Tools Needed:
-
Docker
-
Kind
-
Linkerd
Commands:
Docker install can be found here
Kind install can be found here
Steps
-
Deploy Kind Cluster with ingress enabled
-
Explore StatefulSets
-
Deploy Kubernetes Services
-
Deploy an Ingress Controller
-
Service Mesh
-
Clean up
We will explore these Kubernetes Networking Abstractions
StatefulSets
Services
-
NodePort
-
Cluster
-
LoadBalancer
-
Headless
-
Endpoints
-
Endpoint Slices
Ingress
-
Ingress Controller
-
Ingress rules
Service Mesh
-
Linkerd
With the kind cluster configuration yaml, we can use kind to create that cluster with the below command. If this is the first time running it, it will take some time to download all the docker images for the working and control plane docker images.
kind create cluster --config=kind-ingress.yaml
Creating cluster "kind" ...
✓ Ensuring node image (kindest/node:v1.18.2) 🖼
✓ Preparing nodes 📦
✓ Writing configuration 📜
✓ Starting control-plane 🕹️
✓ Installing CNI 🔌
✓ Installing StorageClass 💾
Set kubectl context to "kind-kind"
You can now use your cluster with:
kubectl cluster-info --context kind-kind
Have a question, bug, or feature request? Let us know! https://kind.sigs.k8s.io/#community 🙂
dnsutils is used for kubernetes end-to-end testing
kubectl apply -f dnsutils.yaml
pod/dnsutils created
kubectl get pods
NAME READY STATUS RESTARTS AGE
dnsutils 1/1 Running 0 9s
StatefulSets are valuable for applications that require:
-
Stable, unique network identifiers.
-
Stable, persistent storage.
-
Ordered, graceful deployment and scaling.
-
Ordered, automated rolling updates.
Our Database for the Golang Minimal web server is deployed as a statefulset. The database has a service, a configmap for the postgres username, password and test database name and a statefulset for the containers running postgres.
Let us deploy it now.
kubectl apply -f database.yaml
service/postgres created
configmap/postgres-config created
statefulset.apps/postgres created
With the replica set to two, we see the statefulset deploy postgres-0 and postgres-1, in that order.
Let us examine the dns and network ramifications of using a statefulset.
kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
dnsutils 1/1 Running 0 15m 10.244.3.2 kind-worker3 <none> <none>
postgres-0 1/1 Running 0 15m 10.244.1.3 kind-worker2 <none> <none>
postgres-1 1/1 Running 0 14m 10.244.2.3 kind-worker <none> <none>
Two pods for our postgres statefulset were deployed with names, postgres-0 and 1, with IP address 10.244.1.3 and 10 .244.2.3 respectively.
kubectl get svc postgres
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres ClusterIP 10.105.214.153 <none> 5432/TCP 23m
Using our dnsutils image we can see that the DNS names for the statefulsets will return those IP Addresses along with the cluster IP of the postgres service.
kubectl exec dnsutils -- host postgres-0.postgres.default.svc.cluster.local.
postgres-0.postgres.default.svc.cluster.local has address 10.244.1.3
kubectl exec dnsutils -- host postgres-1.postgres.default.svc.cluster.local.
postgres-1.postgres.default.svc.cluster.local has address 10.244.2.3
kubectl exec dnsutils -- host postgres
postgres.default.svc.cluster.local has address 10.105.214.153
We will use the Golang minimal webserver for all the services examples. We have added additional functionality to the application to display which hosts and the pods ip in the Rest request.
Before we deploy the services, we must first deploy the web server that the services will be routing traffic too.
kubectl apply -f web.yml
deployment.apps/app created
kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-9cc7d9df8-ffsm6 1/1 Running 0 49s 10.244.1.4 kind-worker2 <none> <none>
dnsutils 1/1 Running 0 49m 10.244.3.2 kind-worker3 <none> <none>
postgres-0 1/1 Running 0 48m 10.244.1.3 kind-worker2 <none> <none>
postgres-1 1/1 Running 0 48m 10.244.2.3 kind-worker <none> <none>
The Pods API address of our web server is 10.244.1.4
, which can be resolved in the cluster DNS.
kubectl exec dnsutils -- host 10.244.1.4
4.1.244.10.in-addr.arpa domain name pointer 10-244-1-4.clusterip-service.default.svc.cluster.local.
Now that our applications is deployed we can begin exploring the various services available in the Kubernetes API.
Let us scale up the Deployment of our web app.
kubectl scale deployment app --replicas 4
deployment.apps/app scaled
kubectl get pods -l app=app -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-9cc7d9df8-9d5t8 1/1 Running 0 43s 10.244.2.4 kind-worker <none> <none>
app-9cc7d9df8-ffsm6 1/1 Running 0 75m 10.244.1.4 kind-worker2 <none> <none>
app-9cc7d9df8-srxk5 1/1 Running 0 45s 10.244.3.4 kind-worker3 <none> <none>
app-9cc7d9df8-zrnvb 1/1 Running 0 43s 10.244.3.5 kind-worker3 <none> <none>
With 4 pods running we have one pod at every node in the cluster.
