forked from HViktorTsoi/ACSC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calibration.py
executable file
·943 lines (734 loc) · 32.5 KB
/
calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
# coding=utf-8
from __future__ import print_function, division, absolute_import
import json
import multiprocessing
import pickle
import sys
import yaml
import argparse
import utils
import array
import os
import time
import numpy as np
import numpy.linalg as LA
import transforms3d
from sklearn.decomposition import PCA
import pcl
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from scipy import signal, stats
import cv2
import segmentation_ext
parser = argparse.ArgumentParser()
parser.add_argument('--config', required=True, type=str, help="config file path")
args = parser.parse_args()
configs = yaml.load(open(args.config, 'r').read(), Loader=yaml.FullLoader)
configs_data_collection = yaml.load(open('./configs/data_collection.yaml', 'r').read(), Loader=yaml.FullLoader)
# whether use automic chessboard localization
AUTOMATIC_CHESSBOARD_LOCALIZATION = configs_data_collection['AUTOMATIC_CHESSBOARD_LOCALIZATION']
# if there is pre-labeled datadensity
RELABEL = configs_data_collection['RELABEL']
# scene size when labeling chessboards
BOUND = configs_data_collection['BOUND'] # xmin,xmax,ymin,ymax,zmin,zmax
# resolution of displayed point cloud projection, adjust it according to your screen size
VIRTUAL_CAM_INTRINSIC = configs_data_collection['VIRTUAL_CAM_INTRINSIC'] # 虚拟相机内参
# long-side resolution of rendered image for labeling chessboard location
RENDER_IMG_WIDTH = 500
# chess board parameter
# w: number of corners along the long-side
# h: number of corners along the short-side
# grid_size: chessboard grid size(in meters)
# W, H, GRID_SIZE = 9, 7, 0.0365
W = configs['data']['chessboard']['W']
H = configs['data']['chessboard']['H']
GRID_SIZE = configs['data']['chessboard']['GRID_SIZE']
# threshhold for 3D corner detection loss
OPTIMIZE_TH = configs['calibration']['OPTIMIZE_TH']
# patch size used to calc resample density
RESAMPLE_PATCH_SIZE = configs['calibration']['RESAMPLE_PATCH_SIZE']
# desired density after re-sample, points / cm^2
RESAMPLE_DENSITY = configs['calibration']['RESAMPLE_DENSITY']
# the margin reserved after segmentation from ROI pillar, preventing cut to much of chessboard
HEIGHT_SEGMENTATION_MARGIN = configs['calibration']['HEIGHT_SEGMENTATION_MARGIN']
# number of bins for calc z-axis variance, the more sparse point cloud is, the lower bins should be
HEIGHT_SEGMENTATION_BINS = configs['calibration']['HEIGHT_SEGMENTATION_BINS']
# num of workers to process the frames
NUM_WORKERS = configs['calibration']['NUM_WORKERS']
# 0: No Vis
# 1: Vis 3D detection result
# 2: Vis 3D detection result,intensity distribution,camera calibration
DEBUG = configs['calibration']['DEBUG']
# load data
root = configs['data']['root']
def load_pc(bin_file_path):
"""
load pointcloud file (KITTI format)
:param bin_file_path:
:return:
"""
with open(bin_file_path, 'rb') as bin_file:
pc = array.array('f')
pc.frombytes(bin_file.read())
pc = np.array(pc).reshape(-1, 4)
return pc
def transfer_by_normal_vector(pc, norm):
#
norm_from = norm
norm_to = np.array([0, 0, -1])
# rotate angle
theta = np.arccos(np.dot(norm_from, norm_to) / (LA.norm(norm_from) * LA.norm(norm_to)))
# rotate pivot
# a1, a2, a3 = norm_to
# b1, b2, b3 = norm_from
a1, a2, a3 = norm_from
b1, b2, b3 = norm_to
pivot = np.array([
a2 * b3 - a3 * b2,
a3 * b1 - a1 * b3,
a1 * b2 - a2 * b1
])
# convert to SO3 rotate mat
SO3 = transforms3d.axangles.axangle2mat(pivot, theta)
# apply transform
rotated_pc = np.dot(pc, SO3.T)
return SO3, rotated_pc
def transfer_by_pca(pc):
"""
transfer chessboard to xOy plane
