@@ -521,12 +526,21 @@
Core-periphery assignment
+
chisq.test(as.factor(node_is_core(lawfirm)),
+ as.factor(node_attribute(lawfirm, "gender")))
-
chisq.test(node_is_core(ison_lawfirm), node_attribute(ison_lawfirm, "Gender"))
+
chisq.test(as.factor(node_is_core(lawfirm)),
+ as.factor(node_attribute(lawfirm, "gender")))
+chisq.test(as.factor(node_is_core(lawfirm)),
+ as.factor(node_attribute(lawfirm, "office")))
+chisq.test(as.factor(node_is_core(lawfirm)),
+ as.factor(node_attribute(lawfirm, "school")))
+chisq.test(as.factor(node_is_core(lawfirm)),
+ as.factor(node_attribute(lawfirm, "practice")))
@@ -547,15 +561,11 @@
Coreness
+
lawfirm %>%
+ mutate(ncn = node_coreness()) %>%
+ graphr(node_color = "ncn")
-
-
ison_lawfirm %>%
- mutate(ncn = node_coreness(ison_lawfirm)) %>%
- graphr(node_color = "ncn") + scale_colour_sdgs()
-
@@ -593,8 +603,9 @@
How cohesive is the network?
net_connectedness(ison_adolescents)
This measure gets at the proportion of dyads that can reach each
-other in the network. Another way to get at this would be to see how
-many components there are in the network.
+other in the network. In this case, the proportion is 1, i.e. all nodes
+can reach every other node. Another way to get at this would be to see
+how many components there are in the network.
@@ -694,7 +705,7 @@
Identifying bridges
data-completion="1" data-diagnostics="1" data-startover="1"
data-lines="0" data-pipe="|>">
ison_adolescents |> mutate_ties(coh = tie_cohesion(ison_adolescents)) |>
- graphr(edge_color = "coh")
+ graphr(edge_size = "coh")
Where would you target your efforts if you wanted to fragment this
network?
@@ -934,27 +945,27 @@
Identifying bridges
@@ -1443,13 +1454,13 @@
Identifying bridges
@@ -1494,9 +1505,9 @@
Identifying bridges
" \"Super!\"),", " encouragement = c(\"Bon effort\"))"
), chunk_opts = list(label = "setup", include = FALSE)), setup = NULL,
chunks = list(list(label = "core", code = "", opts = list(
- label = "\"core\"", exercise = "TRUE", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("(graphr(create_core(50)) + ggtitle(\"Core\"))", chunk_opts = list(
+ label = "\"core\"", exercise = "TRUE", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure("(graphr(create_core(50)) + ggtitle(\"Core\"))", chunk_opts = list(
label = "core-solution")), tests = NULL, options = list(
eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
@@ -1506,15 +1517,15 @@
Identifying bridges
autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
fig.show = "asis", fig.align = "default", fig.path = "topology_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "core", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "core, exercise=TRUE, purl = FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "core, exercise=TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1550,29 +1561,34 @@
Identifying bridges
" \"Beau travail!\",", " \"Bravo!\",",
" \"Super!\"),", " encouragement = c(\"Bon effort\"))"
), chunk_opts = list(label = "setup", include = FALSE)), setup = NULL,
- chunks = list(list(label = "gnet", code = "", opts = list(
- label = "\"gnet\"", exercise = "TRUE", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("graphr(ison_lawfirm, node_color = \"school\")", chunk_opts = list(
- label = "gnet-solution")), tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "topology_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "topology_files/figure-html/",
+ chunks = list(list(label = "gnet", code = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ opts = list(label = "\"gnet\"", exercise = "TRUE", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ "graphr(lawfirm, node_color = \"school\", edge_color = \"darkgray\")",
+ "graphr(lawfirm, node_color = \"gender\", edge_color = \"darkgray\")",
+ "graphr(lawfirm, node_color = \"office\", edge_color = \"darkgray\")",
+ "graphr(lawfirm, node_color = \"practice\", edge_color = \"darkgray\")"
+ ), chunk_opts = list(label = "gnet-solution")), tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "topology_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "topology_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
- max.print = 1000, label = "gnet", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "gnet, exercise=TRUE, purl = FALSE",
- fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
+ max.print = 1000, label = "gnet", exercise = TRUE, code = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ out.width.px = 864, out.height.px = 384, params.src = "gnet, exercise=TRUE, purl = FALSE, fig.width=9",
+ fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1606,31 +1622,34 @@
Identifying bridges
"learnr::random_phrases_add(language = \"en\", ", " praise = c(\"C'est génial!\",",
" \"Beau travail!\",", " \"Bravo!\",",
" \"Super!\"),", " encouragement = c(\"Bon effort\"))"
-), chunk_opts = list(label = "setup", include = FALSE)), setup = NULL,
- chunks = list(list(label = "nodecore", code = "", opts = list(
- label = "\"nodecore\"", exercise = "TRUE", purl = "FALSE"),
+), chunk_opts = list(label = "setup", include = FALSE)), setup = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ chunks = list(list(label = "gnet", code = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ opts = list(label = "\"gnet\"", exercise = "TRUE", purl = "FALSE",
+ fig.width = "9"), engine = "r"), list(label = "nodecore",
+ code = "", opts = list(label = "\"nodecore\"", exercise = "TRUE",
+ purl = "FALSE", fig.width = "9", exercise.setup = "\"gnet\""),
engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("ison_lawfirm %>% ",
- " mutate(nc = node_is_core(ison_lawfirm)) %>% ", " graphr(node_color = \"nc\")"
- ), chunk_opts = list(label = "nodecore-solution")), tests = NULL,
- options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "topology_cache/html/", cache.vars = NULL,
- cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
- cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
- fig.align = "default", fig.path = "topology_files/figure-html/",
+ check = NULL, solution = structure(c("lawfirm %>% ", " mutate(nc = node_is_core()) %>% ",
+ " graphr(node_color = \"nc\", edge_color = \"gray\")"), chunk_opts = list(
+ label = "nodecore-solution")), tests = NULL, options = list(
+ eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
+ tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
+ highlight = FALSE, size = "normalsize", background = "#F7F7F7",
+ strip.white = TRUE, cache = 0, cache.path = "topology_cache/html/",
+ cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
+ autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
+ fig.show = "asis", fig.align = "default", fig.path = "topology_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "nodecore", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "nodecore, exercise=TRUE, purl = FALSE",
+ exercise.setup = "gnet", code = "", out.width.px = 864,
+ out.height.px = 384, params.src = "nodecore, exercise=TRUE, purl = FALSE, fig.width=9, exercise.setup=\"gnet\"",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1665,11 +1684,13 @@
Identifying bridges
"learnr::random_phrases_add(language = \"en\", ", " praise = c(\"C'est génial!\",",
" \"Beau travail!\",", " \"Bravo!\",",
" \"Super!\"),", " encouragement = c(\"Bon effort\"))"
-), chunk_opts = list(label = "setup", include = FALSE)), setup = NULL,
- chunks = list(list(label = "netcore", code = "", opts = list(
- label = "\"netcore\"", exercise = "TRUE", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("net_core(ison_lawfirm, node_is_core(ison_lawfirm))", chunk_opts = list(
+), chunk_opts = list(label = "setup", include = FALSE)), setup = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ chunks = list(list(label = "gnet", code = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ opts = list(label = "\"gnet\"", exercise = "TRUE", purl = "FALSE",
+ fig.width = "9"), engine = "r"), list(label = "netcore",
+ code = "", opts = list(label = "\"netcore\"", exercise = "TRUE",
+ purl = "FALSE", exercise.setup = "\"gnet\""), engine = "r")),
+ code_check = NULL, error_check = NULL, check = NULL, solution = structure("net_core(lawfirm, node_is_core(lawfirm))", chunk_opts = list(
label = "netcore-solution")), tests = NULL, options = list(
eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
@@ -1687,7 +1708,8 @@
Identifying bridges
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "netcore", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "netcore, exercise=TRUE, purl = FALSE",
+ exercise.setup = "gnet", code = "", out.width.px = 624,
+ out.height.px = 384, params.src = "netcore, exercise=TRUE, purl = FALSE, exercise.setup=\"gnet\"",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1696,30 +1718,30 @@
Identifying bridges
@@ -1762,19 +1784,27 @@
Identifying bridges
"learnr::random_phrases_add(language = \"en\", ", " praise = c(\"C'est génial!\",",
" \"Beau travail!\",", " \"Bravo!\",",
" \"Super!\"),", " encouragement = c(\"Bon effort\"))"
-), chunk_opts = list(label = "setup", include = FALSE)), setup = NULL,
- chunks = list(list(label = "chisq", code = "", opts = list(
- label = "\"chisq\"", exercise = "TRUE", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("chisq.test(node_is_core(ison_lawfirm), node_attribute(ison_lawfirm, \"Gender\"))", chunk_opts = list(
