From 5686807a5d1bb933df134530103dfe394b4f1e21 Mon Sep 17 00:00:00 2001 From: oscarbenjamin Date: Mon, 16 Dec 2024 17:53:47 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20sympy/sy?= =?UTF-8?q?mpy@57476ba48733061919d7edec6e95c95e0aaa4ee3=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../matrices-10.pdf | Bin 287795 -> 287795 bytes .../beam-2.pdf | Bin 10740 -> 10740 bytes .../beam-23.pdf | Bin 13814 -> 13814 bytes .../plotting-2.pdf | Bin 10422 -> 10422 bytes .../plotting-32_01.pdf | Bin 9493 -> 9493 bytes .../control_plots-4.pdf | Bin 16072 -> 16072 bytes .../beam_problems-13_00.pdf | Bin 11393 -> 11393 bytes .../beam-1.pdf | Bin 407298 -> 407298 bytes .../beam-5.pdf | Bin 14153 -> 14153 bytes .../beam-21.pdf | Bin 13019 -> 13019 bytes .../plotting-4.pdf | Bin 8951 -> 8951 bytes .../plotting-17.pdf | Bin 539957 -> 539957 bytes .../plotting-6.pdf | Bin 9493 -> 9493 bytes .../control_plots-5.pdf | Bin 16231 -> 16231 bytes .../matrices-24.pdf | Bin 271975 -> 271975 bytes .../matrices-25.pdf | Bin 287795 -> 287795 bytes .../generate_plots_q3_3.pdf | Bin 15854 -> 15854 bytes .../plotting-16.pdf | Bin 529290 -> 529290 bytes .../plotting-26.hires.png | Bin 30721 -> 30776 bytes .../beam_problems-14.pdf | Bin 17001 -> 17001 bytes .../beam-8.pdf | Bin 10150 -> 10150 bytes .../generate_plots_q3_5_2.pdf | Bin 16619 -> 16619 bytes .../matrices-22.pdf | Bin 245622 -> 245622 bytes .../matrices-4.pdf | Bin 271975 -> 271975 bytes .../plotting-32_00.pdf | Bin 9297 -> 9297 bytes .../beam_problems-18.pdf | Bin 10503 -> 10503 bytes .../plotting-26.pdf | Bin 129104 -> 129274 bytes .../plotting-1.pdf | Bin 10390 -> 10390 bytes .../plotting-29.hires.png | Bin 19481 -> 19495 bytes .../control_plots-2.pdf | Bin 19514 -> 19514 bytes .../control_plots-1.pdf | Bin 15534 -> 15534 bytes .../matrices-8.pdf | Bin 288227 -> 288227 bytes .../plotting-19.pdf | Bin 9517 -> 9517 bytes .../matrices-17.pdf | Bin 245622 -> 245622 bytes .../matrices-18.pdf | Bin 288227 -> 288227 bytes .../plotting-33.pdf | Bin 11051 -> 11051 bytes .../beam-20.pdf | Bin 16342 -> 16342 bytes .../generate_plots_q3_4.pdf | Bin 16192 -> 16192 bytes .../plotting-25.hires.png | Bin 32697 -> 32744 bytes .../biomechanics-11.pdf | Bin 11958 -> 11958 bytes .../biomechanical-model-example-35.pdf | Bin 21670 -> 21670 bytes .../beam_problems-13_01.pdf | Bin 11922 -> 11922 bytes .../plotting-7.pdf | Bin 10493 -> 10528 bytes .../plotting-20.pdf | Bin 9754 -> 9754 bytes .../plotting-7.hires.png | Bin 56942 -> 56654 bytes .../plotting-28.pdf | Bin 12888 -> 12888 bytes .../plotting-15.pdf | Bin 269843 -> 269843 bytes .../matrices-13.pdf | Bin 288227 -> 288227 bytes .../plotting-27.pdf | Bin 14718 -> 14718 bytes .../plotting-30.png | Bin 8707 -> 8705 bytes .../biomechanics-12.pdf | Bin 13179 -> 13179 bytes .../matrices-2.pdf | Bin 245622 -> 245622 bytes .../plotting-25.png | Bin 10111 -> 10117 bytes .../control_plots-6.png | Bin 22754 -> 22678 bytes .../plotting-11.pdf | Bin 8676 -> 8676 bytes .../matrices-6.pdf | Bin 287795 -> 287795 bytes .../matrices-19.pdf | Bin 271975 -> 271975 bytes .../control_plots-7.pdf | Bin 15766 -> 15766 bytes .../plotting-26.png | Bin 9365 -> 9350 bytes .../matrices-21.pdf | Bin 287795 -> 287795 bytes .../plotting-12.pdf | Bin 