forked from langchain-ai/task_mAIstro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask_maistro.py
409 lines (322 loc) · 15.4 KB
/
task_maistro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import uuid
from datetime import datetime
from pydantic import BaseModel, Field
from trustcall import create_extractor
from typing import Literal, Optional, TypedDict
from langchain_core.runnables import RunnableConfig
from langchain_core.messages import merge_message_runs
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.store.base import BaseStore
from langgraph.store.memory import InMemoryStore
import configuration
## Utilities
# Inspect the tool calls for Trustcall
class Spy:
def __init__(self):
self.called_tools = []
def __call__(self, run):
q = [run]
while q:
r = q.pop()
if r.child_runs:
q.extend(r.child_runs)
if r.run_type == "chat_model":
self.called_tools.append(
r.outputs["generations"][0][0]["message"]["kwargs"]["tool_calls"]
)
# Extract information from tool calls for both patches and new memories in Trustcall
def extract_tool_info(tool_calls, schema_name="Memory"):
"""Extract information from tool calls for both patches and new memories.
Args:
tool_calls: List of tool calls from the model
schema_name: Name of the schema tool (e.g., "Memory", "ToDo", "Profile")
"""
# Initialize list of changes
changes = []
for call_group in tool_calls:
for call in call_group:
if call['name'] == 'PatchDoc':
# Check if there are any patches
if call['args']['patches']:
changes.append({
'type': 'update',
'doc_id': call['args']['json_doc_id'],
'planned_edits': call['args']['planned_edits'],
'value': call['args']['patches'][0]['value']
})
else:
# Handle case where no changes were needed
changes.append({
'type': 'no_update',
'doc_id': call['args']['json_doc_id'],
'planned_edits': call['args']['planned_edits']
})
elif call['name'] == schema_name:
changes.append({
'type': 'new',
'value': call['args']
})
# Format results as a single string
result_parts = []
for change in changes:
if change['type'] == 'update':
result_parts.append(
f"Document {change['doc_id']} updated:\n"
f"Plan: {change['planned_edits']}\n"
f"Added content: {change['value']}"
)
elif change['type'] == 'no_update':
result_parts.append(
f"Document {change['doc_id']} unchanged:\n"
f"{change['planned_edits']}"
)
else:
result_parts.append(
f"New {schema_name} created:\n"
f"Content: {change['value']}"
)
return "\n\n".join(result_parts)
## Schema definitions
# User profile schema
class Profile(BaseModel):
"""This is the profile of the user you are chatting with"""
name: Optional[str] = Field(description="The user's name", default=None)
location: Optional[str] = Field(description="The user's location", default=None)
job: Optional[str] = Field(description="The user's job", default=None)
connections: list[str] = Field(
description="Personal connection of the user, such as family members, friends, or coworkers",
default_factory=list
)
interests: list[str] = Field(
description="Interests that the user has",
default_factory=list
)
# ToDo schema
class ToDo(BaseModel):
task: str = Field(description="The task to be completed.")
time_to_complete: Optional[int] = Field(description="Estimated time to complete the task (minutes).")
deadline: Optional[datetime] = Field(
description="When the task needs to be completed by (if applicable)",
default=None
)
solutions: list[str] = Field(
description="List of specific, actionable solutions (e.g., specific ideas, service providers, or concrete options relevant to completing the task)",
min_items=1,
default_factory=list
)
status: Literal["not started", "in progress", "done", "archived"] = Field(
description="Current status of the task",
default="not started"
)
## Initialize the model and tools
# Update memory tool
class UpdateMemory(TypedDict):
""" Decision on what memory type to update """
update_type: Literal['user', 'todo', 'instructions']
# Initialize the model
model = ChatOpenAI(model="gpt-4o", temperature=0)
## Create the Trustcall extractors for updating the user profile and ToDo list
profile_extractor = create_extractor(
model,
tools=[Profile],
tool_choice="Profile",
)
## Prompts
# Chatbot instruction for choosing what to update and what tools to call
MODEL_SYSTEM_MESSAGE = """{task_maistro_role}
You have a long term memory which keeps track of three things:
1. The user's profile (general information about them)
2. The user's ToDo list
3. General instructions for updating the ToDo list
Here is the current User Profile (may be empty if no information has been collected yet):
<user_profile>
{user_profile}
</user_profile>
Here is the current ToDo List (may be empty if no tasks have been added yet):
<todo>
{todo}
</todo>
Here are the current user-specified preferences for updating the ToDo list (may be empty if no preferences have been specified yet):
<instructions>
{instructions}
</instructions>
Here are your instructions for reasoning about the user's messages:
1. Reason carefully about the user's messages as presented below.
2. Decide whether any of the your long-term memory should be updated:
- If personal information was provided about the user, update the user's profile by calling UpdateMemory tool with type `user`
- If tasks are mentioned, update the ToDo list by calling UpdateMemory tool with type `todo`
- If the user has specified preferences for how to update the ToDo list, update the instructions by calling UpdateMemory tool with type `instructions`
3. Tell the user that you have updated your memory, if appropriate:
- Do not tell the user you have updated the user's profile
- Tell the user them when you update the todo list
- Do not tell the user that you have updated instructions
4. Err on the side of updating the todo list. No need to ask for explicit permission.
5. Respond naturally to user user after a tool call was made to save memories, or if no tool call was made."""
# Trustcall instruction
TRUSTCALL_INSTRUCTION = """Reflect on following interaction.
Use the provided tools to retain any necessary memories about the user.
Use parallel tool calling to handle updates and insertions simultaneously.
System Time: {time}"""
# Instructions for updating the ToDo list
CREATE_INSTRUCTIONS = """Reflect on the following interaction.
Based on this interaction, update your instructions for how to update ToDo list items. Use any feedback from the user to update how they like to have items added, etc.
Your current instructions are:
<current_instructions>
{current_instructions}
</current_instructions>"""
## Node definitions
def task_mAIstro(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Load memories from the store and use them to personalize the chatbot's response."""
# Get the user ID from the config
configurable = configuration.Configuration.from_runnable_config(config)
user_id = configurable.user_id
todo_category = configurable.todo_category
task_maistro_role = configurable.task_maistro_role
# Retrieve profile memory from the store
namespace = ("profile", todo_category, user_id)
memories = store.search(namespace)
if memories:
user_profile = memories[0].value
else:
user_profile = None
# Retrieve people memory from the store
namespace = ("todo", todo_category, user_id)
memories = store.search(namespace)
todo = "\n".join(f"{mem.value}" for mem in memories)
# Retrieve custom instructions
namespace = ("instructions", todo_category, user_id)
memories = store.search(namespace)
if memories:
instructions = memories[0].value
else:
instructions = ""
system_msg = MODEL_SYSTEM_MESSAGE.format(task_maistro_role=task_maistro_role, user_profile=user_profile, todo=todo, instructions=instructions)
# Respond using memory as well as the chat history
response = model.bind_tools([UpdateMemory], parallel_tool_calls=False).invoke([SystemMessage(content=system_msg)]+state["messages"])
return {"messages": [response]}
def update_profile(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Reflect on the chat history and update the memory collection."""
# Get the user ID from the config
configurable = configuration.Configuration.from_runnable_config(config)
user_id = configurable.user_id
todo_category = configurable.todo_category
# Define the namespace for the memories
namespace = ("profile", todo_category, user_id)
# Retrieve the most recent memories for context
existing_items = store.search(namespace)
# Format the existing memories for the Trustcall extractor
tool_name = "Profile"
existing_memories = ([(existing_item.key, tool_name, existing_item.value)
for existing_item in existing_items]
if existing_items
else None
)
# Merge the chat history and the instruction
TRUSTCALL_INSTRUCTION_FORMATTED=TRUSTCALL_INSTRUCTION.format(time=datetime.now().isoformat())
updated_messages=list(merge_message_runs(messages=[SystemMessage(content=TRUSTCALL_INSTRUCTION_FORMATTED)] + state["messages"][:-1]))
# Invoke the extractor
result = profile_extractor.invoke({"messages": updated_messages,
"existing": existing_memories})
# Save save the memories from Trustcall to the store
for r, rmeta in zip(result["responses"], result["response_metadata"]):
store.put(namespace,
rmeta.get("json_doc_id", str(uuid.uuid4())),
r.model_dump(mode="json"),
)
tool_calls = state['messages'][-1].tool_calls
# Return tool message with update verification
return {"messages": [{"role": "tool", "content": "updated profile", "tool_call_id":tool_calls[0]['id']}]}
def update_todos(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Reflect on the chat history and update the memory collection."""
