-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPublisherHandler.cs
267 lines (220 loc) · 12.4 KB
/
PublisherHandler.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//******************************************************************************************************
// PublisherHandler.cs - Gbtc
//
// Copyright © 2019, Grid Protection Alliance. All Rights Reserved.
//
// Licensed to the Grid Protection Alliance (GPA) under one or more contributor license agreements. See
// the NOTICE file distributed with this work for additional information regarding copyright ownership.
// The GPA licenses this file to you under the MIT License (MIT), the "License"; you may not use this
// file except in compliance with the License. You may obtain a copy of the License at:
//
// http://opensource.org/licenses/MIT
//
// Unless agreed to in writing, the subject software distributed under the License is distributed on an
// "AS-IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. Refer to the
// License for the specific language governing permissions and limitations.
//
// Code Modification History:
// ----------------------------------------------------------------------------------------------------
// 06/25/2019 - J. Ritchie Carroll
// Generated original version of source code.
//
//******************************************************************************************************
using sttp;
using System;
using System.Runtime.CompilerServices;
using System.Timers;
namespace Publisher
{
public class PublisherHandler : PublisherInstance
{
private readonly string m_name;
private ulong m_processCount;
private Timer m_publishTimer;
private int m_metadataVersion;
private readonly DeviceMetadataCollection m_deviceMetadata;
private readonly MeasurementMetadataCollection m_measurementMetadata;
private readonly PhasorMetadataCollection m_phasorMetadata;
private static readonly object s_consoleLock = new object();
public PublisherHandler(string name)
{
m_name = name;
m_deviceMetadata = new DeviceMetadataCollection();
m_measurementMetadata = new MeasurementMetadataCollection();
m_phasorMetadata = new PhasorMetadataCollection();
}
protected override void StatusMessage(string message)
{
// TODO: Make sure these messages get logged to an appropriate location
// Calls can come from multiple threads, so we impose a simple lock before write to console
lock (s_consoleLock)
Console.WriteLine($"[{m_name}] {message}\n");
}
protected override void ErrorMessage(string message)
{
// TODO: Make sure these messages get logged to an appropriate location
// Calls can come from multiple threads, so we impose a simple lock before write to console
lock (s_consoleLock)
Console.Error.WriteLine($"[{m_name}] {message}\n");
}
protected override void ClientConnected(SubscriberConnection connection) =>
StatusMessage($"Client \"{connection.GetConnectionID()}\" with subscriber ID {connection.GetSubscriberID()} connected...\n\n");
protected override void ClientDisconnected(SubscriberConnection connection) =>
StatusMessage($"Client \"{connection.GetConnectionID()}\" with subscriber ID {connection.GetSubscriberID()} disconnected...\n\n");
// In this example we use predefined structures to setup synchrophasor style metadata. This is only for setup simplification of
// the initial target uses cases that interact with IEEE C37.118. Technically the publisher can create its own metadata sets.
private void DefineMetadata()
{
// This sample just generates random Guid measurement and device identifiers - for a production system,
// these Guid values would need to persist between runs defining a permanent association between the
// defined metadata and the identifier...
DeviceMetadata device1Metadata = new DeviceMetadata();
DateTime timestamp = DateTime.UtcNow;
// Add a device
device1Metadata.Name = "Test PMU";
device1Metadata.Acronym = device1Metadata.Name.Replace(" ", "").ToUpper();
device1Metadata.UniqueID = Guid.NewGuid();
device1Metadata.Longitude = 300;
device1Metadata.Latitude = 200;
device1Metadata.FramesPerSecond = 30;
device1Metadata.ProtocolName = "STTP";
device1Metadata.UpdatedOn = timestamp;
m_deviceMetadata.Add(device1Metadata);
string pointTagPrefix = device1Metadata.Acronym + ".";
string measurementSource = "PPA:";
int runtimeIndex = 1;
// Add a frequency measurement
MeasurementMetadata measurement1Metadata = new MeasurementMetadata();
measurement1Metadata.ID = $"{measurementSource}{runtimeIndex++}";
measurement1Metadata.PointTag = pointTagPrefix + "FREQ";
measurement1Metadata.SignalID = Guid.NewGuid();
measurement1Metadata.DeviceAcronym = device1Metadata.Acronym;
measurement1Metadata.Reference.Acronym = device1Metadata.Acronym;
measurement1Metadata.Reference.Kind = SignalKind.Frequency;
measurement1Metadata.Reference.Index = 0;
measurement1Metadata.PhasorSourceIndex = 0;
measurement1Metadata.UpdatedOn = timestamp;
// Add a dF/dt measurement
MeasurementMetadata measurement2Metadata = new MeasurementMetadata();
measurement2Metadata.ID = $"{measurementSource}{runtimeIndex++}";
measurement2Metadata.PointTag = pointTagPrefix + "DFDT";
measurement2Metadata.SignalID = Guid.NewGuid();
measurement2Metadata.DeviceAcronym = device1Metadata.Acronym;