7940 -> 7940 bytes .../matrices-12.pdf | Bin 245622 -> 245622 bytes .../beam-19.pdf | Bin 12953 -> 12953 bytes .../beam_problems-11_00.pdf | Bin 9615 -> 9615 bytes .../matrices-15.pdf | Bin 287795 -> 287795 bytes .../plotting-29.pdf | Bin 18569 -> 18678 bytes .../plotting-13.pdf | Bin 7944 -> 7944 bytes .../beam_problems-16.pdf | Bin 9418 -> 9418 bytes .../biomechanics-14.pdf | Bin 10592 -> 10592 bytes .../plotting-24.png | Bin 8368 -> 8391 bytes .../solve-ode-1.pdf | Bin 12676 -> 12676 bytes .../beam-4.pdf | Bin 9980 -> 9980 bytes .../plotting-10.pdf | Bin 10929 -> 10929 bytes .../biomechanics-34.pdf | Bin 21707 -> 21707 bytes .../plotting-35.pdf | Bin 268829 -> 268829 bytes .../control_plots-6.pdf | Bin 16480 -> 16451 bytes .../matrices-16.pdf | Bin 287795 -> 287795 bytes .../generate_plots_q3_5_1.pdf | Bin 16619 -> 16619 bytes .../plotting-30.pdf | Bin 26741 -> 26422 bytes .../beam-3.pdf | Bin 12558 -> 12558 bytes .../matrices-20.pdf | Bin 287795 -> 287795 bytes .../matrices-11.pdf | Bin 287795 -> 287795 bytes .../plotting-32_02.pdf | Bin 8844 -> 8844 bytes .../plotting-34.pdf | Bin 266943 -> 266943 bytes .../beam-18.pdf | Bin 12679 -> 12679 bytes .../plotting-9.pdf | Bin 8488 -> 8488 bytes .../beam_problems-11_01.pdf | Bin 9825 -> 9825 bytes .../biomechanical-model-example-38.pdf | Bin 25375 -> 25375 bytes .../control_plots-3.pdf | Bin 14484 -> 14484 bytes .../matrices-9.pdf | Bin 271975 -> 271975 bytes .../generate_plots_q5.pdf | Bin 16471 -> 16471 bytes .../plotting-22.pdf | Bin 217185 -> 217185 bytes .../plotting-29.png | Bin 6913 -> 6885 bytes .../plotting-7.png | Bin 18001 -> 17873 bytes .../beam-22.pdf | Bin 15306 -> 15306 bytes .../plotting-30.hires.png | Bin 25760 -> 25668 bytes .../matrices-14.pdf | Bin 271975 -> 271975 bytes .../beam-7.pdf | Bin 18087 -> 18087 bytes .../matrices-7.pdf | Bin 245622 -> 245622 bytes .../beam-6.pdf | Bin 9454 -> 9454 bytes .../plotting-32_03.pdf | Bin 269843 -> 269843 bytes .../matrices-1.pdf | Bin 287795 -> 287795 bytes .../plotting-24.hires.png | Bin 26946 -> 26961 bytes .../plotting-5.pdf | Bin 9297 -> 9297 bytes .../matrices-3.pdf | Bin 288227 -> 288227 bytes .../plotting-25.pdf | Bin 39774 -> 39794 bytes .../matrices-5.pdf | Bin 287795 -> 287795 bytes .../beam-9.pdf | Bin 11823 -> 11823 bytes .../matrices-23.pdf | Bin 288227 -> 288227 bytes .../fourier-1.pdf | Bin 15170 -> 15170 bytes .../fourier-2.pdf | Bin 23875 -> 23875 bytes .../plotting-37.pdf | Bin 11266 -> 11266 bytes .../beam-10.pdf | Bin 11837 -> 11837 bytes .../plotting-24.pdf | Bin 31968 -> 31847 bytes .../biomechanics-13.pdf | Bin 12385 -> 12385 bytes .../truss-1.pdf | Bin 3368 -> 3368 bytes .../control_plots-6.hires.png | Bin 70949 -> 70761 bytes .../plotting-36.pdf | Bin 11266 -> 11266 bytes .../plotting-31_01.pdf | Bin 20516 -> 20530 bytes .../plotting-31_00.pdf | Bin 20572 -> 19394 bytes dev/_images/control_plots-6.png | Bin 22754 -> 22678 bytes dev/_images/plotting-24.png | Bin 8368 -> 8391 bytes dev/_images/plotting-25.png | Bin 10111 -> 10117 bytes dev/_images/plotting-26.png | Bin 9365 -> 9350 bytes dev/_images/plotting-29.png | Bin 6913 -> 6885 bytes dev/_images/plotting-30.png | Bin 8707 -> 8705 bytes dev/_images/plotting-7.png | Bin 18001 -> 17873 bytes dev/explanation/gotchas.html | 2 +- dev/modules/algebras.html | 66 +- dev/modules/assumptions/ask.html | 8 +- dev/modules/assumptions/assume.html | 18 +- dev/modules/assumptions/index.html | 12 +- dev/modules/assumptions/predicates.html | 84 +- dev/modules/assumptions/refine.html | 18 +- dev/modules/calculus/index.html | 40 +- dev/modules/categories.html | 36 +- dev/modules/codegen.html | 234 ++-- dev/modules/combinatorics/galois.html | 42 +- dev/modules/combinatorics/graycode.html | 20 +- .../combinatorics/group_constructs.html | 2 +- dev/modules/combinatorics/group_numbers.html | 8 +- dev/modules/combinatorics/named_groups.html | 10 +- dev/modules/combinatorics/partitions.html | 26 +- dev/modules/combinatorics/perm_groups.html | 134 +- dev/modules/combinatorics/permutations.html | 98 +- dev/modules/combinatorics/polyhedron.html | 6 +- dev/modules/combinatorics/prufer.html | 16 +- dev/modules/combinatorics/subsets.html | 30 +- dev/modules/combinatorics/tensor_can.html | 8 +- dev/modules/combinatorics/testutil.html | 10 +- dev/modules/combinatorics/util.html | 16 +- dev/modules/concrete.html | 38 +- dev/modules/core.html | 500 +++---- dev/modules/crypto.html | 102 +- dev/modules/diffgeom.html | 78 +- dev/modules/discrete.html | 30 +- dev/modules/functions/combinatorial.html | 66 +- dev/modules/functions/elementary.html | 186 +-- dev/modules/functions/index.html | 6 +- dev/modules/functions/special.html | 200 +-- dev/modules/geometry/curves.html | 12 +- dev/modules/geometry/ellipses.html | 48 +- dev/modules/geometry/entities.html | 18 +- dev/modules/geometry/lines.html | 90 +- dev/modules/geometry/plane.html | 36 +- dev/modules/geometry/points.html | 54 +- dev/modules/geometry/polygons.html | 52 +- dev/modules/geometry/utils.html | 10 +- dev/modules/holonomic/convert.html | 6 +- dev/modules/holonomic/internal.html | 4 +- dev/modules/holonomic/operations.html | 18 +- dev/modules/holonomic/represent.html | 10 +- dev/modules/integrals/g-functions.html | 78 +- dev/modules/integrals/integrals.html | 122 +- dev/modules/interactive.html | 14 +- dev/modules/liealgebras/index.html | 164 +-- dev/modules/logic.html | 90 +- dev/modules/matrices/dense.html | 22 +- dev/modules/matrices/expressions.html | 64 +- dev/modules/matrices/immutablematrices.html | 4 +- dev/modules/matrices/kind.html | 2 +- dev/modules/matrices/matrices.html | 368 +++--- dev/modules/matrices/normalforms.html | 4 +- dev/modules/matrices/sparse.html | 6 +- dev/modules/matrices/sparsetools.html | 6 +- dev/modules/ntheory.html | 208 +-- dev/modules/parsing.html | 58 +- .../physics/biomechanics/api/activation.html | 18 +- .../physics/biomechanics/api/curve.html | 86 +- .../biomechanics/api/musculotendon.html | 12 +- .../physics/continuum_mechanics/beam.html | 110 +- .../physics/continuum_mechanics/cable.html | 18 +- .../physics/continuum_mechanics/truss.html | 26 +- .../physics/control/control_plots.html | 30 +- dev/modules/physics/control/lti.html | 96 +- dev/modules/physics/hep/index.html | 8 +- dev/modules/physics/hydrogen.html | 8 +- dev/modules/physics/matrices.html | 8 +- .../physics/mechanics/api/actuator.html | 22 +- .../mechanics/api/deprecated_classes.html | 30 +- .../physics/mechanics/api/expr_manip.html | 4 +- dev/modules/physics/mechanics/api/joint.html | 14 +- .../physics/mechanics/api/kane_lagrange.html | 24 +- .../physics/mechanics/api/linearize.html | 6 +- .../physics/mechanics/api/part_bod.html | 46 +- .../physics/mechanics/api/pathway.html | 16 +- dev/modules/physics/mechanics/api/system.html | 44 +- .../mechanics/api/wrapping_geometry.html | 24 +- dev/modules/physics/optics/gaussopt.html | 32 +- dev/modules/physics/optics/medium.html | 2 +- dev/modules/physics/optics/polarization.html | 22 +- dev/modules/physics/optics/utils.html | 20 +- dev/modules/physics/optics/waves.html | 2 +- dev/modules/physics/paulialgebra.html | 2 +- dev/modules/physics/qho_1d.html | 6 +- .../physics/quantum/anticommutator.html | 4 +- dev/modules/physics/quantum/cartesian.html | 22 +- dev/modules/physics/quantum/cg.html | 10 +- dev/modules/physics/quantum/circuitplot.html | 26 +- dev/modules/physics/quantum/commutator.html | 4 +- dev/modules/physics/quantum/constants.html | 2 +- dev/modules/physics/quantum/dagger.html | 2 +- dev/modules/physics/quantum/gate.html | 68 +- dev/modules/physics/quantum/grover.html | 10 +- dev/modules/physics/quantum/hilbert.html | 18 +- dev/modules/physics/quantum/innerproduct.html | 2 +- dev/modules/physics/quantum/operator.html | 12 +- dev/modules/physics/quantum/operatorset.html | 4 +- dev/modules/physics/quantum/piab.html | 6 +- dev/modules/physics/quantum/qapply.html | 2 +- dev/modules/physics/quantum/qft.html | 12 +- dev/modules/physics/quantum/qubit.html | 22 +- dev/modules/physics/quantum/represent.html | 12 +- dev/modules/physics/quantum/shor.html | 6 +- dev/modules/physics/quantum/spin.html | 40 +- dev/modules/physics/quantum/state.html | 32 +- .../physics/quantum/tensorproduct.html | 4 +- dev/modules/physics/secondquant.html | 106 +- dev/modules/physics/sho.html | 4 +- dev/modules/physics/units/dimensions.html | 14 +- dev/modules/physics/units/prefixes.html | 2 +- dev/modules/physics/units/quantities.html | 8 +- dev/modules/physics/units/unitsystem.html | 6 +- dev/modules/physics/vector/api/classes.html | 92 +- .../physics/vector/api/fieldfunctions.html | 14 +- dev/modules/physics/vector/api/functions.html | 12 +- .../physics/vector/api/kinematics.html | 32 +- dev/modules/physics/vector/api/printing.html | 8 +- dev/modules/physics/wigner.html | 20 +- dev/modules/plotting.html | 74 +- dev/modules/polys/agca.html | 180 +-- dev/modules/polys/domainmatrix.html | 492 +++---- dev/modules/polys/domainsref.html | 1156 ++++++++--------- dev/modules/polys/internals.html | 600 ++++----- dev/modules/polys/numberfields.html | 194 +-- dev/modules/polys/reference.html | 530 ++++---- dev/modules/polys/ringseries.html | 70 +- dev/modules/polys/solvers.html | 10 +- dev/modules/printing.html | 212 +-- dev/modules/rewriting.html | 2 +- dev/modules/series/formal.html | 44 +- dev/modules/series/fourier.html | 16 +- dev/modules/series/limitseq.html | 6 +- dev/modules/series/sequences.html | 32 +- dev/modules/series/series.html | 50 +- dev/modules/sets.html | 110 +- dev/modules/simplify/fu.html | 50 +- dev/modules/simplify/simplify.html | 64 +- dev/modules/solvers/diophantine.html | 102 +- dev/modules/solvers/inequalities.html | 16 +- dev/modules/solvers/ode.html | 158 +-- dev/modules/solvers/pde.html | 18 +- dev/modules/solvers/solvers.html | 36 +- dev/modules/solvers/solveset.html | 30 +- dev/modules/stats.html | 292 ++--- dev/modules/tensor/array.html | 18 +- dev/modules/tensor/array_expressions.html | 8 +- dev/modules/tensor/index_methods.html | 4 +- dev/modules/tensor/indexed.html | 6 +- dev/modules/tensor/tensor.html | 72 +- dev/modules/tensor/toperators.html | 2 +- dev/modules/testing/pytest.html | 12 +- dev/modules/testing/runtests.html | 36 +- dev/modules/utilities/autowrap.html | 20 +- dev/modules/utilities/codegen.html | 60 +- dev/modules/utilities/decorator.html | 18 +- dev/modules/utilities/enumerative.html | 18 +- dev/modules/utilities/exceptions.html | 6 +- dev/modules/utilities/iterables.html | 110 +- dev/modules/utilities/lambdify.html | 6 +- dev/modules/utilities/memoization.html | 4 +- dev/modules/utilities/misc.html | 24 +- dev/modules/utilities/source.html | 4 +- dev/modules/utilities/timeutils.html | 2 +- dev/modules/vector/api/classes.html | 74 +- dev/modules/vector/api/orienterclasses.html | 22 +- dev/modules/vector/api/vectorfunctions.html | 20 +- 297 files changed, 5091 insertions(+), 5091 deletions(-) diff --git a/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf b/dev/_downloads/0130acc9674ca6615e762dac32f6f525/matrices-10.pdf index f123b0996dae7a47fbca061d0554698924e1763b..3baf23b106b79a881b12e7738a76a2bde7004721 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXF1#X4@qbS)`Z&mlp_t delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJlVVhTA0*S)`Z&md^-x diff --git a/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf b/dev/_downloads/0249fb66c2fcb06b78bd6a84135be88a/beam-2.pdf index 40bb057809c1e342b2bce7be8d64619aee7945e8..e89262f8b6be64001981ba83bcc0dfa0afefffa8 100644 GIT binary patch delta 17 Ycmewo{3UophZ>8qnW5?C9<>Z+07hvBkN^Mx delta 17 Ycmewo{3UophZ>8Kv4Pp<9<>Z+07gd!i~s-t diff --git a/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf b/dev/_downloads/02f5470280a542a7c80635a082cb7e09/beam-23.pdf index 6e926d389528868612d6102e4fea8563eca8fe39..1c827c39efe0d059d6ffec7bfa9c8c6451ab35de 100644 GIT binary patch delta 17 YcmeyC{VjXLUqcpSGb78*j7DFX0ZyL>R{#J2 delta 17 YcmeyC{VjXLUqconVnHnTf$>W2>nw070(?E&u=k delta 17 YcmX?6d!lxOz7>m+v61CwW2>nw0713}F#rGn diff --git a/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf b/dev/_downloads/077b659bec1d5c2fd531dbd0f7e15f0f/beam_problems-13_00.pdf index 01f8cc61103b9499ba37f78a86388ea9d1bc6692..3aac7ee8542d5d42ebad2341dfa142681af12c14 100644 GIT binary patch delta 17 YcmZpSY>eEXp~+%wW^A-sM>CWe05ZJ<=l}o! delta 17 YcmZpSY>eEXp~+%oY-GGyM>CWe05Y2dXh90d{p delta 15 WcmX?^cQS8*F|(1e!DeP-Hx>Xg`2`IC diff --git a/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf b/dev/_downloads/0eb265c8614c7bd3f16f6034d076f6d3/beam-21.pdf index 42e3d5fabe96278426d3bc5f83f4693fce840d5d..1c14b40aafe43282fdfa7953b69007545f8b42d8 100644 GIT binary patch delta 17 YcmcbedOLN)EF7M2#)7Pc1lEga%jEXL->#@nT>IHZ^X`m74+ delta 36 rcmdn`OJVCTg@zW!7N!