diff --git a/src/hotspot/share/gc/parallel/psCardTable.cpp b/src/hotspot/share/gc/parallel/psCardTable.cpp index cecb3aa97cb..8703ad2e114 100644 --- a/src/hotspot/share/gc/parallel/psCardTable.cpp +++ b/src/hotspot/share/gc/parallel/psCardTable.cpp @@ -117,18 +117,88 @@ class CheckForPreciseMarks : public BasicOopIterateClosure { virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); } }; +static void prefetch_write(void *p) { + if (PrefetchScanIntervalInBytes >= 0) { + Prefetch::write(p, PrefetchScanIntervalInBytes); + } +} + +// postcondition: ret is a dirty card or end_card +CardTable::CardValue* PSCardTable::find_first_dirty_card(CardValue* const start_card, + CardValue* const end_card) { + for (CardValue* i_card = start_card; i_card < end_card; ++i_card) { + if (*i_card != PSCardTable::clean_card_val()) { + return i_card; + } + } + return end_card; +} + +// postcondition: ret is a clean card or end_card +// Note: if a part of an object is on a dirty card, all cards this object +// resides on are considered dirty. +CardTable::CardValue* PSCardTable::find_first_clean_card(ObjectStartArray* const start_array, + CardValue* const start_card, + CardValue* const end_card) { + assert(start_card == end_card || + *start_card != PSCardTable::clean_card_val(), "precondition"); + // Skip the first dirty card. + CardValue* i_card = start_card + 1; + while (i_card < end_card) { + if (*i_card != PSCardTable::clean_card_val()) { + i_card++; + continue; + } + assert(i_card - 1 >= start_card, "inv"); + assert(*(i_card - 1) != PSCardTable::clean_card_val(), "prev card must be dirty"); + // Find the final obj on the prev dirty card. + HeapWord* obj_addr = start_array->object_start(addr_for(i_card)-1); + HeapWord* obj_end_addr = obj_addr + cast_to_oop(obj_addr)->size(); + CardValue* final_card_by_obj = byte_for(obj_end_addr - 1); + assert(final_card_by_obj < end_card, "inv"); + if (final_card_by_obj <= i_card) { + return i_card; + } + // This final obj extends beyond i_card, check if this new card is dirty. + if (*final_card_by_obj == PSCardTable::clean_card_val()) { + return final_card_by_obj; + } + // This new card is dirty, continuing the search... + i_card = final_card_by_obj + 1; + } + return end_card; +} + +void PSCardTable::clear_cards(CardValue* const start, CardValue* const end) { + for (CardValue* i_card = start; i_card < end; ++i_card) { + *i_card = clean_card; + } +} + +void PSCardTable::scan_objects_in_range(PSPromotionManager* pm, + HeapWord* start, + HeapWord* end) { + HeapWord* obj_addr = start; + while (obj_addr < end) { + oop obj = cast_to_oop(obj_addr); + assert(oopDesc::is_oop(obj), "inv"); + prefetch_write(obj_addr); + pm->push_contents(obj); + obj_addr += obj->size(); + } + pm->drain_stacks_cond_depth(); +} + // We get passed the space_top value to prevent us from traversing into // the old_gen promotion labs, which cannot be safely parsed. // Do not call this method if the space is empty. // It is a waste to start tasks and get here only to -// do no work. If this method needs to be called -// when the space is empty, fix the calculation of -// end_card to allow sp_top == sp->bottom(). +// do no work. This method is just a no-op if space_top == sp->bottom(). // The generation (old gen) is divided into slices, which are further // subdivided into stripes, with one stripe per GC thread. The size of -// a stripe is a constant, ssize. +// a stripe is a constant, num_cards_in_stripe. // // +===============+ slice 0 // | stripe 0 | @@ -152,188 +222,107 @@ class CheckForPreciseMarks : public BasicOopIterateClosure { // In this case there are 4 threads, so 4 stripes. A GC thread first works on // its stripe within slice 0 and then moves to its stripe in the next slice // until it has exceeded the top of the generation. The distance to stripe in -// the next slice is calculated based on the number of stripes. The next -// stripe is at ssize * number_of_stripes (= slice_stride).. So after -// finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1 by -// adding slice_stride to the start of stripe 0 in slice 0 to get to the start -// of stride 0 in slice 1. +// the next slice is calculated based on the number of stripes. After finishing +// stripe 0 in slice 0, the thread finds the stripe 0 in slice 1 by adding +// slice_size_in_words to the start of stripe 0 in slice 0 to get to the start +// of stripe 0 in slice 1. void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array, MutableSpace* sp, HeapWord* space_top, PSPromotionManager* pm, - uint stripe_number, - uint stripe_total) { - int ssize = 128; // Naked constant! Work unit = 64k. - - // It is a waste to get here if empty. - assert(sp->bottom() < sp->top(), "Should not be called if empty"); - oop* sp_top = (oop*)space_top; - CardValue* start_card = byte_for(sp->bottom()); - CardValue* end_card = byte_for(sp_top - 1) + 1; - oop* last_scanned = NULL; // Prevent scanning objects more than once - // The width of the stripe ssize*stripe_total must be - // consistent with the number of stripes so that the complete slice - // is covered. - size_t slice_width = ssize * stripe_total; - for (CardValue* slice = start_card; slice < end_card; slice += slice_width) { - CardValue* worker_start_card = slice + stripe_number * ssize; - if (worker_start_card >= end_card) - return; // We're done. - - CardValue* worker_end_card = worker_start_card + ssize; - if (worker_end_card > end_card) - worker_end_card = end_card; - - // We do not want to scan objects more than once. In order to accomplish - // this, we assert that any object with an object head inside our 'slice' - // belongs to us. We may need to extend the range of scanned cards if the - // last object continues into the next 'slice'. - // - // Note! ending cards are exclusive! - HeapWord* slice_start = addr_for(worker_start_card); - HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card)); + uint stripe_index, + uint n_stripes) { + const size_t num_cards_in_stripe = 128; + const size_t stripe_size_in_words = num_cards_in_stripe * card_size_in_words; + const size_t slice_size_in_words = stripe_size_in_words * n_stripes; - // If there are not objects starting within the chunk, skip it. - if (!start_array->object_starts_in_range(slice_start, slice_end)) { + HeapWord* cur_stripe_addr = sp->bottom() + stripe_index * stripe_size_in_words; + + for (/* empty */; cur_stripe_addr < space_top; cur_stripe_addr += slice_size_in_words) { + // exclusive + HeapWord* const cur_stripe_end_addr = MIN2(cur_stripe_addr + stripe_size_in_words, + space_top); + + // Process a stripe iff it contains any obj-start + if (!start_array->object_starts_in_range(cur_stripe_addr, cur_stripe_end_addr)) { continue; } - // Update our beginning addr - HeapWord* first_object = start_array->object_start(slice_start); - debug_only(oop* first_object_within_slice = (oop*) first_object;) - if (first_object < slice_start) { - last_scanned = (oop*)(first_object + cast_to_oop(first_object)->size()); - debug_only(first_object_within_slice = last_scanned;) - worker_start_card = byte_for(last_scanned); + + // Constraints: + // 1. range of cards checked for being dirty or clean: [iter_limit_l, iter_limit_r) + // 2. range of cards can be cleared: [clear_limit_l, clear_limit_r) + // 3. range of objs (obj-start) can be scanned: [first_obj_addr, cur_stripe_end_addr) + + CardValue* iter_limit_l; + CardValue* iter_limit_r; + CardValue* clear_limit_l; + CardValue* clear_limit_r; + + // Identify left ends and the first obj-start inside this stripe. + HeapWord* first_obj_addr = start_array->object_start(cur_stripe_addr); + if (first_obj_addr < cur_stripe_addr) { + // this obj belongs to previous stripe; can't clear any cards it occupies + first_obj_addr += cast_to_oop(first_obj_addr)->size(); + clear_limit_l = byte_for(first_obj_addr - 1) + 1; + iter_limit_l = byte_for(first_obj_addr); + } else { + assert(first_obj_addr == cur_stripe_addr, "inv"); + iter_limit_l = clear_limit_l = byte_for(cur_stripe_addr); } - // Update the ending addr - if (slice_end < (HeapWord*)sp_top) { - // The subtraction is important! An object may start precisely at slice_end. - HeapWord* last_object = start_array->object_start(slice_end - 1); - slice_end = last_object + cast_to_oop(last_object)->size(); - // worker_end_card is exclusive, so bump it one past the end of last_object's - // covered span. - worker_end_card = byte_for(slice_end) + 1; - - if (worker_end_card > end_card) - worker_end_card = end_card; + assert(cur_stripe_addr <= first_obj_addr, "inside this stripe"); + assert(first_obj_addr <= cur_stripe_end_addr, "can be empty"); + + { + // Identify right ends. + HeapWord* obj_addr = start_array->object_start(cur_stripe_end_addr - 1); + HeapWord* obj_end_addr = obj_addr + cast_to_oop(obj_addr)->size(); + assert(obj_end_addr >= cur_stripe_end_addr, "inv"); + clear_limit_r = byte_for(obj_end_addr); + iter_limit_r = byte_for(obj_end_addr - 1) + 1; } - assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary"); - assert(is_valid_card_address(worker_start_card), "Invalid worker start card"); - assert(is_valid_card_address(worker_end_card), "Invalid worker end card"); - // Note that worker_start_card >= worker_end_card is legal, and happens when - // an object spans an entire slice. - assert(worker_start_card <= end_card, "worker start card beyond end card"); - assert(worker_end_card <= end_card, "worker end card beyond end card"); - - CardValue* current_card = worker_start_card; - while (current_card < worker_end_card) { - // Find an unclean card. - while (current_card < worker_end_card && card_is_clean(*current_card)) { - current_card++; + assert(iter_limit_l <= clear_limit_l && + clear_limit_r <= iter_limit_r, "clear cards only if we iterate over them"); + + // Process dirty chunks, i.e. consecutive dirty cards [dirty_l, dirty_r), + // chunk by chunk inside [iter_limit_l, iter_limit_r). + CardValue* dirty_l; + CardValue* dirty_r; + + for (CardValue* cur_card = iter_limit_l; cur_card < iter_limit_r; cur_card = dirty_r + 1) { + dirty_l = find_first_dirty_card(cur_card, iter_limit_r); + dirty_r = find_first_clean_card(start_array, dirty_l, iter_limit_r); + assert(dirty_l <= dirty_r, "inv"); + + // empty + if (dirty_l == dirty_r) { + assert(dirty_r == iter_limit_r, "no more dirty cards in this stripe"); + break; } - CardValue* first_unclean_card = current_card; - - // Find the end of a run of contiguous unclean cards - while (current_card < worker_end_card && !card_is_clean(*current_card)) { - while (current_card < worker_end_card && !card_is_clean(*current_card)) { - current_card++; - } - - if (current_card < worker_end_card) { - // Some objects may be large enough to span several cards. If such - // an object has more than one dirty card, separated by a clean card, - // we will attempt to scan it twice. The test against "last_scanned" - // prevents the redundant object scan, but it does not prevent newly - // marked cards from being cleaned. - HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1); - size_t size_of_last_object = cast_to_oop(last_object_in_dirty_region)->size(); - HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object; - CardValue* ending_card_of_last_object = byte_for(end_of_last_object); - assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card"); - if (ending_card_of_last_object > current_card) { - // This means the object spans the next complete card. - // We need to bump the current_card to ending_card_of_last_object - current_card = ending_card_of_last_object; - } - } + + assert(*dirty_l != clean_card, "inv"); + assert(*dirty_r == clean_card || dirty_r >= clear_limit_r, + "clean card or belonging to next stripe"); + + // Process this non-empty dirty chunk in two steps: + { + // 1. Clear card in [dirty_l, dirty_r) subject to [clear_limit_l, clear_limit_r) constraint + clear_cards(MAX2(dirty_l, clear_limit_l), + MIN2(dirty_r, clear_limit_r)); } - CardValue* following_clean_card = current_card; - - if (first_unclean_card < worker_end_card) { - oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card)); - assert((HeapWord*)p <= addr_for(first_unclean_card), "checking"); - // "p" should always be >= "last_scanned" because newly GC dirtied - // cards are no longer scanned again (see comment at end - // of loop on the increment of "current_card"). Test that - // hypothesis before removing this code. - // If this code is removed, deal with the first time through - // the loop when the last_scanned is the object starting in - // the previous slice. - assert((p >= last_scanned) || - (last_scanned == first_object_within_slice), - "Should no longer be possible"); - if (p < last_scanned) { - // Avoid scanning more than once; this can happen because - // newgen cards set by GC may a different set than the - // originally dirty set - p = last_scanned; - } - oop* to = (oop*)addr_for(following_clean_card); - - // Test slice_end first! - if ((HeapWord*)to > slice_end) { - to = (oop*)slice_end; - } else if (to > sp_top) { - to = sp_top; - } - - // we know which cards to scan, now clear them - if (first_unclean_card <= worker_start_card+1) - first_unclean_card = worker_start_card+1; - if (following_clean_card >= worker_end_card-1) - following_clean_card = worker_end_card-1; - - while (first_unclean_card < following_clean_card) { - *first_unclean_card++ = clean_card; - } - - const int interval = PrefetchScanIntervalInBytes; - // scan all objects in the range - if (interval != 0) { - while (p < to) { - Prefetch::write(p, interval); - oop m = cast_to_oop(p); - assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)); - pm->push_contents(m); - p += m->size(); - } - pm->drain_stacks_cond_depth(); - } else { - while (p < to) { - oop m = cast_to_oop(p); - assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)); - pm->push_contents(m); - p += m->size(); - } - pm->drain_stacks_cond_depth(); - } - last_scanned = p; + + { + // 2. Scan objs in [dirty_l, dirty_r) subject to [first_obj_addr, cur_stripe_end_addr) constraint + HeapWord* obj_l = MAX2(start_array->object_start(addr_for(dirty_l)), + first_obj_addr); + + HeapWord* obj_r = MIN2(addr_for(dirty_r), + cur_stripe_end_addr); + + scan_objects_in_range(pm, obj_l, obj_r); } - // "current_card" is still the "following_clean_card" or - // the current_card is >= the worker_end_card so the - // loop will not execute again. - assert((current_card == following_clean_card) || - (current_card >= worker_end_card), - "current_card should only be incremented if it still equals " - "following_clean_card"); - // Increment current_card so that it is not processed again. - // It may now be dirty because a old-to-young pointer was - // found on it an updated. If it is now dirty, it cannot be - // be safely cleaned in the next iteration. - current_card++; } } } diff --git a/src/hotspot/share/gc/parallel/psCardTable.hpp b/src/hotspot/share/gc/parallel/psCardTable.hpp index d912c656741..e8404661f80 100644 --- a/src/hotspot/share/gc/parallel/psCardTable.hpp +++ b/src/hotspot/share/gc/parallel/psCardTable.hpp @@ -50,6 +50,19 @@ class PSCardTable: public CardTable { verify_card = CT_MR_BS_last_reserved + 5 }; + CardValue* find_first_dirty_card(CardValue* const start_card, + CardValue* const end_card); + + CardValue* find_first_clean_card(ObjectStartArray* start_array, + CardValue* const start_card, + CardValue* const end_card); + + void clear_cards(CardValue* const start, CardValue* const end); + + void scan_objects_in_range(PSPromotionManager* pm, + HeapWord* start, + HeapWord* end); + public: PSCardTable(MemRegion whole_heap) : CardTable(whole_heap) {} @@ -61,8 +74,8 @@ class PSCardTable: public CardTable { MutableSpace* sp, HeapWord* space_top, PSPromotionManager* pm, - uint stripe_number, - uint stripe_total); + uint stripe_index, + uint n_stripes); bool addr_is_marked_imprecise(void *addr); bool addr_is_marked_precise(void *addr);