kubectl get pods -o wide -l app=app
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-5586fc9d77-7frts 1/1 Running 0 31s 10.244.1.5 kind-worker2 <none> <none>
app-5586fc9d77-mxhgw 1/1 Running 0 31s 10.244.3.9 kind-worker3 <none> <none>
app-5586fc9d77-qpxwk 1/1 Running 0 84s 10.244.2.7 kind-worker <none> <none>
app-5586fc9d77-tpz8q 1/1 Running 0 31s 10.244.2.8 kind-worker <none> <none>
Get the IP address of node-worker
kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
kind-control-plane Ready master 3h1m v1.18.2 172.18.0.5 <none> Ubuntu 19.10 4.19.121-linuxkit containerd://1.3.3-14-g449e9269
kind-worker Ready <none> 3h v1.18.2 172.18.0.3 <none> Ubuntu 19.10 4.19.121-linuxkit containerd://1.3.3-14-g449e9269
kind-worker2 Ready <none> 3h v1.18.2 172.18.0.4 <none> Ubuntu 19.10 4.19.121-linuxkit containerd://1.3.3-14-g449e9269
kind-worker3 Ready <none> 3h v1.18.2 172.18.0.2 <none> Ubuntu 19.10 4.19.121-linuxkit containerd://1.3.3-14-g449e9269
Now let’s deploy our NodePort Service
kubectl apply -f services-nodeport.yaml
service/nodeport-service created
kubectl describe svc nodeport-service
Name: nodeport-service
Namespace: default
Labels: <none>
Annotations: Selector: app=app
Type: NodePort
IP: 10.101.85.57
Port: echo 8080/TCP
TargetPort: 8080/TCP
NodePort: echo 30040/TCP
Endpoints: 10.244.1.5:8080,10.244.2.7:8080,10.244.2.8:8080 + 1 more...
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>
External Communication uses the nodeport of each worker
kubectl exec -it dnsutils -- wget -q -O- 172.18.0.5:30040/host
NODE: kind-worker2, POD IP:10.244.1.5
kubectl exec -it dnsutils -- wget -q -O- 172.18.0.3:30040/host
NODE: kind-worker, POD IP:10.244.2.8
kubectl exec -it dnsutils -- wget -q -O- 172.18.0.4:30040/host
NODE: kind-worker2, POD IP:10.244.1.5
The downside of using Nodeport service type is that the Host IP address must be known. Also Ports must tracked across all applications. A nodeport deployment will fail if it can not allocate the requested port.
ClusterIP Service
The first service will we will deploy is the default the ClusterIP service.
kubectl apply -f service-clusterip.yaml
service/clusterip-service created
kubectl describe svc clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: Selector: app=app
Type: ClusterIP
IP: 10.98.252.195
Port: <unset> 80/TCP
TargetPort: 8080/TCP
Endpoints: <none>
Session Affinity: None
Events: <none>
The Cluster service name is resolvable in the network
kubectl exec dnsutils -- host clusterip-service
clusterip-service.default.svc.cluster.local has address 10.98.252.195
Now we can reach the Host API endpoint with The Cluster IP, 10.98.252.195
, The Service Name, clusterip-service
,
or the directly with the pod IP 10.244.1.4
and port 8080
.
kubectl exec dnsutils -- wget -q -O- clusterip-service/host
NODE: kind-worker2, POD IP:10.244.1.4
kubectl exec dnsutils -- wget -q -O- 10.98.252.195/host
NODE: kind-worker2, POD IP:10.244.1.4
kubectl exec dnsutils -- wget -q -O- 10.244.1.4:8080/host
NODE: kind-worker2, POD IP:10.244.1.4
Let us explore what the Service Cluster IP abstracted for us.
-
View veth pair and match with pod
-
View network namespace and match with pod
-
Verify pids on node match pods
-
Match services with iptables rules
To explore this we need to know what Worker node the pod is deployed too, and that is kind-worker2
kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-9cc7d9df8-ffsm6 1/1 Running 0 7m23s 10.244.1.4 kind-worker2 <none> <none>
dnsutils 1/1 Running 0 55m 10.244.3.2 kind-worker3 <none> <none>
postgres-0 1/1 Running 0 55m 10.244.1.3 kind-worker2 <none> <none>
postgres-1 1/1 Running 0 54m 10.244.2.3 kind-worker <none> <none>
Since we are using kind we can use docker ps
and docker exec
to get information out of the running worker node
kind-worker-2
docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
df6df0736958 kindest/node:v1.18.2 "/usr/local/bin/entr…" About an hour ago Up About an hour kind-worker2
e242f11d2d00 kindest/node:v1.18.2 "/usr/local/bin/entr…" About an hour ago Up About an hour kind-worker
a76b32f37c0e kindest/node:v1.18.2 "/usr/local/bin/entr…" About an hour ago Up About an hour kind-worker3
07ccb63d870f kindest/node:v1.18.2 "/usr/local/bin/entr…" About an hour ago Up About an hour 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 127.0.0.1:52321->6443/tcp kind-control-plane
kind-worker2
container id is df6df0736958
, kind was kind enough to label each container with names, so we can
reference each worker node with its name kind-worker2
docker exec -it kind-worker2 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000
link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN group default qlen 1000
link/tunnel6 :: brd ::
4: veth608eddaa@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 76:e6:c5:a4:71:7d brd ff:ff:ff:ff:ff:ff link-netns cni-c18c44cb-6c3e-c48d-b783-e7850d40e01c
inet 10.244.1.1/32 brd 10.244.1.1 scope global veth608eddaa
valid_lft forever preferred_lft forever
5: veth45d1f3e8@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 3e:39:16:38:3f:23 brd ff:ff:ff:ff:ff:ff link-netns cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4
inet 10.244.1.1/32 brd 10.244.1.1 scope global veth45d1f3e8
valid_lft forever preferred_lft forever
11: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:ac:12:00:04 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 172.18.0.4/16 brd 172.18.255.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fc00:f853:ccd:e793::4/64 scope global nodad
valid_lft forever preferred_lft forever
inet6 fe80::42:acff:fe12:4/64 scope link
valid_lft forever preferred_lft forever
Let’s see our Pods IP address and route table information
kubectl exec app-9cc7d9df8-ffsm6 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000
link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN group default qlen 1000
link/tunnel6 :: brd ::
5: eth0@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 3e:57:42:6e:cd:45 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.244.1.4/24 brd 10.244.1.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::3c57:42ff:fe6e:cd45/64 scope link
valid_lft forever preferred_lft forever
kubectl exec app-9cc7d9df8-ffsm6 ip r
default via 10.244.1.1 dev eth0
10.244.1.0/24 via 10.244.1.1 dev eth0 src 10.244.1.4
10.244.1.1 dev eth0 scope link src 10.244.1.4
Our Pods IP Address is 10.244.1.4
running on interface eth0@if5
with 10.244.1.1 as it’s default route.
