsection*{General case}
\[
E(Y|X) = h(X) \leftarrow \text{random variable}
\]
In this case, there is no $X = x$ in the conditional expectation, so we need to calculate the expected value of $Y$ given $X$ as a function of $X$, not of $x$.
So, in the example above:
\[
E(Y|X) = \frac{3}{2}X
\]
\Definition{
The conditional expectation of $Y$ given $X$ is a random variable $h(X)$. (a function of $X$)\\
\[
E(Y|X) = h(X)
\]
\textbf{Properties}:\\
- $E(E(Y|X)) = E(Y)$ (Tower Property) \\
- $E(Yg(X)|X) = g(X)E(Y|X)$ \\
- $Var(Y|X)$ is a r.v. \\
- $Var(Y) = Var(E(Y|X)) + E(Var(Y|X))$
}{Conditional Expectation}
\Example{
Suppose that $Y$ is a random variable ``duration of battery", and $X$ is the r.v. ``percentage of an element"
\[
X \sim \text{Uniform}(1, 3) \qquad (Y|X = x) \sim \text{Exp}(\lambda = x)
\]
What is the average duration of the battery? i.e. $E(Y)$
}
\[
E(Y|X=x)=\frac{1}{x} \qquad E(Y|X) = \frac{1}{X}
\]
Therefore, we can use the Tower Property:
\[
E(Y) = E(E(Y|X)) = E\left[\frac{1}{X}\right] = \int_{1}^{3} \frac{1}{x} \frac{1}{2} dx = \frac{1}{2} \int_{1}^{3} \frac{1}{x} dx = \frac{1}{2} \ln(3)
\]
\Example{
The duration of a call is:
\(
T_1 \sim \text{Exp}(\lambda = \frac{1}{2})
\) \\
The number of calls is:
\(
N \sim \text{Poisson}(\lambda = 60)
\)\\
The total time spent on calls is therefore:
\[
Y = \sum_{i=1}^{N} T_i
\] \\
What is the expected value and variance of the total time spent on calls?
}
\[
(Y|N = n) = \sum_{i=1}^{n} T_i \sim \text{Gamma}(n, \frac{1}{2})
\]
\[
E(Y|N=n) = E(Ga(n, \frac{1}{2})) = \frac{n}{\lambda} = 2n
\]
\[
E(Y) = E(E(Y|N)) = E(2N) = 2E(N) = 2 \cdot 60 = 120
\]
Calculating the variance:
\[
Var(Y|N=n) = n \cdot \frac{1}{\lambda^2} = 4n
\]
\[
Var(Y) = Var(E(Y|N)) + E(Var(Y|N))
\]
\[
Var(Y) = Var(2N) + E(4N) = 4Var(N) + 4E(N) = 4 \cdot 60 + 4 \cdot 60 = 480
\]
\Example{
Suppose $X_1, \ldots , X_n$ are independent and identically distributed random variables with $X_n \sim \text{Bern}(p)$.\\
Let $Y = \sum_{i=1}^{n} X_i$. \\
What is $E(X_1 | Y)$?
}
The distribution of $Y$ is a binomial: $Y \sim \text{Bin}(n, p)$.
\[
E(X_1 | Y = k) = 0 \cdot P(X_1 = 0 | Y = k) + 1 \cdot P(X_1 = 1 | Y = k)
\]
\[
E(X_1 | Y = k) = P(X_1 = 1 | Y = k) = \frac{P(X_1 = 1, Y = k)}{P(Y = k)}
\]
The possible values of $k$ are $0, 1, \ldots , n$, so:
\[
E(X_1 | Y = k) = \begin{cases}
0 \qquad k = 0 \\
? \qquad k = 1, \ldots , n
\end{cases}
\]
We can rewrite the conditional expectation as:
\[
E\left(X_1 | \sum_{i=1}^{n} X_i = k\right) = \frac{P(X_1 = 1, \sum_{i=1}^{n} X_i = k)}{P(\sum_{i=1}^{n} X_i = k)}
\]
The two events in the numerator are not independent, so we have to rewrite it to solve the problem.
