-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_on_pretrained_model.py
105 lines (68 loc) · 3.38 KB
/
test_on_pretrained_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import os
import numpy as np
import torch
import torch.nn
from torchvision import transforms
from model import UGC_BVQA_model
from utils import performance_fit
from data_loader import VideoDataset_images_with_motion_features
def main(config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if config.model_name == 'UGC_BVQA_model':
print('The current model is ' + config.model_name)
model = UGC_BVQA_model.resnet50(pretrained=False)
model = torch.nn.DataParallel(model, device_ids=config.gpu_ids)
model = model.to(device)
# load the trained model
print('loading the trained model')
model.load_state_dict(torch.load(config.trained_model))
if config.database == 'LSVQ_test':
datainfo_test = 'data/LSVQ_whole_test.csv'
videos_dir = os.path.join(config.data_path, 'LSVQ_image')
feature_dir = os.path.join(config.data_path, 'LSVQ_SlowFast_feature/')
elif config.database == 'KoNViD-1k':
datainfo_test = 'data/KoNViD-1k_data.mat'
videos_dir = os.path.join(config.data_path, 'konvid1k_image')
feature_dir = os.path.join(config.data_path, 'konvid1k_SlowFast_feature/')
elif config.database == 'youtube_ugc':
datainfo_test = 'data/youtube_ugc_data.mat'
videos_dir = os.path.join(config.data_path, 'youtube_ugc/youtube_ugc_image')
feature_dir = os.path.join(config.data_path, 'outube_ugc/youtube_ugc_SlowFast_feature/')
transformations_test = transforms.Compose([transforms.Resize(520),transforms.CenterCrop(448),\
transforms.ToTensor(), transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])])
testset = VideoDataset_images_with_motion_features(videos_dir, feature_dir, datainfo_test, \
transformations_test, config.database, 448, config.feature_type)
test_loader = torch.utils.data.DataLoader(testset, batch_size=1,
shuffle=False, num_workers=config.num_workers)
with torch.no_grad():
model.eval()
label = np.zeros([len(testset)])
y_output = np.zeros([len(testset)])
videos_name = []
for i, (video, feature_3D, mos, video_name) in enumerate(test_loader):
print(video_name[0])
videos_name.append(video_name)
video = video.to(device)
feature_3D = feature_3D.to(device)
label[i] = mos.item()
outputs = model(video, feature_3D)
y_output[i] = outputs.item()
val_PLCC, val_SRCC, val_KRCC, val_RMSE = performance_fit(label, y_output)
print('The result on the databaset: SRCC: {:.4f}, KRCC: {:.4f}, PLCC: {:.4f}, and RMSE: {:.4f}'.format(\
val_SRCC, val_KRCC, val_PLCC, val_RMSE))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--database', type=str)
parser.add_argument('--train_database', type=str)
parser.add_argument('--model_name', type=str)
parser.add_argument('--num_workers', type=int, default=6)
# misc
parser.add_argument('--trained_model', type=str, default='ckpts')
parser.add_argument('--data_path', type=str)
parser.add_argument('--feature_type', type=str)
parser.add_argument('--multi_gpu', action='store_true')
parser.add_argument('--gpu_ids', type=list, default=None)
config = parser.parse_args()
main(config)