That matches the interface 5 on the pod
Let’s check the Network namespace as well, from the node ip a output
docker exec -it kind-worker2 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000
link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN group default qlen 1000
link/tunnel6 :: brd ::
4: veth608eddaa@if5: <> UP group default
link/ether 76:e6:c5:a4:71:7d brd <> link-netns cni-c18c44cb-6c3e-c48d-b783-e7850d40e01c
inet 10.244.1.1/32 brd 10.244.1.1 scope global veth608eddaa
valid_lft forever preferred_lft forever
5: veth45d1f3e8@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 3e:39:16:38:3f:23 brd <> link-netns cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4
inet 10.244.1.1/32 brd 10.244.1.1 scope global veth45d1f3e8
valid_lft forever preferred_lft forever
11: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:ac:12:00:04 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 172.18.0.4/16 brd 172.18.255.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fc00:f853:ccd:e793::4/64 scope global nodad
valid_lft forever preferred_lft forever
inet6 fe80::42:acff:fe12:4/64 scope link
valid_lft forever preferred_lft forever
And netns list
confirms that for us.
docker exec -it kind-worker2 /usr/sbin/ip netns list
cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4 (id: 2)
cni-c18c44cb-6c3e-c48d-b783-e7850d40e01c (id: 1)
Let us see what process/es run inside that network namespace
docker exec -it kind-worker2 /usr/sbin/ip netns pid cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4
4687
4737
Let us grep for each process id
docker exec -it kind-worker2 ps aux | grep 4687
root 4687 0.0 0.0 968 4 ? Ss 17:00 0:00 /pause
docker exec -it kind-worker2 ps aux | grep 4737
root 4737 0.0 0.0 708376 6368 ? Ssl 17:00 0:00 /opt/web-server
4737
is the process id of our Web server container running on the kind-worker2
docker exec -it kind-worker2 iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
KUBE-SERVICES all -- anywhere anywhere ctstate NEW /* kubernetes service portals */
KUBE-EXTERNAL-SERVICES all -- anywhere anywhere ctstate NEW /* kubernetes externally-visible service portals */
KUBE-FIREWALL all -- anywhere anywhere
Chain FORWARD (policy ACCEPT)
target prot opt source destination
KUBE-FORWARD all -- anywhere anywhere /* kubernetes forwarding rules */
KUBE-SERVICES all -- anywhere anywhere ctstate NEW /* kubernetes service portals */
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
KUBE-SERVICES all -- anywhere anywhere ctstate NEW /* kubernetes service portals */
KUBE-FIREWALL all -- anywhere anywhere
Chain KUBE-EXTERNAL-SERVICES (1 references)
target prot opt source destination
Chain KUBE-FIREWALL (2 references)
target prot opt source destination
DROP all -- anywhere anywhere /* kubernetes firewall for dropping marked packets */ mark match 0x8000/0x8000
Chain KUBE-FORWARD (1 references)
target prot opt source destination
DROP all -- anywhere anywhere ctstate INVALID
ACCEPT all -- anywhere anywhere /* kubernetes forwarding rules */ mark match 0x4000/0x4000
ACCEPT all -- anywhere anywhere /* kubernetes forwarding conntrack pod source rule */ ctstate RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere /* kubernetes forwarding conntrack pod destination rule */ ctstate RELATED,ESTABLISHED
Chain KUBE-KUBELET-CANARY (0 references)
target prot opt source destination
Chain KUBE-PROXY-CANARY (0 references)
target prot opt source destination
Chain KUBE-SERVICES (3 references)
target prot opt source destination
Retrieve the Cluster IP of the clusterip-service
kubectl get svc clusterip-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusterip-service ClusterIP 10.98.252.195 <none> 80/TCP 57m
Now use the cluster ip of the service, 10.98.252.195
, to find our iptables rule.
docker exec -it kind-worker2 iptables -L -t nat | grep 10.98.252.195
KUBE-MARK-MASQ tcp -- !10.244.0.0/16 10.98.252.195 /* default/clusterip-service: cluster IP */ tcp dpt:80
KUBE-SVC-V7R3EVKW3DT43QQM tcp -- anywhere 10.98.252.195 /* default/clusterip-service: cluster IP */ tcp dpt:80
List out all the rules on the chain KUBE-SVC-V7R3EVKW3DT43QQM
docker exec -it kind-worker2 iptables -t nat -L KUBE-SVC-V7R3EVKW3DT43QQM
Chain KUBE-SVC-V7R3EVKW3DT43QQM (1 references)
target prot opt source destination
KUBE-SEP-THJR2P3Q4C2QAEPT all -- anywhere anywhere /* default/clusterip-service: */
The endpoint for the services are map to these chains KUBE-SEP-THJR2P3Q4C2QAEPT
Now we can see what the rules for this chain are in iptables
docker exec -it kind-worker2 iptables -L KUBE-SEP-THJR2P3Q4C2QAEPT -t nat
Chain KUBE-SEP-THJR2P3Q4C2QAEPT (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.244.1.4 anywhere /* default/clusterip-service: */
DNAT tcp -- anywhere anywhere /* default/clusterip-service: */ tcp to:10.244.1.4:8080
10.244.1.4:8080 is one of the services endpoints, aka a pod backing the service
kubectl get ep clusterip-service
NAME ENDPOINTS AGE
clusterip-service 10.244.1.4:8080 62m
kubectl describe ep clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: <none>
Subsets:
Addresses: 10.244.1.4
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
<unset> 8080 TCP
Events: <none>
headless Services allows developers to deploy multiple copies of a pod in a deployment, instead of a ClusterIP returned, all the IP addresses of the endpoints are returned in the query and it is for the client to pick one to use.
