Skip to content

Commit a0aa080

Browse files
author
MuslemRahimi
committedMar 13, 2025
update cron job
1 parent 355e67d commit a0aa080

File tree

2 files changed

+8
-6
lines changed

2 files changed

+8
-6
lines changed
 

‎app/cron_ai_score.py

+6-4
Original file line numberDiff line numberDiff line change
@@ -311,8 +311,8 @@ async def fine_tune_and_evaluate(ticker, con, start_date, end_date, skip_downloa
311311

312312
if (data['precision'] >= 50 and data['accuracy'] >= 50 and
313313
data['accuracy'] < 100 and data['precision'] < 100 and
314-
data['f1_score'] >= 50 and data['recall_score'] >= 50 and
315-
data['roc_auc_score'] >= 50):
314+
data['f1_score'] >= 20 and data['recall_score'] >= 20 and
315+
data['roc_auc_score'] >= 50) and len(data.get('backtest',[])) > 0:
316316
await save_json(ticker, data)
317317
data['backtest'] = [
318318
{'date': entry['date'], 'yTest': entry['y_test'], 'yPred': entry['y_pred'], 'score': entry['score']}
@@ -346,11 +346,13 @@ async def run():
346346

347347
if train_mode:
348348
# Warm start training
349-
stock_symbols = cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 500E6 AND symbol NOT LIKE '%.%'") #list(set(['CB','LOW','PFE','RTX','DIS','MS','BHP','BAC','PG','BABA','ACN','TMO','LLY','XOM','JPM','UNH','COST','HD','ASML','BRK-A','BRK-B','CAT','TT','SAP','APH','CVS','NOG','DVN','COP','OXY','MRO','MU','AVGO','INTC','LRCX','PLD','AMT','JNJ','ACN','TSM','V','ORCL','MA','BAC','BA','NFLX','ADBE','IBM','GME','NKE','ANGO','PNW','SHEL','XOM','WMT','BUD','AMZN','PEP','AMD','NVDA','AWR','TM','AAPL','GOOGL','META','MSFT','LMT','TSLA','DOV','PG','KO']))
349+
stock_symbols = cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 300E6 AND symbol NOT LIKE '%.%'") #list(set(['CB','LOW','PFE','RTX','DIS','MS','BHP','BAC','PG','BABA','ACN','TMO','LLY','XOM','JPM','UNH','COST','HD','ASML','BRK-A','BRK-B','CAT','TT','SAP','APH','CVS','NOG','DVN','COP','OXY','MRO','MU','AVGO','INTC','LRCX','PLD','AMT','JNJ','ACN','TSM','V','ORCL','MA','BAC','BA','NFLX','ADBE','IBM','GME','NKE','ANGO','PNW','SHEL','XOM','WMT','BUD','AMZN','PEP','AMD','NVDA','AWR','TM','AAPL','GOOGL','META','MSFT','LMT','TSLA','DOV','PG','KO']))
350350
stock_symbols = [row[0] for row in cursor.fetchall()]
351+
351352
#Test Mode
352353
#stock_symbols = ['AAPL','TSLA']
353-
print('Training for:', len(stock_symbols))
354+
355+
print('Training for', len(stock_symbols))
354356
predictor = await warm_start_training(stock_symbols, con, skip_downloading, save_data)
355357

356358
#else:

‎app/ml_models/score_model.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,8 @@ def __init__(self):
2222
self.model = lgb.LGBMClassifier(
2323
n_estimators=1_000,
2424
learning_rate=0.001,
25-
max_depth=10,
26-
num_leaves=2**10-1,
25+
max_depth=12,
26+
num_leaves=2**12-1,
2727
n_jobs=10,
2828
random_state=42
2929
)

0 commit comments

Comments
 (0)