-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
executable file
·292 lines (210 loc) · 12.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
from typing import Callable
import numpy as np
import igibson
from src.igibson.envrionments.env import Env
from src.SB3.save_model_callback import SaveModel
from hrl_models import CustomExtractorLL, CustomExtractorHL
import torch
import gym
import gc
import yaml
from stable_baselines3.common.monitor import Monitor
from src.highlevel_policy.general_policy import GEN_POLICY
from src.SB3.ppo import PPO
from src.exploration_policy.ppo_mod_disc import PPO as PPO_LL
from src.highlevel_policy.vec_monitor_MOD import VecMonitor
from src.highlevel_policy.subproc_vec_env_HRL import SubprocVecEnv
from stable_baselines3.common.utils import set_random_seed
from igibson.render.mesh_renderer.mesh_renderer_cpu import MeshRendererSettings
from baselines.baseline1 import greedy_baseline
import random
def setup(scene_id, objects, method):
config_filename = os.path.join('./', 'config_eval.yaml')
config_data = yaml.load(open(config_filename, "r"), Loader=yaml.FullLoader)
#to see visual interface of iGibson via PyBullet: use mode="gui_interactive" and use_pb_gui=True
env = Env(config_filename=config_filename, scene_id=scene_id, objects_find=objects, method=method,
physics_timestep=1.0/120, action_timestep=1.0 / 10.0, mode="gui_interactive", use_pb_gui=True)
policy_kwargs_LL = dict(
features_extractor_class=CustomExtractorLL
)
policy_kwargs_HL = dict(
features_extractor_class=CustomExtractorHL
)
aux_bin_number = 12
task_obs = env.observation_space['task_obs'].shape[0] - aux_bin_number
model_ll_pol = PPO_LL("MultiInputPolicy", env, verbose=0, batch_size=2, n_steps=2,
policy_kwargs=policy_kwargs_LL, aux_pred_dim=aux_bin_number, proprio_dim=task_obs, cut_out_aux_head=aux_bin_number)
model_ll_pol.set_parameters("checkpoints/HIMOS_EP/last_model",
exact_match=False) # previous checkpoint, used until 13.11.22
if config_data.get("add_frontier_exploration", False):
if config_data.get("add_exploration_policy", False):
env.action_space = gym.spaces.Discrete(12)
else:
env.action_space = gym.spaces.Discrete(11)
else:
if config_data.get("add_exploration_policy", False):
env.action_space = gym.spaces.Discrete(11)
else:
env.action_space = gym.spaces.Discrete(10)
exploration_policy_steps = config_data.get("exploration_policy_steps", 4)
model_hl_pol = PPO("MultiInputPolicy", env, verbose=1, n_steps=2, batch_size=2,
policy_kwargs=policy_kwargs_HL, config_data=config_data)
model_hl_pol.set_parameters("checkpoints/HIMOS_HLP/seed_2/last_model_3",
exact_match=False)
model = GEN_POLICY(model_hl_pol, model_ll_pol, env, config=config_data, num_envs=1)
return env, model_ll_pol, model_hl_pol, model, exploration_policy_steps
def set_determinism_eval(seed=0):
set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def create_lists():
return [[],[],[],[],[],[]]
def main():
scenes_counter = 8
scenes_succ = {'Merom_0_int': create_lists(),'Benevolence_0_int': create_lists(), 'Pomaria_0_int': create_lists(), 'Wainscott_1_int': create_lists(),'Rs_int': create_lists(),'Ihlen_0_int': create_lists(), 'Beechwood_1_int': create_lists(), 'Ihlen_1_int': create_lists()}
scenes_spl = {'Merom_0_int': create_lists(),'Benevolence_0_int': create_lists(), 'Pomaria_0_int': create_lists(), 'Wainscott_1_int': create_lists(),'Rs_int': create_lists(),'Ihlen_0_int': create_lists(), 'Beechwood_1_int': create_lists(), 'Ihlen_1_int': create_lists()}