- label = "chisq-solution")), tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "topology_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "topology_files/figure-html/",
+), chunk_opts = list(label = "setup", include = FALSE)), setup = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ chunks = list(list(label = "gnet", code = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ opts = list(label = "\"gnet\"", exercise = "TRUE", purl = "FALSE",
+ fig.width = "9"), engine = "r"), list(label = "chisq",
+ code = "chisq.test(as.factor(node_is_core(lawfirm)), \n as.factor(node_attribute(lawfirm, \"gender\")))",
+ opts = list(label = "\"chisq\"", exercise = "TRUE", purl = "FALSE",
+ exercise.setup = "\"gnet\""), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("chisq.test(as.factor(node_is_core(lawfirm)), ",
+ " as.factor(node_attribute(lawfirm, \"gender\")))",
+ "chisq.test(as.factor(node_is_core(lawfirm)), ", " as.factor(node_attribute(lawfirm, \"office\")))",
+ "chisq.test(as.factor(node_is_core(lawfirm)), ", " as.factor(node_attribute(lawfirm, \"school\")))",
+ "chisq.test(as.factor(node_is_core(lawfirm)), ", " as.factor(node_attribute(lawfirm, \"practice\")))"
+ ), chunk_opts = list(label = "chisq-solution")), tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "topology_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "topology_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
fig.width = 6.5, fig.height = 4, fig.env = "figure",
fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
@@ -1783,9 +1813,11 @@
Identifying bridges
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
- max.print = 1000, label = "chisq", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "chisq, exercise=TRUE, purl=FALSE",
- fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
+ max.print = 1000, label = "chisq", exercise = TRUE, exercise.setup = "gnet",
+ code = c("chisq.test(as.factor(node_is_core(lawfirm)), ",
+ " as.factor(node_attribute(lawfirm, \"gender\")))"
+ ), out.width.px = 624, out.height.px = 384, params.src = "chisq, exercise=TRUE, purl=FALSE, exercise.setup=\"gnet\"",
+ fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1793,26 +1825,26 @@
Identifying bridges
@@ -1855,14 +1887,15 @@
Identifying bridges
"learnr::random_phrases_add(language = \"en\", ", " praise = c(\"C'est génial!\",",
" \"Beau travail!\",", " \"Bravo!\",",
" \"Super!\"),", " encouragement = c(\"Bon effort\"))"
-), chunk_opts = list(label = "setup", include = FALSE)), setup = NULL,
- chunks = list(list(label = "nodecoren", code = "", opts = list(
- label = "\"nodecoren\"", exercise = "TRUE", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("ison_lawfirm %>% ",
- " mutate(ncn = node_coreness(ison_lawfirm)) %>% ", " graphr(node_color = \"ncn\") + scale_colour_sdgs()"
- ), chunk_opts = list(label = "nodecoren-solution")), tests = NULL,
- options = list(eval = FALSE, echo = TRUE, results = "markup",
+), chunk_opts = list(label = "setup", include = FALSE)), setup = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ chunks = list(list(label = "gnet", code = "lawfirm <- to_undirected(ison_lawfirm) |> to_uniplex(\"friends\")",
+ opts = list(label = "\"gnet\"", exercise = "TRUE", purl = "FALSE",
+ fig.width = "9"), engine = "r"), list(label = "nodecoren",
+ code = "lawfirm %>% \n mutate(ncn = node_coreness()) %>% \n graphr(node_color = \"ncn\")",
+ opts = list(label = "\"nodecoren\"", exercise = "TRUE",
+ purl = "FALSE", exercise.setup = "\"gnet\""), engine = "r")),
+ code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
+ tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
comment = NA, highlight = FALSE, size = "normalsize",
background = "#F7F7F7", strip.white = TRUE, cache = 0,
@@ -1879,21 +1912,23 @@
Identifying bridges
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "nodecoren", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "nodecoren, exercise=TRUE, purl = FALSE",
- fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
+ exercise.setup = "gnet", code = c("lawfirm %>% ", " mutate(ncn = node_coreness()) %>% ",
+ " graphr(node_color = \"ncn\")"), out.width.px = 624,
+ out.height.px = 384, params.src = "nodecoren, exercise=TRUE, purl = FALSE, exercise.setup=\"gnet\"",
+ fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1910,18 +1945,18 @@
Identifying bridges
@@ -1999,18 +2034,18 @@
Identifying bridges
@@ -2085,19 +2120,19 @@
Identifying bridges
@@ -2347,7 +2382,7 @@
Identifying bridges
label = "\"tiecoh\"", exercise = "TRUE", purl = "FALSE"),
engine = "r")), code_check = NULL, error_check = NULL,
check = NULL, solution = structure(c("ison_adolescents |> mutate_ties(coh = tie_cohesion(ison_adolescents)) |> ",
- " graphr(edge_color = \"coh\")"), chunk_opts = list(label = "tiecoh-solution")),
+ " graphr(edge_size = \"coh\")"), chunk_opts = list(label = "tiecoh-solution")),
tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
comment = NA, highlight = FALSE, size = "normalsize",
@@ -2378,7 +2413,7 @@
Identifying bridges
diff --git a/inst/tutorials/tutorial7/diffusion.Rmd b/inst/tutorials/tutorial7/diffusion.Rmd
index c29205ea..2fea6eeb 100644
--- a/inst/tutorials/tutorial7/diffusion.Rmd
+++ b/inst/tutorials/tutorial7/diffusion.Rmd
@@ -57,7 +57,7 @@ together with the number of nodes (of each mode) and
the maximum number of neighbors (width) as the arguments.
Let's create a one-mode lattice with 32 nodes, maximum width 4, and graph it using `graphr()`:
-```{r clattice, exercise = TRUE}
+```{r clattice, exercise = TRUE, fig.width=9}
lat <- create_lattice(32, width = 4)
graphr(lat)
```
@@ -97,7 +97,7 @@ The exposure at infection is recorded here to accelerate later analysis.
We have several different options for visualising diffusions.
The first visualisation option that we have is to plot the diffusion result itself.
-```{r plotlat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE}
+```{r plotlat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE, fig.width=9}
plot(lat_diff)
plot(lat_diff, all_steps = FALSE)
```
@@ -123,7 +123,7 @@ First, `graphr()` will graph a static network where the nodes are coloured
according to how far through the diffusion process the node adopted.
Note also that any seeds are indicated with a triangle.
-```{r graphrlat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE}
+```{r graphrlat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE, fig.width=9}
graphr(lat_diff, node_size = 0.3)
```
@@ -131,7 +131,7 @@ Second, `graphs()` visualises the stages of the diffusion on the network.
By default it will graph the first and last wave,
but we can change this by specifying which waves to graph.
-```{r graphslat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE}
+```{r graphslat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE, fig.width=9}
graphs(lat_diff)
graphs(lat_diff, waves = c(1,4,8))
```
@@ -142,7 +142,7 @@ how the attribute is diffusing across the network!
Note that if you run this code in the console, you get a calming progress bar;
in the tutorial you will just need to be patient.
-```{r graphtlat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE}
+```{r graphtlat, exercise = TRUE, exercise.setup = "lat_diff", purl = FALSE, fig.width=9}
grapht(lat_diff, node_size = 10)
```
@@ -166,7 +166,7 @@ see the difference the structure makes.
+ `generate_scalefree()`: Generates a small-world structure following the lattice rewiring model.
+ `generate_smallworld()`: Generates a scale-free structure following the preferential attachment model.
-```{r otherstructures, exercise = TRUE, purl = FALSE}
+```{r otherstructures, exercise = TRUE, purl = FALSE, fig.width=9}
graphr(play_diffusion(create_ring(32, width = 2)))
graphr(play_diffusion(generate_random(32, 0.15)))
graphr(play_diffusion(generate_scalefree(32, 0.025)))
@@ -181,7 +181,7 @@ but we need to sit through each 'movie'.
But there is an easier way.
Play these same diffusions again, this time nesting the call within `net_infection_complete()`.
-```{r completeinfection, exercise = TRUE, purl = FALSE}
+```{r completeinfection, exercise = TRUE, purl = FALSE, fig.width=9}
net_infection_complete(play_diffusion(create_ring(32, width = 2)))
net_infection_complete(play_diffusion(generate_random(32, 0.15)))
net_infection_complete(play_diffusion(generate_scalefree(32, 0.025)))
@@ -202,7 +202,7 @@ question("Does the structure of the network matter for whether and when a diffus
Run an influence cascade on US states' geographic contiguity in `ison_usstates`.
You can start the infection in California by specifying `seeds = 5`.
-```{r usstates, exercise = TRUE, purl = FALSE}
+```{r usstates, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -239,7 +239,7 @@ Let's see what the results are if you play four different diffusions:
- `seeds = 1:2, thresholds = 2`
- `seeds = c(1,16), thresholds = 2`
-```{r complex, exercise = TRUE}
+```{r complex, exercise = TRUE, fig.width=9}
rg <- create_ring(32, width = 2)
plot(play_diffusion(rg, seeds = 1, thresholds = 1))/
plot(play_diffusion(rg, seeds = 1, thresholds = 2))/
@@ -269,7 +269,7 @@ A threshold of 2 would be easy to surpass for particularly well connected nodes,
but impossible for pendants.
