forked from criticallycode/programming-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch_transfer_learning_finetuning
269 lines (193 loc) · 8.33 KB
/
pytorch_transfer_learning_finetuning
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
### Based on PyTorch's transfer learning tutorial: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html ###
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import numpy as np
import time
import os
import copy
import shutil
import re
### Data Preprocessing ###
base_dir = "/PetImages/"
# create training folder
files = os.listdir(base_dir)
# Moves all training cat images to cats folder, training dog images to dogs folder
def train_maker(name):
train_dir = f"{base_dir}/train/{name}"
for f in files:
search_object = re.search(name, f)
if search_object:
shutil.move(f'{base_dir}/{name}', train_dir)
train_maker("Cat")
train_maker("Dog")
# make the validation directories
try:
os.makedirs("val/Cat")
os.makedirs("val/Dog")
except OSError:
print ("Creation of the directory %s failed")
else:
print ("Successfully created the directory %s ")
# create validation folder
cat_train = base_dir + "train/Cat/"
cat_val = base_dir + "val/Cat/"
dog_train = base_dir + "train/Dog/"
dog_val = base_dir + "val/Dog/"
cat_files = os.listdir(cat_train)
dog_files = os.listdir(dog_train)
# This will put 1000 images from the two training folders
# into their respective validation folders
for f in cat_files:
validationCatsSearchObj = re.search("5\d\d\d", f)
if validationCatsSearchObj:
shutil.move(f'{cat_train}/{f}', cat_val)
for f in dog_files:
validationDogsSearchObj = re.search("5\d\d\d", f)
if validationDogtsSearchObj:
shutil.move(f'{dog_train}/{f}', dog_val)
### End Preprocessing ###
# Note that this main function is only necessary when running PyTorch on Windows
def main():
# Make transforms and use data loaders
# We'll use these a lot, so make them variables
mean_nums = [0.485, 0.456, 0.406]
std_nums = [0.229, 0.224, 0.225]
chosen_transforms = {'train': transforms.Compose([
transforms.RandomResizedCrop(size=256),
transforms.RandomRotation(degrees=15),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean_nums, std_nums)
])
, 'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean_nums, std_nums)
]),
}
# Set the directory for the data
data_dir = 'PetImages/'
# Use the image folder function to create datasets.
chosen_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
chosen_transforms[x])
for x in ['train', 'val']}
# Make iterables with the dataloaders.
dataloaders = {x: torch.utils.data.DataLoader(chosen_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(chosen_datasets[x]) for x in ['train', 'val']}
class_names = chosen_datasets['train'].classes
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# visualize some images
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([mean_nums])
std = np.array([std_nums])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
# Now we choose some of the training data to visualize
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
# Setting up the model
# load in pretrained and reset final fully connected
res_mod = models.resnet34(pretrained=True)
num_ftrs = res_mod.fc.in_features
res_mod.fc = nn.Linear(num_ftrs, 2)
# Check the structure of the model to better understand it
for name, child in res_mod.named_children():
print(name)
res_mod = res_mod.to(device)
criterion = nn.CrossEntropyLoss()
# All parameters are being optimized, unlike in a fixed feature extractor situation
optimizer_ft = optim.SGD(res_mod.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
def train_model(model, criterion, optimizer, scheduler, num_epochs=10):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# There's a training and validation phase for every epoch
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train()
else:
model.eval()
current_loss = 0.0
current_corrects = 0
# Now we'll iterate through the data
print('Iterating through data...')
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# Be sure to zero the parameter gradients during every epoch
optimizer.zero_grad()
# Carry out the forward training pass and log loss only if in training
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# Do backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# Make variables to store the loss statistics
current_loss += loss.item() * inputs.size(0)
current_corrects += torch.sum(preds == labels.data)
epoch_loss = current_loss / dataset_sizes[phase]
epoch_acc = current_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# Now we want to make a copy of the model if the accuracy has improved
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_since = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_since // 60, time_since % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_handeled = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_handeled += 1
ax = plt.subplot(num_images//2, 2, images_handeled)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_handeled == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
base_model = train_model(res_mod, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=10)
visualize_model(base_model)
plt.show()
if __name__ == '__main__':
main()