REF: https://github.com/mfxox/ILCC/tree/master/ILCC
:param pc:
:return:
"""
# to rotate the arr correctly, the direction of the axis has to be found correct(PCA also shows the axis but not the direction of axis)
#
pca = PCA(n_components=3)
pca.fit(pc)
####################################################
# there are C(6,3) possible axis combination, so the following constraint should be applied:
# there are there requirements for the coordinates axes for the coordinate system of the chessboard
# 1. right-hand rule
# 2. z axis should point to the origin
# 3. the angle between y axis of chessboard and z axis of LiDAR point cloud less than 90 deg
####################################################
trans_mat = pca.components_
# switch x and y axis
trans_mat[[0, 1]] = trans_mat[[1, 0]]
# cal z axis to obey the right hands
trans_mat[2] = np.cross(trans_mat[0], trans_mat[1])
# to make angle between y axis of chessboard and z axis of LiDAR point cloud less than 90 deg
sign2 = np.sign(np.dot(trans_mat[1], np.array([0, 0, 1])))
# print "sign2", sign2
# we only need the property that Y-axis to be transformed, but x-axis must be transformed together to keep right-hand property
trans_mat[[0, 1]] = sign2 * trans_mat[[0, 1]]
# to make the norm vector point to the side where the origin exists
# the angle between z axis and the vector from one point on the board to the origin should be less than 90 deg
sign = np.sign(np.dot(trans_mat[2], 0 - pc.mean(axis=0).T))
# print "sign", sign
# need Z-axis to be transformed, we transform X-axis along with it just to keep previous property
trans_mat[[0, 2]] = sign * trans_mat[[0, 2]]
transfered_pc = np.dot(pc, trans_mat.T)
# print pca.components_
# print "x,y,cross", np.cross(pca.components_[1], pca.components_[2])
return trans_mat, transfered_pc
def generate_chessboard_corner():
# 生成角点
xx, yy = np.meshgrid(np.arange(1, H + 1) * GRID_SIZE, np.arange(1, W + 1) * GRID_SIZE)
xx, yy = xx.reshape(-1), yy.reshape(-1)
corner = np.column_stack((xx, yy, np.zeros_like(yy)))
# 生成索引 cv2中棋盘格是左下角为起始,按照高度方向递增
corner_order = (yy / GRID_SIZE - 1) + W * (xx / GRID_SIZE - 1)
corner = np.column_stack([corner, corner_order])
# 按照棋盘格特定模式对corner进行排序 左下角是起点,按照y轴(棋盘格长边)递增
corner = corner[np.argsort(corner_order), :]
# 偏移到以棋盘中点为原点
corner[:, :2] -= np.array([(H + 1) / 2, (W + 1) / 2]) * GRID_SIZE
# 返回结果
return corner
def fast_polygon_test(pc, bound):
"""
test whether point in polygon(corners is bound)
Notice: because the the border of ideal chessboard that we aim to solve is just parallel to x and y axis,
the polygon test can be simplified extremely
:param pc:
:param bound:
:return:
"""
not_in_polygon = (pc[:, 0] < min(bound[:, 0])) | (pc[:, 0] > max(bound[:, 0])) \
| (pc[:, 1] < min(bound[:, 1])) | (pc[:, 1] > max(bound[:, 1]))
return not_in_polygon
def matching_loss(theta_t, pointcloud, intensity_pivot, x_res, y_res, grid_len):
"""
solving the relative position between real chessboard point cloud and ideal chessboard model
:param theta_t: the parameter to optimize
:param pointcloud:
:param intensity_pivot:
:param x_res:
:param y_res:
:param grid_len:
:return:
"""
# 这里要使用新的array,否则引用pointcloud会在每次优化的过程中都改变pointcloud的值
trans_pointcloud = np.dot(transforms3d.axangles.axangle2mat([0, 0, 1], theta_t[0]),
(pointcloud[:, :3] + np.array([[theta_t[1], theta_t[2], 0]])).T).T
next_pc = np.column_stack([trans_pointcloud, pointcloud[:, 3]])
bound = np.array([[0, 0], [0, y_res], [x_res, y_res], [x_res, 0]]) * \
grid_len - np.array([x_res, y_res]) * grid_len / 2
x_grid_arr = (np.array(range(0, x_res + 1)) - float(x_res) / 2) * grid_len
y_grid_arr = (np.array(range(0, y_res + 1)) - float(y_res) / 2) * grid_len
tic = time.time()