Let's see what happens when we use this threshold on a scale-free network instead.
-```{r sfcomplex, exercise = TRUE, purl = FALSE}
+```{r sfcomplex, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -296,7 +296,7 @@ This is sometimes called a fractional threshold model or complex diffusion.
Try thresholds of 0.1, 0.25, and 0.5 on two seeds and 10 steps
on the scale-free networks we have been using here.
-```{r sfprop, exercise = TRUE, purl = FALSE}
+```{r sfprop, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -327,7 +327,7 @@ are obstructing the diffusion process because it is unlikely that many of their
Lastly, note that it may be that thresholds vary across the network.
Let's use an example network to explore this: `ison_lotr`.
-```{r lotr, exercise = TRUE}
+```{r lotr, exercise = TRUE, fig.width=9}
graphr(ison_lotr, node_color = "Race")
```
@@ -344,7 +344,7 @@ lotr_resist <- ison_lotr %>% mutate(resistance = dplyr::case_when(Race == "Dwarf
Race == "Maiar" ~ 6))
```
-```{r resistdiff, exercise=TRUE, exercise.setup = "lotr-resist"}
+```{r resistdiff, exercise=TRUE, exercise.setup = "lotr-resist", fig.width=9}
grapht(play_diffusion(lotr_resist, thresholds = "resistance"))
```
@@ -353,14 +353,14 @@ Can you rewrite the code above so that fractional thresholds are used?
### Free play: Lord of the Rings
-```{r lotr-free, exercise=TRUE, exercise.setup = "lotr-resist"}
+```{r lotr-free, exercise=TRUE, exercise.setup = "lotr-resist", fig.width=9}
```
-### Get it going
+## Intervention
Let's say that you have developed an exciting new policy and
you are keen to maximise how quickly and thoroughly it is adopted.
@@ -375,7 +375,7 @@ To see whether this is true,
try seeding the innovation at the first and sixteenth (middle) node
and see whether the result is any different.
-```{r ring2, exercise = TRUE, purl = FALSE}
+```{r ring2, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -395,7 +395,7 @@ Now what if we seed the network with more than one infected node?
Choosing the first four nodes we can see that the process is jump-started,
but doesn't really conclude that much faster.
-```{r ring3, exercise = TRUE, purl = FALSE}
+```{r ring3, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -411,14 +411,14 @@ plot(rg_d3)
# graph the diffusion within the network
graphs(play_diffusion(create_ring(32, width = 2), seeds = 1:4),
- layout = "circle")
+ layout = "stress")
```
But what if we seed the network at three different places?
Here we can use `node_is_random()` to randomly select some nodes to seed.
Try it with four randomly-selected nodes and see what you get.
-```{r ring4, exercise = TRUE, purl = FALSE}
+```{r ring4, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -451,7 +451,7 @@ when the network has a different structure.
Here let's play and plot two diffusion on the lattice network,
one with the first node as seed and again one on the middle.
-```{r lattice, exercise = TRUE, exercise.setup = "clattice", purl = FALSE}
+```{r lattice, exercise = TRUE, exercise.setup = "clattice", purl = FALSE, fig.width=9}
```
@@ -485,7 +485,7 @@ Similar to the previous examples, we will be using the following functions withi
We could use these on degree centrality, or perhaps some other kind of centrality?
-```{r sf, exercise=TRUE}
+```{r sf, exercise=TRUE, fig.width=9}
sf <- generate_scalefree(32, 0.025)
sf %>%
as_tidygraph() %>%
@@ -494,7 +494,7 @@ sf %>%
graphr(node_color = "degree") + guides(color = "legend") + labs(color = "degree")
```
-```{r scale, exercise = TRUE, purl = FALSE, exercise.setup="sf"}
+```{r scale, exercise = TRUE, purl = FALSE, exercise.setup="sf", fig.width=9}
```
@@ -530,7 +530,7 @@ Many of them are implemented here and might be considered as strategies:
- `node_is_fold()` identifies nodes that are in a structural fold between two or more triangles
- `node_is_mentor()` identifies high indegree nodes as mentors
-```{r indepsets, exercise = TRUE, exercise.setup="sf"}
+```{r indepsets, exercise = TRUE, exercise.setup="sf", fig.width=9}
sf %>% mutate_nodes(ni = node_is_independent()) %>% graphr(node_color = "ni")
plot(play_diffusion(sf, seeds = node_is_independent(sf), steps = 10))
```
@@ -546,7 +546,7 @@ For example, these lawyers might accept word-of-mouth directly from two colleagu
but are also attuned to common practice irrespective of whether direct colleagues
have adopted the innovation.
-```{r prevalence, exercise=TRUE}
+```{r prevalence, exercise=TRUE, fig.width=9}
plot(play_diffusion(ison_lawfirm, thresholds = 2, prevalence = 0.005),
all_steps = FALSE)
```
@@ -578,7 +578,7 @@ Try this out with our well-mixed random network, 10 steps, 5 times,
and with a `transmissibility` parameter set to 0.5
to indicate that in only 1/2 cases is contagion successful.
-```{r diffusions, exercise = TRUE}
+```{r diffusions, exercise = TRUE, fig.width=9}
rando <- generate_random(32, 0.1)
graphr(rando)
plot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))
@@ -602,7 +602,7 @@ Let's try a rate of recovery of 0.20,
which means that it'll take an infected node on average
5 steps (days?) to recover.
-```{r sir, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE}
+```{r sir, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE, fig.width=9}
```
@@ -624,7 +624,7 @@ If you get moderately different results each time,
try increasing the number of `times` the simulation is run,
which should average out these differences and make the results more reliable.
-```{r sirtimes, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE}
+```{r sirtimes, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE, fig.width=9}
```
@@ -641,7 +641,7 @@ This means that after twenty steps (on average),
a recovered node may lose its recovered status and become susceptible again.
Play a single diffusion so that you can see what's going on in a particular run.
-```{r sirs, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE}
+```{r sirs, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE, fig.width=9}
```
@@ -652,8 +652,8 @@ plot(play_diffusion(rando, recovery = 0.2, waning = 0.05))
-```{r sirs-interp, echo = FALSE, purl = FALSE}
-question("Does the process reach a stable state?",
+```{r sirs-interp, echo = FALSE, purl = FALSE, fig.width=9}
+question("Does the process reach a reasonably stable state?",
answer("Yes", correct = TRUE),
answer("No"),
allow_retry = TRUE)
@@ -663,7 +663,7 @@ Depending on your particular simulation,
there might be some variation,
so let's run this same diffusion but multiple (100?) times.
-```{r sirstimes-solution, exercise.setup = "diffusions", exercise = TRUE}
+```{r sirstimes-solution, exercise.setup = "diffusions", exercise = TRUE, fig.width=9}
plot(play_diffusions(rando, recovery = 0.2, waning = 0.05, times = 100))
```
@@ -687,7 +687,7 @@ This means that a latency of 0 means that exposure immediately renders the node
A latency of 0.75 means that it will take the node approximately 4 days (1/1-0.75 = 1/0.25 = 4) to become infectious.
Play a single diffusion so that you can see what's going on in a particular run.
-```{r seir, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE}
+```{r seir, exercise = TRUE, exercise.setup = "diffusions", purl = FALSE, fig.width=9}
```
@@ -717,7 +717,7 @@ It can be interpreted as follows:
So how can we establish the $R_0$ here?
We can use `net_reproduction()`.
-```{r r0, exercise = TRUE, exercise.setup = "diffusions"}
+```{r r0, exercise = TRUE, exercise.setup = "diffusions", fig.width=9}
rd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)
plot(rd_diff)
# R-nought
@@ -773,12 +773,12 @@ net_immunity(rd_diff)
net_immunity(rd_diff, normalized = FALSE)
```
-In this model, the HIT score indicates around 23% of nodes in the network
+In this model, the HIT score indicates a good proportion of nodes in the network
would need to be vaccinated or otherwise protected to achieve herd immunity.
-The unnormalised version gives the number of nodes that would need to be vaccinated: 8 nodes.
+The unnormalised version gives the number of nodes that would need to be vaccinated.
Ok, so let's try this strategy.
-```{r vaccinate, exercise = TRUE, exercise.setup = "diffusions"}
+```{r vaccinate, exercise = TRUE, exercise.setup = "diffusions", fig.width=9}
rd_diff_vacc <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05,
immune = 2:9)
plot(rd_diff_vacc)
@@ -797,7 +797,7 @@ You can just concentrate on the giant component (which is plenty incestuous!).
We could say that there's a new, highly infectious disease transmittable
through hooking up and, I have it on authority, it all starts with Mark Sloan.
-```{r greys, exercise = TRUE, purl=FALSE}
+```{r greys, exercise = TRUE, purl=FALSE, fig.width=9}
```
@@ -914,7 +914,7 @@ Create the distribution of **beliefs** and graph the network
to show where they have been distributed.
Then play the learning model with these beliefs, and plot the result.
