-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6-transfer_policies.py
359 lines (327 loc) · 16.7 KB
/
6-transfer_policies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from ast import arg
from local_setting import *
from email.policy import default
import sys
import os
from ppo import PPO
import argparse
import torch
import numpy as np
import glob
import datetime
sys.path.insert(0, file_path)
from cobs import Model
Model.set_energyplus_folder(energyplus_location)
if __name__ == '__main__':
# Setup run parameters
parser = argparse.ArgumentParser()
parser.add_argument(
'--seed',
help='Number of episodes to run',
type=int,
default=1911,
)
parser.add_argument(
'--diverse',
help='1 (True) or 0 (False), consider policy library with diverse policies',
type=int,
default=1,
)
parser.add_argument(
'--all',
help='1 (True) or 0 (False), consider policy library cross seeds or not',
type=int,
default=1,
)
parser.add_argument(
'--clusters',
help='number indicating the number of policy clusters',
type=int,
default=-1,
)
parser.add_argument(
'--episodes',
help='Set to an integer for number of episodes',
type=int,
default=1
)
parser.add_argument(
'--from_scratch',
help='train from scratch or use existing policy',
type=int,
default=0
)
parser.add_argument(
'--continue_train',
help='continue previous training to desired episodes',
type=int,
default=0
)
parser.add_argument(
'--single_agent',
help='using single-agent to control all setpoints or not',
type=int,
default=0
)
parser.add_argument(
'--flexlab',
help='using flexlab IDF or not',
type=int,
default=0
)
parser.add_argument(
'--no_blinds',
help='Shall we consider the policy trained with extra blinds',
type=int,
default=0
)
parser.add_argument(
'--patience',
help='How many episodes to wait until reverse to the best policy',
type=int,
default=5
)
parser.add_argument(
'--ignore_zero',
help='Should we train when the system is off',
type=int,
default=0
)
parser.add_argument(
'--change_rotation_location',
help='1 for california and 45 deg rotation',
type=int,
default=0
)
parser.add_argument(
'--doee',
help='using doee IDF or not',
type=int,
default=0
)
args = parser.parse_args()
np.random.RandomState(args.seed)
torch.manual_seed(args.seed)
print("============================================================================================")
# set device to cpu or cuda
device = torch.device('cpu')
if args.flexlab:
available_zones = ["FlexLab-X3-ZoneA", "FlexLab-X3-ZoneB"]
airloops = {'FlexLab-X3-ZoneA': "Sys-A",
'FlexLab-X3-ZoneB': "Sys-B"}
# Add state variables that we care about
eplus_extra_states = {("Zone Air Relative Humidity", zone): f"{zone} humidity" for zone in available_zones}
eplus_extra_states.update({("Air System Electric Energy", f"{airloops[zone]}"): f"{zone} vav energy" for zone in available_zones}) # Could be Power
eplus_extra_states.update({("Zone Air Terminal VAV Damper Position", f"{zone} Direct Air"): f"{zone} vav pos" for zone in available_zones}) # Could be Power
eplus_extra_states.update({("Zone Air Terminal Outdoor Air Volume Flow Rate", f"{zone} Direct Air"): f"{zone} vav flow" for zone in available_zones}) # Could be Power
eplus_extra_states[('Site Outdoor Air Drybulb Temperature', 'Environment')] = "outdoor temperature"
eplus_extra_states[('Site Direct Solar Radiation Rate per Area', 'Environment')] = "site solar radiation"
eplus_extra_states[('Facility Total Electric Demand Power', 'Whole Building')] = "total hvac"
