forked from chaitjo/lstm-context-embeddings
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
219 lines (183 loc) · 9.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#! /usr/bin/env python
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_helpers
from model import Model
from tensorflow.contrib import learn
# Parameters
# ==================================================
# Model Hyperparameters
tf.flags.DEFINE_string("word2vec", None, "Word2vec file with pre-trained embeddings (default: None)")
tf.flags.DEFINE_integer("embedding_dim", 300, "Dimensionality of character embedding (default: 300)")
tf.flags.DEFINE_integer("hidden_dim", 150, "Dimensionality of hidden layer in LSTM (default: 300")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 100, "Number of filters per filter size (default: 100)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.15, "L2 regularizaion lambda (default: 0.15)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 50, "Batch Size (default: 50)")
tf.flags.DEFINE_integer("num_epochs", 25, "Number of training epochs (default: 25)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
# Data Preparatopn
# ==================================================
# Load data
print("Loading data...")
x_text, y, seqlen = data_helpers.load_data_and_labels()
# Build vocabulary
max_document_length = max(seqlen)
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
x = np.array(list(vocab_processor.fit_transform(x_text)))
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
seqlen_shuffled = seqlen[shuffle_indices]
# Split train/test set
# TODO: This is very crude, should use cross-validation
x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
seqlen_train, seqlen_dev = seqlen_shuffled[:-1000], seqlen_shuffled[-1000:]
print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
# Training
# ==================================================
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
model = Model(
sequence_length=x_train.shape[1],
num_classes=2,
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
hidden_size=FLAGS.hidden_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(0.001)
grads_and_vars = optimizer.compute_gradients(model.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.merge_summary(grad_summaries)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.scalar_summary("loss", model.loss)
acc_summary = tf.scalar_summary("accuracy", model.accuracy)
# Train Summaries
train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables())
# Write vocabulary
vocab_processor.save(os.path.join(out_dir, "vocab"))
# Initialize all variables
sess.run(tf.global_variables_initializer())
if FLAGS.word2vec:
# Initialize matrix with random uniform distribution
initW = np.random.uniform(-0.25,0.25,(len(vocab_processor.vocabulary_), FLAGS.embedding_dim))
# Load any vectors from word2vec
print("Load word2vec file {}\n".format(FLAGS.word2vec))
with open(FLAGS.word2vec, "rb") as f:
header = f.readline()
vocab_size, layer1_size = map(int, header.split())
binary_len = np.dtype('float32').itemsize * layer1_size
for line in range(vocab_size):
word = []
while True:
ch = f.read(1)
if ch == ' ':
word = ''.join(word)
break
if ch != '\n':
word.append(ch)
idx = vocab_processor.vocabulary_.get(word)
if idx != 0:
initW[idx] = np.fromstring(f.read(binary_len), dtype='float32')
else:
f.read(binary_len)
sess.run(model.W.assign(initW))
def train_step(x_batch, seqlen_batch, y_batch):
"""
A single training step
"""
feed_dict = {
model.input_x: x_batch,
model.seqlen: seqlen_batch,
model.input_y: y_batch,
model.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, model.loss, model.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, seqlen_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
model.input_x: x_batch,
model.seqlen: seqlen_batch,
model.input_y: y_batch,
model.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, model.loss, model.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
if writer:
writer.add_summary(summaries, step)
# Generate batches
batches = data_helpers.batch_iter(
list(zip(x_train, y_train)), seqlen_train, FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...
for batch, seqlen_batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, seqlen_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print("\nEvaluation:")
dev_step(x_dev, seqlen_dev, y_dev, writer=dev_summary_writer)
print("")
if current_step % FLAGS.checkpoint_every == 0:
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print("Saved model checkpoint to {}\n".format(path))