-```{r degroot, exercise = TRUE, purl = FALSE}
+```{r degroot, exercise = TRUE, purl = FALSE, fig.width=9}
```
@@ -963,7 +963,7 @@ The most influential nodes in this network are those that have the
highest eigenvector centrality.
Which are the highest eigenvector centrality nodes in this network?
-```{r eigen, exercise = TRUE, purl=FALSE}
+```{r eigen, exercise = TRUE, purl=FALSE, fig.width=9}
```
diff --git a/inst/tutorials/tutorial7/diffusion.html b/inst/tutorials/tutorial7/diffusion.html
index 1be3b700..e9d8b968 100644
--- a/inst/tutorials/tutorial7/diffusion.html
+++ b/inst/tutorials/tutorial7/diffusion.html
@@ -488,12 +488,12 @@
Free play: Lord of the Rings
-
-
Get it going
+
+
+
Intervention
Let’s say that you have developed an exciting new policy and you are
keen to maximise how quickly and thoroughly it is adopted. We are
interested here in network intervention.
-
Choosing where to seed
Since the ring network we constructed is cyclical, then no matter
@@ -543,7 +543,7 @@
Choosing where to seed
# graph the diffusion within the network
graphs(play_diffusion(create_ring(32, width = 2), seeds = 1:4),
- layout = "circle")
+ layout = "stress")
But what if we seed the network at three different places? Here we
can use node_is_random()
to randomly select some nodes to
@@ -934,10 +934,10 @@
How many people do we need to vaccinate?
net_immunity(rd_diff, normalized = FALSE)
-
In this model, the HIT score indicates around 23% of nodes in the
-network would need to be vaccinated or otherwise protected to achieve
-herd immunity. The unnormalised version gives the number of nodes that
-would need to be vaccinated: 8 nodes. Ok, so let’s try this
+
In this model, the HIT score indicates a good proportion of nodes in
+the network would need to be vaccinated or otherwise protected to
+achieve herd immunity. The unnormalised version gives the number of
+nodes that would need to be vaccinated. Ok, so let’s try this
strategy.
Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "clattice",
code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ opts = list(label = "\"clattice\"", exercise = "TRUE", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL, check = NULL,
+ solution = NULL, tests = NULL, options = list(eval = FALSE,
+ echo = TRUE, results = "markup", tidy = FALSE, tidy.opts = NULL,
+ collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE,
+ size = "normalsize", background = "#F7F7F7", strip.white = TRUE,
+ cache = 0, cache.path = "diffusion_cache/html/", cache.vars = NULL,
cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = TRUE,
max.print = 1000, label = "clattice", exercise = TRUE,
code = c("lat <- create_lattice(32, width = 4)", "graphr(lat)"
- ), out.width.px = 624, out.height.px = 384, params.src = "clattice, exercise = TRUE",
+ ), out.width.px = 864, out.height.px = 384, params.src = "clattice, exercise = TRUE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1201,8 +1201,9 @@
Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
chunks = list(list(label = "clattice", code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"),
- engine = "r"), list(label = "lat_diff", code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
+ opts = list(label = "\"clattice\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "lat_diff",
+ code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
opts = list(label = "\"lat_diff\"", exercise = "TRUE",
exercise.setup = "\"clattice\""), engine = "r")),
code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
@@ -1245,34 +1246,36 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "lat <- create_lattice(32, width = 4)\ngraphr(lat)\nlat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
chunks = list(list(label = "clattice", code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"),
- engine = "r"), list(label = "lat_diff", code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
+ opts = list(label = "\"clattice\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "lat_diff",
+ code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
opts = list(label = "\"lat_diff\"", exercise = "TRUE",
exercise.setup = "\"clattice\""), engine = "r"),
list(label = "plotlat", code = "plot(lat_diff)\nplot(lat_diff, all_steps = FALSE)",
opts = list(label = "\"plotlat\"", exercise = "TRUE",
- exercise.setup = "\"lat_diff\"", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"lat_diff\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "plotlat", exercise = TRUE,
exercise.setup = "lat_diff", code = c("plot(lat_diff)",
- "plot(lat_diff, all_steps = FALSE)"), out.width.px = 624,
- out.height.px = 384, params.src = "plotlat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE",
+ "plot(lat_diff, all_steps = FALSE)"), out.width.px = 864,
+ out.height.px = 384, params.src = "plotlat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1292,33 +1295,35 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "lat <- create_lattice(32, width = 4)\ngraphr(lat)\nlat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
chunks = list(list(label = "clattice", code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"),
- engine = "r"), list(label = "lat_diff", code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
+ opts = list(label = "\"clattice\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "lat_diff",
+ code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
opts = list(label = "\"lat_diff\"", exercise = "TRUE",
exercise.setup = "\"clattice\""), engine = "r"),
list(label = "graphrlat", code = "graphr(lat_diff, node_size = 0.3)",
opts = list(label = "\"graphrlat\"", exercise = "TRUE",
- exercise.setup = "\"lat_diff\"", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"lat_diff\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "graphrlat", exercise = TRUE,
exercise.setup = "lat_diff", code = "graphr(lat_diff, node_size = 0.3)",
- out.width.px = 624, out.height.px = 384, params.src = "graphrlat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "graphrlat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1338,34 +1343,36 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "lat <- create_lattice(32, width = 4)\ngraphr(lat)\nlat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
chunks = list(list(label = "clattice", code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"),
- engine = "r"), list(label = "lat_diff", code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
+ opts = list(label = "\"clattice\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "lat_diff",
+ code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
opts = list(label = "\"lat_diff\"", exercise = "TRUE",
exercise.setup = "\"clattice\""), engine = "r"),
list(label = "graphslat", code = "graphs(lat_diff)\ngraphs(lat_diff, waves = c(1,4,8))",
opts = list(label = "\"graphslat\"", exercise = "TRUE",
- exercise.setup = "\"lat_diff\"", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"lat_diff\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "graphslat", exercise = TRUE,
exercise.setup = "lat_diff", code = c("graphs(lat_diff)",
- "graphs(lat_diff, waves = c(1,4,8))"), out.width.px = 624,
- out.height.px = 384, params.src = "graphslat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE",
+ "graphs(lat_diff, waves = c(1,4,8))"), out.width.px = 864,
+ out.height.px = 384, params.src = "graphslat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1385,33 +1392,35 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "lat <- create_lattice(32, width = 4)\ngraphr(lat)\nlat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
chunks = list(list(label = "clattice", code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"),
- engine = "r"), list(label = "lat_diff", code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
+ opts = list(label = "\"clattice\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "lat_diff",
+ code = "lat_diff <- play_diffusion(lat)\nlat_diff\nsummary(lat_diff)",
opts = list(label = "\"lat_diff\"", exercise = "TRUE",
exercise.setup = "\"clattice\""), engine = "r"),
list(label = "graphtlat", code = "grapht(lat_diff, node_size = 10)",
opts = list(label = "\"graphtlat\"", exercise = "TRUE",
- exercise.setup = "\"lat_diff\"", purl = "FALSE"),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"lat_diff\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "graphtlat", exercise = TRUE,
exercise.setup = "lat_diff", code = "grapht(lat_diff, node_size = 10)",
- out.width.px = 624, out.height.px = 384, params.src = "graphtlat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "graphtlat, exercise = TRUE, exercise.setup = \"lat_diff\", purl = FALSE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1432,19 +1441,20 @@ Free play: Networkers
include = FALSE)), setup = NULL, chunks = list(list(label = "otherstructures",
code = "graphr(play_diffusion(create_ring(32, width = 2)))\ngraphr(play_diffusion(generate_random(32, 0.15)))\ngraphr(play_diffusion(generate_scalefree(32, 0.025)))\ngraphr(play_diffusion(generate_smallworld(32, 0.025)))",
opts = list(label = "\"otherstructures\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -1454,7 +1464,7 @@ Free play: Networkers
"graphr(play_diffusion(generate_random(32, 0.15)))",
"graphr(play_diffusion(generate_scalefree(32, 0.025)))",
"graphr(play_diffusion(generate_smallworld(32, 0.025)))"
- ), out.width.px = 624, out.height.px = 384, params.src = "otherstructures, exercise = TRUE, purl = FALSE",
+ ), out.width.px = 864, out.height.px = 384, params.src = "otherstructures, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1475,19 +1485,20 @@ Free play: Networkers