elif args.doee:
available_zones = ["Amphitheater", "Lab", "Library",
"North-1", "North-2", "North-3", "North-G",
"South-1", "South-2", "South-3", "South-GF"]
# Add state variables that we care about
eplus_extra_states = {("Zone Air Relative Humidity", zone): f"{zone} humidity" for zone in available_zones}
eplus_extra_states.update({("Zone Air System Sensible Heating Rate", f"{zone}"): f"{zone} vav heating energy" for zone in available_zones})
eplus_extra_states.update({("Zone Air System Sensible Cooling Rate", f"{zone}"): f"{zone} vav cooling energy" for zone in available_zones})
eplus_extra_states.update({("Zone Air Terminal VAV Damper Position", f"VAV HW Rht {zone}"): f"{zone} position" for zone in available_zones})
# eplus_extra_states.update({("Air System Electric Energy", airloop): f"{airloop} energy" for airloop in set(airloops.values())})
eplus_extra_states[('Site Outdoor Air Drybulb Temperature', 'Environment')] = "outdoor temperature"
eplus_extra_states[('Site Direct Solar Radiation Rate per Area', 'Environment')] = "site solar radiation"
eplus_extra_states[('Facility Total HVAC Electric Demand Power', 'Whole Building')] = "total hvac"
eplus_extra_states[('Schedule Value', 'HVACOperationSchd')] = "operations availability"
else:
available_zones = ['TopFloor_Plenum', 'MidFloor_Plenum', 'FirstFloor_Plenum',
'Core_top', 'Core_mid', 'Core_bottom',
'Perimeter_top_ZN_3', 'Perimeter_top_ZN_2', 'Perimeter_top_ZN_1', 'Perimeter_top_ZN_4',
'Perimeter_bot_ZN_3', 'Perimeter_bot_ZN_2', 'Perimeter_bot_ZN_1', 'Perimeter_bot_ZN_4',
'Perimeter_mid_ZN_3', 'Perimeter_mid_ZN_2', 'Perimeter_mid_ZN_1', 'Perimeter_mid_ZN_4']
airloops = {'Core_top': "PACU_VAV_top", 'Core_mid': "PACU_VAV_mid", 'Core_bottom': "PACU_VAV_bot",
'Perimeter_top_ZN_3': "PACU_VAV_top", 'Perimeter_top_ZN_2': "PACU_VAV_top", 'Perimeter_top_ZN_1': "PACU_VAV_top", 'Perimeter_top_ZN_4': "PACU_VAV_top",
'Perimeter_bot_ZN_3': "PACU_VAV_bot", 'Perimeter_bot_ZN_2': "PACU_VAV_bot", 'Perimeter_bot_ZN_1': "PACU_VAV_bot", 'Perimeter_bot_ZN_4': "PACU_VAV_bot",
'Perimeter_mid_ZN_3': "PACU_VAV_mid", 'Perimeter_mid_ZN_2': "PACU_VAV_mid", 'Perimeter_mid_ZN_1': "PACU_VAV_mid", 'Perimeter_mid_ZN_4': "PACU_VAV_mid"}
# Add state variables that we care about
eplus_extra_states = {("Zone Air Relative Humidity", zone): f"{zone} humidity" for zone in available_zones}
eplus_extra_states.update({("Heating Coil Electric Energy", f"{zone} VAV Box Reheat Coil"): f"{zone} vav energy" for zone in available_zones})
eplus_extra_states.update({("Air System Electric Energy", airloop): f"{airloop} energy" for airloop in set(airloops.values())})
eplus_extra_states[('Site Outdoor Air Drybulb Temperature', 'Environment')] = "outdoor temperature"
eplus_extra_states[('Site Direct Solar Radiation Rate per Area', 'Environment')] = "site solar radiation"
eplus_extra_states[('Facility Total HVAC Electric Demand Power', 'Whole Building')] = "total hvac"
choose_an_initial_option = "Scratch"
if not args.from_scratch:
agent_results = agent_result_all[f'{"diverse" if args.diverse else "optimal_only"}_{"all" if args.all else "seed"}']
if args.clusters != -1:
if args.doee:
agent_results = result_doee[args.clusters]
elif args.change_rotation_location:
agent_results = result_rotate[args.clusters]
else:
agent_results = result[args.clusters]
choose_an_initial_option = sorted(list(agent_results.keys()))[args.seed % len(agent_results)]
agent_results = agent_results[choose_an_initial_option]