Let us scale up the Deployment of our web app.
kubectl scale deployment app --replicas 4
deployment.apps/app scaled
kubectl get pods -l app=app -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-9cc7d9df8-9d5t8 1/1 Running 0 43s 10.244.2.4 kind-worker <none> <none>
app-9cc7d9df8-ffsm6 1/1 Running 0 75m 10.244.1.4 kind-worker2 <none> <none>
app-9cc7d9df8-srxk5 1/1 Running 0 45s 10.244.3.4 kind-worker3 <none> <none>
app-9cc7d9df8-zrnvb 1/1 Running 0 43s 10.244.3.5 kind-worker3 <none> <none>
Now let us deploy the headless service
kubectl apply -f service-headless.yml
service/headless-service created
And the dns query should return all four of the Pod IP addresses.
Using our dnsutils image we can verify that is the case.
kubectl exec dnsutils -- host -v -t a headless-service
Trying "headless-service.default.svc.cluster.local"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45294
;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;headless-service.default.svc.cluster.local. IN A
;; ANSWER SECTION:
headless-service.default.svc.cluster.local. 30 IN A 10.244.2.4
headless-service.default.svc.cluster.local. 30 IN A 10.244.3.5
headless-service.default.svc.cluster.local. 30 IN A 10.244.1.4
headless-service.default.svc.cluster.local. 30 IN A 10.244.3.4
Received 292 bytes from 10.96.0.10#53 in 0 ms
And that also matches the Endpoints for the service.
kubectl describe ep headless-service
Name: headless-service
Namespace: default
Labels: service.kubernetes.io/headless=
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2021-01-30T18:16:09Z
Subsets:
Addresses: 10.244.1.4,10.244.2.4,10.244.3.4,10.244.3.5
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
<unset> 8080 TCP
Events: <none>
Before we move onto Loadbalancers let’s discuss Endpoints some more.
Endpoints map pods to Services via labels.
kubectl get endpoints clusterip-service
NAME ENDPOINTS AGE
clusterip-service 10.244.1.5:8080,10.244.2.7:8080,10.244.2.8:8080 + 1 more... 135m
kubectl describe endpoints clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2021-01-30T18:51:36Z
Subsets:
Addresses: 10.244.1.5,10.244.2.7,10.244.2.8,10.244.3.9
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
<unset> 8080 TCP
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Let’s remove the app label and see what happens.
In a separate terminal run this command
kubectl get pods -w
And in another separate terminal
kubectl get endpoints -w
Let us get a pod name
kubectl get pods -l app=app -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-5586fc9d77-7frts 1/1 Running 0 19m 10.244.1.5 kind-worker2 <none> <none>
app-5586fc9d77-mxhgw 1/1 Running 0 19m 10.244.3.9 kind-worker3 <none> <none>
app-5586fc9d77-qpxwk 1/1 Running 0 20m 10.244.2.7 kind-worker <none> <none>
app-5586fc9d77-tpz8q 1/1 Running 0 19m 10.244.2.8 kind-worker <none> <none>
With kubectl label
we can alter the pod app-5586fc9d77-7frts
app=app
label.
kubectl label pod app-5586fc9d77-7frts app=nope --overwrite
pod/app-5586fc9d77-7frts labeled
Both Watch commands on Endpoints and Pods should see some changes for the same reason.
The Endpoints controller notice a change to the pods with the label app=app and so did the Deployment controller.
So Kubernetes did what Kubernetes does, it made the real state reflect the desired state.
kubectl get pods -w
NAME READY STATUS RESTARTS AGE
app-5586fc9d77-7frts 1/1 Running 0 21m
app-5586fc9d77-mxhgw 1/1 Running 0 21m
app-5586fc9d77-qpxwk 1/1 Running 0 22m
app-5586fc9d77-tpz8q 1/1 Running 0 21m
dnsutils 1/1 Running 3 3h1m
postgres-0 1/1 Running 0 3h
postgres-1 1/1 Running 0 3h
app-5586fc9d77-7frts 1/1 Running 0 22m
app-5586fc9d77-7frts 1/1 Running 0 22m
app-5586fc9d77-6dcg2 0/1 Pending 0 0s
app-5586fc9d77-6dcg2 0/1 Pending 0 0s
app-5586fc9d77-6dcg2 0/1 ContainerCreating 0 0s
app-5586fc9d77-6dcg2 0/1 Running 0 2s
app-5586fc9d77-6dcg2 1/1 Running 0 7s
The deployment has 4 pods but our relabeled pod still exists app-5586fc9d77-7frts
kubectl get pods
NAME READY STATUS RESTARTS AGE
app-5586fc9d77-6dcg2 1/1 Running 0 4m51s
app-5586fc9d77-7frts 1/1 Running 0 27m
app-5586fc9d77-mxhgw 1/1 Running 0 27m
app-5586fc9d77-qpxwk 1/1 Running 0 28m
app-5586fc9d77-tpz8q 1/1 Running 0 27m
dnsutils 1/1 Running 3 3h6m
postgres-0 1/1 Running 0 3h6m
postgres-1 1/1 Running 0 3h6m
The pod app-5586fc9d77-6dcg2
now is part of the Deployment and endpoint object with IP address 10.244.1.6
.