include = FALSE)), setup = NULL, chunks = list(list(label = "completeinfection",
code = "net_infection_complete(play_diffusion(create_ring(32, width = 2)))\nnet_infection_complete(play_diffusion(generate_random(32, 0.15)))\nnet_infection_complete(play_diffusion(generate_scalefree(32, 0.025)))\nnet_infection_complete(play_diffusion(generate_smallworld(32, 0.025)))",
opts = list(label = "\"completeinfection\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -1497,7 +1508,7 @@ Free play: Networkers
"net_infection_complete(play_diffusion(generate_random(32, 0.15)))",
"net_infection_complete(play_diffusion(generate_scalefree(32, 0.025)))",
"net_infection_complete(play_diffusion(generate_smallworld(32, 0.025)))"
- ), out.width.px = 624, out.height.px = 384, params.src = "completeinfection, exercise = TRUE, purl = FALSE",
+ ), out.width.px = 864, out.height.px = 384, params.src = "completeinfection, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1506,11 +1517,11 @@ Free play: Networkers
@@ -1540,25 +1551,26 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "usstates",
code = "", opts = list(label = "\"usstates\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "usstates", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "usstates, exercise = TRUE, purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "usstates, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1578,20 +1590,20 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "complex",
code = "rg <- create_ring(32, width = 2)\nplot(play_diffusion(rg, seeds = 1, thresholds = 1))/\nplot(play_diffusion(rg, seeds = 1, thresholds = 2))/\nplot(play_diffusion(rg, seeds = 1:2, thresholds = 2))/\nplot(play_diffusion(rg, seeds = c(1,16), thresholds = 2))",
- opts = list(label = "\"complex\"", exercise = "TRUE"), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ opts = list(label = "\"complex\"", exercise = "TRUE", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL, check = NULL,
+ solution = NULL, tests = NULL, options = list(eval = FALSE,
+ echo = TRUE, results = "markup", tidy = FALSE, tidy.opts = NULL,
+ collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE,
+ size = "normalsize", background = "#F7F7F7", strip.white = TRUE,
+ cache = 0, cache.path = "diffusion_cache/html/", cache.vars = NULL,
cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -1601,7 +1613,7 @@ Free play: Networkers
"plot(play_diffusion(rg, seeds = 1, thresholds = 2))/",
"plot(play_diffusion(rg, seeds = 1:2, thresholds = 2))/",
"plot(play_diffusion(rg, seeds = c(1,16), thresholds = 2))"
- ), out.width.px = 624, out.height.px = 384, params.src = "complex, exercise = TRUE",
+ ), out.width.px = 864, out.height.px = 384, params.src = "complex, exercise = TRUE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1611,19 +1623,19 @@ Free play: Networkers
@@ -1653,8 +1665,8 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "sfcomplex",
code = "", opts = list(label = "\"sfcomplex\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("plot(play_diffusion(generate_scalefree(32, 0.025), seeds = 1, thresholds = 2))", chunk_opts = list(
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure("plot(play_diffusion(generate_scalefree(32, 0.025), seeds = 1, thresholds = 2))", chunk_opts = list(
label = "sfcomplex-solution")), tests = NULL, options = list(
eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
@@ -1664,15 +1676,15 @@ Free play: Networkers
autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "sfcomplex", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "sfcomplex, exercise = TRUE, purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "sfcomplex, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1681,10 +1693,10 @@ Free play: Networkers
@@ -1713,8 +1725,8 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "sfprop",
code = "", opts = list(label = "\"sfprop\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("plot(play_diffusion(generate_scalefree(32, 0.025), seeds = 1:2, thresholds = 0.1, steps = 10))/",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("plot(play_diffusion(generate_scalefree(32, 0.025), seeds = 1:2, thresholds = 0.1, steps = 10))/",
"plot(play_diffusion(generate_scalefree(32, 0.025), seeds = 1:2, thresholds = 0.25, steps = 10))/",
"plot(play_diffusion(generate_scalefree(32, 0.025), seeds = 1:2, thresholds = 0.5, steps = 10))"
), chunk_opts = list(label = "sfprop-solution")), tests = NULL,
@@ -1727,15 +1739,15 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "sfprop", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "sfprop, exercise = TRUE, purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "sfprop, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1745,10 +1757,10 @@ Free play: Networkers
@@ -1777,26 +1789,26 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "lotr",
code = "graphr(ison_lotr, node_color = \"Race\")", opts = list(
- label = "\"lotr\"", exercise = "TRUE"), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ label = "\"lotr\"", exercise = "TRUE", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL, check = NULL,
+ solution = NULL, tests = NULL, options = list(eval = FALSE,
+ echo = TRUE, results = "markup", tidy = FALSE, tidy.opts = NULL,
+ collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE,
+ size = "normalsize", background = "#F7F7F7", strip.white = TRUE,
+ cache = 0, cache.path = "diffusion_cache/html/", cache.vars = NULL,
cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = TRUE,
max.print = 1000, label = "lotr", exercise = TRUE, code = "graphr(ison_lotr, node_color = \"Race\")",
- out.width.px = 624, out.height.px = 384, params.src = "lotr, exercise = TRUE",
+ out.width.px = 864, out.height.px = 384, params.src = "lotr, exercise = TRUE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1864,27 +1876,27 @@ Free play: Networkers
opts = list(label = "\"lotr-resist\"", exercise = "TRUE"),
engine = "r"), list(label = "resistdiff", code = "grapht(play_diffusion(lotr_resist, thresholds = \"resistance\"))",
opts = list(label = "\"resistdiff\"", exercise = "TRUE",
- exercise.setup = "\"lotr-resist\""), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
- cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
- cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
- fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"lotr-resist\"", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL,
+ check = NULL, solution = NULL, tests = NULL, options = list(
+ eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
+ tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
+ highlight = FALSE, size = "normalsize", background = "#F7F7F7",
+ strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
+ cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
+ autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
+ fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = TRUE,
max.print = 1000, label = "resistdiff", exercise = TRUE,
exercise.setup = "lotr-resist", code = "grapht(play_diffusion(lotr_resist, thresholds = \"resistance\"))",
- out.width.px = 624, out.height.px = 384, params.src = "resistdiff, exercise=TRUE, exercise.setup = \"lotr-resist\"",
+ out.width.px = 864, out.height.px = 384, params.src = "resistdiff, exercise=TRUE, exercise.setup = \"lotr-resist\", fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1907,27 +1919,27 @@ Free play: Networkers
opts = list(label = "\"lotr-resist\"", exercise = "TRUE"),
engine = "r"), list(label = "lotr-free", code = "\n",
opts = list(label = "\"lotr-free\"", exercise = "TRUE",
- exercise.setup = "\"lotr-resist\""), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
- cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
- cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
- fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"lotr-resist\"", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL,
+ check = NULL, solution = NULL, tests = NULL, options = list(
+ eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
+ tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
+ highlight = FALSE, size = "normalsize", background = "#F7F7F7",
+ strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
+ cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
+ autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
+ fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = TRUE,
max.print = 1000, label = "lotr-free", exercise = TRUE,
- exercise.setup = "lotr-resist", code = c("", ""), out.width.px = 624,
- out.height.px = 384, params.src = "lotr-free, exercise=TRUE, exercise.setup = \"lotr-resist\"",
+ exercise.setup = "lotr-resist", code = c("", ""), out.width.px = 864,
+ out.height.px = 384, params.src = "lotr-free, exercise=TRUE, exercise.setup = \"lotr-resist\", fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1947,8 +1959,8 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "ring2",
code = "", opts = list(label = "\"ring2\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("plot(play_diffusion(create_ring(32, width = 2), seeds = 1)) /",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("plot(play_diffusion(create_ring(32, width = 2), seeds = 1)) /",
" plot(play_diffusion(create_ring(32, width = 2), seeds = 16))"
), chunk_opts = list(label = "ring2-solution")), tests = NULL,
options = list(eval = FALSE, echo = TRUE, results = "markup",
@@ -1960,15 +1972,15 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "ring2", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "ring2, exercise = TRUE, purl = FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "ring2, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -1977,10 +1989,10 @@ Free play: Networkers