# The vectorized implementation of polygon test and cost calculation, which may not be intuitive to understand
# for intuitive understanding, you may read the naive implementation
# which grid each point lies in, according to its position
point_grid = np.int_((next_pc[:, :2] + [x_res * grid_len / 2, y_res * grid_len / 2]) / grid_len)
# the ground-truth color that each point supposed to be, according to its grid on the chessboard
supposed_colors = np.int_((point_grid[:, 0] % 2) != (point_grid[:, 1] % 2))
# the actual color of each point
actual_colors = (np.sign(next_pc[:, 3] - intensity_pivot) + 1) / 2
# compare supposed color and actual colors
logits_color_unequal = (actual_colors != supposed_colors)
# res_color_unequal = np.abs(supposed_colors - actual_colors)
# whether points are in the chessboard square
logits_not_in_bound = fast_polygon_test(next_pc, bound)
# decide which point to apply cost
# two condition should be punished:
# 1. point is not in chessboard box
# 2. the point color doesn't match
apply_cost_mask = np.int_(np.bitwise_or(logits_color_unequal, logits_not_in_bound))
# apply_cost_mask = np.int_(logits_not_in_bound)
# the cost are calculated by the distance between each point and its nearest grid
points_grid_min_dist_x = np.min(np.abs(
np.tile(next_pc[:, 0], (len(x_grid_arr), 1), ).T - x_grid_arr
), axis=1)
points_grid_min_dist_y = np.min(np.abs(
np.tile(next_pc[:, 1], (len(y_grid_arr), 1), ).T - y_grid_arr
), axis=1)
cost_vec = points_grid_min_dist_x + points_grid_min_dist_y
# calc the accumulated cost for each point that satisfies punish condition
cost = np.sum(cost_vec * apply_cost_mask)
# cost = np.sum(cost_vec * apply_cost_mask * res_color_unequal)
toc = time.time()
return cost
def label_image_marker_interactive_gui(input_img):
img = np.copy(input_img)
render_img = cv2.resize(img, (RENDER_IMG_WIDTH, int(img.shape[0] / img.shape[1] * RENDER_IMG_WIDTH)))
labeler_img = utils.BoxLabeler('image', render_img)
# 执行渲染
while True:
labeler_img.render()
# 退出
if cv2.waitKey(1) == 13:
cv2.destroyAllWindows()
break
# 获取渲染图像中BB对应的真实坐标
if labeler_img.BB is None:
return img, None
bb = np.int_(np.array(labeler_img.BB) / RENDER_IMG_WIDTH * img.shape[1])
# 将不包含棋盘的图像部分屏蔽
X_MAX = int(max(bb[[0, 2]]))
X_MIN = int(min(bb[[0, 2]]))
Y_MAX = int(max(bb[[1, 3]]))
Y_MIN = int(min(bb[[1, 3]]))
# cv2.imshow('', img)
# cv2.waitKey(0)
return X_MIN, X_MAX, Y_MIN, Y_MAX
def convert_BB_2d3d(BB_bird):
# 还原到world坐标系
BB_bird = BB_bird / VIRTUAL_CAM_INTRINSIC
BB_bird[[0, 2]] += BOUND[2] # 鸟瞰图宽度方向,对应点云y轴
BB_bird[[1, 3]] += BOUND[0] # 鸟瞰图高度方向,对应点云x轴
# 3D Bounding Box
X_MIN = min(BB_bird[[1, 3]])
X_MAX = max(BB_bird[[1, 3]])
Y_MIN = min(BB_bird[[0, 2]])
Y_MAX = max(BB_bird[[0, 2]])
return X_MIN, X_MAX, Y_MIN, Y_MAX
def label_pointcloud_marker_interactive_gui(input_pc):
pc = np.copy(input_pc)
# 限制范围
pc = pc[np.where(
(BOUND[0] < pc[:, 0]) & (pc[:, 0] < BOUND[1]) &
(BOUND[2] < pc[:, 1]) & (pc[:, 1] < BOUND[3]) &
(BOUND[4] < pc[:, 2]) & (pc[:, 2] < BOUND[5])
)]
# bird view
img_size_bird = (int((BOUND[1] - BOUND[0]) * VIRTUAL_CAM_INTRINSIC),
int((BOUND[3] - BOUND[2]) * VIRTUAL_CAM_INTRINSIC)) # height, width
img_bird = np.zeros(img_size_bird + (3,), dtype=np.uint8)
# 投影
bird_x = np.int_((pc[:, 1] - BOUND[2]) * VIRTUAL_CAM_INTRINSIC)
bird_y = np.int_((pc[:, 0] - BOUND[0]) * VIRTUAL_CAM_INTRINSIC)
img_bird[bird_y, bird_x, 2] = pc[:, 2] * VIRTUAL_CAM_INTRINSIC
img_bird[bird_y, bird_x, 1] = pc[:, 3] * 10
# 交互绘图
labeler_bird = utils.BoxLabeler('bird-view', img_bird)
# 执行渲染
while True:
labeler_bird.render()
# 退出
if cv2.waitKey(1) == 13:
# 保证获取了所有标定
if labeler_bird.BB is None:
print('鸟瞰图未标定!!!', file=sys.stderr)
continue
cv2.destroyAllWindows()
break
if labeler_bird.BB is None:
raise Exception('必须在鸟瞰图上将标定板的位置框选出来!!!')
