forked from ryanpeach/openscan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geometry.hpp
180 lines (159 loc) · 5.98 KB
/
geometry.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
* geometry.hpp
*
* @date Oct 31, 2015
* @author Ryan Peach
* @version v0.1
*/
#ifndef GEOMETRY
#define GEOMETRY
#include "opencv2/imgproc/imgproc.hpp"
#include "support.hpp"
#define PI 3.14159265
/**
* Returns the distance between point a and b.
* @param Point a, b.
* @return The distance between a and b in eclidean space.
* @complexity O(1)
* @tested works
*/
double dist(Point a, Point b);
/**
* Returns the unit angle of Point a using origin as the center.
* @param Point origin, a.
* @return The unit angle in degrees of origin<a using origin as the center.
* @complexity O(1)
* @tested untested
*/
double angle(Point origin, Point a);
/**
* Returns the angle of line c2-origin-c3.
* @param Point origin, c2, c3.
* @return The angle by line-angle-line of line c2-origin-c3 in degrees.
* @complexity O(1)
* @tested works
*/
double angle(Point origin, Point c2, Point c3);
/*
* Finds if any of the three points can form the given angle.
* @param Any three points.
* @return the existing contour with the angle in the middle
* @return empty contour if none exists
* @complexity WARNING: O(1), O(N^3)
*/
cnt anyAng(Point a, Point b, Point c, double v, double angTol);
/**
* Returns the angles line-angle-line between all neighboring triplets in poly.
* @param cnt poly: Any contour.
* @return Returns vector of the same length as cnt in the same order where out[n] = angle(poly[n],poly[n-1],poly[n+1])
* @complexity O(?)
* @tested works
*/
vector<double> angles(cnt poly);
/**
* Returns a vector of distances between each pair in the polygon.
* @param cnt poly: Any contour.
* @return Returns vector of the same length as cnt in the same order where out[n] = dist(poly[n],poly[n+1])
* @complexity O(?)
* @tested works
*/
vector<double> dists(cnt poly);
/**
* Returns the center of a contour, or of a bunch of contours, or of a bunch of points.
* @param A cnt, vector of cnt's, vector of Fp's, or a Cnts object.
* @return The mean of all points contained in the param returned as a Point.
* @complexity O(?)
* @tested works
*/
Point centroid(vector<Point> c);
Point centroid(vector<cnt> vec);
Point centroid(Cnts c);
/**
* Test that all Points inside poly are the same distance from their neighbors as all others.
* @param cnt poly: Any cnt you wish to test.
* @param double distRatio: The distance tolerance for calculation of equality.
* @return True / False
* @complexity O(?)
* @tested works
*/
bool allSameLength(cnt poly, double distRatio);
/**
* Test that all Points inside poly have the same angle to their neighbors as all others.
* @param cnt poly: Any cnt you wish to test.
* @param double angleTol: The distance tolerance for calculation of equality.
* @return True / False
* @complexity O(?)
* @tested untested
*/
bool regularAngles(cnt poly, double angleTol);
/**
* Test that border is the given aspect ratio. Assumes input is rectangular.
* @param cnt border: Any rectangular cnt you wish to test.
* @param double ratioTol: The ratio tolerance for calculation of equality.
* @return True / False
* @complexity O(?)
* @tested untested
*/
bool isAspectRatio(cnt border, double aspectRatio, double ratioTol);
/**
* Tests whether or not a contour fits certain definitions of "polygon," "rectangle," or "square."
* @param cnt poly, the size of the poly (4 if rect or square)
* @param bool regular: whether or not all sides are the same length.
* @param double angleTol: the angle tolerance of the angle equality.
* @param double distRatio: the distance tolerance of the length equality.
* @return The angle by line-angle-line of line c2-origin-c3 in degrees.
* @issues isPoly should have consistent angle-testing if regular among all sizes of polys.
* @complexity O(?)
* @tested works
*/
bool isPoly(cnt poly, int size, bool regularA, bool regularL, double angleTol, double distRatio);
bool isRectangle(cnt poly, bool square, double angleTol, double distRatio);
bool isSquare(cnt poly, double angleTol, double distRatio);
/**
* Iterates through all points given to see if some set of 4 points
* can be ordered together to create a rectangular polygon.
* @param cnt poly: A list of unordered, potentially connected points which
* might contain a rectangle.
* @param double angleTol: the angle tolerance of the angle equality.
* @param double distRatio: the distance tolerance of the length equality.
* @param int n: the max number of desired returns.
* @return Returns a found rectangle as a cnt.
* @return Returns an empty contour if none was found or if n < 1.
* @tested untested
* @complexity O(n*len(poly)), O(n*len(poly)^4)
*/
vector<cnt> hasRectangles(cnt poly, double angleTol, double distRatio, int n = 1);
vector<cnt> hasRectangles(vector<cnt> poly, double angleTol, double distRatio);
cnt hasRectangle(cnt poly, double angleTol, double distRatio);
/**
* Returns all angles between x and each Point in "fours."
* @param Point x: Any point you wish to use as an origin for angle calc
* @param cnt poly: Any vector of points you wish to test.
* Does not need to be ordered or assumed connected.
* @return True / False
* @complexity O(?)
* @tested untested
*/
vector<double> angs(Point x, cnt fours);
/**
* Returns the largest contour in a vector.
* @param vector<cnt>: Any vector of cnt's.
* @param min: allows you to set a minimum size.
* @return cnt: largest contour
* @complexity O(?)
* @tested untested
*/
cnt largest(vector<cnt> v, double min = -1);
/**
* Returns contours which are very similar, like the double edges of a line.
* @param ref: the cnt to compare to.
* @param check: Any vector of cnt's to check.
* @param r1: Only used by findSimilar, the starting index for the loop
* @return distRatio: the distance between corners to qualify as "equal".
* @complexity O(N)
* @complexity O(N^2)
* @tested untested
*/
cnt findSimilar(cnt ref, vector<cnt> check, double distRatio, int r1 = 0);
vector<vector<cnt>> findSimilar(vector<cnt> check, double distRatio);
#endif