-
Notifications
You must be signed in to change notification settings - Fork 11
/
NonLinearLeastSquaresSolver.java
105 lines (90 loc) · 4.07 KB
/
NonLinearLeastSquaresSolver.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
package iocomms.subpos;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.DiagonalMatrix;
/**
* Solves a Trilateration problem with an instance of a
* {@link LeastSquaresOptimizer}
*
* The MIT License (MIT)
* Copyright (c) 2014 Scott Wiedemann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
public class NonLinearLeastSquaresSolver {
private final TrilaterationFunction function;
private final LeastSquaresOptimizer leastSquaresOptimizer;
protected final static int MAXNUMBEROFITERATIONS = 1000;
public NonLinearLeastSquaresSolver(TrilaterationFunction function, LeastSquaresOptimizer leastSquaresOptimizer) {
this.function = function;
this.leastSquaresOptimizer = leastSquaresOptimizer;
}
public Optimum solve(double[] target, double[] weights, double[] initialPoint, boolean debugInfo) {
if (debugInfo) {
System.out.println("Max Number of Iterations : " + MAXNUMBEROFITERATIONS);
}
LeastSquaresProblem leastSquaresProblem = LeastSquaresFactory.create(
// function to be optimized
function,
// target values at optimal point in least square equation
// (x0+xi)^2 + (y0+yi)^2 + ri^2 = target[i]
new ArrayRealVector(target, false), new ArrayRealVector(initialPoint, false), new DiagonalMatrix(weights), null, MAXNUMBEROFITERATIONS, MAXNUMBEROFITERATIONS);
return leastSquaresOptimizer.optimize(leastSquaresProblem);
}
public Optimum solve(double[] target, double[] weights, double[] initialPoint) {
return solve(target, weights, initialPoint, false);
}
public Optimum solve(boolean debugInfo) {
int numberOfPositions = function.getPositions().length;
int positionDimension = function.getPositions()[0].length;
double[] initialPoint = new double[positionDimension];
// initial point, use average of the vertices
for (int i = 0; i < function.getPositions().length; i++) {
double[] vertex = function.getPositions()[i];
for (int j = 0; j < vertex.length; j++) {
initialPoint[j] += vertex[j];
}
}
for (int j = 0; j < initialPoint.length; j++) {
initialPoint[j] /= numberOfPositions;
}
/*if (debugInfo) {
StringBuilder output = new StringBuilder("initialPoint: ");
for (int i = 0; i < initialPoint.length; i++) {
output.append(initialPoint[i]).append(" ");
}
System.out.println(output.toString());
}*/
double[] target = new double[numberOfPositions];
double[] distances = function.getDistances();
double[] weights = new double[target.length];
// Weights are inversely proportional to the the square of the distances I think
for (int i = 0; i < target.length; i++) {
target[i] = 0.0;
// weights[i] = 1.0;
weights[i] = (distances[i] * distances[i]);
}
return solve(target, weights, initialPoint);
}
public Optimum solve() {
return solve(false);
}
}