# Get the user ID from the config
configurable = configuration.Configuration.from_runnable_config(config)
user_id = configurable.user_id
todo_category = configurable.todo_category
# Define the namespace for the memories
namespace = ("todo", todo_category, user_id)
# Retrieve the most recent memories for context
existing_items = store.search(namespace)
# Format the existing memories for the Trustcall extractor
tool_name = "ToDo"
existing_memories = ([(existing_item.key, tool_name, existing_item.value)
for existing_item in existing_items]
if existing_items
else None
)
# Merge the chat history and the instruction
TRUSTCALL_INSTRUCTION_FORMATTED=TRUSTCALL_INSTRUCTION.format(time=datetime.now().isoformat())
updated_messages=list(merge_message_runs(messages=[SystemMessage(content=TRUSTCALL_INSTRUCTION_FORMATTED)] + state["messages"][:-1]))
# Initialize the spy for visibility into the tool calls made by Trustcall
spy = Spy()
# Create the Trustcall extractor for updating the ToDo list
todo_extractor = create_extractor(
model,
tools=[ToDo],
tool_choice=tool_name,
enable_inserts=True
).with_listeners(on_end=spy)
# Invoke the extractor
result = todo_extractor.invoke({"messages": updated_messages,
"existing": existing_memories})
# Save save the memories from Trustcall to the store
for r, rmeta in zip(result["responses"], result["response_metadata"]):
store.put(namespace,
rmeta.get("json_doc_id", str(uuid.uuid4())),
r.model_dump(mode="json"),
)
# Respond to the tool call made in task_mAIstro, confirming the update
tool_calls = state['messages'][-1].tool_calls
# Extract the changes made by Trustcall and add the the ToolMessage returned to task_mAIstro
todo_update_msg = extract_tool_info(spy.called_tools, tool_name)
return {"messages": [{"role": "tool", "content": todo_update_msg, "tool_call_id":tool_calls[0]['id']}]}
def update_instructions(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Reflect on the chat history and update the memory collection."""
# Get the user ID from the config
configurable = configuration.Configuration.from_runnable_config(config)
user_id = configurable.user_id
todo_category = configurable.todo_category
namespace = ("instructions", todo_category, user_id)
existing_memory = store.get(namespace, "user_instructions")
# Format the memory in the system prompt
system_msg = CREATE_INSTRUCTIONS.format(current_instructions=existing_memory.value if existing_memory else None)
new_memory = model.invoke([SystemMessage(content=system_msg)]+state['messages'][:-1] + [HumanMessage(content="Please update the instructions based on the conversation")])
# Overwrite the existing memory in the store
key = "user_instructions"
store.put(namespace, key, {"memory": new_memory.content})
tool_calls = state['messages'][-1].tool_calls
# Return tool message with update verification
return {"messages": [{"role": "tool", "content": "updated instructions", "tool_call_id":tool_calls[0]['id']}]}
# Conditional edge
def route_message(state: MessagesState, config: RunnableConfig, store: BaseStore) -> Literal[END, "update_todos", "update_instructions", "update_profile"]:
"""Reflect on the memories and chat history to decide whether to update the memory collection."""
message = state['messages'][-1]
if len(message.tool_calls) ==0:
return END
else:
tool_call = message.tool_calls[0]
if tool_call['args']['update_type'] == "user":
return "update_profile"
elif tool_call['args']['update_type'] == "todo":
return "update_todos"
elif tool_call['args']['update_type'] == "instructions":
return "update_instructions"
else:
raise ValueError
# Create the graph + all nodes
builder = StateGraph(MessagesState, config_schema=configuration.Configuration)
# Define the flow of the memory extraction process
builder.add_node(task_mAIstro)
builder.add_node(update_todos)
builder.add_node(update_profile)
builder.add_node(update_instructions)
# Define the flow
builder.add_edge(START, "task_mAIstro")
builder.add_conditional_edges("task_mAIstro", route_message)
builder.add_edge("update_todos", "task_mAIstro")
builder.add_edge("update_profile", "task_mAIstro")
builder.add_edge("update_instructions", "task_mAIstro")
# Compile the graph
graph = builder.compile()