-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathextracted_SlowFast_features_VQA.py
150 lines (99 loc) · 4.9 KB
/
extracted_SlowFast_features_VQA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: utf-8 -*-
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
from data_loader import VideoDataset_NR_SlowFast_feature
from pytorchvideo.models.hub import slowfast_r50
from torchvision import transforms
def pack_pathway_output(frames, device):
"""
Prepare output as a list of tensors. Each tensor corresponding to a
unique pathway.
Args:
frames (tensor): frames of images sampled from the video. The
dimension is `channel` x `num frames` x `height` x `width`.
Returns:
frame_list (list): list of tensors with the dimension of
`channel` x `num frames` x `height` x `width`.
"""
fast_pathway = frames
# Perform temporal sampling from the fast pathway.
slow_pathway = torch.index_select(
frames,
2,
torch.linspace(
0, frames.shape[2] - 1, frames.shape[2] // 4
).long(),
)
frame_list = [slow_pathway.to(device), fast_pathway.to(device)]
return frame_list
class slowfast(torch.nn.Module):
def __init__(self):
super(slowfast, self).__init__()
slowfast_pretrained_features = nn.Sequential(*list(slowfast_r50(pretrained=True).children())[0])
self.feature_extraction = torch.nn.Sequential()
self.slow_avg_pool = torch.nn.Sequential()
self.fast_avg_pool = torch.nn.Sequential()
self.adp_avg_pool = torch.nn.Sequential()
for x in range(0,5):
self.feature_extraction.add_module(str(x), slowfast_pretrained_features[x])
self.slow_avg_pool.add_module('slow_avg_pool', slowfast_pretrained_features[5].pool[0])
self.fast_avg_pool.add_module('fast_avg_pool', slowfast_pretrained_features[5].pool[1])
self.adp_avg_pool.add_module('adp_avg_pool', slowfast_pretrained_features[6].output_pool)
def forward(self, x):
with torch.no_grad():
x = self.feature_extraction(x)
slow_feature = self.slow_avg_pool(x[0])
fast_feature = self.fast_avg_pool(x[1])
slow_feature = self.adp_avg_pool(slow_feature)
fast_feature = self.adp_avg_pool(fast_feature)
return slow_feature, fast_feature
def main(config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = slowfast()
model = model.to(device)
resize = config.resize
## training data
if config.database == 'KoNViD-1k':
videos_dir = 'konvid1k'
datainfo_test = 'data/KoNViD-1k_data.mat'
transformations_test = transforms.Compose([transforms.Resize([resize, resize]),transforms.ToTensor(),\
transforms.Normalize(mean = [0.45, 0.45, 0.45], std = [0.225, 0.225, 0.225])])
trainset = VideoDataset_NR_SlowFast_feature(videos_dir, datainfo_test, transformations_test, resize, 'KoNViD-1k')
elif config.database == 'youtube_ugc':
videos_dir = 'youtube_ugc/h264'
datainfo_test = 'data/youtube_ugc_data.mat'
transformations_test = transforms.Compose([transforms.Resize([resize, resize]),transforms.ToTensor(),\
transforms.Normalize(mean = [0.45, 0.45, 0.45], std = [0.225, 0.225, 0.225])])
trainset = VideoDataset_NR_SlowFast_feature(videos_dir, datainfo_test, transformations_test, resize, 'youtube_ugc')
## dataloader
train_loader = torch.utils.data.DataLoader(trainset, batch_size=1,
shuffle=False, num_workers=config.num_workers)
# do validation after each epoch
with torch.no_grad():
model.eval()
for i, (video, video_name) in enumerate(train_loader):
video_name = video_name[0]
print(video_name)
if not os.path.exists(config.feature_save_folder + video_name):
os.makedirs(config.feature_save_folder + video_name)
for idx, ele in enumerate(video):
# ele = ele.to(device)
ele = ele.permute(0, 2, 1, 3, 4)
inputs = pack_pathway_output(ele, device)
slow_feature, fast_feature = model(inputs)
np.save(config.feature_save_folder + video_name + '/' + 'feature_' + str(idx) + '_slow_feature', slow_feature.to('cpu').numpy())
np.save(config.feature_save_folder + video_name + '/' + 'feature_' + str(idx) + '_fast_feature', fast_feature.to('cpu').numpy())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--database', type=str)
parser.add_argument('--model_name', type=str)
parser.add_argument('--num_workers', type=int, default=6)
parser.add_argument('--resize', type=int, default=112)
parser.add_argument('--multi_gpu', type=bool, default=False)
parser.add_argument('--gpu_ids', type=list, default=None)
parser.add_argument('--feature_save_folder', type=str, default='ckpts')
config = parser.parse_args()
main(config)