-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHERON_util.R
504 lines (440 loc) · 17.7 KB
/
HERON_util.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
unzip_redcap<-function(req_nm){
#unzip and save
zipF<-paste0("./",req_nm,"-raw.zip")
unzip(zipF)
#load date
out<-list(pat_tbl=read.csv(paste0("./",req_nm,"/",req_nm,"-patient.csv"),stringsAsFactors = F,na.strings = c(""," ")),
data_tbl=read.csv(paste0("./",req_nm,"/",req_nm,"-data.csv"),stringsAsFactors = F,na.strings = c(""," ")),
code_info=read.csv(paste0("./",req_nm,"/",req_nm,"-code.info.csv"),stringsAsFactors = F,na.strings = c(""," ")))
return(out)
}
##################################################
## utility functions for database interrogation ##
##################################################
#----collect facts from i2b2 observation_fact table----
collect_i2b2_obs<-function(conn,
code_vec=c(),
regexp_str="",
col_out=c("patient_num",
"encounter_num",
"concept_cd",
"units_cd",
"nval_num",
"tval_char",
"modifier_cd",
"start_date",
"end_date"),
key_col=c("patient_num"),
schema=c("blueherondata"),
pat_num){
col_out<-col_out[!col_out %in% key_col]
match_key<-c()
for(i in seq_along(key_col)){
match_key<-c(match_key,paste(paste0(c("p.","f."),key_col[i]),collapse = "="))
}
if(length(key_col)>1){
match_key<-paste(match_key,collapse = " and ")
}
i2b2_obs_lst<-list()
for(i in seq_along(schema)){
sql<-paste0("select distinct ",
paste0(paste(paste0("p.",key_col,collapse = ","),",",
paste(paste0("f.",col_out,collapse = ",")),
paste0(" from ", pat_num, " p"),
paste0(" join ", schema, ".observation_fact f"),
" on ",match_key)))
if(length(code_vec)>0&nchar(regexp_str)>0){
sql<-paste0(sql," and ",
"(f.concept_cd in ",paste0("('",paste(code_vec,collapse="','"),"')")," or ",
"regexp_like(f.concept_cd,'",regexp_str,"','i'))")
}else if(length(code_vec)==0&nchar(regexp_str)>0){
sql<-paste0(sql," and ",
"regexp_like(f.concept_cd,'",regexp_str,"','i')")
}else if(length(code_vec)>0&nchar(regexp_str)==0){
sql<-paste0(sql," and ",
"f.concept_cd in ",paste0("('",paste(code_vec,collapse="','"),"')"))
}else{
stop("either code_vec or regexp_str should be specified for filtering concept_cd!")
}
i2b2_obs_lst[[schema[i]]]<-DBI::dbGetQuery(conn,sql)
}
return(i2b2_obs_lst)
}
#----collect concepts from i2b2 concept_dimension table----
collect_i2b2_cd<-function(conn,
exact_match=T,
cd_prefix=NULL,
col_out=c("concept_cd",
"name_char",
"concept_path"),
key_col=c("CONCEPT_CD"),
schema=c("blueherondata"),
concept){
col_out<-col_out[!col_out %in% key_col]
match_key<-c()
for(i in seq_along(key_col)){
if(exact_match){
match_key<-c(match_key,paste(paste0(c("cd.","f."),key_col[i]),collapse = "="))
}else{
match_key<-c(match_key,paste0("regexp_like(f.",key_col[i],",('(' || cd.",key_col[i]," || ')+'),'i')"))
}
if(!is.null(cd_prefix)){
match_key<-paste0(match_key," and regexp_like(f.",key_col[i],",'^(",cd_prefix,")+')")
}else{
}
}
if(length(key_col)>1){
match_key<-paste(match_key,collapse = " and ")
}
i2b2_obs_lst<-list()
for(i in seq_along(schema)){
sql<-paste0("select distinct ",
paste0(paste(paste0("cd.",key_col,collapse = ",")," ICD_FUZZY,",
paste(paste0("f.",col_out,collapse = ",")),
paste0(" from ", concept, " cd"),