The probability of $X_1 = 1$ and $\sum_{i=1}^{n} X_i = k$ is the same as the probability of $X_1 = 1$ and $X_2 + \ldots + X_n = k-1$:
\[
P(X_1 = 1, \sum_{i=1}^{n} X_i = k) = \frac{P(X_1 = 1, \sum_{i=2}^{n} X_i = k-1)}{P(\sum_{i=1}^{n} X_i = k)}
\]
\[
= \frac{P(X_1 = 1)P(\sum_{i=2}^{n} X_i = k-1)}{P(\sum_{i=1}^{n} X_i = k)} = \frac{p\cdot \binom{n-1}{k-1}p^{k-1}q^{n-k}}{\binom{n}{k}p^kq^{n-k}}
\]
\[
= \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}} = \frac{k}{n}
\]
The final result is therefore:
\[
E(X_1 | Y = k) = \begin{cases}
0 \qquad k = 0 \\
\frac{k}{n} \qquad k = 1, \ldots , n
\end{cases}
= \frac{k}{n}
\]
Therefore:
\[
E(X_1 | Y) = \frac{Y}{n}
\]
\section{Sample Mean and Variance}
Take $X_1, \ldots , X_n$ i.i.d. We can define the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
Defining $m = E(X_1)$, we can calculate the expected value of the sample mean:
\[
E(\bar{X}) = E\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot m = m
\]
With the variance of $X_1$ defined as $v$, we can calculate the variance of the sample mean:
\[
Var(\bar{X}) = Var\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \cdot n \cdot v = \frac{v}{n}
\]
This holds true for any sampling distribution.
\subsection*{Sample Variance}
The sample variance is defined differently, depending on wether $m$ is known or not.
\textbf{If $m$ is known}, the sample variance is:
\[
S_0^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - m)^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2m \sum_{i=1}^{n} X_i + n m^2
\]
The expected value of the sample variance is $E(S_0^2) = v$.
\textbf{If $m$ is unknown}, the sample variance is:
\[
S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X_n})^2
\]
This can be rewritten as:
\[
S_n^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 - \underbrace{2\bar{X_n} \sum_{i=1}^{n} X_i}_{=2\bar{X}_n^2} + n \bar{X_n}^2\right]
\]
\[
S_n^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 - n \bar{X_n}^2\right]
\]
\subsection*{Case of a Normal Distribution}
Take $X_1, \ldots , X_n$ i.i.d. with $X_i \sim \text{N}(\mu, \sigma^2)$.
Then the sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ is normally distributed with:
$\bar{X}_n \sim \text{N}(\mu, \frac{\sigma^2}{n})$.
The sample variance in the case where $m$ is known is distributed as:
\[
\frac{n S_0^2}{\sigma^2} \sim \chi^2(n)
\]
In the case where $m$ is unknown, the sample variance is distributed as:
\[
\frac{(n-1) S_n^2}{\sigma^2} \sim \chi^2(n-1)
\]
\section{Sequence of R.V.s}
\Definition{
In a sequence of real numbers $a_1, a_2, \ldots , a_n$, the limit is defined as:
\[
\lim_{n \to \infty} a_n = L \in \mathbb{R} \quad \forall \epsilon > 0 \quad \exists n_\epsilon \in \mathbb{N} \quad | \quad \forall n \geq n_\epsilon \implies |a_n - L| < \epsilon
\]
}{Limit of a Sequence}
Intuitively, the limit exists if there exists an $n$ large enough so that after that $n$ all the terms are within $\epsilon$ distance of the limit. ($\text{dist}(a_n, L) < \epsilon$)
Limits can be defined in spaces other than $\mathbb{R}$, as long as there is a way to define the distance between two elements.
\textbf{Sequence of Random Variables}
Take a sequence of random variables $X_1, X_2, \ldots , X_n, \ldots$.
Suppose that all the random variables are defined on the same probability space $(\Omega, \mathcal{A}, P)$.
\Definition{
We say that $X_n \to Y$ surely if:
\[
\forall \omega \in \Omega \quad X_n(\omega) \to Y(\omega)
\]
}{Sure Convergence}
In other words, for every sequence of outcomes $X_n(\omega)$, the limit of the sequence is $X(\omega)$.
This definition is very strong, and is not very useful in practice.
\Definition{
We say that $X_n \to Y$ almost surely if:
\[
P(\{\omega \in \Omega | X_n(\omega) \to Y(\omega)\}) = 1
\]
}{Almost Sure Convergence}
In other words, the set of outcomes for which the sequence of random variables converges to the limit has probability 1.
