forked from chaitjo/lstm-context-embeddings
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
140 lines (112 loc) · 5.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import array_ops
class Model(object):
def __init__(
self,
sequence_length,
num_classes,
vocab_size,
embedding_size,
hidden_size,
filter_sizes,
num_filters,
l2_reg_lambda=0.0):
# Placeholders for input, sequence length, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.seqlen = tf.placeholder(tf.int64, [None], name="seqlen")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
trainable=True,
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
#TODO: Embeddings process ignores commas etc. so seqlens might not be accurate for sentences with commas...
# Bidirectional LSTM layer
with tf.name_scope("bidirectional-lstm"):
lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size, forget_bias=1.0)
lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size, forget_bias=1.0)
# self.lstm_outputs, _, _ = tf.nn.bidirectional_dynamic_rnn(
# lstm_fw_cell,
# lstm_bw_cell,
# self.embedded_chars,
# sequence_length=self.seqlen,
# dtype=tf.float32)
# lstm_outputs_fw, lstm_outputs_bw = tf.split(value=self.lstm_outputs, split_dim=2, num_split=2)
# self.lstm_outputs = tf.add(lstm_outputs_fw, lstm_outputs_bw, name="lstm_outputs")
with tf.variable_scope("lstm-output-fw"):
self.lstm_outputs_fw, _ = tf.nn.dynamic_rnn(
lstm_fw_cell,
self.embedded_chars,
sequence_length=self.seqlen,
dtype=tf.float32)
with tf.variable_scope("lstm-output-bw"):
self.embedded_chars_rev = array_ops.reverse_sequence(self.embedded_chars, seq_lengths=self.seqlen, seq_dim=1)
tmp, _ = tf.nn.dynamic_rnn(
lstm_bw_cell,
self.embedded_chars_rev,
sequence_length=self.seqlen,
dtype=tf.float32)
self.lstm_outputs_bw = array_ops.reverse_sequence(tmp, seq_lengths=self.seqlen, seq_dim=1)
# Concatenate outputs
self.lstm_outputs = tf.add(self.lstm_outputs_fw, self.lstm_outputs_bw, name="lstm_outputs")
self.lstm_outputs_expanded = tf.expand_dims(self.lstm_outputs, -1)
# Convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, hidden_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.lstm_outputs_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(3, pooled_outputs)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Dropout layer
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
# Standard output weights initialization
W = tf.get_variable(
"W",
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
# # Initialized output weights to 0.0, might improve accuracy
# W = tf.Variable(tf.constant(0.0, shape=[num_filters_total, num_classes]), name="W")
# b = tf.Variable(tf.constant(0.0, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# Calculate mean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(self.scores, self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")