# 获取bounding box
BB_bird = np.array(labeler_bird.BB)
print('BB_bird', BB_bird)
# get labeled ROI
X_MIN, X_MAX, Y_MIN, Y_MAX = convert_BB_2d3d(BB_bird)
# use scene max and min height, as the top and bottom of the pillar
Z_MIN, Z_MAX = BOUND[-2:]
return X_MIN, X_MAX, Y_MIN, Y_MAX, Z_MIN, Z_MAX
def crop_ROI_img(img, ROI):
if ROI is None:
return img
X_MIN, X_MAX, Y_MIN, Y_MAX = ROI
img[:, :X_MIN] = img[:, X_MAX:] = 128
img[:Y_MIN, :] = img[Y_MAX:, :] = 128
return img
def locate_chessboard(input):
# limit
pc = input[np.where(
(BOUND[0] < input[:, 0]) & (input[:, 0] < BOUND[1]) &
(BOUND[2] < input[:, 1]) & (input[:, 1] < BOUND[3]) &
(BOUND[4] < input[:, 2]) & (input[:, 2] < BOUND[5])
)]
pc = utils.voxelize(pc, voxel_size=configs['calibration']['RG_VOXEL'])
# region growing segmentation
segmentation = segmentation_ext.region_growing_kernel(
pc,
configs['calibration']['RG_GROUND_REMOVAL'],
configs['calibration']['RG_NUM_NEIGHBOR'],
configs['calibration']['RG_MIN_REGION_SIZE'],
configs['calibration']['RG_MAX_REGION_SIZE'],
configs['calibration']['RG_SMOOTH_TH'],
configs['calibration']['RG_CURV_TH']
)
segmentation = segmentation[np.where(segmentation[:, 4] > -1)]
if DEBUG > 1:
seg_vis = np.copy(segmentation)
seg_vis[:, 3] = seg_vis[:, 4] + 10
utils.visualize(seg_vis, show=True)
# find in segs that bset fits the chessboard
std_diag = LA.norm([(W + 1) * GRID_SIZE, (H + 1) * GRID_SIZE], ord=2)
seg_costs = []
for label_id in range(int(segmentation[:, 4].max() + 1)):
seg = segmentation[np.where(segmentation[:, 4] == label_id)]
# if len(seg) > 1500:
# continue
# remove components that are too big
diag = LA.norm(np.max(seg[:, :3], axis=0) - np.min(seg[:, :3], axis=0), ord=2)
if diag > std_diag * 2:
continue
# transfer to XOY plane
rot1_3d, transed_pcd = transfer_by_pca(seg[:, :3])
trans_3d = transed_pcd.mean(axis=0)
seg[:, :3] = transed_pcd - trans_3d
fixed_intensity_pivot = 50
# 优化实际点云和chessboard之间的变换参数
rst = minimize(matching_loss, x0=np.zeros(3), args=(seg, fixed_intensity_pivot, H + 1, W + 1, GRID_SIZE,),
method='L-BFGS-B', tol=1e-10, options={"maxiter": 10000000})
seg_costs.append([label_id, rst.fun / len(seg) * 1000])
if DEBUG > 4:
print(rst.fun / len(seg) * 1000)
utils.visualize(seg, show=True, mode='cube')
if len(seg_costs) == 0:
return 0, 0, 0, 0, 0, 0
# find the one with minimal cost
seg_costs = np.array(seg_costs)
label_id = seg_costs[np.argmin(seg_costs[:, 1]), 0]
segmentation = segmentation[np.where(segmentation[:, 4] == label_id)]
print('\nLocalization done. min cost={}'.format(seg_costs[:, 1].min()))
X_MAX, Y_MAX, Z_MAX = np.max(segmentation[:, :3], axis=0) + 0.03
X_MIN, Y_MIN, Z_MIN = np.min(segmentation[:, :3], axis=0) - 0.03
return X_MIN, X_MAX, Y_MIN, Y_MAX, Z_MIN, Z_MAX
def height_segmentation(pc):
if len(pc) == 0:
return pc
# x-y var along Z-axis
height_hist, edge, _ = stats.binned_statistic(pc[:, 2], LA.norm(pc[:, :2] - np.mean(pc[:, :2], axis=0), axis=1, ord=1), statistic='std', bins=HEIGHT_SEGMENTATION_BINS)
# height_hist, edge = np.histogram(pc[:, 2], bins=40)
height_hist_diff = height_hist[1:] - height_hist[: -1]
if DEBUG > 2:
plt.bar(edge[1:], height_hist)
plt.show()
plt.plot(height_hist_diff)
plt.show()
# find segmentation pivot
# !!! suppose there is no roof top
# !! suppose the top border of chess board is the upest points of the pillar
# sort height hist diff
sorted_diff_indices = np.argsort(-height_hist_diff)