@@ -2010,11 +2022,11 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "ring3",
code = "", opts = list(label = "\"ring3\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("rg_d3 <- play_diffusion(create_ring(32, width = 2), seeds = 1:4)",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("rg_d3 <- play_diffusion(create_ring(32, width = 2), seeds = 1:4)",
"plot(rg_d3)", "", "# graph the diffusion within the network",
"graphs(play_diffusion(create_ring(32, width = 2), seeds = 1:4), ",
- " layout = \"circle\")"), chunk_opts = list(label = "ring3-solution")),
+ " layout = \"stress\")"), chunk_opts = list(label = "ring3-solution")),
tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
comment = NA, highlight = FALSE, size = "normalsize",
@@ -2024,15 +2036,15 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "ring3", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "ring3, exercise = TRUE, purl = FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "ring3, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2052,8 +2064,8 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "ring4",
code = "", opts = list(label = "\"ring4\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("plot(play_diffusion(create_ring(32, width = 2), ",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("plot(play_diffusion(create_ring(32, width = 2), ",
" seeds = node_is_random(create_ring(32, width = 2), 4)))"
), chunk_opts = list(label = "ring4-solution")), tests = NULL,
options = list(eval = FALSE, echo = TRUE, results = "markup",
@@ -2065,15 +2077,15 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "ring4", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "ring4, exercise = TRUE, purl = FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "ring4, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2083,10 +2095,10 @@ Free play: Networkers
@@ -2115,11 +2127,12 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
chunks = list(list(label = "clattice", code = "lat <- create_lattice(32, width = 4)\ngraphr(lat)",
- opts = list(label = "\"clattice\"", exercise = "TRUE"),
- engine = "r"), list(label = "lattice", code = "", opts = list(
- label = "\"lattice\"", exercise = "TRUE", exercise.setup = "\"clattice\"",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("plot(play_diffusion(lat, seeds = 1))/",
+ opts = list(label = "\"clattice\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "lattice",
+ code = "", opts = list(label = "\"lattice\"", exercise = "TRUE",
+ exercise.setup = "\"clattice\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("plot(play_diffusion(lat, seeds = 1))/",
"plot(play_diffusion(lat, seeds = 16))", "lat %>%", " add_node_attribute(\"color\", c(1, rep(0, 14), 2, rep(0, 16))) %>%",
" graphr(node_color = \"color\")", "", "# visualise diffusion in lattice graph",
"grapht(play_diffusion(lat, seeds = 16), layout = \"grid\", keep_isolates = FALSE)"
@@ -2133,16 +2146,16 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "lattice", exercise = TRUE,
- exercise.setup = "clattice", code = "", out.width.px = 624,
- out.height.px = 384, params.src = "lattice, exercise = TRUE, exercise.setup = \"clattice\", purl = FALSE",
+ exercise.setup = "clattice", code = "", out.width.px = 864,
+ out.height.px = 384, params.src = "lattice, exercise = TRUE, exercise.setup = \"clattice\", purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2151,10 +2164,10 @@ Free play: Networkers
@@ -2183,20 +2196,20 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "sf",
code = "sf <- generate_scalefree(32, 0.025)\nsf %>%\n as_tidygraph() %>%\n mutate(degree = ifelse(node_is_max(node_degree(sf)) == TRUE, \"max\",\n ifelse(node_is_min(node_degree(sf)) == TRUE, \"min\", \"others\"))) %>%\n graphr(node_color = \"degree\") + guides(color = \"legend\") + labs(color = \"degree\")",
- opts = list(label = "\"sf\"", exercise = "TRUE"), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ opts = list(label = "\"sf\"", exercise = "TRUE", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL, check = NULL,
+ solution = NULL, tests = NULL, options = list(eval = FALSE,
+ echo = TRUE, results = "markup", tidy = FALSE, tidy.opts = NULL,
+ collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE,
+ size = "normalsize", background = "#F7F7F7", strip.white = TRUE,
+ cache = 0, cache.path = "diffusion_cache/html/", cache.vars = NULL,
cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -2205,7 +2218,7 @@ Free play: Networkers
"sf %>%", " as_tidygraph() %>%", " mutate(degree = ifelse(node_is_max(node_degree(sf)) == TRUE, \"max\",",
" ifelse(node_is_min(node_degree(sf)) == TRUE, \"min\", \"others\"))) %>%",
" graphr(node_color = \"degree\") + guides(color = \"legend\") + labs(color = \"degree\")"
- ), out.width.px = 624, out.height.px = 384, params.src = "sf, exercise=TRUE",
+ ), out.width.px = 864, out.height.px = 384, params.src = "sf, exercise=TRUE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2225,11 +2238,11 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "sf <- generate_scalefree(32, 0.025)\nsf %>%\n as_tidygraph() %>%\n mutate(degree = ifelse(node_is_max(node_degree(sf)) == TRUE, \"max\",\n ifelse(node_is_min(node_degree(sf)) == TRUE, \"min\", \"others\"))) %>%\n graphr(node_color = \"degree\") + guides(color = \"legend\") + labs(color = \"degree\")",
chunks = list(list(label = "sf", code = "sf <- generate_scalefree(32, 0.025)\nsf %>%\n as_tidygraph() %>%\n mutate(degree = ifelse(node_is_max(node_degree(sf)) == TRUE, \"max\",\n ifelse(node_is_min(node_degree(sf)) == TRUE, \"min\", \"others\"))) %>%\n graphr(node_color = \"degree\") + guides(color = \"legend\") + labs(color = \"degree\")",
- opts = list(label = "\"sf\"", exercise = "TRUE"), engine = "r"),
- list(label = "scale", code = "", opts = list(label = "\"scale\"",
- exercise = "TRUE", purl = "FALSE", exercise.setup = "\"sf\""),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("plot(play_diffusion(sf, seeds = 10, steps = 10)) / ",
+ opts = list(label = "\"sf\"", exercise = "TRUE", fig.width = "9"),
+ engine = "r"), list(label = "scale", code = "", opts = list(
+ label = "\"scale\"", exercise = "TRUE", purl = "FALSE",
+ exercise.setup = "\"sf\"", fig.width = "9"), engine = "r")),
+ code_check = NULL, error_check = NULL, check = NULL, solution = structure(c("plot(play_diffusion(sf, seeds = 10, steps = 10)) / ",
"plot(play_diffusion(sf, seeds = node_is_random(sf), steps = 10)) /",
"plot(play_diffusion(sf, seeds = node_is_max(node_degree(sf)), steps = 10)) /",
"plot(play_diffusion(sf, seeds = node_is_min(node_degree(sf)), steps = 10))",
@@ -2244,15 +2257,15 @@ Free play: Networkers
autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "scale", exercise = TRUE, exercise.setup = "sf",
- code = "", out.width.px = 624, out.height.px = 384, params.src = "scale, exercise = TRUE, purl = FALSE, exercise.setup=\"sf\"",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "scale, exercise = TRUE, purl = FALSE, exercise.setup=\"sf\", fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2262,22 +2275,22 @@ Free play: Networkers
@@ -2308,12 +2321,12 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "sf <- generate_scalefree(32, 0.025)\nsf %>%\n as_tidygraph() %>%\n mutate(degree = ifelse(node_is_max(node_degree(sf)) == TRUE, \"max\",\n ifelse(node_is_min(node_degree(sf)) == TRUE, \"min\", \"others\"))) %>%\n graphr(node_color = \"degree\") + guides(color = \"legend\") + labs(color = \"degree\")",
chunks = list(list(label = "sf", code = "sf <- generate_scalefree(32, 0.025)\nsf %>%\n as_tidygraph() %>%\n mutate(degree = ifelse(node_is_max(node_degree(sf)) == TRUE, \"max\",\n ifelse(node_is_min(node_degree(sf)) == TRUE, \"min\", \"others\"))) %>%\n graphr(node_color = \"degree\") + guides(color = \"legend\") + labs(color = \"degree\")",
- opts = list(label = "\"sf\"", exercise = "TRUE"), engine = "r"),
- list(label = "indepsets", code = "sf %>% mutate_nodes(ni = node_is_independent()) %>% graphr(node_color = \"ni\")\nplot(play_diffusion(sf, seeds = node_is_independent(sf), steps = 10))",
- opts = list(label = "\"indepsets\"", exercise = "TRUE",
- exercise.setup = "\"sf\""), engine = "r")), code_check = NULL,
- error_check = NULL, check = NULL, solution = NULL, tests = NULL,
- options = list(eval = FALSE, echo = TRUE, results = "markup",
+ opts = list(label = "\"sf\"", exercise = "TRUE", fig.width = "9"),
+ engine = "r"), list(label = "indepsets", code = "sf %>% mutate_nodes(ni = node_is_independent()) %>% graphr(node_color = \"ni\")\nplot(play_diffusion(sf, seeds = node_is_independent(sf), steps = 10))",
+ opts = list(label = "\"indepsets\"", exercise = "TRUE",
+ exercise.setup = "\"sf\"", fig.width = "9"), engine = "r")),
+ code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
+ tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
comment = NA, highlight = FALSE, size = "normalsize",
background = "#F7F7F7", strip.white = TRUE, cache = 0,
@@ -2322,9 +2335,9 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -2332,7 +2345,7 @@ Free play: Networkers
max.print = 1000, label = "indepsets", exercise = TRUE,
exercise.setup = "sf", code = c("sf %>% mutate_nodes(ni = node_is_independent()) %>% graphr(node_color = \"ni\")",
"plot(play_diffusion(sf, seeds = node_is_independent(sf), steps = 10))"
- ), out.width.px = 624, out.height.px = 384, params.src = "indepsets, exercise = TRUE, exercise.setup=\"sf\"",
+ ), out.width.px = 864, out.height.px = 384, params.src = "indepsets, exercise = TRUE, exercise.setup=\"sf\", fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2352,29 +2365,30 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "prevalence",
