forked from POSTECH-IMLAB/LaneSegmentationNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prediction.py
113 lines (89 loc) · 3.3 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import sys
import cv2 as cv
from utils.preprocessing import *
from network.lane_segmentator import Segmentator
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from utils.base_util import Timer, file_list
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('num_gpu', 1,
'Number of GPUs to use.')
model_dir = './model'
image_size = (1080, 720)
data_dir = 'D:/HighwayDriving/Test/'
folder_list = file_list(data_dir)
images = list()
print('[Read images]')
for f in folder_list:
image_files = file_list(os.path.join(f, 'image'))
for i, i_f in enumerate(image_files):
if i == 30:
break
img = np.array(Image.open(i_f).resize(image_size, Image.ANTIALIAS)).astype(np.float32)
images.append(img)
num_images = len(images)
print('[Done]')
sess = tf.Session()
input_image = tf.placeholder(dtype=tf.float32, shape=[None, image_size[1], image_size[0], 3])
segmentation = Segmentator(
params={
'base_architecture': 'resnet_v2_50',
'batch_size': 1,
'fine_tune_batch_norm': False,
'num_classes': 2,
'weight_decay': 0.0001,
'output_stride': 16,
'batch_norm_decay': 0.9997
}
)
logits = segmentation.network(inputs=input_image, is_training=False)
predict_classes = tf.expand_dims(
tf.argmax(logits, axis=3, output_type=tf.int32),
axis=3
)
variables_to_restore = tf.contrib.slim.get_variables_to_restore()
get_ckpt = tf.train.init_from_checkpoint(
ckpt_dir_or_file='./model',
assignment_map={v.name.split(':')[0]: v for v in variables_to_restore}
)
sess.run(tf.global_variables_initializer())
print('[Do segment]')
timer = Timer(as_progress_notifier=True)
def print_function():
sys.stdout.write('\rLoad images : [%d/%d][%.2f%%][%d hour %d minute %d second left]' %
(timer.current_progress, timer.whole_number_of_data,
timer.current_progress / timer.whole_number_of_data * 100,
int(timer.remain_time / 3600), int(timer.remain_time / 60) % 60, timer.remain_time % 60))
sys.stdout.flush()
timer.print_fn = print_function
video_codec = cv.VideoWriter_fourcc(*'XVID')
original_video_out = cv.VideoWriter('seq_original.avi', video_codec, 15, image_size)
overlay_video_out = cv.VideoWriter('seq_overlay.avi', video_codec, 15, image_size)
seg_video_out = cv.VideoWriter('seq_seg.avi', video_codec, 15, image_size)
timer.start(len(images))
for i in images:
image_data = i
predictions = sess.run(
predict_classes,
feed_dict={
input_image: np.expand_dims(image_data, 0)
}
)
red_image = np.transpose(np.tile(predictions[0], [1, 1, 3]), [2, 0, 1])
red_image[0] = red_image[0] * 255
red_image[1] = red_image[1] * 0
red_image[2] = red_image[2] * 0
red_image = np.transpose(red_image, [1, 2, 0])
overlay = (red_image * 0.4 + i * 0.6).astype(np.uint8)
original_video_out.write(cv.cvtColor(i.astype(np.uint8), cv.COLOR_RGB2BGR))
overlay_video_out.write(cv.cvtColor(overlay, cv.COLOR_RGB2BGR))
seg_video_out.write(cv.cvtColor(red_image.astype(np.uint8), cv.COLOR_RGB2BGR))
timer.tick_timer()
original_video_out.release()
overlay_video_out.release()
seg_video_out.release()