# find top-k possible segmentation pivox
K = 5
possible_pivots = edge[sorted_diff_indices + 1][:K]
# if we choose a pivot, calc the estimated chessboard diag length
chessboard_top = pc[:, 2].max()
estimated_chessboard_height = chessboard_top - possible_pivots
gt_chessboard_height = (W + 1) * GRID_SIZE
# how much the possible pivots are close to real calibration board
# the height-close and var-diff score are fused with a exponentiation weight
height_close_factor = 1 - np.abs(estimated_chessboard_height - gt_chessboard_height) / gt_chessboard_height
pivot_scores = (height_close_factor ** 3) * (height_hist_diff[sorted_diff_indices][:K] ** 1)
# find a pivox that maximize the combined score
pivot = np.argmax(pivot_scores)
Z_MIN = possible_pivots[pivot] - HEIGHT_SEGMENTATION_MARGIN
# crop Z-axis ROI based on segmentation
pc = pc[np.where((pc[:, 2] > Z_MIN))]
return pc
def crop_ROI_pc(pc, ROI):
X_MIN, X_MAX, Y_MIN, Y_MAX, Z_MIN, Z_MAX = ROI
# 裁剪ROI
pc = pc[np.where(
(pc[:, 0] > X_MIN) & (pc[:, 0] < X_MAX)
& (pc[:, 1] > Y_MIN) & (pc[:, 1] < Y_MAX)
& (pc[:, 2] > Z_MIN) & (pc[:, 2] < Z_MAX)
)]
# segment chessboard according to z-axis density
pc = height_segmentation(pc)
if DEBUG > 3:
if len(pc) < 100:
return pc
utils.visualize(pc, mode='cube', show=True)
return pc
def ray_projection(pc, A, B, C, D):
# 使用lidar的射线模型将点投影到标定板平面上
x0, y0, z0 = pc[:, 0], pc[:, 1], pc[:, 2]
# 直线方程就是X=x0t,Y=y0t,Z=z0t,其中x0y0z0就是实际点坐标,因为是过原点的射线
line_func = lambda t: (x0 * t, y0 * t, z0 * t)
# 直线和平面交点
t = -D / (A * x0 + B * y0 + C * z0)
x, y, z = line_func(t)
# 获取坐标
pc[:, :3] = np.column_stack([x, y, z])
return pc
def ransac_segment(pc):
cloud = pcl.PointCloud_PointXYZI()
cloud.from_array(pc.astype(np.float32))
seg = cloud.make_segmenter_normals(ksearch=50)
seg.set_optimize_coefficients(True)
seg.set_model_type(pcl.SACMODEL_NORMAL_PLANE)
seg.set_method_type(pcl.SAC_RANSAC)
seg.set_distance_threshold(0.04)
seg.set_normal_distance_weight(0.001)
seg.set_max_iterations(100)
return seg.segment()
def fit_chessboard_plane(pc):
thresh_list = [0.1, 0.02]
for iter_time, thresh in enumerate(thresh_list):
# fit plane
indices, coefficients = ransac_segment(pc)
# calc point-to-plane distance
A, B, C, D = coefficients
x, y, z = pc[:, 0], pc[:, 1], pc[:, 2]
dist = np.abs(A * x + B * y + C * z + D) / LA.norm([A, B, C], ord=2)
pc = pc[np.where(dist < thresh)]
# if DEBUG > 2:
# pc = pc[indices, :]
# utils.visualize(pc, show=True)
# # plt.hist(dist, bins=20)
# # plt.show()
return indices, coefficients
def resample(pc):
"""
re-sample pc, to ease the un-uniform distribution of points on chessboard
:param pc:
:return:
"""
tic = time.time()
x_max, y_max = np.max(pc[:, :2], axis=0)
x_min, y_min = np.min(pc[:, :2], axis=0)
density_list = []
indices = []
for x_bound in np.arange(x_min, x_max, RESAMPLE_PATCH_SIZE):
for y_bound in np.arange(y_min, y_max, RESAMPLE_PATCH_SIZE):
# search every patch
patch_indices = np.where(
(pc[:, 0] > x_bound) &
(pc[:, 0] < x_bound + RESAMPLE_PATCH_SIZE) &
(pc[:, 1] > y_bound) &
(pc[:, 1] < y_bound + RESAMPLE_PATCH_SIZE)
)
# resample those patch that have two many points
max_sample_points = int(RESAMPLE_DENSITY * (RESAMPLE_PATCH_SIZE * 100) ** 2)
if len(patch_indices[0]) > max_sample_points:
indices.append(
np.random.choice(patch_indices[0], max_sample_points, replace=False)