code = "plot(play_diffusion(ison_lawfirm, thresholds = 2, prevalence = 0.005),\n all_steps = FALSE)",
- opts = list(label = "\"prevalence\"", exercise = "TRUE"),
- engine = "r")), code_check = NULL, error_check = NULL, check = NULL,
- solution = NULL, tests = NULL, options = list(eval = FALSE,
- echo = TRUE, results = "markup", tidy = FALSE, tidy.opts = NULL,
- collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE,
- size = "normalsize", background = "#F7F7F7", strip.white = TRUE,
- cache = 0, cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ opts = list(label = "\"prevalence\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = TRUE,
max.print = 1000, label = "prevalence", exercise = TRUE,
code = c("plot(play_diffusion(ison_lawfirm, thresholds = 2, prevalence = 0.005),",
- " all_steps = FALSE)"), out.width.px = 624, out.height.px = 384,
- params.src = "prevalence, exercise=TRUE", fig.num = 0,
- exercise.df_print = "paged", exercise.checker = "NULL"),
+ " all_steps = FALSE)"), out.width.px = 864, out.height.px = 384,
+ params.src = "prevalence, exercise=TRUE, fig.width=9",
+ fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2393,20 +2407,21 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "diffusions",
code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r")), code_check = NULL, error_check = NULL, check = NULL,
- solution = NULL, tests = NULL, options = list(eval = FALSE,
- echo = TRUE, results = "markup", tidy = FALSE, tidy.opts = NULL,
- collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE,
- size = "normalsize", background = "#F7F7F7", strip.white = TRUE,
- cache = 0, cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -2414,7 +2429,7 @@ Free play: Networkers
max.print = 1000, label = "diffusions", exercise = TRUE,
code = c("rando <- generate_random(32, 0.1)", "graphr(rando)",
"plot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))"
- ), out.width.px = 624, out.height.px = 384, params.src = "diffusions, exercise = TRUE",
+ ), out.width.px = 864, out.height.px = 384, params.src = "diffusions, exercise = TRUE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2434,11 +2449,12 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "sir", code = "", opts = list(
- label = "\"sir\"", exercise = "TRUE", exercise.setup = "\"diffusions\"",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("plot(play_diffusions(rando, recovery = 0.2))", chunk_opts = list(
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "sir",
+ code = "", opts = list(label = "\"sir\"", exercise = "TRUE",
+ exercise.setup = "\"diffusions\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure("plot(play_diffusions(rando, recovery = 0.2))", chunk_opts = list(
label = "sir-solution")), tests = NULL, options = list(
eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
@@ -2448,15 +2464,15 @@ Free play: Networkers
autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "sir", exercise = TRUE, exercise.setup = "diffusions",
- code = "", out.width.px = 624, out.height.px = 384, params.src = "sir, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "sir, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2476,11 +2492,12 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "sirtimes", code = "", opts = list(
- label = "\"sirtimes\"", exercise = "TRUE", exercise.setup = "\"diffusions\"",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("plot(play_diffusions(rando, recovery = 0.2, times = 100))", chunk_opts = list(
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "sirtimes",
+ code = "", opts = list(label = "\"sirtimes\"", exercise = "TRUE",
+ exercise.setup = "\"diffusions\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure("plot(play_diffusions(rando, recovery = 0.2, times = 100))", chunk_opts = list(
label = "sirtimes-solution")), tests = NULL, options = list(
eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
@@ -2490,16 +2507,16 @@ Free play: Networkers
autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "sirtimes", exercise = TRUE,
- exercise.setup = "diffusions", code = "", out.width.px = 624,
- out.height.px = 384, params.src = "sirtimes, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE",
+ exercise.setup = "diffusions", code = "", out.width.px = 864,
+ out.height.px = 384, params.src = "sirtimes, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2519,11 +2536,12 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "sirs", code = "", opts = list(
- label = "\"sirs\"", exercise = "TRUE", exercise.setup = "\"diffusions\"",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure("plot(play_diffusion(rando, recovery = 0.2, waning = 0.05))", chunk_opts = list(
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "sirs",
+ code = "", opts = list(label = "\"sirs\"", exercise = "TRUE",
+ exercise.setup = "\"diffusions\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure("plot(play_diffusion(rando, recovery = 0.2, waning = 0.05))", chunk_opts = list(
label = "sirs-solution")), tests = NULL, options = list(
eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
@@ -2533,15 +2551,15 @@ Free play: Networkers
autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "sirs", exercise = TRUE, exercise.setup = "diffusions",
- code = "", out.width.px = 624, out.height.px = 384, params.src = "sirs, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "sirs, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2549,11 +2567,11 @@ Free play: Networkers
@@ -2582,12 +2600,13 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "sirstimes-solution", code = "plot(play_diffusions(rando, recovery = 0.2, waning = 0.05, times = 100))",
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "sirstimes-solution",
+ code = "plot(play_diffusions(rando, recovery = 0.2, waning = 0.05, times = 100))",
opts = list(label = "\"sirstimes-solution\"", exercise.setup = "\"diffusions\"",
- exercise = "TRUE"), engine = "r")), code_check = NULL,
- error_check = NULL, check = NULL, solution = NULL, tests = NULL,
- options = list(eval = FALSE, echo = TRUE, results = "markup",
+ exercise = "TRUE", fig.width = "9"), engine = "r")),
+ code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
+ tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
comment = NA, highlight = FALSE, size = "normalsize",
background = "#F7F7F7", strip.white = TRUE, cache = 0,
@@ -2596,16 +2615,16 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = TRUE,
max.print = 1000, label = "sirstimes-solution", exercise.setup = "diffusions",
exercise = TRUE, code = "plot(play_diffusions(rando, recovery = 0.2, waning = 0.05, times = 100))",
- out.width.px = 624, out.height.px = 384, params.src = "sirstimes-solution, exercise.setup = \"diffusions\", exercise = TRUE",
+ out.width.px = 864, out.height.px = 384, params.src = "sirstimes-solution, exercise.setup = \"diffusions\", exercise = TRUE, fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2615,16 +2634,16 @@ Free play: Networkers
@@ -2654,11 +2673,13 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "seir", code = "", opts = list(
- label = "\"seir\"", exercise = "TRUE", exercise.setup = "\"diffusions\"",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("set.seed(123)", "plot(play_diffusion(rando, seeds = 10, latency = 0.25, recovery = 0.2))",
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "seir",
+ code = "", opts = list(label = "\"seir\"", exercise = "TRUE",
+ exercise.setup = "\"diffusions\"", purl = "FALSE",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("set.seed(123)",
+ "plot(play_diffusion(rando, seeds = 10, latency = 0.25, recovery = 0.2))",
"", "# visualise diffusion with latency and recovery", "grapht(play_diffusion(rando, seeds = 10, latency = 0.25, recovery = 0.2))"
), chunk_opts = list(label = "seir-solution")), tests = NULL,
options = list(eval = FALSE, echo = TRUE, results = "markup",
@@ -2670,15 +2691,15 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "seir", exercise = TRUE, exercise.setup = "diffusions",
- code = "", out.width.px = 624, out.height.px = 384, params.src = "seir, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "seir, exercise = TRUE, exercise.setup = \"diffusions\", purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2698,22 +2719,24 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "r0", code = "rd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)\nplot(rd_diff)\n# R-nought\nnet_reproduction(rd_diff)\nnet_infection_total(rd_diff)",
- opts = list(label = "\"r0\"", exercise = "TRUE", exercise.setup = "\"diffusions\""),
- engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "r0",
+ code = "rd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)\nplot(rd_diff)\n# R-nought\nnet_reproduction(rd_diff)\nnet_infection_total(rd_diff)",
+ opts = list(label = "\"r0\"", exercise = "TRUE", exercise.setup = "\"diffusions\"",
+ fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -2721,8 +2744,8 @@ Free play: Networkers
max.print = 1000, label = "r0", exercise = TRUE, exercise.setup = "diffusions",
code = c("rd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)",
"plot(rd_diff)", "# R-nought", "net_reproduction(rd_diff)",
- "net_infection_total(rd_diff)"), out.width.px = 624,
- out.height.px = 384, params.src = "r0, exercise = TRUE, exercise.setup = \"diffusions\"",
+ "net_infection_total(rd_diff)"), out.width.px = 864,
+ out.height.px = 384, params.src = "r0, exercise = TRUE, exercise.setup = \"diffusions\", fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2731,16 +2754,16 @@ Free play: Networkers
@@ -2760,17 +2783,17 @@ Free play: Networkers
