-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreward_regressor.py
206 lines (176 loc) · 8.86 KB
/
reward_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from agents.models import MLP
from agents.utils import MetricMonitor
from torch.utils.data import Dataset, DataLoader
import os
from glob import glob
from math import sqrt
from comet_ml import Experiment
import torch.optim as optim
from tqdm import tqdm
from argparse import ArgumentParser
import matplotlib.pyplot as plt
from agents.models import MLP_RewardPredictor, TransformerRewardPredictor, RewardDataset
from torch.utils.tensorboard import SummaryWriter
class Trainer:
def __init__(self, model, train_dataset:RewardDataset, params, run_name, plot_dir, disable_comet=False) -> None:
self.model = model.to(params["device"])
self.train_dataset = train_dataset
self.params = params
self.run_name = run_name
self.metric_monitor = MetricMonitor()
self.plot_dir = plot_dir
self.disable_comet = disable_comet
if not os.path.exists(self.plot_dir):
os.makedirs(plot_dir)
def _setup_comet(self):
self.experiment = Experiment(
api_key="8U8V63x4zSaEk4vDrtwppe8Vg",
project_name="credit-assignment",
parse_args=False
)
self.experiment.set_name(self.run_name)
# logging hparams to comet_ml
self.experiment.log_parameters(self.params)
def _setup_tensorboard(self):
self.writer = SummaryWriter("runs/" + self.run_name)
# layout = {
# "Loss Curve": {
# "loss": ["Multiline", ["loss"]]
# },
# "Metrics": {
# "Predicted vs Global Reward": ["Multiline", ["y", "y_hat"]],
# "Weight Entropy": ["Multiline", ["weight_entropy"]]
# }
# }
# self.writer.add_custom_scalars(layout)
def plot(self, metrics:dict, epoch=None, step=None):
if self.disable_comet: return
if epoch is not None:
# self.experiment.log_metrics(metrics, epoch=epoch)
for k, v in metrics.items():
self.writer.add_scalar(k, v, epoch)
elif step is not None:
# self.experiment.log_metrics(metrics, step=step)
for k, v in metrics.items():
self.writer.add_scalar(k, v, step)
else:
raise NotImplementedError
def train_one_epoch(self, train_loader, model, criterion, optimizer, epoch, params):
model.train(True)
self.epoch_loss = 0.0
self.weight_values = None
# stream = tqdm(train_loader)
epoch_loss = 0
fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(40, 40))
agent_reward_by_global_reward = {}
agent_weight = {}
for i in range(4):
agent_reward_by_global_reward[i] = []
agent_weight[i] = []
for i in range(4):
ax[i].set_xlabel("batch_agent_weight")
ax[i].set_ylabel("batch_agent_reward / global_reward ")
for i, (X, y, agent_rewards) in enumerate(train_loader, start=1):
X = X.float().to(params["device"])
y = y.float().to(params["device"])
# forward pass
if isinstance(model, MLP_RewardPredictor):
y_hat = model(X.reshape(X.shape[0], -1).to(params["device"])).squeeze(-1)
elif isinstance(model, TransformerRewardPredictor):
y_hat, attention_weights = model(X)
y_hat = y_hat.squeeze(-1)
# computing loss
loss = criterion(y_hat, y)
# back-prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
# logging and plotting metrics
self.metric_monitor.update("loss", loss.item(), self.plot_dir)
self.metric_monitor.update("y_hat", torch.mean(y_hat.cpu().detach()).item(), self.plot_dir)
self.metric_monitor.update("y", torch.mean(y.cpu().detach()).item(), self.plot_dir)
# metrics = {}
# metrics["y"] = torch.mean(y.cpu().detach()).item()
# metrics["y_hat"] = torch.mean(y_hat.cpu().detach()).item()
# self.plot(metrics, step=(i + (epoch-1) * len(train_loader)))
self.writer.add_scalars("Global_reward_prediction", {"y": torch.mean(y.cpu().detach()).item(),
"y_hat": torch.mean(y_hat.cpu().detach()).item()}, (i + (epoch-1) * len(train_loader)))
if isinstance(model, TransformerRewardPredictor):
