Skip to content

Latest commit

 

History

History
 
 

GMB

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Dataset description

Annotated Corpus for Named Entity Recognition using GMB (Groningen Meaning Bank) corpus for entity classification with enhanced and popular features by Natural Language Processing applied to the data set. Downloaded from Kaggle to train.csv file locally.

In addition, GloVe (Global Vectors for Word Representation) vectors are needed to run the ElmoNER model, please download them by running the provided download_glove.sh script.

Overall number of entities

    699 art
    561 eve
  45058 geo
  16068 gpe
    252 nat
  36927 org
  34241 per
  26861 tim

Training

We train with the full set of data, and the entire run across all the provided models can be fairly time consuming. If it is desired to keep the training time reasonable, you can train only with 5000 sentences by uncommenting lines 47-49 in test_models.py.

Results

Dictionary NER (from_dictionary=False)

              precision    recall  f1-score   support

         art       0.01      0.15      0.02       215
         eve       0.22      0.43      0.29       169
         geo       0.35      0.74      0.48     13724
         gpe       0.93      0.90      0.92      4850
         nat       0.27      0.53      0.36        94
         org       0.41      0.67      0.51     10884
         per       0.77      0.74      0.75     10342
         tim       0.14      0.92      0.25      8140

   micro avg       0.32      0.77      0.45     48418
   macro avg       0.39      0.64      0.45     48418
weighted avg       0.48      0.77      0.55     48418

CRF NER (c1=0.1, c2=0.1, max_iter=100, featurizer=Default)

              precision    recall  f1-score   support

         art       0.28      0.05      0.08       215
         eve       0.54      0.33      0.41       169
         geo       0.87      0.89      0.88     13724
         gpe       0.95      0.92      0.94      4850
         nat       0.71      0.32      0.44        94
         org       0.80      0.78      0.79     10884
         per       0.88      0.88      0.88     10342
         tim       0.93      0.87      0.90      8140

   micro avg       0.87      0.85      0.86     48418
   macro avg       0.74      0.63      0.66     48418
weighted avg       0.87      0.85      0.86     48418

The entity types which have enough examples have good results!

SpaCy NER (dropout=0.1, max_iter=20, batch_size=32)

              precision    recall  f1-score   support

         art       0.26      0.07      0.10       215
         eve       0.61      0.24      0.34       169
         geo       0.87      0.87      0.87     13724
         gpe       0.94      0.93      0.93      4850
         nat       0.87      0.28      0.42        94
         org       0.79      0.77      0.78     10884
         per       0.85      0.90      0.88     10342
         tim       0.96      0.83      0.89      8140

   micro avg       0.87      0.85      0.86     48418
   macro avg       0.77      0.61      0.65     48418
weighted avg       0.87      0.85      0.86     48418

BiLSTM-CRF NER (word_embedding_dim=100, char_embedding_dim=25, word_lstm_size=100, char_lstm_size=25, fc_dim=100, dropout=0.5, embeddings=None, use_char=True, use_crf=True, batch_size=16, learning_rate=0.001, max_iter=10)

              precision    recall  f1-score   support

         art       0.25      0.09      0.14       215
         eve       0.37      0.29      0.33       169
         geo       0.84      0.89      0.87     13724
         gpe       0.95      0.93      0.94      4850
         nat       0.71      0.31      0.43        94
         org       0.84      0.72      0.77     10884
         per       0.87      0.90      0.89     10342
         tim       0.89      0.89      0.89      8140

   micro avg       0.86      0.85      0.86     48418
   macro avg       0.72      0.63      0.66     48418
weighted avg       0.86      0.85      0.85     48418

ELMo NER (word_embedding_dim=100, char_embedding_dim=25, word_lstm_size=100, char_lstm_size=25, fc_dim=100, dropout=0.5, embeddings=None, embeddings_file="glove.6B.100d.txt", batch_size=16, learning_rate=0.001, max_iter=2)

              precision    recall  f1-score   support

         art       0.13      0.15      0.14       215
         eve       0.35      0.46      0.40       169
         geo       0.88      0.89      0.88     13724
         gpe       0.94      0.94      0.94      4850
         nat       0.71      0.21      0.33        94
         org       0.82      0.76      0.79     10884
         per       0.86      0.93      0.89     10342
         tim       0.91      0.88      0.90      8140

   micro avg       0.87      0.87      0.87     48418
   macro avg       0.70      0.65      0.66     48418
weighted avg       0.87      0.87      0.86     48418

FLAIR NER (hidden_dim=256, embeddings=StackedEmbeddings(WordEmbeddings("glove"), CharEmbeddings()), use_crf=True, use_rnn=True, num_rnn_layers=1, dropout=0.0, word_dropout=0.05, locked_dropout=0.5, optimizer="sgd", learning_rate=0.1, batch_size=32, max_iter=10)

              precision    recall  f1-score   support

         art       0.00      0.00      0.00       215
         eve       0.71      0.20      0.31       169
         geo       0.84      0.91      0.87     13724
         gpe       0.95      0.92      0.94      4850
         nat       0.50      0.06      0.11        94
         org       0.85      0.67      0.75     10884
         per       0.84      0.92      0.88     10342
         tim       0.90      0.88      0.89      8140

   micro avg       0.86      0.84      0.85     48418
   macro avg       0.70      0.57      0.59     48418
weighted avg       0.86      0.84      0.85     48418

Transformer NER (lang_model_family="bert", lang_model_name="bert-base-cased", max_sequence_length=128, batch_size=32, max_iter=4, learning_rate=4e-5, padding_tag="O", random_state=42)

              precision    recall  f1-score   support

         art       0.11      0.24      0.15        97
         eve       0.41      0.55      0.47       126
         geo       0.90      0.88      0.89     14016
         gpe       0.94      0.96      0.95      4724
         nat       0.34      0.80      0.48        40
         org       0.80      0.81      0.81     10669
         per       0.91      0.90      0.90     10402
         tim       0.89      0.93      0.91      7739

   micro avg       0.87      0.88      0.88     47813
   macro avg       0.66      0.76      0.69     47813
weighted avg       0.88      0.88      0.88     47813

Majority voting ensemble (pretrained Dictionary NER, CRF NER, SpaCy NER, and BiLSTM-CRF NER)

              precision    recall  f1-score   support

         art       0.17      0.08      0.11       215
         eve       0.47      0.22      0.30       169
         geo       0.83      0.87      0.85     13724
         gpe       0.98      0.89      0.93      4850
         nat       0.76      0.31      0.44        94
         org       0.84      0.64      0.73     10884
         per       0.93      0.71      0.81     10342
         tim       0.90      0.86      0.88      8140

   micro avg       0.87      0.78      0.82     48418
   macro avg       0.73      0.57      0.63     48418
weighted avg       0.87      0.78      0.82     48418