paste0(" join ", schema, ".concept_dimension f"),
" on ",match_key)))
i2b2_obs_lst[[schema[i]]]<-DBI::dbGetQuery(conn,sql)
}
return(i2b2_obs_lst)
}
#----collect data from one of the CDM tables----
collect_cdm<-function(conn,
code_vec=c(),
str_vec=c(),
col_out=NULL,
key_col_schema=c("PATID"),
key_col_pat=c("PATIENT_NUM"),
schema=c("PCORNET_CDM_C7R2"),
tbl="DEMOGRAPHIC",
pat_num){
if(is.null(col_out)){
col_out<-colnames(DBI::dbGetQuery(conn,
paste0("select * from ",schema[1],".",tbl," where 1=0")))
}
col_out<-col_out[!col_out %in% key_col_schema]
match_key<-c()
for(i in seq_along(key_col_pat)){
match_key<-c(match_key,paste(c(paste0("p.",key_col_pat[i]),
paste0("f.",key_col_schema[i])),
collapse = "="))
}
if(length(key_col_pat)>1){
match_key<-paste(match_key,collapse = " and ")
}
cdm_obs_lst<-list()
for(i in seq_along(schema)){
sql<-paste0("select distinct ",
paste0(paste(paste0("p.",key_col_pat,collapse = ","),",",
paste(paste0("f.",col_out,collapse = ",")),
paste0(" from ", pat_num, " p"),
paste0(" join ", schema[i], ".",tbl," f"),
" on ",match_key)))
if(tbl=="PROCEDURES"){
sql<-paste0(sql," and",
" f.PX in ",paste0("('",paste(code_vec,collapse="','"),"')"))
}else if(tbl=="PRESCRIBING"){
if(length(str_vec)>0){
sql<-paste0(sql," and ",
"(f.RXNORM_CUI in ",paste0("('",paste(code_vec,collapse="','"),"')")," or ",
" regexp_like(f.RAW_RX_MED_NAME,",paste0("'(",paste(str_vec,collapse = ")|("),")+'"),",'i'))")
}else{
sql<-paste0(sql," and ",
"f.RXNORM_CUI in ",paste0("('",paste(code_vec,collapse="','"),"')"))
}
}else if(tbl=="DISPENSING"){
sql<-paste0(sql," and ",
"(f.NDC in ",paste0("('",paste(code_vec,collapse="','"),"')"))
}else{
sql<-sql
}
cdm_obs_lst[[schema[i]]]<-DBI::dbGetQuery(conn,sql)
}
return(cdm_obs_lst)
}
#purpose: AKI cohort extraction
#dependency: sql scripts of difference types
extract_cohort<-function(conn,
cdm_db_name,
cdm_db_schema,
start_date="2010-01-01",
end_date="2018-12-31",
verb=T){
#check if DBMS type is currently supported
if(!(attr(conn,"DBMS_type") %in% c("Oracle","tSQL","PostgreSQL"))){
stop("DBMS_type=",attr(conn,"DBMS_type"),"is not currently supported \n(should be one of 'Oracle','tSQL','PostgreSQL', case-sensitive)")
}
#execute(write) the following sql snippets according to the specified order
statements<-paste0(
paste0("./src/",attr(conn,"DBMS_type")),
c("/cohort_initial.sql",
"/cohort_all_SCr.sql",
"/cohort_enc_SCr.sql",
"/cohort_baseline_SCr.sql",
"/cohort_exclude.sql",
"/cohort_eligib.sql",
"/cohort_AKI_staging.sql",
"/cohort_final.sql")
)
execute_batch_sql(conn,statements,verb,
cdm_db_name=cdm_db_name,
cdm_db_schema=cdm_db_schema,
start_date=start_date,
end_date=end_date)
#collect attrition info
sql<-parse_sql(paste0("./src/",attr(conn,"DBMS_type"),"/consort_diagram.sql"))
attrition<-execute_single_sql(conn,
statement=sql$statement,
write=(sql$action=="write"),
table_name=toupper(sql$tbl_out))
#read Table1
tbl1<-parse_sql(statements[length(statements)])$tbl_out
aki_enc<-dbGetQuery(conn,paste("select * from",tbl1))
#clean out intermediate tables
for(i in 1:(length(statements)-1)){
parse_out<-parse_sql(statements[i])
if(parse_out$action=="write"){
drop_tbl(conn,toupper(parse_out$tbl_out))
}else{
warning("no temporary table was created by this statment!")