scenes_steps_taken_succ = {'Merom_0_int': create_lists(),'Benevolence_0_int': create_lists(), 'Pomaria_0_int': create_lists(), 'Wainscott_1_int': create_lists(),'Rs_int': create_lists(),'Ihlen_0_int': create_lists(), 'Beechwood_1_int': create_lists(), 'Ihlen_1_int': create_lists()}
scenes_steps_taken_no_succ = {'Merom_0_int': create_lists(),'Benevolence_0_int': create_lists(), 'Pomaria_0_int': create_lists(), 'Wainscott_1_int': create_lists(),'Rs_int': create_lists(),'Ihlen_0_int': create_lists(), 'Beechwood_1_int': create_lists(), 'Ihlen_1_int': create_lists()}
scenes_steps_general = {'Merom_0_int': create_lists(),'Benevolence_0_int': create_lists(), 'Pomaria_0_int': create_lists(), 'Wainscott_1_int': create_lists(),'Rs_int': create_lists(),'Ihlen_0_int': create_lists(), 'Beechwood_1_int': create_lists(), 'Ihlen_1_int': create_lists()}
test_scenes = ['Merom_0_int', 'Benevolence_0_int', 'Pomaria_0_int', 'Wainscott_1_int', 'Rs_int', 'Ihlen_0_int','Beechwood_1_int', 'Ihlen_1_int']
"""
scenes_counter = 7
scenes_succ = {'Pomaria_2_int': create_lists(), 'Benevolence_2_int': create_lists(), 'Benevolence_1_int': create_lists(), # noqa: E501
'Wainscott_0_int': create_lists(), 'Beechwood_0_int': create_lists(), 'Merom_1_int': create_lists(), 'Pomaria_1_int': create_lists()}
scenes_spl = {'Benevolence_1_int': create_lists(), 'Pomaria_2_int': create_lists(), 'Benevolence_2_int': create_lists(),
'Wainscott_0_int': create_lists(), 'Beechwood_0_int': create_lists(), 'Pomaria_1_int': create_lists(), 'Merom_1_int': create_lists()}
scenes_steps_taken_succ = {'Benevolence_1_int': create_lists(), 'Pomaria_2_int': create_lists(), 'Benevolence_2_int': [
[]]*6, 'Wainscott_0_int': create_lists(), 'Beechwood_0_int': create_lists(), 'Pomaria_1_int': create_lists(), 'Merom_1_int': create_lists()}
scenes_steps_taken_no_succ = {'Benevolence_1_int': create_lists(), 'Pomaria_2_int': create_lists(), 'Benevolence_2_int': [
[]]*6, 'Wainscott_0_int': create_lists(), 'Beechwood_0_int': create_lists(), 'Pomaria_1_int': create_lists(), 'Merom_1_int': create_lists()}
scenes_steps_general = {'Benevolence_1_int': create_lists(), 'Pomaria_2_int': create_lists(), 'Benevolence_2_int': [
[]]*6, 'Wainscott_0_int': create_lists(), 'Beechwood_0_int': create_lists(), 'Pomaria_1_int': create_lists(), 'Merom_1_int': create_lists()}
test_scenes = ['Pomaria_2_int', 'Benevolence_2_int', 'Benevolence_1_int',
'Wainscott_0_int', 'Beechwood_0_int', 'Merom_1_int', 'Pomaria_1_int']
"""
SPL_sum = []
SR_sum = []
scene_counter = 0
baseline_greedy = greedy_baseline()
method = "HIMOS_eval" #arbitary name
method_eval = "policy" #either greedy or policy
seed = 22 # 22,42,64
det_policy = False
how_many_eps_per_sing_task = 25
objects_find = 0
objects_find_max = 7
succ_rate = []
wrong_commands = []
steps_mean = []
ep_rew = 0
discount_length_mean = []
SPL = []
ac_dist = [0.0]*12
with open(f'eval_results/{method}_seed{seed}_succ.txt', 'w') as f:
f.write('')
f.close()
with open(f'eval_results/{method}_seed{seed}_spl.txt', 'w') as f:
f.write('')
f.close()
with open(f'eval_results/{method}_seed{seed}_steps.txt', 'w') as f:
f.write('')
f.close()
p_dist_ex_fr = [[], []]
env, model_ll_pol, model_hl_pol, model = None, None, None, None
for ep in range(6000):
acc_rew = []
if ep % how_many_eps_per_sing_task == 0:
sr_arr = np.array(scenes_succ[test_scenes[scene_counter]][objects_find-1])
spl_arr = np.array(scenes_spl[test_scenes[scene_counter]][objects_find-1])
steps_succ = np.array(scenes_steps_taken_succ[test_scenes[scene_counter]][objects_find-1])
steps_no_succ = np.array(scenes_steps_taken_no_succ[test_scenes[scene_counter]][objects_find-1])