# other_metrics = {}
weight_entropy = -torch.mean(torch.sum(attention_weights * torch.log(torch.clamp(attention_weights, 1e-10,1.0)), dim=-1))
# other_metrics["weight_entropy"] = weight_entropy.item()
batch_global_reward = torch.mean(y.cpu().detach())
batch_agent_rewards = torch.mean(agent_rewards, dim=0)
mean_attention_weights = torch.mean(attention_weights.cpu().detach().squeeze(1), dim=0)
# other_metrics["batch_global_reward"] = batch_global_reward.item()
assert(batch_agent_rewards.shape == mean_attention_weights.shape)
for agent_index in range(batch_agent_rewards.shape[0]):
# other_metrics[f"batch_agent_reward_{agent_index}"] = batch_agent_rewards[agent_index].item()
# other_metrics[f"batch_agent_weight_{agent_index}"] = mean_attention_weights[agent_index].item()
# other_metrics[f"batch_agent_reward_{agent_index}/batch_global_reward"] = batch_agent_rewards[agent_index].item() / (batch_global_reward.item() + 1e-7)
agent_weight[agent_index].append(mean_attention_weights[agent_index].item())
agent_reward_by_global_reward[agent_index].append(batch_agent_rewards[agent_index].item() / (batch_global_reward.item() + 1e-7))
# self.plot(other_metrics, step=(i + (epoch-1) * len(train_loader)))
self.writer.add_scalar("weight_entropy", weight_entropy.item(), (i + (epoch-1) * len(train_loader)))
epoch_loss += loss.item()
# stream.set_description(
# "Epoch: {epoch}. Train. {metric_monitor}".format(epoch=epoch, metric_monitor=self.metric_monitor)
# )
# plotting metrics
self.plot({"loss": epoch_loss}, epoch=epoch)
for i in range(4):
ax[i].scatter(agent_weight[i], agent_reward_by_global_reward[i])
# self.writer.add_figure("(Agent_reward / global reward) vs weight", fig, epoch)
plt.tight_layout()
plt.savefig(os.path.join(self.plot_dir, "fig_" + str(epoch).zfill(3) + ".png"))
self.writer.flush()
plt.clf()
plt.close()
def train(self, save_path):
if not self.disable_comet:
# self._setup_comet()
self._setup_tensorboard()
if not os.path.exists(save_path):
os.makedirs(save_path)
train_loader = DataLoader(
self.train_dataset,
self.params["batch_size"],
shuffle=True,
)
criterion = nn.HuberLoss()
optimizer = optim.Adam(self.model.parameters(), lr=self.params["lr"])
for epoch in range(self.params["num_epochs"]):
self.train_one_epoch(train_loader, self.model, criterion, optimizer, epoch+1, self.params)
if (epoch+1) % 10 == 0:
torch.save(self.model.state_dict(), os.path.join(save_path, "epoch_" + str(epoch).zfill(5) + ".pth"))
if __name__ == "__main__":
ap = ArgumentParser()
ap.add_argument("-n", "--num_epochs", required=True, type=int)
ap.add_argument("-d", "--data_dir", required=True, type=str)
ap.add_argument("-r", "--run_name", required=True, type=str)
ap.add_argument("-s", "--save_path", required=True, type=str)
ap.add_argument("-b", "--batch_size", required=False, default=32, type=int)
ap.add_argument("-l", "--lr", required=False, default=1e-3)
ap.add_argument("-t", "--network_type", required=False, default="mlp")
ap.add_argument("-x", "--disable_comet", required=False, default=False, type=bool)
args = vars(ap.parse_args())
data_dir = args["data_dir"]
train_json_list = [file.split("/")[-1] for file in glob(f"{data_dir}/*.json")]
train_dataset = RewardDataset(train_json_list, data_dir)
params = {
"batch_size": args["batch_size"],
"num_epochs": args["num_epochs"],
"lr": args["lr"],
"device": "cuda" if torch.cuda.is_available() else "cpu"
}
if args["network_type"] == "mlp":
model = MLP_RewardPredictor(60, [128, 64, 4, 1])
elif args["network_type"] == "transformer":
model = TransformerRewardPredictor(15, 15, [128, 64, 4, 1])
trainer = Trainer(model, train_dataset, params, args["run_name"], "plots", args["disable_comet"])
trainer.train(args["save_path"])