kubectl get pods app-5586fc9d77-6dcg2 -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
app-5586fc9d77-6dcg2 1/1 Running 0 3m6s 10.244.1.6 kind-worker2 <none> <none>
kubectl describe endpoints clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2021-01-30T19:14:23Z
Subsets:
Addresses: 10.244.1.6,10.244.2.7,10.244.2.8,10.244.3.9
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
<unset> 8080 TCP
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
EndpointSlices track network endpoints within a Kubernetes cluster for a service. They provide a scalable alternative to Endpoints.
kubectl get endpointslice
NAME ADDRESSTYPE PORTS ENDPOINTS AGE
clusterip-service-l2n9q IPv4 8080 10.244.2.7,10.244.2.8,10.244.1.5 + 1 more... 135m
kubectl describe endpointslice clusterip-service-l2n9q
Name: clusterip-service-l2n9q
Namespace: default
Labels: endpointslice.kubernetes.io/managed-by=endpointslice-controller.k8s.io
kubernetes.io/service-name=clusterip-service
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2021-01-30T18:51:36Z
AddressType: IPv4
Ports:
Name Port Protocol
---- ---- --------
<unset> 8080 TCP
Endpoints:
- Addresses: 10.244.2.7
Conditions:
Ready: true
Hostname: <unset>
TargetRef: Pod/app-5586fc9d77-qpxwk
Topology: kubernetes.io/hostname=kind-worker
- Addresses: 10.244.2.8
Conditions:
Ready: true
Hostname: <unset>
TargetRef: Pod/app-5586fc9d77-tpz8q
Topology: kubernetes.io/hostname=kind-worker
- Addresses: 10.244.1.5
Conditions:
Ready: true
Hostname: <unset>
TargetRef: Pod/app-5586fc9d77-7frts
Topology: kubernetes.io/hostname=kind-worker2
- Addresses: 10.244.3.9
Conditions:
Ready: true
Hostname: <unset>
TargetRef: Pod/app-5586fc9d77-mxhgw
Topology: kubernetes.io/hostname=kind-worker3
Events: <none>
Since we are running on our local machine and not in a Service Provider like AWS, GCP or Azure, we can use MetalLB as an example for our Loadbalancer service. MetalLB project aims to allow users to deploy Bare Metal Loadbalancers for their clusters.
This example has been modified from Kind example deployment
Deploy a separate namespace for MetalLB.
kubectl apply -f mlb-ns.yaml
namespace/metallb-system created
MetalLB Members require a secret for joining, let us deploy one now for them to use in our cluster.
kubectl create secret generic -n metallb-system memberlist --from-literal=secretkey="$(openssl rand -base64 128)"
secret/memberlist created
Time to deploy MetalLB
kubectl apply -f ./metallb.yaml
podsecuritypolicy.policy/controller created
podsecuritypolicy.policy/speaker created
serviceaccount/controller created
serviceaccount/speaker created
clusterrole.rbac.authorization.k8s.io/metallb-system:controller created
clusterrole.rbac.authorization.k8s.io/metallb-system:speaker created
role.rbac.authorization.k8s.io/config-watcher created
role.rbac.authorization.k8s.io/pod-lister created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:controller created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:speaker created
rolebinding.rbac.authorization.k8s.io/config-watcher created
rolebinding.rbac.authorization.k8s.io/pod-lister created
daemonset.apps/speaker created
deployment.apps/controller created
Now we wait for the deployment to finish.
kubectl get pods -n metallb-system --watch
NAME READY STATUS RESTARTS AGE
controller-5df88bd85d-mvgqn 0/1 ContainerCreating 0 10s
speaker-5knqb 1/1 Running 0 10s
speaker-k79c9 1/1 Running 0 10s
speaker-pfs2p 1/1 Running 0 10s
speaker-sl7fd 1/1 Running 0 10s
controller-5df88bd85d-mvgqn 1/1 Running 0 12s
To complete configuration, we need to provide metallb a range of IP addresses it controls. This his range has to be on the docker kind network.
docker network inspect -f '{{.IPAM.Config}}' kind
[{172.18.0.0/16 172.18.0.1 map[]} {fc00:f853:ccd:e793::/64 fc00:f853:ccd:e793::1 map[]}]
172.18.0.0/16. We want our loadbalancer IP range to come from this subclass. We can configure metallb, for instance, to use 172.18.255.200 to 172.18.255.250 by creating the configmap.
The config map would look like this
apiVersion: v1
kind: ConfigMap
metadata:
namespace: metallb-system
name: config
data:
config: |
address-pools:
- name: default
protocol: layer2
addresses:
- 172.18.255.200-172.18.255.250
kubectl apply -f ./metallb-configmap.yaml
Now that we MetalLB deploy we deploy a LB for our Web app.
kubectl apply -f ./services-loadbalancer.yaml
service/loadbalancer-service created
Test it.
For fun let us scale the web app deployment to 10, if you have the resources for it!
kubectl scale deployment app --replicas 10
kubectl get pods -w
NAME READY STATUS RESTARTS AGE
app-5586fc9d77-4gbp4 1/1 Running 0 11s
app-5586fc9d77-6dcg2 1/1 Running 0 45m
app-5586fc9d77-7frts 1/1 Running 0 68m
app-5586fc9d77-gf82k 1/1 Running 0 11s
app-5586fc9d77-hpscf 1/1 Running 0 11s
app-5586fc9d77-kk66q 1/1 Running 0 11s
app-5586fc9d77-mxhgw 1/1 Running 0 68m
app-5586fc9d77-qpxwk 1/1 Running 0 69m
app-5586fc9d77-sd5k2 1/1 Running 0 11s
app-5586fc9d77-tpz8q 1/1 Running 0 68m
app-5586fc9d77-whnwk 1/1 Running 0 11s
dnsutils 1/1 Running 3 3h47m
postgres-0 1/1 Running 0 3h47m
postgres-1 1/1 Running 0 3h47m
With more replicas deployed for our App behind the loadbalancer, let’s get the external IP of the Loadbalancer, 172
.18.255.200
.
kubectl get svc loadbalancer-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
loadbalancer-service LoadBalancer 10.99.24.220 172.18.255.200 80:31276/TCP 52s
kubectl get svc/loadbalancer-service -o=jsonpath='{.status.loadBalancer.ingress[0].ip}'
172.18.255.200
Since Docker for Mac or Windows does not expose the kind network to the host, we can not directly reach the Loadbalancer on the Docker network.