}
if(verb){
cat("temp table",toupper(parse_out$tbl_out),"dropped. \n")
}
}
#output
out<-list(aki_enc=aki_enc,
attrition=attrition)
return(out)
}
#purpose: AKI Cohort consort diagram
#dependency: AKI attritrion table
consort_diag<-function(consort_tbl){
require_libraries("diagram")
tbl<-data.frame(CNT_TYPE=c("Initial",
"Has_at_least_2_SCr",
"Initial_GFR_below_15",
"RRT_within_48hr",
"Burn_patients",
"Pre_ESRD",
"Pre_RRT",
"Total",
"nonAKI",
"AKI1",
"nonAKI_to_AKI2",
"AKI1_to_AKI2",
"nonAKI_to_AKI3",
"nonAKI_to_AKI2_to_AKI3",
"AKI1_to_AKI2_to_AKI3"),
label_txt=c("Inpatient visit with LOS >= 2\nand of age >= 18",
"Has at least 2 SCr record",
"Excluded: Initial eGFR below 15",
"Excluded: RRT with 48 hours since \nadmission",
"Excluded: Burn Patients",
"Excluded: Pre-existance of \nESRD",
"Excluded: Pre-existance of \ndialysis and renal transplantation",
"Total eligible encounters",
"Non-AKI",
"AKI1",
"AKI2",
"AKI1 to AKI2",
"AKI3",
"AKI2 to AKI3",
"AKI1 to AKI2 to AKI3"),
stringsAsFactors=F) %>%
left_join(consort_tbl, by="CNT_TYPE") %>%
replace_na(list(ENC_CNT=0)) %>%
mutate(cnt_ref=ifelse(CNT_TYPE %in% c("Initial","Has_at_least_1_SCr","Total"),ENC_CNT,NA)) %>%
fill(cnt_ref,.direction="down") %>%
mutate(cnt_ref=ifelse(CNT_TYPE=="Has_at_least_1_SCr",lag(cnt_ref,n=1L),cnt_ref)) %>%
mutate(ENC_PROP=round(ENC_CNT/cnt_ref,4)) %>%
mutate(label_val=paste0("(",ENC_CNT,",",ENC_PROP*100,"%)")) %>%
mutate(label=paste(label_txt,"\n",label_val)) %>%
mutate(node_id=c(2,5,7,9,10,12,13,17,18,22,23,25,24,26,28))
#prepare canvas
par(mfrow=c(1,1))
par(mar=c(0,0,0,0))
openplotmat()
##number of elements per row
elpos<-coordinates(rep(3,10))
fromto<-matrix(ncol=2,byrow=T,
c(2,5,
5,8,
8,7,
8,9,
8,11,
11,10,
11,12,
11,14,
14,13,
14,17,
17,18,
17,20,
20,19,
20,21,
19,22,
20,23,
21,24,
22,25,
23,26,
25,28
))
##draw arrows
arrpos <- matrix(ncol = 2, nrow = nrow(fromto))
for (i in 1:nrow(fromto)){
arrpos[i, ] <- straightarrow (to = elpos[fromto[i, 2], ],
from = elpos[fromto[i, 1], ],
lwd = 1, arr.pos = 0.6, arr.length = 0.3)
}
##draw nodes
for(i in 1:nrow(tbl)){
textrect(elpos[tbl$node_id[i],],
radx=0.15,
rady=0.05,
lab=tbl$label[i],
font=4,
cex=0.7)
}
}
## render report
render_report<-function(which_report="./report/AKI_CDM_EXT_VALID_p1_QA.Rmd",
DBMS_type,driver_type,remote_CDM=F,
start_date,end_date=as.character(Sys.Date())){
# to avoid <Error in unlockBinding("params", <environment>) : no binding for "params">
# a hack to trick r thinking it's in interactive environment --not work!
# unlockBinding('interactive',as.environment('package:base'))
# assign('interactive',function() TRUE,envir=as.environment('package:base'))
rmarkdown::render(input=which_report,
params=list(DBMS_type=DBMS_type,
driver_type=driver_type,
remote_CDM=remote_CDM,
start_date=start_date,
end_date=end_date),
output_dir="./output/",
knit_root_dir="../")
}
## compress dataframe into a condensed format
compress_df<-function(dat,tbl=c("DEMO","VITAL","LAB","DX","PX","MED","DRG"),save=F){
if(tbl=="DEMO"){
tbl_zip<-dat %>%
filter(key %in% c("AGE","HISPANIC","RACE","SEX"))
idx_map<-tbl_zip %>% dplyr::select(key) %>%
mutate(idx=paste0("demo",dense_rank(key))) %>%
unique %>% arrange(idx)
tbl_zip %<>%
spread(key,value,fill=0) %>% #impute 0 for alignment
unite("fstr",c("AGE","HISPANIC","RACE","SEX"),sep="_")
}else if(tbl=="VITAL"){
tbl_zip<-dat %>%
filter(key %in% c("HT","WT","BMI",