checkpoint_path = f"policy_library/transfer/new/{choose_an_initial_option}_seed_{args.seed}_diverse_{args.diverse}_all_{args.all}_scratch_{args.from_scratch}_cluster_{args.clusters}_SA_{args.single_agent}_ignore_{args.ignore_zero}_newloc_{args.change_rotation_location}"
checkpoint_path += f"_no_blinds" if args.no_blinds else ""
checkpoint_path += f"_flexlab" if args.flexlab else ""
checkpoint_path += f"_doee" if args.doee else ""
os.makedirs(f"{checkpoint_path}", exist_ok=True)
if args.change_rotation_location:
idf_file = "./eplus_files/OfficeMedium_SF.idf"
weather_file = "./eplus_files/USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
elif args.flexlab:
idf_file = "./eplus_files/HVAC_Sha_csv_AB.idf"
weather_file = "./eplus_files/USA_CO_Denver-Aurora-Buckley.AFB_.724695_TMY3.epw"
elif args.doee:
idf_file = "./eplus_files/DOEE_V930.idf"
weather_file = "./eplus_files/USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"
else:
idf_file = "./eplus_files/OfficeMedium_Denver.idf"
weather_file = "./eplus_files/USA_CO_Denver-Aurora-Buckley.AFB_.724695_TMY3.epw"
model = Model(idf_file_name=idf_file,
weather_file=weather_file,
eplus_naming_dict=eplus_extra_states,
tmp_idf_path=checkpoint_path)
initial_episode = 0
log_mode = "w"
if args.continue_train:
with open(f"{checkpoint_path}-log.csv", 'r') as previous_log:
initial_episode = max(len(previous_log.readlines()) - 2, 0)
log_mode = "a"
log_f = open(f"{checkpoint_path}-log.csv", log_mode)
# Add them to the IDF file so we can retrieve them
for key, _ in eplus_extra_states.items():
model.add_configuration("Output:Variable",
{"Key Value": key[1], "Variable Name": key[0], "Reporting Frequency": "Timestep"})
# Setup controls to all VAV boxes
if args.flexlab:
control_zones = available_zones
elif args.doee:
control_zones = available_zones
else:
control_zones = available_zones[3:]
for zone in control_zones:
model.add_configuration("Schedule:Constant",
{"Name": f"{zone} VAV Customized Schedule",
"Schedule Type Limits Name": "Fraction",
"Hourly Value": 0})
if args.flexlab:
header_name = "AirTerminal:SingleDuct:VAV:NoReheat"
vav_identifier = f"{zone} Direct Air"
elif args.doee:
header_name = "AirTerminal:SingleDuct:VAV:Reheat"
vav_identifier = f"VAV HW Rht {zone}"
else:
header_name = "AirTerminal:SingleDuct:VAV:Reheat"
vav_identifier = f"{zone} VAV Box Component"
model.edit_configuration(idf_header_name=header_name,
identifier={"Name": vav_identifier},
update_values={"Zone Minimum Air Flow Input Method": "Scheduled",
"Constant Minimum Air Flow Fraction": "",
"Minimum Air Flow Fraction Schedule Name": f"{zone} VAV Customized Schedule"})
# Environment setup
model.set_runperiod(*(30, 2000, 1, 1))
model.set_timestep(4)
if not args.continue_train:
log_f.write(f'initial: {choose_an_initial_option} - {"diverse" if args.diverse else "optimal_only"}{"_no_blind_" if args.no_blinds else "_"}{"all" if args.all else "seed"}{args.clusters}\n')
log_f.flush()
selected_agents = list()
if not args.single_agent:
for i, zone in enumerate(control_zones):
agent = PPO(1 + 1 + 1 + 1 + 1 + 1, # State dimension, own temperature + humidity + outdoor temp + solar + occupancy + hour
1, # Action dimension, 1 for each zone
0.003, 0.0005, 1, 10, 0.2, has_continuous_action_space=True, action_std_init=0.6,
device=device,
diverse_policies=list(), diverse_weight=0, diverse_increase=True)
if args.continue_train:
agent.load(f"{checkpoint_path}/agent_{i}.pth")