We can simulate it by attaching a docker container to the kind network and curling the Loadbalancer as a workaround.
If you would like to read more about this issue there is a great blog post by Cody De Arkland
We will use another great Networking docker image Netshoot, to run locally, attach to the kind docker network and curl our Loadbalancer.
Run it several times to get different Pods.
docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot curl 172.18.255.200/host
NODE: kind-worker, POD IP:10.244.2.7
docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot curl 172.18.255.200/host
NODE: kind-worker, POD IP:10.244.2.9
docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot curl 172.18.255.200/host
NODE: kind-worker3, POD IP:10.244.3.11
docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot curl 172.18.255.200/host
NODE: kind-worker2, POD IP:10.244.1.6
docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot curl 172.18.255.200/host
NODE: kind-worker, POD IP:10.244.2.9
With each new request the metalLB service is hitting different pod back ends.
kubectl describe endpoints loadbalancer-service
Name: loadbalancer-service
Namespace: default
Labels: app=app
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2021-01-30T19:59:57Z
Subsets:
Addresses: 10.244.1.6,10.244.1.7,10.244.1.8,10.244.2.10,10.244.2.7,10.244.2.8,10.244.2.9,10.244.3.11,10.244.3.12,10.244.3.9
NotReadyAddresses: <none>
Ports:
Name Port Protocol
---- ---- --------
service-port 8080 TCP
Events: <none>
External Service allows developers to map a Service to a DNS name.
kubectl exec -it dnsutils -- host -v -t a github.com
Trying "github.com.default.svc.cluster.local"
Trying "github.com.svc.cluster.local"
Trying "github.com.cluster.local"
Trying "github.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55908
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;github.com. IN A
;; ANSWER SECTION:
github.com. 30 IN A 140.82.112.3
Received 54 bytes from 10.96.0.10#53 in 18 ms
DNS will try all the search as seen in the example below.
Trying "github.com.default.svc.cluster.local"
Trying "github.com.svc.cluster.local"
Trying "github.com.cluster.local"
Trying "github.com"
Now if we deploy the External Service
kubectl apply -f service-external.yml
service/external-service created
The A record for github.com is return from the external-service query.
kubectl exec -it dnsutils -- host -v -t a external-service
Trying "external-service.default.svc.cluster.local"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11252
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;external-service.default.svc.cluster.local. IN A
;; ANSWER SECTION:
external-service.default.svc.cluster.local. 24 IN CNAME github.com.
github.com. 24 IN A 140.82.112.3
Received 152 bytes from 10.96.0.10#53 in 0 ms
The CNAME for external service returns github.com
kubectl exec -it dnsutils -- host -v -t cname external-service
Trying "external-service.default.svc.cluster.local"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36874
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;external-service.default.svc.cluster.local. IN CNAME
;; ANSWER SECTION:
external-service.default.svc.cluster.local. 30 IN CNAME github.com.
Received 126 bytes from 10.96.0.10#53 in 0 ms
When we deployed our kind cluster, we added several options to allow us to deploy an ingress controller.
-
extraPortMappings allow the local host to make requests to the Ingress controller over ports 80/443
-
node-labels only allow the ingress controller to run on a specific node(s) matching the label selector
Let’s Deploy the NGINX Ingress Controller
kubectl apply -f ingress.yaml
namespace/ingress-nginx created
serviceaccount/ingress-nginx created
configmap/ingress-nginx-controller created
clusterrole.rbac.authorization.k8s.io/ingress-nginx created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx created
role.rbac.authorization.k8s.io/ingress-nginx created
rolebinding.rbac.authorization.k8s.io/ingress-nginx created
service/ingress-nginx-controller-admission created
service/ingress-nginx-controller created
deployment.apps/ingress-nginx-controller created
validatingwebhookconfiguration.admissionregistration.k8s.io/ingress-nginx-admission created
serviceaccount/ingress-nginx-admission created
clusterrole.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
role.rbac.authorization.k8s.io/ingress-nginx-admission created
rolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
job.batch/ingress-nginx-admission-create created
job.batch/ingress-nginx-admission-patch created
As with all deployments, we must wait for the Controller to be ready before we can use it.
kubectl wait --namespace ingress-nginx \
> --for=condition=ready pod \
> --selector=app.kubernetes.io/component=controller \
> --timeout=90s
pod/ingress-nginx-controller-76b5f89575-zps4k condition met
Now were ready to write some Ingress rules for our Application.
kubectl apply -f ingress-rule.yaml
ingress.extensions/ingress-resource created
kubectl get ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
ingress-resource <none> * 80 4s
With describe we can see all the backends that map to clusterip service and the pods.
kubectl describe ingress
Name: ingress-resource
Namespace: default
Address:
Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
Rules:
Host Path Backends
---- ---- --------
*
/host clusterip-service:8080 (10.244.1.6:8080,10.244.1.7:8080,10.244.1.8:8080 + 7 more...)