>F7M2#)7Pc1lEga%jEJh|qM%$&WIHZ^X`gjWC diff --git a/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf b/dev/_downloads/1362531cda049d5b7f4db4abe11d4178/plotting-6.pdf index ce8e8a231723720956aa9abefa1fa8eb71bffab4..35bd1ad610635f328a0944309822a88f495aae9d 100644 GIT binary patch delta 16 XcmbR0HPvf_q7t*QndxQ~rH@PiFJT2g delta 16 XcmbR0HPvf_q7t)_vB_o?rH@PiFFpl2 diff --git a/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf b/dev/_downloads/14bd882358332276f28c2e3ace8343d5/control_plots-5.pdf index a6de5d9b035cc9241061a1a19edb3b0d9b5cc0c4..8211e2fa71f904ec0b5da4d76bd4651a506c3db3 100644 GIT binary patch delta 16 YcmaD}_q=YyGAm|dGn36Lt@g1107pg#Qvd(} delta 16 YcmaD}_q=YyGAm{yW8=*$t@g1107oMSP5=M^ diff --git a/dev/_downloads/16c046e4f150f3aca5fb6bd438b952ce/matrices-24.pdf b/dev/_downloads/16c046e4f150f3aca5fb6bd438b952ce/matrices-24.pdf index 11d7be1eb671861a0a8024a256b5c9c3179c08f1..e5b496da0a53ff8819970ac8940ef7553826dc83 100644 GIT binary patch delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EXHOA#@khuS)7;wpPLA+ delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EJjAACfik&S)7;wpPUG; diff --git a/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf b/dev/_downloads/16f8dba9abaa041f16c4636d6e41a0ac/matrices-25.pdf index c842aa43e8feb634dee3a0477a5995c060ab780a..fc15c9074177e350909db1b6762c01dcaa266a6a 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXHOA7TYBgS)`Z&mlp_t delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJnr#2HPbQS)`Z&mbwUZ diff --git a/dev/_downloads/1a31ae7f3ddd6165062befbddb76e6ca/generate_plots_q3_3.pdf b/dev/_downloads/1a31ae7f3ddd6165062befbddb76e6ca/generate_plots_q3_3.pdf index 89bbbf26cb180fd60fa1c74a3764b39decebb62e..05b6d769924699d4571cb3e942a3f74af910e30d 100644 GIT binary patch delta 17 YcmaD?{jPe0q$P{7g{kFcS<8zo07Z%hkN^Mx delta 17 YcmaD?{jPe0q$P`ysfp=kS<8zo07Xg$hX4Qo diff --git a/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf b/dev/_downloads/1f24a27fa4a24f0b331e9442f61363d7/plotting-16.pdf index 49a9bf7224090cbc1f28cbafaa940e39bd6363c8..ce37946f3fa8e91b4bb88b1d6b2a5fe6671a6084 100644 GIT binary patch delta 36 scmeBLuF$nyp`nGbg{g(Pg{6hHg{_5s3&#`z7GrZm^X)SPI6g4}0O3IkYybcN delta 36 scmeBLuF$nyp`nGbg{g(Pg{6hHg{_5s3&#`z79$e_v+XkkI6g4}0O1V_W&i*H diff --git a/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png b/dev/_downloads/2019cb6b524d1d6351bac9c894de42dd/plotting-26.hires.png index fc4188da1383f15ee5621c013cae34c9e1e5ab0b..d78b71938ee3bf1e92563dbf9461cbbdada51190 100644 GIT binary patch literal 30776 zcmeFZcT|*T-!A$fDt0s`A|PTSMMXfV0#b}oM4AQ#m1Y4!5KtI;HAan5KxdR*MiCGZ zP^xs)2#!>#(nWe#dgomC_`dJ@&bRkoXPrOyIoq`olzHa4+pqtw>%M(VM}6%ozEu=O zt<^a4+wT;$41eV;Sg{;GteUD_@k5bz=oC%Q?jp_koV_`veU5hJvK{U6rSsdI%)|@`7b;b7**5aCI%vsy^3zI-V+Hvs8$&I{4<9}~ zY6*U-`R=4R@RM2iqYr*i$1bc=BR`++{om&6eAR(@W6?6Qvf|3NnVkWZ_bIC9PqLb| zJ&$f}{lM)#^|o>^R>Xl7sa?Nx=@P3qHZr2CtLu60L_>5tMOCoK9`Kbc&Xq5Aw73tK zK0O{~-*74Rp&uuuCK`+VvfL(_^Yz!fnVKXKjWWgl=VN^}@mGF<04b4oa!wCesD{?3 zSaf$Vbjws`2lNzi2C_`@#r1*4PNx$w(DTf$km-fVd{g#kkH}|~v_)A-x9Z}w5X*bM z&fEO`y`OJvw0)y;JR zA&zy%^2%;5w^vZdL`|AGs2`nX2Q#{JM$0t)w<_D$p0Uy>I$7+WL7(3NR8*k;Od`8G_-`GFh!I&<`CJM3qz31A;hFkNE zw-!Axp?ngxA$!N(2U|o0-&oCak)bWeYRYtQU16QnbxONq!=277=iX|hC;?SDre}>mz0fS<8ejRA zAWrW6SAsM6rOb{yhO~knm4|ejZc(~BbMmku$a+gnqs=~E)ZYHY!3Cfew z>NRU#B;Z_vzf044DpFHZ&G41XFMo^KcRn<@I5XC(F!Fx8L%H&#S@vMMm;f*3qw~)S zHOl9YO_C;IL(SRw!#0U|GkseeO7?2dFZd~l7?`-4hhE$RJ!ZCCUb2KbR+0Q6Ur1r5 zCn{ySD^yg&Hh+F%!fz?1R=NY`OYvHbzM;5=l=s5i8x8n`%fw2p9g2&M_;8S0`GF9x ztksG7JrqS#gv;|;F5^7Zw12cjdb*9jX=6dL~86*)*(b6~zYLB6ECggZU_QhdCsVmMJAw zN17(TmBfzf{bzH9-~fyi&)Bu(xCZaLdR`)XAlb;V=43ssN_(_*alTby?