-
Notifications
You must be signed in to change notification settings - Fork 9
/
extract_frame_youtube_ugc.py
69 lines (55 loc) · 2.42 KB
/
extract_frame_youtube_ugc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import cv2
import scipy.io as scio
def extract_frame(videos_dir, video_name, save_folder):
filename = os.path.join(videos_dir, video_name)
video_name_str = video_name[:-4]
video_capture = cv2.VideoCapture()
video_capture.open(filename)
cap=cv2.VideoCapture(filename)
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
video_frame_rate = int(round(cap.get(cv2.CAP_PROP_FPS)))
video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # the heigh of frames
video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # the width of frames
if video_height > video_width:
video_width_resize = 520
video_height_resize = int(video_width_resize/video_width*video_height)
else:
video_height_resize = 520
video_width_resize = int(video_height_resize/video_height*video_width)
dim = (video_width_resize, video_height_resize)
video_read_index = 0
frame_idx = 0
video_length_min = 20
for i in range(video_length):
has_frames, frame = video_capture.read()
if has_frames:
# key frame
if (video_read_index < video_length) and (frame_idx % video_frame_rate == 0):
read_frame = cv2.resize(frame, dim)
exit_folder(os.path.join(save_folder, video_name_str))
cv2.imwrite(os.path.join(save_folder, video_name_str, \
'{:03d}'.format(video_read_index) + '.png'), read_frame)
video_read_index += 1
frame_idx += 1
if video_read_index < video_length_min:
for i in range(video_read_index, video_length_min):
cv2.imwrite(os.path.join(save_folder, video_name_str, \
'{:03d}'.format(i) + '.png'), read_frame)
return
def exit_folder(folder_name):
if not os.path.exists(folder_name):
os.makedirs(folder_name)
return
videos_dir = 'youtube_ugc/h264'
filename_path = 'data/youtube_ugc_data.mat'
dataInfo = scio.loadmat(filename_path)
n_video = len(dataInfo['video_names'])
video_names = []
for i in range(n_video):
video_names.append(dataInfo['video_names'][i][0][0])
save_folder = 'youtube_ugc/youtube_ugc_image'
for i in range(n_video):
video_name = video_names[i]
print('start extract {}th video: {}'.format(i, video_name))
extract_frame(videos_dir, video_name, save_folder)