)
else:
indices.append(patch_indices[0])
density_list.append(len(pc[patch_indices]))
indices = np.hstack(indices)
pc = pc[indices, :]
toc = time.time()
print('Re-sample time: {}s'.format(toc - tic))
if DEBUG > 2:
plt.hist(density_list, bins=20)
plt.show()
return pc
def feature_refinement(pc):
"""
chessboard pointcloud refinement
:param pc:
:return:
"""
# 拟合标定板平面
indices, coefficients = fit_chessboard_plane(pc)
pc = pc[indices, :]
# 拟合intensity分布的gap,后续以此为pivot将点云二值化
intensity_pivot = utils.fit_intensity_pivot(pc, DEBUG)
# 平面参数归一化
coefficients = np.array(coefficients) / -coefficients[-1]
A, B, C, D = coefficients
# # 沿x轴方向把有噪声的点投影到平面上
# pc[:, 0] = (1 - B * pc[:, 1] - C * pc[:, 2]) / A
# 按照射线模型将点投影到平面上
pc = ray_projection(pc, A, B, C, D)
if DEBUG > 2:
utils.visualize(pc, mode='cube', show=True)
# 将标定板转换到xoy平面上,方便将它和chessboard model进行配准
# 都在xoy平面上,只需要2d的xy偏移和旋转角就可以配准了
rot_3d, transed_pcd = transfer_by_pca(pc[:, :3])
# rot1_3d, transed_pcd = transfer_by_normal_vector(pc[:, :3], norm=np.array([A, B, C]))
trans_3d = transed_pcd.mean(axis=0)
pc[:, :3] = transed_pcd - trans_3d
# uniformally re-sample pointcloud
pc = resample(pc)
if DEBUG > 2:
utils.visualize(pc, mode='cube', show=True)
# voxelize 减小计算量
pc = utils.voxelize(pc, voxel_size=0.002)
print('Points after voxelize: {}'.format(len(pc)))
return pc, trans_3d, rot_3d, intensity_pivot
def world_corner_post_process(corners, rot_2d, trans_2d, rot_3d, trans_3d):
# 将corner与原始点云平面对齐
corners[:, :3] = np.dot(corners[:, :3], LA.inv(rot_2d.T)) - trans_2d
# 将corner还原到原始点云对应的3D空间
corners[:, :3] = np.dot(corners[:, :3] + trans_3d, LA.inv(rot_3d.T))
# 确保索引是从左下方的角点开始的 保证corners的顺序和图像中一致
if corners[0, 2] > corners[-1, 2]: # 比较z轴
# 保证首点在末点下方
corners = corners[::-1, :]
elif corners[0, 2] == corners[-1, 2]:
# 保证首点在末点左侧
if corners[0, 1] < corners[-1, 1]: # 比较y轴
corners = corners[::-1, :]
return corners
def pointcloud_chessboard_corner_detection(input_pc):
pc = np.copy(input_pc)
# refine measurement
pc, trans_3d, rot_3d, intensity_pivot = feature_refinement(pc)
# 优化实际点云和chessboard之间的变换参数
rst = minimize(matching_loss, x0=np.zeros(3), args=(pc, intensity_pivot, H + 1, W + 1, GRID_SIZE,),
# method='Powell', tol=1e-10, options={"maxiter": 10000000})
method='L-BFGS-B', tol=1e-10, options={"maxiter": 10000000})
theta, offset_x, offset_y = rst.x
# theta, offset_x, offset_y = [-0.09495837, -0.00408983, 0.02385411]
# theta, offset_x, offset_y = [-6.76778002e-03, -5.91509102e-05, 5.63815809e-03]
rot_2d = transforms3d.axangles.axangle2mat([0, 0, 1], theta)
trans_2d = np.array([offset_x, offset_y, 0])
# 生成平面内的规则角点
corners = generate_chessboard_corner()
if DEBUG > 0:
# 可视化平面内的对准结果
pc[:, :3] = np.dot(
rot_2d,
(pc[:, :3] + trans_2d).T
).T
# 反射率二值化
intensity = np.copy(pc[:, 3])
intensity[np.where(intensity < intensity_pivot)] = 0
intensity[np.where(intensity > intensity_pivot)] = 255
utils.visualize(input_pc, show=False)
utils.visualize(np.column_stack([pc[:, :3], intensity.reshape(-1, 1)]), show=False)
utils.visualize(corners, color=(1, 0, 0), show=False)
# post process corners
corners = world_corner_post_process(corners, rot_2d, trans_2d, rot_3d, trans_3d)
# 如果归一化匹配loss过高 舍弃结果
final_cost = rst.fun / len(pc) * 1e4
print('\n\nOptimized loss: {}'.format(final_cost))
if DEBUG > 0:
for point in corners:
utils.visualize_text(point, '{}'.format(int(point[3])))