steps_general = np.array(scenes_steps_general[test_scenes[scene_counter]][objects_find-1])
SPL_sum.append(np.mean(spl_arr))
SR_sum.append(np.mean(sr_arr))
with open(f'eval_results/{method}_seed{seed}_succ.txt', 'a') as f:
f.write(f'{np.mean(sr_arr)}+')
f.close()
with open(f'eval_results/{method}_seed{seed}_spl.txt', 'a') as f:
f.write(f'{np.mean(spl_arr)}+')
f.close()
with open(f'eval_results/{method}_seed{seed}_steps.txt', 'a') as f:
f.write(f'{np.mean(steps_succ)}+')
f.close()
print(f"-----Success-rate for scene {test_scenes[scene_counter]} and objects: {objects_find} : {np.mean(sr_arr)}")
print(f"-----SPL for scene {test_scenes[scene_counter]} and objects: {objects_find} : {np.mean(spl_arr)}")
print(f"-----Steps for scene Succ : {test_scenes[scene_counter]} and objects: {objects_find} : {np.mean(steps_succ)}")
print(f"-----Steps for scene no-succ: {test_scenes[scene_counter]} and objects: {objects_find} : {np.mean(steps_no_succ)}")
print(f"-----Steps for scene general: {test_scenes[scene_counter]} and objects: {objects_find} : {np.mean(steps_general)}")
if objects_find == 0:
env, model_ll_pol, model_hl_pol, model, exploration_policy_steps = setup(test_scenes[scene_counter], objects_find, method)
objects_find += 1
if objects_find == objects_find_max:
scene_counter += 1
del env, model_ll_pol, model_hl_pol, model
gc.collect()
torch.cuda.empty_cache()
env, model_ll_pol, model_hl_pol, model, exploration_policy_steps = setup(test_scenes[scene_counter], objects_find, method)
env.seed(seed)
set_determinism_eval(seed)
objects_find = 1
with open(f'results/{method}_seed{seed}_succ.txt', 'a') as f:
f.write('\n')
with open(f'results/{method}_seed{seed}_spl.txt', 'a') as f:
f.write('\n')
with open(f'results/{method}_seed{seed}_steps.txt', 'a') as f:
f.write('\n')
env.task.num_tar_objects = objects_find
obs = env.reset()
baseline_greedy.reset()
initial_geo_dist = env.task.initial_geodesic_length
agent_geo_dist_taken = 0
curr_position = env.robots[0].get_position()[:2]
steps_counter = 0
ep_rew = 0
while True:
if method_eval == "policy":
hl_action, _ = model_hl_pol.predict(obs, deterministic=det_policy)
else:
hl_action = baseline_greedy.predict(env, obs)
current_wrong_commands = env.wrong_command
if hl_action == 0:
num_ll_steps = exploration_policy_steps
else:
num_ll_steps = 1
check_rew = 0
discount_length = 0
for ll_s in range(num_ll_steps):
ll_action = model.predict(obs, [hl_action])
steps_counter += 1
new_obs, rewards, dones, info = env.step(ll_action)
discount_length += info['discount_length']
obs = new_obs
ep_rew += rewards
check_rew += rewards
if dones:
break
discount_length_mean.append(discount_length)
new_position = env.robots[0].get_position()[:2]
_, geodesic_dist = env.scene.get_shortest_path(env.task.floor_num, curr_position, new_position,
entire_path=False)
curr_position = new_position
agent_geo_dist_taken += geodesic_dist
if(dones):
scenes_steps_general[test_scenes[scene_counter]][objects_find-1].append(env.current_step)
wrong_commands.append(current_wrong_commands)
if(info['success']):
scenes_succ[test_scenes[scene_counter]][objects_find-1].append(1)
scenes_spl[test_scenes[scene_counter]][objects_find -
1].append(initial_geo_dist / max(initial_geo_dist, agent_geo_dist_taken))
scenes_steps_taken_succ[test_scenes[scene_counter]][objects_find-1].append(env.current_step)
else:
scenes_succ[test_scenes[scene_counter]][objects_find-1].append(0)
scenes_spl[test_scenes[scene_counter]][objects_find-1].append(0)
scenes_steps_taken_no_succ[test_scenes[scene_counter]][objects_find-1].append(env.current_step)
break
if __name__ == "__main__":
main()