Annotations: kubernetes.io/ingress.class: nginx
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Sync 17s nginx-ingress-controller Scheduled for sync
Our ingress rule is only for /host route, none others will reply.
curl localhost/host
NODE: kind-worker2, POD IP:10.244.1.6
curl localhost/healthz
Now we can see how powerful ingresses are, let us deploy a second deploy and cluster IP service.
kubectl apply -f ingress-example-2.yaml
deployment.apps/app2 created
service/clusterip-service-2 configured
ingress.extensions/ingress-resource-2 configured
Now both the /host and /data work but are going to separate services.
curl localhost/host
NODE: kind-worker2, POD IP:10.244.1.6
curl localhost/data
Database Connected
First thing we need to do if you do not have, is to install the Linkerd CLI, those directions are here
Your choices are curl to bash or brew if you’re on mac.
curl -sL https://run.linkerd.io/install | sh
OR
brew install linkerd
linkerd version
Client version: stable-2.9.2
Server version: unavailable
Pre-flight checklist
linkerd check --pre
kubernetes-api
--------------
√ can initialize the client
√ can query the Kubernetes API
kubernetes-version
------------------
√ is running the minimum Kubernetes API version
√ is running the minimum kubectl version
pre-kubernetes-setup
--------------------
√ control plane namespace does not already exist
√ can create non-namespaced resources
√ can create ServiceAccounts
√ can create Services
√ can create Deployments
√ can create CronJobs
√ can create ConfigMaps
√ can create Secrets
√ can read Secrets
√ can read extension-apiserver-authentication configmap
√ no clock skew detected
pre-kubernetes-capability
-------------------------
√ has NET_ADMIN capability
√ has NET_RAW capability
linkerd-version
---------------
√ can determine the latest version
√ cli is up-to-date
Status check results are √
Then Install onto the cluster.
linkerd install | kubectl apply -f -
namespace/linkerd created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-identity created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-identity created
serviceaccount/linkerd-identity created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-controller created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-controller created
serviceaccount/linkerd-controller created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-destination created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-destination created
serviceaccount/linkerd-destination created
role.rbac.authorization.k8s.io/linkerd-heartbeat created
rolebinding.rbac.authorization.k8s.io/linkerd-heartbeat created
serviceaccount/linkerd-heartbeat created
role.rbac.authorization.k8s.io/linkerd-web created
rolebinding.rbac.authorization.k8s.io/linkerd-web created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-web-check created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-web-check created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-web-admin created
serviceaccount/linkerd-web created
customresourcedefinition.apiextensions.k8s.io/serviceprofiles.linkerd.io created
customresourcedefinition.apiextensions.k8s.io/trafficsplits.split.smi-spec.io created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-proxy-injector created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-proxy-injector created
serviceaccount/linkerd-proxy-injector created
secret/linkerd-proxy-injector-k8s-tls created
mutatingwebhookconfiguration.admissionregistration.k8s.io/linkerd-proxy-injector-webhook-config created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-sp-validator created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-sp-validator created
serviceaccount/linkerd-sp-validator created
secret/linkerd-sp-validator-k8s-tls created
validatingwebhookconfiguration.admissionregistration.k8s.io/linkerd-sp-validator-webhook-config created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-tap created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-tap-admin created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-tap created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-tap-auth-delegator created
serviceaccount/linkerd-tap created
rolebinding.rbac.authorization.k8s.io/linkerd-linkerd-tap-auth-reader created
secret/linkerd-tap-k8s-tls created
apiservice.apiregistration.k8s.io/v1alpha1.tap.linkerd.io created
podsecuritypolicy.policy/linkerd-linkerd-control-plane created
role.rbac.authorization.k8s.io/linkerd-psp created
rolebinding.rbac.authorization.k8s.io/linkerd-psp created
configmap/linkerd-config created
secret/linkerd-identity-issuer created
service/linkerd-identity created
service/linkerd-identity-headless created
deployment.apps/linkerd-identity created
service/linkerd-controller-api created
deployment.apps/linkerd-controller created
service/linkerd-dst created
service/linkerd-dst-headless created
deployment.apps/linkerd-destination created
cronjob.batch/linkerd-heartbeat created
service/linkerd-web created
deployment.apps/linkerd-web created
deployment.apps/linkerd-proxy-injector created
service/linkerd-proxy-injector created
service/linkerd-sp-validator created
deployment.apps/linkerd-sp-validator created
service/linkerd-tap created
deployment.apps/linkerd-tap created
serviceaccount/linkerd-grafana created
configmap/linkerd-grafana-config created
service/linkerd-grafana created
deployment.apps/linkerd-grafana created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-prometheus created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-prometheus created
serviceaccount/linkerd-prometheus created
configmap/linkerd-prometheus-config created
service/linkerd-prometheus created
deployment.apps/linkerd-prometheus created
secret/linkerd-config-overrides created
Validate the install
linkerd check
kubernetes-api
--------------
√ can initialize the client
√ can query the Kubernetes API
kubernetes-version
------------------
√ is running the minimum Kubernetes API version
√ is running the minimum kubectl version
linkerd-existence
-----------------
√ 'linkerd-config' config map exists
√ heartbeat ServiceAccount exist
√ control plane replica sets are ready
√ no unschedulable pods
√ controller pod is running
√ can initialize the client
√ can query the control plane API
linkerd-config
--------------
√ control plane Namespace exists
√ control plane ClusterRoles exist
√ control plane ClusterRoleBindings exist
√ control plane ServiceAccounts exist
√ control plane CustomResourceDefinitions exist
√ control plane MutatingWebhookConfigurations exist
√ control plane ValidatingWebhookConfigurations exist
√ control plane PodSecurityPolicies exist
linkerd-identity
----------------
√ certificate config is valid
√ trust anchors are using supported crypto algorithm
√ trust anchors are within their validity period
√ trust anchors are valid for at least 60 days
√ issuer cert is using supported crypto algorithm
√ issuer cert is within its validity period
√ issuer cert is valid for at least 60 days
√ issuer cert is issued by the trust anchor
linkerd-webhooks-and-apisvc-tls
-------------------------------
√ tap API server has valid cert
√ tap API server cert is valid for at least 60 days
√ proxy-injector webhook has valid cert
√ proxy-injector cert is valid for at least 60 days
√ sp-validator webhook has valid cert
√ sp-validator cert is valid for at least 60 days
linkerd-api
-----------
√ control plane pods are ready
√ control plane self-check
√ [kubernetes] control plane can talk to Kubernetes
√ [prometheus] control plane can talk to Prometheus
√ tap api service is running
linkerd-version
---------------
√ can determine the latest version
√ cli is up-to-date
control-plane-version
---------------------
√ control plane is up-to-date
√ control plane and cli versions match
linkerd-prometheus
------------------
√ prometheus add-on service account exists
√ prometheus add-on config map exists
√ prometheus pod is running
linkerd-grafana
---------------
√ grafana add-on service account exists
√ grafana add-on config map exists
√ grafana pod is running
Status check results are √
Everything looks with our install of Linkerd
kubectl -n linkerd get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
linkerd-controller 1/1 1 1 3m17s
linkerd-destination 1/1 1 1 3m17s
linkerd-grafana 1/1 1 1 3m16s
linkerd-identity 1/1 1 1 3m17s
linkerd-prometheus 1/1 1 1 3m16s
linkerd-proxy-injector 1/1 1 1 3m17s
linkerd-sp-validator 1/1 1 1 3m17s
linkerd-tap 1/1 1 1 3m17s
linkerd-web 1/1 1 1 3m17s
Let us pull up the Console
linkerd dashboard &
[1] 49832
Linkerd dashboard available at:
http://localhost:50750
Grafana dashboard available at:
http://localhost:50750/grafana
Opening Linkerd dashboard in the default browser
We can see all our deployed objects from the previous exercises.