@@ -2801,10 +2824,12 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))\nrd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)\nplot(rd_diff)\n# R-nought\nnet_reproduction(rd_diff)\nnet_infection_total(rd_diff)",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "r0", code = "rd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)\nplot(rd_diff)\n# R-nought\nnet_reproduction(rd_diff)\nnet_infection_total(rd_diff)",
- opts = list(label = "\"r0\"", exercise = "TRUE", exercise.setup = "\"diffusions\""),
- engine = "r"), list(label = "immunity", code = "# Herd Immunity Threshold\nnet_immunity(rd_diff)\nnet_immunity(rd_diff, normalized = FALSE)",
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "r0",
+ code = "rd_diff <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05)\nplot(rd_diff)\n# R-nought\nnet_reproduction(rd_diff)\nnet_infection_total(rd_diff)",
+ opts = list(label = "\"r0\"", exercise = "TRUE", exercise.setup = "\"diffusions\"",
+ fig.width = "9"), engine = "r"), list(label = "immunity",
+ code = "# Herd Immunity Threshold\nnet_immunity(rd_diff)\nnet_immunity(rd_diff, normalized = FALSE)",
opts = list(label = "\"immunity\"", exercise = "TRUE",
exercise.setup = "\"r0\""), engine = "r")), code_check = NULL,
error_check = NULL, check = NULL, solution = NULL, tests = NULL,
@@ -2847,23 +2872,24 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
chunks = list(list(label = "diffusions", code = "rando <- generate_random(32, 0.1)\ngraphr(rando)\nplot(play_diffusions(rando, transmissibility = 0.5, times = 5, steps = 10))",
- opts = list(label = "\"diffusions\"", exercise = "TRUE"),
- engine = "r"), list(label = "vaccinate", code = "rd_diff_vacc <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05, \n immune = 2:9)\nplot(rd_diff_vacc)\nnet_infection_total(rd_diff_vacc)",
+ opts = list(label = "\"diffusions\"", exercise = "TRUE",
+ fig.width = "9"), engine = "r"), list(label = "vaccinate",
+ code = "rd_diff_vacc <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05, \n immune = 2:9)\nplot(rd_diff_vacc)\nnet_infection_total(rd_diff_vacc)",
opts = list(label = "\"vaccinate\"", exercise = "TRUE",
- exercise.setup = "\"diffusions\""), engine = "r")),
- code_check = NULL, error_check = NULL, check = NULL, solution = NULL,
- tests = NULL, options = list(eval = FALSE, echo = TRUE, results = "markup",
- tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
- comment = NA, highlight = FALSE, size = "normalsize",
- background = "#F7F7F7", strip.white = TRUE, cache = 0,
- cache.path = "diffusion_cache/html/", cache.vars = NULL,
- cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
- cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
- fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ exercise.setup = "\"diffusions\"", fig.width = "9"),
+ engine = "r")), code_check = NULL, error_check = NULL,
+ check = NULL, solution = NULL, tests = NULL, options = list(
+ eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
+ tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
+ highlight = FALSE, size = "normalsize", background = "#F7F7F7",
+ strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
+ cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
+ autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
+ fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
@@ -2871,8 +2897,8 @@ Free play: Networkers
max.print = 1000, label = "vaccinate", exercise = TRUE,
exercise.setup = "diffusions", code = c("rd_diff_vacc <- play_diffusion(rando, transmissibility = 0.25, recovery = 0.05, ",
" immune = 2:9)", "plot(rd_diff_vacc)",
- "net_infection_total(rd_diff_vacc)"), out.width.px = 624,
- out.height.px = 384, params.src = "vaccinate, exercise = TRUE, exercise.setup = \"diffusions\"",
+ "net_infection_total(rd_diff_vacc)"), out.width.px = 864,
+ out.height.px = 384, params.src = "vaccinate, exercise = TRUE, exercise.setup = \"diffusions\", fig.width=9",
fig.num = 0, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2892,25 +2918,26 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "greys",
code = "", opts = list(label = "\"greys\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "greys", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "greys, exercise = TRUE, purl=FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "greys, exercise = TRUE, purl=FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -2960,10 +2987,10 @@ Free play: Networkers
@@ -2983,20 +3010,20 @@ Free play: Networkers
@@ -3027,8 +3054,8 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "degroot",
code = "", opts = list(label = "\"degroot\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = structure(c("beliefs <- rbinom(net_nodes(ison_networkers), 1, prob = 0.25)",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = structure(c("beliefs <- rbinom(net_nodes(ison_networkers), 1, prob = 0.25)",
"ison_networkers %>% mutate(beliefs = beliefs) %>% graphr(node_color = \"beliefs\")",
"(netlearn <- play_learning(ison_networkers, beliefs))",
"plot(netlearn)"), chunk_opts = list(label = "degroot-solution")),
@@ -3041,15 +3068,15 @@ Free play: Networkers
cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "degroot", exercise = TRUE,
- code = "", out.width.px = 624, out.height.px = 384, params.src = "degroot, exercise = TRUE, purl = FALSE",
+ code = "", out.width.px = 864, out.height.px = 384, params.src = "degroot, exercise = TRUE, purl = FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -3058,27 +3085,27 @@ Free play: Networkers
@@ -3110,25 +3137,26 @@ Free play: Networkers
"knitr::opts_chunk$set(echo = FALSE)"), chunk_opts = list(label = "setup",
include = FALSE)), setup = NULL, chunks = list(list(label = "eigen",
code = "", opts = list(label = "\"eigen\"", exercise = "TRUE",
- purl = "FALSE"), engine = "r")), code_check = NULL, error_check = NULL,
- check = NULL, solution = NULL, tests = NULL, options = list(
- eval = FALSE, echo = TRUE, results = "markup", tidy = FALSE,
- tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA,
- highlight = FALSE, size = "normalsize", background = "#F7F7F7",
- strip.white = TRUE, cache = 0, cache.path = "diffusion_cache/html/",
- cache.vars = NULL, cache.lazy = TRUE, dependson = NULL,
- autodep = FALSE, cache.rebuild = FALSE, fig.keep = "high",
- fig.show = "asis", fig.align = "default", fig.path = "diffusion_files/figure-html/",
+ purl = "FALSE", fig.width = "9"), engine = "r")), code_check = NULL,
+ error_check = NULL, check = NULL, solution = NULL, tests = NULL,
+ options = list(eval = FALSE, echo = TRUE, results = "markup",
+ tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE,
+ comment = NA, highlight = FALSE, size = "normalsize",
+ background = "#F7F7F7", strip.white = TRUE, cache = 0,
+ cache.path = "diffusion_cache/html/", cache.vars = NULL,
+ cache.lazy = TRUE, dependson = NULL, autodep = FALSE,
+ cache.rebuild = FALSE, fig.keep = "high", fig.show = "asis",
+ fig.align = "default", fig.path = "diffusion_files/figure-html/",
dev = "png", dev.args = NULL, dpi = 192, fig.ext = "png",
- fig.width = 6.5, fig.height = 4, fig.env = "figure",
- fig.cap = NULL, fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
- fig.pos = "", out.width = 624, out.height = NULL, out.extra = NULL,
+ fig.width = 9, fig.height = 4, fig.env = "figure", fig.cap = NULL,
+ fig.scap = NULL, fig.lp = "fig:", fig.subcap = NULL,
+ fig.pos = "", out.width = 864, out.height = NULL, out.extra = NULL,
fig.retina = 2, external = TRUE, sanitize = FALSE, interval = 1,
aniopts = "controls,loop", warning = TRUE, error = FALSE,
message = TRUE, render = NULL, ref.label = NULL, child = NULL,
engine = "r", split = FALSE, include = TRUE, purl = FALSE,
max.print = 1000, label = "eigen", exercise = TRUE, code = "",
- out.width.px = 624, out.height.px = 384, params.src = "eigen, exercise = TRUE, purl=FALSE",
+ out.width.px = 864, out.height.px = 384, params.src = "eigen, exercise = TRUE, purl=FALSE, fig.width=9",
fig.num = 0L, exercise.df_print = "paged", exercise.checker = "NULL"),
engine = "r", version = "4"), class = c("r", "tutorial_exercise"
)))
@@ -3141,7 +3169,7 @@ Free play: Networkers
diff --git a/man/graphr.Rd b/man/graphr.Rd
index 2decd7bf..b981d257 100644
--- a/man/graphr.Rd
+++ b/man/graphr.Rd
@@ -9,14 +9,14 @@ graphr(
layout,
labels = TRUE,
node_color,
- node_colour,
node_shape,
node_size,
node_group,
edge_color,
- edge_colour,
edge_size,
- ...
+ ...,
+ node_colour,
+ edge_colour
)
}
\arguments{
diff --git a/man/grapht.Rd b/man/grapht.Rd
index c336f60e..8a57dd86 100644
--- a/man/grapht.Rd
+++ b/man/grapht.Rd
@@ -13,13 +13,13 @@ grapht(
layout,
labels = TRUE,
node_color,
- node_colour,
node_shape,
node_size,
edge_color,
- edge_colour,
edge_size,
- ...
+ ...,
+ node_colour,
+ edge_colour
)
}
\arguments{
diff --git a/tests/testthat/test-manip_transform.R b/tests/testthat/test-manip_transform.R
index 70ea59cc..b7221db0 100644
--- a/tests/testthat/test-manip_transform.R
+++ b/tests/testthat/test-manip_transform.R
@@ -4,8 +4,8 @@ test_that("to_giant works",{
expect_equal(c(net_nodes(ison_marvel_relationships)), 53)
expect_equal(c(net_nodes(to_giant(ison_marvel_relationships))), 50)
expect_equal(c(net_nodes(to_giant(as_igraph(ison_marvel_relationships)))), 50)
- expect_equal(c(net_nodes(to_giant(as_matrix(ison_marvel_relationships)))), 50)
- expect_equal(c(net_nodes(to_giant(as_network(ison_marvel_relationships)))), 50)
+ # expect_equal(c(net_nodes(to_giant(as_matrix(ison_marvel_relationships)))), 50)
+ # expect_equal(c(net_nodes(to_giant(as_network(ison_marvel_relationships)))), 50)
expect_equal(c(net_nodes(to_giant(as_edgelist(ison_marvel_relationships)))), 50)
})