elif not args.from_scratch:
agent.load(agent_results[zone])
selected_agents.append(agent)
else:
agent = PPO(len(control_zones) * 3 + 3,
len(control_zones),
0.003, 0.0005, 1, 10, 0.2, has_continuous_action_space=True, action_std_init=0.6,
device=device,
diverse_policies=list(), diverse_weight=0, diverse_increase=True)
if args.continue_train:
agent.load(f"{checkpoint_path}/agent.pth")
best_reward = -1
patience = args.patience
for ep in range(initial_episode, args.episodes):
state = model.reset()
if args.doee:
for zone in control_zones:
state[f"{zone} vav energy"] = state[f"{zone} vav heating energy"] + state[f"{zone} vav cooling energy"]
total_energy = state["total hvac"]
while not model.is_terminate():
for zone in state["occupancy"]:
state["occupancy"][zone] = 1 if state["occupancy"][zone] > 0 else 0
# Transfer the state into the format of only selected states
agent_state = [state["outdoor temperature"], state["site solar radiation"], state["time"].hour]
action = list()
for i, zone in enumerate(control_zones):
if selected_agents:
action.append(selected_agents[i].select_action(agent_state + [state[f"{zone} humidity"], state["temperature"][zone], state["occupancy"][zone]]))
else:
# Single agent case
agent_state.append(state[f"{zone} humidity"])
agent_state.append(state["temperature"][zone])
agent_state.append(state["occupancy"][zone])
if not selected_agents:
action = agent.select_action(agent_state)
action = np.array(action)
action = list(0.9/(1 + np.exp(-action)) + 0.1)
actions = list()
for i, zone in enumerate(control_zones):
actions.append({"priority": 0,
"component_type": "Schedule:Constant",
"control_type": "Schedule Value",
"actuator_key": f"{zone} VAV Customized Schedule",
"value": action[i],
"start_time": state['timestep'] + 1})
state = model.step(actions)
if args.doee:
for zone in control_zones:
state[f"{zone} vav energy"] = state[f"{zone} vav heating energy"] + state[f"{zone} vav cooling energy"]
if selected_agents:
for i, zone in enumerate(control_zones):
selected_agents[i].buffer.rewards.append(-state[f"{zone} vav energy"]) # -state[f"{airloops[zone]} energy"]
selected_agents[i].buffer.is_terminals.append(state["terminate"])
if args.ignore_zero and -state[f"{zone} vav energy"] <= 10:
selected_agents[i].buffer.remove_last()
else:
agent.buffer.rewards.append(state["total hvac"])
agent.buffer.is_terminals.append(state["terminate"])
if args.ignore_zero and -state[f"total hvac"] <= 10:
agent.buffer.remove_last()
total_energy += state["total hvac"]
if selected_agents:
for i in range(len(selected_agents)):
if ((ep + 1) % 200) == 0:
selected_agents[i].decay_action_std(0.02, 0.1)
selected_agents[i].update()
if best_reward == -1 or int(best_reward) >= int(total_energy):
selected_agents[i].save(f"{checkpoint_path}/agent_{i}.pth")
best_reward = total_energy
else:
patience -= 1
if patience == 0:
selected_agents[i].load(f"{checkpoint_path}/agent_{i}.pth")
patience = args.patience
else:
if ((ep + 1) % 200) == 0:
agent.decay_action_std(0.02, 0.1)
agent.update()
if best_reward == -1 or int(best_reward) >= int(total_energy):
agent.save(f"{checkpoint_path}/agent.pth")
best_reward = total_energy
else:
patience -= 1
if patience == 0:
agent.load(f"{checkpoint_path}/agent.pth")
patience = args.patience
print(f"[{datetime.datetime.now()}]Total energy: {total_energy}")
log_f.write(f"[{datetime.datetime.now()}]Total energy: {total_energy}\n")
log_f.flush()
log_f.close()
print("Done")