Property:
\[
g: \mathbb{R} \to \mathbb{R} \quad \text{continuous} \quad \implies \quad g(X_n) \to g(Y) \quad \text{almost surely}
\]
\Definition{
We say that $X_n \to Y$ in probability if:
\[
\forall \epsilon > 0 \quad \lim_{n \to \infty} P(|X_n - Y| < \epsilon) = 1
\]
}{Convergence in Probability}
In other words, the probability that the distance between $X_n$ and $Y$ is less than $\epsilon$ converges to 1 as $n$ goes to infinity.
\Definition{
We say that $X_n \to Y$ in mean of order $k \geq 1$ if:
\[
E(|X_n - Y|^k) \to 0
\]
}{Convergence in Mean of Order $k$}
\Definition{
We say that $X_n \to Y$ in quadratic mean if:
\[
E(|X_n - Y|^2) \to 0
\]
}{Convergence in Quadratic Mean}
From a sequence of random variables, we can define the sequence of sample means:
\[
\bar{X_1} = X_1 \quad \bar{X_2} = \frac{X_1 + X_2}{2} \quad \bar{X_3} = \frac{X_1 + X_2 + X_3}{3} \quad \ldots
\]
\[
\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
\]
We can demonstrate that the sample mean converges to the expected value of the random variable:
\[
Var(\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \cdot n \cdot v = \frac{v}{n}
\]
\[
E(|\bar{X}_n - m|^2) = Var(\bar{X}_n) = \frac{v}{n} \to 0
\]
\Definition{
If $X_1, X_2, \ldots , X_n$ are i.i.d. with $E(X_i) = m$ and $Var(X_i) = v$, then:
\[
\bar{X}_n \to m \quad \text{almost surely}
\]
}{Strong Law of Large Numbers}
If $X_n \to Y$ almost surely, then $X_n \to Y$ in probability. The converse is not true.
\[
X_n \to Y \text{ almost surely} \quad \underset{\nLeftarrow}{\Rightarrow} \quad X_n \to Y \text{ in probability}
\]
Moreover, if $X_n \to Y$ in order $k$, then $X_n \to Y$ in probability. The converse is again not true.
\[
X_n \to Y \text{ in order } k \quad \underset{\nLeftarrow}{\Rightarrow} \quad X_n \to Y \text{ in probability}
\]
\subsection*{Convergence in Distribution}
\Definition{
We say that $X_n \to Y$ in distribution if:
\[
F_{X_n}(t) \to F_Y(t) \quad \forall t \quad \text{where} \quad F_{Y} \quad \text{is continuous}
\]
}{Convergence in Distribution}
Convergence in distribution is a weaker form of convergence than other forms of convergence.
Link between convergence in distribution and convergence in probability:
\[
X_n \to Y \text{ in probability} \quad \Rightarrow \quad X_n \to Y \text{ in distribution}
\]
The converse is generally not true. However, if $Y$ is a constant, then the two forms of convergence are equivalent.
\[
X_n \to y \in \mathbb{R} \text{ in distribution} \quad \Leftrightarrow \quad X_n \to y \in \mathbb{R} \text{ in probability}
\]
\Example{
Take a sequence of i.i.d. random variables $X_1, X_2, \ldots , X_n, \ldots$ with:
\[
X_i \sim \text{Unif}(0,1)
\]
We take the sequence $Y_n = \min(X_1, \ldots , X_n)$.
What is the limit of $Y_n$?
}
Recall that if $V_n = \min(X_1, \ldots , X_n)$, then $F_{V_n}(t) = 1- [1-F_x(t)]^n.$
Since the distribution function of $X$ is:
\[
F_X(t) = \begin{cases}
0 \qquad t < 0 \\
t \qquad 0 \leq t \leq 1 \\
1 \qquad t > 1
\end{cases}
\]
The distribution function of $V_n$ is:
\[
F_{V_n}(t) = \begin{cases}
0 \qquad t < 0 \\
1 - (1-t)^n \qquad 0 \leq t \leq 1 \\
1 \qquad t > 1
\end{cases}
\]
For the convergence in distribution, we need to calculate the limit of $F_{V_n}(t)$ as $n$ goes to infinity:
\[
\lim_{n \to \infty} F_{V_n}(t) = \begin{cases}
0 \qquad t \leq 0 \\
1 \qquad t > 0
\end{cases}
\]
This is not the distribution function of any random variable, because it has a jump at 0, and in that jump the value is continuous from the left but not from the right.