Our clusterip-service is not part of the Linkerd service mesh. We need to use the proxy injector to add our service to the mesh. It accomplishes this by watching for a specific annotation that can either be added with linkerd inject or by hand to the pod’s spec.
Let us remove some older exercise’s resources for clarity.
kubectl delete -f ingress-example-2.yaml
deployment.apps "app2" deleted
service "clusterip-service-2" deleted
ingress.extensions "ingress-resource-2" deleted
kubectl delete pods app-5586fc9d77-7frts
pod "app-5586fc9d77-7frts" deleted
kubectl delete -f ingress-rule.yaml
ingress.extensions "ingress-resource" deleted
We can use the linkerd cli to inject the proper annotations into our deployment spec.
cat web.yml | linkerd inject - | kubectl apply -f -
deployment "app" injected
deployment.apps/app configured
If we describe our app deployment we can see that Linkerd has injected new Annotations
kubectl describe deployment app
Name: app
Namespace: default
CreationTimestamp: Sat, 30 Jan 2021 13:48:47 -0500
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 3
Selector: app=app
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
Labels: app=app
Annotations: linkerd.io/inject: enabled
Containers:
go-web:
Image: strongjz/go-web:v0.0.6
Port: 8080/TCP
Host Port: 0/TCP
Liveness: http-get http://:8080/healthz delay=5s timeout=1s period=5s #success=1 #failure=3
Readiness: http-get http://:8080/ delay=5s timeout=1s period=5s #success=1 #failure=3
Environment:
MY_NODE_NAME: (v1:spec.nodeName)
MY_POD_NAME: (v1:metadata.name)
MY_POD_NAMESPACE: (v1:metadata.namespace)
MY_POD_IP: (v1:status.podIP)
MY_POD_SERVICE_ACCOUNT: (v1:spec.serviceAccountName)
DB_HOST: postgres
DB_USER: postgres
DB_PASSWORD: mysecretpassword
DB_PORT: 5432
Mounts: <none>
Volumes: <none>
Conditions:
Type Status Reason
---- ------ ------
Available True MinimumReplicasAvailable
Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: app-78dfbb4854 (1/1 replicas created)
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal ScalingReplicaSet 4m4s deployment-controller Scaled down replica set app-5586fc9d77 to 1
Normal ScalingReplicaSet 4m4s deployment-controller Scaled up replica set app-78dfbb4854 to 1
Normal Injected 4m4s linkerd-proxy-injector Linkerd sidecar proxy injected
Normal ScalingReplicaSet 3m54s deployment-controller Scaled down replica set app-5586fc9d77 to 0
If we navigate to the app in the Dashboard we can see that our Deployment is part of the Linkerd Servicemesh now.
The CLI can also deploy our stats for us as well.
linkerd stat deployments -n default
NAME MESHED SUCCESS RPS LATENCY_P50 LATENCY_P95 LATENCY_P99 TCP_CONN
app 1/1 100.00% 0.4rps 1ms 1ms 1ms 1
Again let us scale up our deployment!
kubectl scale deploy app --replicas 10
deployment.apps/app scaled
Navigate to the web browser and open this link, so we can watch the stats in real time. Select the default namespace and in Resources our deployment/app. Then click start for the web to start displaying the metrics.
In a separate terminal let’s use the netshoot image, but this time running inside our kind cluster.
kubectl run tmp-shell --rm -i --tty --image nicolaka/netshoot -- /bin/bash
If you don't see a command prompt, try pressing enter.
bash-5.0#
Let us send a few hundred queries and see the stats.
bash-5.0#for i in `seq 1 100`;do curl http://clusterip-service/host && sleep 2; done
In our terminal we can see all the liveliness and readiness probes as well as our /host requests.
tmp-shell
is our netshoot bash terminal with our for loop running.
10.244.2.1
, 10.244.3.1
, and 10.244.2.1
are the kubelet’s of the hosts running our probes for us.
linkerd viz stat deploy
NAME MESHED SUCCESS RPS LATENCY_P50 LATENCY_P95 LATENCY_P99 TCP_CONN
app 1/1 100.00% 0.7rps 1ms 1ms 1ms 3