"BP_SYSTOLIC","BP_DIASTOLIC",
"SMOKING","TOBACCO","TOBACCO_TYPE")) %>%
mutate(key=recode(key,
HT="1HT",
WT="2WT",
BMI="3BMI",
SMOKING="4SMOKING",
TOBACCO="5TOBACCO",
TOBACCO_TYPE="6TOBACCO_TYPE",
BP_SYSTOLIC="7BP_SYSTOLIC",
BP_DIASTOLIC="8BP_DIASTOLIC")) %>%
mutate(add_time=difftime(timestamp,format(timestamp,"%Y-%m-%d"),units="mins")) %>%
mutate(dsa=dsa+round(as.numeric(add_time)/(24*60),2)) %>%
arrange(key,dsa)
idx_map<-tbl_zip %>% dplyr::select(key) %>%
mutate(idx=paste0("vital",dense_rank(key))) %>%
unique %>% arrange(idx)
tbl_zip %<>% unique %>%
unite("val_date",c("value","dsa"),sep=",") %>%
group_by(ENCOUNTERID,key) %>%
dplyr::summarize(fstr=paste(val_date,collapse=";")) %>%
ungroup %>%
spread(key,fstr,fill=0) %>% #impute 0 for alignment
unite("fstr",c("1HT","2WT","3BMI",
"4SMOKING","5TOBACCO","6TOBACCO_TYPE",
"7BP_SYSTOLIC","8BP_DIASTOLIC"),sep="_")
}else if(tbl=="LAB"){
tbl_zip<-dat %>%
mutate(idx=paste0("lab",dense_rank(key)))
idx_map<-tbl_zip %>% dplyr::select(key,idx) %>%
unique %>% arrange(idx)
tbl_zip %<>%
arrange(ENCOUNTERID,idx,dsa) %>%
unite("val_unit_date",c("value","unit","dsa"),sep=",") %>%
group_by(ENCOUNTERID,idx) %>%
dplyr::summarize(fstr=paste(val_unit_date,collapse=";")) %>%
ungroup %>%
unite("fstr2",c("idx","fstr"),sep=":") %>%
group_by(ENCOUNTERID) %>%
dplyr::summarize(fstr=paste(fstr2,collapse="_")) %>%
ungroup
}else if(tbl=="DRG"){
tbl_zip<-dat %>%
mutate(idx=paste0("dx",dense_rank(key2)))
idx_map<-tbl_zip %>% dplyr::select(key2,idx) %>%
unique %>% arrange(idx) %>% dplyr::rename(key=key2)
tbl_zip %<>%
group_by(ENCOUNTERID,key1,idx) %>%
dplyr::summarize(dsa=paste(dsa,collapse=",")) %>%
ungroup %>%
unite("fstr",c("idx","dsa"),sep=":") %>%
group_by(ENCOUNTERID,key1) %>%
dplyr::summarize(fstr=paste(fstr,collapse="_")) %>%
ungroup %>%
spread(key1,fstr,fill=0) %>%
unite("fstr",c("ADMIT_DRG","COMMORB_DRG"),sep="|") %>%
unique
}else if(tbl=="DX"){
tbl_zip<-dat %>%
group_by(ENCOUNTERID,key) %>%
arrange(dsa) %>%
dplyr::summarize(dsa=paste(dsa,collapse=",")) %>%
ungroup %>%
mutate(idx=paste0("ccs",key))
idx_map<-tbl_zip %>% dplyr::select(key,idx) %>%
unique %>% arrange(key)
tbl_zip %<>%
unite("fstr",c("idx","dsa"),sep=":") %>%
group_by(ENCOUNTERID) %>%
dplyr::summarize(fstr=paste(fstr,collapse="_")) %>%
ungroup %>% unique
}else if(tbl=="PX"){
tbl_zip<-dat %>%
mutate(idx=paste0("px",dense_rank(key)))
idx_map<-tbl_zip %>% dplyr::select(key,idx) %>%
unique %>% arrange(idx)
tbl_zip %<>%
group_by(ENCOUNTERID,idx) %>%
arrange(dsa) %>%
dplyr::summarize(dsa=paste(dsa,collapse=",")) %>%
ungroup %>%
unite("fstr",c("idx","dsa"),sep=":") %>%
group_by(ENCOUNTERID) %>%
dplyr::summarize(fstr=paste(fstr,collapse="_")) %>%
ungroup %>% unique
}else if(tbl=="MED"){
tbl_zip<-dat %>%
mutate(idx=paste0("med",dense_rank(key)))
idx_map<-tbl_zip %>% dplyr::select(key,idx) %>%
unique %>% arrange(idx)
tbl_zip %<>%
transform(value=strsplit(value,","),
dsa=strsplit(dsa,",")) %>%
unnest %>%
unite("val_date",c("value","dsa"),sep=",") %>%
group_by(ENCOUNTERID,idx) %>%
dplyr::summarize(fstr=paste(val_date,collapse=";")) %>%
ungroup %>%
unite("fstr2",c("idx","fstr"),sep=":") %>%
group_by(ENCOUNTERID) %>%
dplyr::summarize(fstr=paste(fstr2,collapse="_")) %>%
ungroup
}else{
warning("data elements not considered!")
}
if(save){
save(tbl_zip,file=paste0("./data/",tbl,"_zip.Rdata"))
}
zip_out<-list(tbl_zip=tbl_zip,idx_map=idx_map)
return(zip_out)
}