This is the distribution of a discrete random variable, as it is not continuous but piecewise constant.
From the definition oif the limit of a sequence of random variables, we can define the limit of $F_{V_n}(t)$ as:
\[
F_Y(t) = \begin{cases}
0 \qquad t < 0 \\
1 \qquad t \geq 0
\end{cases}
\]
Which is the distribution function of a random variable $Y$ that is equal to 0 with probability 1.
\section{Central Limit Theorem}
\Definition{
Let $X_1, \ldots, X_n$ be i.i.d random variables with $m = E(X_i)$ and $v = Var(X_i)$.\\
\[
\mathbb(P)\left(\frac{\bar{X}_n - m}{\sqrt{\frac{v}{n}}} \leq t\right) \to \Phi(t) \quad \text{as} \quad n \to +\infty
\]
or
\[
\frac{\bar{X}_n - m}{\sqrt{\frac{v}{n}}} \to \text{N}(0,1) \quad \text{in distribution}
\]
For this to hold, we have to assume that the random variables have finite mean and variance. In other words, $E(X_i^2) < +\infty$.
}{Central Limit Theorem}
In other words, if $n$ is ``large enough", then the distribution of the sample mean is approximately normal with $\bar{X_n} \approx N(m, \frac{v}{n})$.
If we multiply by $n$, we get:
\[
\sum_{i=1}^{n} X_i \approx N(nm, nv)
\]
Take $Y \sim \text{Bin}(n,p)$, then if $n$ is large enough and $p$ is not too close to 0 or 1, then $Y \approx N(np, npq)$.
With a binomial distribution $Y \sim \text{Bin}(n,p)$, if $n \to +\infty$ and $p \to 0$ such that $np \to \lambda$, then $Y \approx \text{Po}(\lambda)$. In other words, $X_n \to P(\lambda)$ in distribution.
Poisson random variables are also approximately normal if $\lambda$ is large enough.\sn{The Poisson distribution with parameter $\lambda$ is the sum of $\lambda$ Poisson random variables with parameter 1.}
In the case of Gamma distributions $Y\sim \text{Ga}(\alpha, \lambda)$, if $\alpha$ is large enough, then $Y \approx N(\alpha/\lambda, \alpha/\lambda^2)$.\sn{The Gamma distribution with parameters $\alpha$ and $\lambda$ is the sum of $\alpha$ exponential random variables with parameter $\lambda$.}
For a Chi-squared distribution with $n$ degrees of freedom, if $n$ is large enough, then $X \approx N(n, 2n)$.\sn{The Chi-squared distribution with $n$ degrees of freedom is the sum of $n$ standard normal random variables squared ($\chi^2$ with 1 d.f.).}
\Definition{
Let $X_n \to X$ in distribution. If $Y_n \to Y$ in probability, then:
\[
X_n + Y_n \to X + Y \quad \text{in distribution}
\]
\[
X_n \cdot Y_n \to X \cdot Y \quad \text{in distribution}
\]
$\forall n \quad P(Y_n = 0) = 0$ and $y \neq 0$.
}{Slutsky's Theorem}
\textbf{Sampling from a Normal Distribution}
Take $X_1, X_2, \ldots , X_n$ i.i.d. with $X_i \sim N(\mu, \sigma^2)$.
\[
\frac{\bar{X}_n - \mu}{\sqrt{\frac{S_n^2}{n}}} = \underbrace{\frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}}}_{\sim N(0,1)} \underbrace{\sqrt{\frac{\sigma^2}{S_n^2}}}_{\to 1} \to Z \sim N(0,1) \text{in distribution}
\]
Therefore, the distribution is approximately $N(0,1)$.
\textbf{Sampling not from a Normal Distribution}
If $m = E(X_i)$ and $v = Var(X_i)$, then:
\[
\frac{\bar{X}_n - \mu}{\sqrt{\frac{S_n^2}{n}}} = \underbrace{\frac{\bar{X}_n - \mu}{\sqrt{\frac{v}{n}}}}_{\sim Z} \underbrace{\sqrt{\frac{v}{S_n^2}}}_{\to 1} \to Z \sim N(0,1) \text{in distribution}
\]