(18FDX-9w zkbv3rf0-ivDflu=BleUhF#{>lNDupvkdTp-$obu|VfG(Z%};j*FUcvE$QB|7wE8}o z%Eo;QQ|%7*=7G`Piwmx8H+Yh}Lafv4J#~Yn%zI_d5id6XY1wA-VBgayx{yOx2}^L{ z>#aAJuyI;sZe98{vpet5tg)2JtPWy0ht`gy(m?>mL+LAz1 zuj$HBoAmmavp>K|@{`veAf~yiJaREFLjk+&(CkydAGZ7Nr<>0A8DwHZ8A7>k;~!pKZI^Nz z>yaxx%X1bkg9J4{rhYukFJ2e3_3h2I#pT`$qgz})U$cogKm^l{?OJ<2EKC)tUTk`G zmApv$+?zjh=0=Kx_g*+WGcg#7`6xBo<$JDEo%?!MKuK;K!Rnk{#qn{%hmCtDtOY^kIpo~+Cm4y`K>3x58xP-(HL zKS?w`DS~EL=I;jeDIMh!e7@D$HD}_C)RoUll93A1yfQt5fobU?{fV<(lh>D@6hM*Q8V6^@dl0EoYYfk zXmG)@Ko;lhFLELDbaEHE|M+j&;edn$xrQ|F9ES`)apC zw|P&TOjZ*l2&aBb5`H_!eiV&+Z++J_Ns83;>PI;EZ$(5Ju zapr=r+3aBa@k`p;H3u5|>Lht(pDCJ-j1Q-!o-j4_*gHKM*}C9do$Kx>c!x*y;4OXc zTL*8_ezT{13Q4@3m73`gf80Y?<#hODzk#-b@v9fR?k!)ZRco3*lV$c{m#+oO?bh3y zxsyM3;lcYM<;sCtVW%GcsUiFLO4}Q&rEOo^YFcMU5+h;Tc;Q5R8muqH#dNngw}wWS z(?6c`oYh~}>ZhdNDL7t}Wa_wP>)cRX{+zv(qt(gfKU7`82iD~zQ`k(6w3}5{6Psc=K{Bh=J zw?VXhl1a^(n^A{%F5~biB>9?R^o`XF1Ji`so=~O9(qgW)&sGK3=<9u`aFT0IRcx_( z{YS?`1G>_Xi$jCU@4kDQuDmr%NK;f1r3$i%MP8efsSqp^w`(@bF+LArc}Q0FXqiT& zO7zCcpT>ub6L|M|Of^bI?%nRXFx_#D>)CL&qvrB8M-KZvujM_V#YqW}_+2I}(Bx=@ z%a_s(Czah!^d|{;T&XvDv41(YSGVHzJDW~sZ_G&7ud2q}BwEb_pB+JhqYLR|K9z4d z65+OMy5F=l=W??nLwVw9?WyaEJ@wM{4(0OsroS&$nK~=$`zkJO*D@~d#KWr^uJTcq zn&hi*Q&Uew&2Dvlvg^05vV@r5{P<34ciu>R92e&{G@RZT8YpgJr0tNuFk{tl<@e@` z@d*RR)>6;;AgmRM5#9@>#;&2E@y7b<{&H_tE|^RXu`Y(5Ec!wEqR?dPV%K4$PD0s3 zXA*XxT_UY_k?APlL_qtq3t~0UoQuX$-uQO(aDb)Np z&A~|*aN6_hddh|9-`R&bBS&R_y~KL(&aqZw-ToILUsk6ksCd%nC%s2!>r>)?y#kfF zA}A$P?_|h-hobCAN~wQDQ`3Gpx8_Jb-d1Cf6f?GKj@iC;^Rf9^!}EoAJN%TMZTLf5 zn?8#8`7De$D57e_Z>Yh-VNKY5pepo2f&Q>6Q;>Bc(d-p`6ooUygj$-eV zFgWPmns|dyiy$fUqc^z)BZPwYyV~De%U|2&f4~*89OZ24D%{(uikQZXp*@$q+$XUB z4s@Hw2=w60`8zxY*0()BbF#{m0(DM$OXf|Tr<>)D*A`zb5(q@rEXIHN#Q_oyW)J5n zsZPD-mU8T?HgajZaXQuVxJ2I6mp8Y2pU;fBIvl(o5MV|7EVyuNK2%Uqrryh4Z<>Rd zc$Zr0BXN18!>Xv|-JSSL*Kpq28=tgq@tSH==zYSl$L7S$X0Le{qT=Z`@#%v9{`s*g z4LWvB)_pkFnZ%m+;`A8mTjS(5^2$8jwKzK|8NQ0L6vMIi{JKdpv34YM-^-A7`>akR zzuOc;$z@q5<;tmVx%wNuLvZn%;Hc{2sH%u{a~&@f|7@kFm&*5Sg8siwjTUcGi1Nnl;*Jik>$YKlS2l?{v2I#+wsT zXVsG1{c7%?=>N0DL04AUrCd3_AI1fe=)>na!s-aNpu@x@q#soo`+56(-)BgUv0L7| zO@=>W?8(>M`ldV*T0^g*_m-6R*9kyO@Qrfr+AeEJ2mLCvhrm^~X* zMSOHDzkTT_$w8OiaZqsPn3ItdkHfMx8J7HmPfhbX zK3|U?H89mK^wm6L7_WUZy(#&!9K}43aIojMp-jRVY2IJGyERn^t0O&Mvc_t==f`Lp9SSG;lIWRvvi+p!W<#bMZo ziq9fCT3g+BU%I4`-Y8M;(q4JHXNAA=#3{TcDF^@St%}uU2bRORlO}PqXCihMAfng& zVc9ktyN{2p4n7Vvd3Jc$aEfjkDmE2YwK$d|>#(j3T|HozbJhNz4K=^c($+FWv_Bl+ z5_nK&;x68t?OZM#Xp~&pY5K#Bt%t@3f(OzK9aXIL(@Z|Uxxost7I7bFv*4#_OJVY4 z?&Z%3BeZ{#sertp&sW;G_>N>=(8nnC?sq(0YP=kWD4SNFFfL0!5>w^A$1LUp$OO&oI`OT4?)I9zp9%f8;6#b^X!@teG%2d5i5w;e<~o!W@22Noae&1<5WVr^ zj!hCqK_ty|ZgI7scZ^0ZdMvc7E<|0~wId#K=EM1{xqLWZb-H=@*+-w*L5tf3o z>W*+v)RxwQT)(}=txMO6*sp*@$GU3vR=SLxiG90o4SiMiP{{KPliuH`iYa0N|ZLvYWElAF$ubyb2Yg;qITs{pL}9R9?Cdc*%t}a zSU%wP+ySpZ`^6{mQn7gag~}&Z;RO(ox7?Esyi~w3YDvK=w}t6vQ;k>Nc1*Qv#&Vp! z?JJ+?hd59yNo!^@gJUBlgpECA%McNEZV6r^7=aB?(pS457Qc~YC?Qg^XP}liJ!W6m-oVN+bCm_#4nWT=?Z%>0`o#m9xL5>w_ zfzlTa+s}`~H0Wm^bi2-_Mqjh#l;^gwkzy2EPYA9b%ud>HjiPyBceCyW1ay25i$C<) zUrD03En^!sd_LTf?(g~h%r9TQ++o;cXs6c~9=S>>O4@l+JwMpyDZsj*JWGFl9Y@BL z-YoZ=Z^KkzzEJ+0d2+D?>*?`mJ&uCEq4meC{Z&GskIAiG(11W4PBn|vW~Z8~{RzYn zz=Wq=TS3t_VG>rCMmjpO`sv}$=_!(w&4ox$`t&H{YCFBQ*6M`oa0_{3GPdjKL)THd zby9*8ZEh@tn+QUp*&Xp`z6TQXRWkb% ztpcYblr>|Q_+(&B6_+3wMzrI}(_OXGoXoJ874O3@^-iVk$Q=1#*@ePbd4HN37-i4|JBQ8K34{@AIXrOuI}u!