diff --git a/.github/workflows/docker-push.yml b/.github/workflows/docker-push.yml index de86d24..86ca05a 100644 --- a/.github/workflows/docker-push.yml +++ b/.github/workflows/docker-push.yml @@ -14,7 +14,7 @@ on: # Defines two custom environment variables for the workflow. These are used for the Container registry domain, and a name for the Docker image that this workflow builds. env: REGISTRY: ghcr.io - IMAGE_NAME: substratusai/sentence-transformers-api + IMAGE_NAME: substratusai/stapi # There is a single job in this workflow. It's configured to run on the latest available version of Ubuntu. jobs: diff --git a/README.md b/README.md index 241ed1c..229755c 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,8 @@ -# Sentence Transformers API +# STAPI: Sentence Transformers API OpenAI compatible embedding API that uses Sentence Transformer for embeddings -Container Image: `ghcr.io/substratusai/sentence-transformers-api` +Container Image: `ghcr.io/substratusai/stapi` Support the project by adding a star! ❤️ Join us on Discord: @@ -11,12 +11,12 @@ Join us on Discord: ## Install -There are 2 options to install: Docker or local Python install. +There are 2 options to install STAPI: Docker or local Python install. ### Install (Docker) Run the API locally using Docker: ```bash -docker run -p 8080:8080 -d ghcr.io/substratusai/sentence-transformers-api +docker run -p 8080:8080 -d ghcr.io/substratusai/stapi ``` ### Install (Local python) @@ -24,8 +24,8 @@ Install and run the API server locally using Python. Only supports python 3.9, 3 Clone the repo: ```bash -git clone https://github.com/substratusai/sentence-transformers-api -cd sentence-transformers-api +git clone https://github.com/substratusai/stapi +cd stapi ``` Install dependencies: @@ -39,7 +39,7 @@ uvicorn main:app --port 8080 --reload ``` ## Usage -After you've installed sentence-transformers-api, +After you've installed STAPI, you can visit the API docs on [http://localhost:8080/docs](http://localhost:8080/docs) You can also use CURL to get embeddings: @@ -64,7 +64,7 @@ print(embedding) ## Supported Models Any model that's supported by Sentence Transformers should also work as-is -with Sentence Transformers API. +with STAPI. Here is a list of [pre-trained models](https://www.sbert.net/docs/pretrained_models.html) available with Sentence Transformers. By default the `all-MiniLM-L6-v2` model is used and preloaded on startup. You