measurement2Metadata.Reference.Acronym = device1Metadata.Acronym;
measurement2Metadata.Reference.Kind = SignalKind.DfDt;
measurement2Metadata.Reference.Index = 0;
measurement2Metadata.PhasorSourceIndex = 0;
measurement2Metadata.UpdatedOn = timestamp;
// Add a phase angle measurement
MeasurementMetadata measurement3Metadata = new MeasurementMetadata();
measurement3Metadata.ID = $"{measurementSource}{runtimeIndex++}";
measurement3Metadata.PointTag = pointTagPrefix + "VPHA";
measurement3Metadata.SignalID = Guid.NewGuid();
measurement3Metadata.DeviceAcronym = device1Metadata.Acronym;
measurement3Metadata.Reference.Acronym = device1Metadata.Acronym;
measurement3Metadata.Reference.Kind = SignalKind.Angle;
measurement3Metadata.Reference.Index = 1; // First phase angle
measurement3Metadata.PhasorSourceIndex = 1; // Match to Phasor.SourceIndex = 1
measurement3Metadata.UpdatedOn = timestamp;
// Add a phase magnitude measurement
MeasurementMetadata measurement4Metadata = new MeasurementMetadata();
measurement4Metadata.ID = $"{measurementSource}{runtimeIndex++}";
measurement4Metadata.PointTag = pointTagPrefix + "VPHM";
measurement4Metadata.SignalID = Guid.NewGuid();
measurement4Metadata.DeviceAcronym = device1Metadata.Acronym;
measurement4Metadata.Reference.Acronym = device1Metadata.Acronym;
measurement4Metadata.Reference.Kind = SignalKind.Magnitude;
measurement4Metadata.Reference.Index = 1; // First phase magnitude
measurement4Metadata.PhasorSourceIndex = 1; // Match to Phasor.SourceIndex = 1
measurement4Metadata.UpdatedOn = timestamp;
m_measurementMetadata.Add(measurement1Metadata);
m_measurementMetadata.Add(measurement2Metadata);
m_measurementMetadata.Add(measurement3Metadata);
m_measurementMetadata.Add(measurement4Metadata);
// Add a phasor
PhasorMetadata phasor1Metadata = new PhasorMetadata();
phasor1Metadata.DeviceAcronym = device1Metadata.Acronym;
phasor1Metadata.Label = device1Metadata.Name + " Voltage Phasor";
phasor1Metadata.Type = "V"; // Voltage phasor
phasor1Metadata.Phase = "+"; // Positive sequence
phasor1Metadata.SourceIndex = 1; // Phasor number 1
phasor1Metadata.UpdatedOn = timestamp;
m_phasorMetadata.Add(phasor1Metadata);
m_metadataVersion++;
// Pass meta-data to publisher instance for proper conditioning
base.DefineMetadata(m_deviceMetadata, m_measurementMetadata, m_phasorMetadata, m_metadataVersion);
}
public override bool Start(ushort port)
{
if (!base.Start(port))
return false;
int maxConnections = MaximumAllowedConnections;
StatusMessage($"\nListening on port: {GetPort()}, max connections = {(maxConnections == -1 ? "unlimited" : maxConnections.ToString())}...\n");
// Setup meta-data
DefineMetadata();
// Setup data publication timer - for this publishing sample we send
// data type reasonable random values every 33 milliseconds
m_publishTimer = new Timer(33) { AutoReset = true };
m_publishTimer.Elapsed += (sender, e) => PublishRandomValues();
// Start data publication
m_publishTimer.Start();
return true;
}
public override void Stop()
{
base.Stop();
m_publishTimer?.Stop();
}
private void PublishRandomValues()
{
const ulong Interval = 1000;
// If metadata can change, the following integer should not be static:
int count = m_measurementMetadata.Count;
long timestamp = RoundToSubsecondDistribution(DateTime.UtcNow.Ticks, 30);
Measurement[] measurements = new Measurement[count];
Random rand = new Random();
// Create new measurement values for publication
for (int i = 0; i < count; i++)
{
MeasurementMetadata metadata = m_measurementMetadata[i];
Measurement measurement = new Measurement(metadata.SignalID, timestamp);
double randFraction = rand.NextDouble();
double sign = randFraction > 0.5D ? 1.0D : -1.0D;
measurement.Value = metadata.Reference.Kind switch
{
SignalKind.Frequency => 60.0D + sign * randFraction * 0.1D,
SignalKind.DfDt => sign * randFraction * 2.0D,
SignalKind.Magnitude => 500.0D + sign * randFraction * 50.0D,
SignalKind.Angle => sign * randFraction * 180.0D,
_ => sign * randFraction * uint.MaxValue
};
measurements[i] = measurement;
}
// Publish measurements
PublishMeasurements(measurements);
// Display a processing message every few seconds
bool showMessage = m_processCount + (ulong)count >= (m_processCount / Interval + 1) * Interval && GetTotalMeasurementsSent() > 0;
m_processCount += (ulong)count;
if (showMessage)
StatusMessage($"{GetTotalMeasurementsSent()} measurements published so far...\n");
}
// Returns the nearest sub-second distribution timestamp for given ticks.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static long RoundToSubsecondDistribution(long ticks, int samplesPerSecond)
{
const long TicksPerSecond = TimeSpan.TicksPerSecond;
// Baseline timestamp to the top of the second
long baseTicks = ticks - ticks % TicksPerSecond;
// Remove the seconds from ticks
long ticksBeyondSecond = ticks - baseTicks;
// Calculate a frame index between 0 and m_framesPerSecond - 1,
// corresponding to ticks rounded to the nearest frame
long frameIndex = (long)Math.Round(ticksBeyondSecond / (TicksPerSecond / (double)samplesPerSecond));
// Calculate the timestamp of the nearest frame
long destinationTicks = frameIndex * TicksPerSecond / samplesPerSecond;
// Recover the seconds that were removed
destinationTicks += baseTicks;
return destinationTicks;
}
}
}