utils.visualize(corners, color=(1, 1, 1), show=True)
return corners, final_cost
def camera_chessboard_corner_detection(img):
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 找到棋盘格角点
ret, corners = cv2.findChessboardCornersSB(gray, (W, H), None)
# ret, corners = cv2.findChessboardCorners(gray, (W, H), None)
# 如果找到足够点对,将其存储起来
if ret:
# 消除多余的dimension
corners = np.squeeze(corners)
# 确保索引是从左下方的角点开始的
if corners[0, 1] < corners[-1, 1]:
# 保证首点在末点下方
corners = corners[::-1, :]
elif corners[0, 1] == corners[-1, 1]:
# 保证首点在末点左侧
if corners[0, 0] > corners[-1, 0]:
corners = corners[::-1, :]
if DEBUG > 1:
vis = np.copy(img)
# 将角点在图像上显示
vis = cv2.drawChessboardCorners(vis, (W, H), corners, ret)
for corner_id in range(len(corners)):
cv2.circle(vis, tuple(corners[corner_id]), 5, (0, 0, 255), 10)
cv2.putText(vis, '{}'.format(corner_id), tuple(corners[corner_id] + 3),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 1)
cv2.imshow('findCorners', vis)
cv2.waitKey(0)
return corners
else:
print('ERROR: Corners not found!!!', file=sys.stderr)
return None
def solve_extrinsic_matrix(corners_world, corners_image, intrinsic_matrix, distortion):
assert len(corners_world) == len(corners_image)
# 外参标定
ret, rvec, tvec, inliers = cv2.solvePnPRansac(
corners_world, corners_image, intrinsic_matrix, distortion)
# 罗德里格斯变换, 将旋转角转换为旋转矩阵
rotation_m, _ = cv2.Rodrigues(rvec)
# 拼接最终的外参
extrinsic_matrix = np.hstack([rotation_m, tvec])
extrinsic_matrix = np.vstack([extrinsic_matrix, [0, 0, 0, 1]])
return extrinsic_matrix, rvec, tvec
def corner_detection_task(pc, img):
# chessboard localization
if AUTOMATIC_CHESSBOARD_LOCALIZATION:
ROI_pc = locate_chessboard(pc)
ROI_pc, ROI_img = np.array(ROI_pc), None
pc = crop_ROI_pc(pc, ROI_pc)
if len(pc) < 100:
print('WARNING: Points Not Enough !!!', file=sys.stderr)
return None, 1e10, None
# 获取3D点云中的棋盘格角点
corners_world, final_cost = pointcloud_chessboard_corner_detection(pc)
# 获取2D图像中的棋盘格角点
corners_image = camera_chessboard_corner_detection(img) if img is not None else None
return corners_world, final_cost, corners_image
def calibration(keep_list=None, preprocess_hook=None):
# load intrinsic parameters
intrinsic_matrix = np.loadtxt(os.path.join(root, 'intrinsic'))
distortion = np.loadtxt(os.path.join(root, 'distortion'))
# path to store intermediate results
PARAMETER_PATH = os.path.join(root, 'parameter')
if not os.path.exists(PARAMETER_PATH):
os.mkdir(PARAMETER_PATH)
if RELABEL:
ROI_list = {}
# 读取数据并获取所有点云的bounding box
pointcloud_image_pair_list = utils.load_data_pair(root, load_rois=not AUTOMATIC_CHESSBOARD_LOCALIZATION)
# pointcloud_image_pair_list = [pointcloud_image_pair_list[8]]
pc_list = []
img_list = []
for idx, (pc_file, img_file, ROI_file) in pointcloud_image_pair_list:
# label ROI
full_pc = np.load(pc_file)
full_img = cv2.imread(img_file)
# used only x, y, z, intensity
full_pc = full_pc[:, :4]
# preprocess data
if preprocess_hook is not None:
full_pc = preprocess_hook(full_pc)
if not AUTOMATIC_CHESSBOARD_LOCALIZATION:
if RELABEL:
# 如果没有标注 则手工标注大概位置
ROI_pc = label_pointcloud_marker_interactive_gui(full_pc)
# crop ROI that may contains chessboard,
# only for large image that opencv detects chessboard slowly
# ROI_img = label_image_marker_interactive_gui(full_img)
ROI_img = None
