-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
113 lines (98 loc) · 3.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def prediction(stock, n_days):
import dash
import dash_core_components as dcc
import dash_html_components as html
from datetime import datetime as dt
import yfinance as yf
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
import pandas as pd
import plotly.graph_objs as go
import plotly.express as px
# model
from model import prediction
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
import numpy as np
from sklearn.svm import SVR
from datetime import date, timedelta
# load the data
df = yf.download(stock, period='60d')
df.reset_index(inplace=True)
df['Day'] = df.index
#days is a list of list from 0th to 59th day
days = list()
for i in range(len(df.Day)):
days.append([i])
#print(days)
# Splitting the dataset
X = days
Y = df[['Close']]
x_train, x_test, y_train, y_test = train_test_split(X,
Y,
test_size=0.1,
shuffle=False)
gsc = GridSearchCV(
estimator=SVR(kernel='rbf'),
param_grid={
'C': [0.001, 0.01, 0.1, 1, 100, 1000],
'epsilon': [
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10,
50, 100, 150, 1000
],
'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5, 8, 40, 100, 1000]
},
cv=5,
scoring='neg_mean_absolute_error',
verbose=0,
n_jobs=-1)
y_train = y_train.values.ravel()
y_train
grid_result = gsc.fit(x_train, y_train)
best_params = grid_result.best_params_
best_svr = SVR(kernel='rbf',
C=best_params["C"],
epsilon=best_params["epsilon"],
gamma=best_params["gamma"],
max_iter=-1)
# Support Vector Regression Models
# RBF model
#rbf_svr = SVR(kernel='rbf', C=1000.0, gamma=4.0)
rbf_svr = best_svr
rbf_svr.fit(x_train, y_train)
output_days = list()
for i in range(1, n_days):
output_days.append([i + x_test[-1][0]])
#print(output_days)
dates = []
current = date.today()
for i in range(n_days):
current += timedelta(days=1)
dates.append(current)
print(dates)
# plot Results
# fig = go.Figure()
# fig.add_trace(
# go.Scatter(x=np.array(x_test).flatten(),
# y=y_test.values.flatten(),
# mode='markers',
# name='data'))
# fig.add_trace(
# go.Scatter(x=np.array(x_test).flatten(),
# y=rbf_svr.predict(x_test),
# mode='lines+markers',
# name='test'))
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=dates, # np.array(ten_days).flatten(),
y=rbf_svr.predict(output_days),
mode='lines+markers',
name='data'))
fig.update_layout(
title="Predicted Close Price of next " + str(n_days - 1) + " days",
xaxis_title="Date",
yaxis_title="Closed Price",
# legend_title="Legend Title",
)
return fig