# ROI_list.append((list(ROI_pc), list(ROI_img))) # save ROI
ROI_list[str(idx)] = (list(ROI_pc), list(ROI_img) if ROI_img else None) # save ROI
open(os.path.join(PARAMETER_PATH, 'ROI.json'), 'w').write(json.dumps(ROI_list))
else:
ROI_pc, ROI_img = np.loadtxt(ROI_file), None
print('ROI Loaded', ROI_pc, ROI_img)
# crop out ROIs of pc and img
pc = crop_ROI_pc(full_pc, ROI_pc)
img = crop_ROI_img(full_img, ROI_img)
else:
pc, img = full_pc, full_img
pc_list.append(pc)
img_list.append(img)
# TODO when us opencv imshow gui, the multi processing doesn't work, should fix this
# process corner detection with multi tasks
if NUM_WORKERS > 0:
detection_result = []
pool = multiprocessing.Pool(NUM_WORKERS)
for idx, (pc, img) in enumerate(zip(pc_list, img_list)):
# detect 3D and 2D corners
detection_result.append(
pool.apply_async(corner_detection_task, args=(pc, img))
)
pool.close()
pool.join()
# 遍历点云-图像对 获取3D和2D角点
corners_world_list, corners_image_list = [], []
available_list = []
for idx, (pc, img) in enumerate(zip(pc_list, img_list)):
print('\n\nCalculating frame: {} / {}'.format(idx, len(pc_list)))
# get detection results
if NUM_WORKERS > 0:
corners_world, final_cost, corners_image = detection_result[idx].get()
else:
corners_world, final_cost, corners_image = corner_detection_task(pc, img)
# 保存列表
corners_world_list.append(corners_world)
corners_image_list.append(corners_image)
if final_cost > OPTIMIZE_TH:
print('Missing 3D corners, skip this pair', file=sys.stderr)
continue
if corners_image is None:
print('Missing 2D corners, skip this pair', file=sys.stderr)
continue
# keep available data index
available_list.append(idx)
# save world corners and image corners, for calculating reprojection errors later
pickle.dump((corners_world_list, corners_image_list), open(os.path.join(PARAMETER_PATH, 'corners.pkl'), 'wb'))
# keep
if keep_list is not None:
available_list = list(set(available_list).intersection(set(keep_list)))
print(len(available_list), len(corners_world_list), len(corners_image_list))
# concat all points
corners_world_list = [corners_world_list[idx] for idx in available_list]
corners_image_list = [corners_image_list[idx] for idx in available_list]
# train_list = range(len(corners_world_list))
# corners_world_list = [corners_world_list[idx] for idx in train_list]
# corners_image_list = [corners_image_list[idx] for idx in train_list]
corners_world_list = np.row_stack(corners_world_list)
corners_image_list = np.row_stack(corners_image_list)
# 求解相机外参
extrinsic_matrix, rvec, tvec = solve_extrinsic_matrix(
corners_world_list[:, :3],
corners_image_list,
intrinsic_matrix,
distortion
)
# the L2 norm of extrinsic matrix should be small
if LA.norm(extrinsic_matrix) > 1e3:
raise Exception('There are outliers in the points, '
'check if there is two frames where chessboards are on the same position')
# 保存外参
np.savetxt(os.path.join(PARAMETER_PATH, 'extrinsic'), extrinsic_matrix)
print('EXT:', extrinsic_matrix)
print('EXT_NORM:', LA.norm(extrinsic_matrix))
print('DIST:', distortion)
print('INTRINSIC:', intrinsic_matrix)
print('=' * 40)
print('\n\nExtrinsic parameter saved to {}\n'.format(os.path.join(PARAMETER_PATH, 'extrinsic')))
print('Done.')
print('=' * 40)
print('\n\n')
# calc re-projection error
err = utils.calc_reprojection_error(root, extrinsic_matrix, intrinsic_matrix, distortion)
return err
if __name__ == '__main__':
calibration(keep_list=None)