>!$+>FNhn zD$CDTUPnh&+4b|aj+^|?%=b{t1XSSFj^{6WO1V4Pf4Tkrc-4xmt&aMsC?YlOczlPR zJ8@L5;VJgG?>9WW!J%7(i09%0V*iIaoK&aH%R^FDC+tgQSqxnfctFJsl;b%xLj;Ci z7CrM-(NQ=w%|+SOR6p3_YL?6rsTtYq&_$*wfWoHQtux8(ZKA5D6<1O+iO}=5xAEL1 zPOZxI_Qm9^O2}Cq)QSk3>kx%R3Uh5arnr`p$;;kc)XmUN-fnW{eTTVRBHUY zJB;`w9puCfoiA>+?x$Wfg@n*QM#YZ|(>3YFP8ukmVHt}2XvJ8{d(T_jPt?~uMMY6> zfurCOHG4EIrEJdU&p+GwT6O-?$bJ74 z+Xpz#p3V{GWS060MwWy;40Cxr!c8?axb+K1F3@C!r{3|fRr_oD8XvioE9X#D6u!qe7`uKZ>y9^3Qnmd*XXk{yG2I3$;;HSt6w9wdhBr>`)IZHQJyCbgwjVKE+iTe6y~Up zyb1eUaUb3xC*C?q`(n9{pHd?22WSUe`rKPpAp?_O)HE=6fkPZC3L1Bxc|gooiyOf`RY#+s3zLd}WK-`X`rzbp6=dPy(? z5?#}v)}LsI_f~9Jr?`VxW=G~ga;3)iEPtdgo+asZJYi*ZzBf4%^#-q5vs(i6(Q?Uf zm;fxj=L;moYjL(iFY>4x4AydL$GMc!XToY_3ZkcTUg2~bLYAy&u6FOZ-?1(`HLAc@_e8u=1udyC1#OH8Ltgih` zFH2iqSTE**4rjqLgcY=(4NSw=Y`!;;W!)=8sabse<}WJW8n%D@1pfJa)v|4BJXfbX zi8PbIY9&>1daUPu8146wii4~R{@Cz>4|q$pk+tUXr0c! zpM&?jKBC4h#UIlPG}cd;%xH0oW>A!)eaT)@B+&bVqh||FSa$4=sZgU$;N_Qx$RY$h zdk)r=6>zJZ!a&7{8;)%k7iZnz(ciu(*P4T)V3w)OwLM!Z^TT@PH|)1nhjYHBQ=>Sq zLNXb72zJWfLns)T?+qHT| z4y5Xl@eQgH3`gR0g)^GyTH$AK7Q<*JRIr*|E>vdNAx|YsFs?6BH7Pw3q>_sv7a|}U z8{K;zS+)BUZ?_bFG0Rc2Y~S|j@g&BfJ4a(VJ||$E;nf>;h0r6|LOX_WsD}~C3?k|I zi;}_eNmv(&J!!u(L`At(g2G(RlV|KQ8mw4xu_8RiCrVFH%>6h}(a{fLth73j3q>N@ z+E6wsr;5*7=t7}TcbFbF>^A127c4J1U6VvF_Ygs$6mRyKMDLu{^O0p9_)uqw4<2Dy z+Uk_4Wbax;2jn^;O>KE?h(F{kOOA|jwZ)aCAu8-S^FU__^0*Wiu>Y}Kn zmS=TUf??Ueiz^jBG*-nJEl;YITh45U4DnT$1jA~H-V!9Ts@8}q90C>kYRTud%a$@P zu%D3hx{tl7EY-E5n1^f6h@qg+k&!PRzLeSjHT?%BN4Tfc$V-1=&shjA@%Ep7Ic<~H zq3gX1PgrAvWr7eAO*G4swBZNJXTqU?gLoviG#o?0%xC$?=j$vV4pvtvi9y)Kl%m-pM_$M0E`lErzsJy=IoJXD^i z!Q9m(=Bw4E0SxlMkE&RYP*hR{(fgMkxg)`f3cD!moD$2o!Nayms z>+2Ms($@I=GBc@L=%=0d>M`vHAGf^_mV2uuj`*qO(N-}xcnn&b7MCdvhlM-0DD*#1 z(TPBj?Q+hy!srVeKklVjq9#Am!64Cg6;*v5-}T|QJ>rClKG|-3eKfRnw*Uw85y|d; za>*S>ngoBu9F<{06paj<8wrHEv0ro@P?hmNHbItavz^n9 zH;89o-zuhI02C{Ry#lvfQS1E?jlj41hQj5lkvTI~(4X*7S$zDyI*v6r{rx~`vOrI` zvJoP+2Q(=CCUw;i1bZWy{3L%7?zr~|Na_*kmuR9SUfd; zb?jr!&28f1*h1P?2$++Umxul5YtedW4QgiC)~vZBmINJUjzTX|ulFZvu2W8>twR6s zj79j9%*+Pf%|7PP>C~4zCPyxo9{q0GeP$H9f;#H*<$l_H))ie@=2~=p(1nLr=@nA5 zK#uKf_U6x(n)#6`o->uBD>sUCpeyatIH;@8`C#4A4O2RASaj;s?vi+6nj* zeUPetH}#FE9x1mjp@|SF_xg6nbob<7<4kAcgPnR(9#db1SRE{e^yN=45#Ycd;kzFpx6 zwfYr5`&cPoq*^pMR=oIoC`)X*fa_>1MfEfs_R~T&uB(igrEf4>`ma$CyWn3x#Yr(! zk((h+?N1c@&xb^OJ!wRIg;M0g)8jo7)uyHC{p*)>HD>hthmiod`$j+Uc%-4A5` zFW!=Aer_J?dw4m|6|n$TDzhA~T;(=i^Td1ciD^DO0p%j;K5)Ou)q<=Y;mC_W$PNy@ zBJzGJKzWiBTxqM=@G7yhU;Z)cc>g3W4wj7yFwY*Oi$-c~l7t;&?k4Yj)t_j#IIoFO z&$;Za{vngK6{;;jqkg?rw2hP>!WEzUmg|?J20{YLM=y8sx#l>9) zXimRbM@d+|`Gn#!wy(?aH?-9t0o*EzYWOw77D=2iiOW~26(Q=#xs~Za>cn32kSxT% zfXPYO8eupA$kErWwz;wj9rwucEH%-$E6Q;tTDk?BtAZQp$k)le+g z2-H}h4oAga9DsNCWPXyeQi_q`y;+0b}gU0A-= z2$PtFHOP7AIVqey@Vg=qs{)Tgo&QneX)6*aFhm7h%H9m?qi7FMow3c&g>aD4(^M#S zVXgdbvbBDxsD`YT#MxEkkqJ0-hqEHwi7``Cx3W4~dn#&X&t_&KK8llD3{t4-5=5-^ zaVT39^+qy2HbE$O&(Ejb2gzc0ocsFOtnvx|+Tg!r{kEDeL6Qq%UeTBHbAMR>R1$?} ze80s{No2CwfP5c@&bZ}*zp$arN%EZV_)z$6BYfpwpUh8+8rovF@rJd65hRNKk+MP6 zhIVN+j|e1`N}9 zS&zKT_dFckr7ApQX-K|eZ6h8|A)-&7Y++}s92Mz5`ltnte|Ma)&J{;s_lf!}VcP7Z zu1WNND;iu_O%*65r09%{6hlW+1(t2AFfWaaM1PDu1p155(jIe=N;FLaO+@QN_Bwnm zdyes6qsHMKvYr%ejaR8(M)^2bMX6Udkppcc8&cW90-g{rr7E7H2;CsFj=2seKv7?v z)0^d{i%rSI`7!b0y))dHcOq&RGzI78hXZ-;i>onek1dYid_CUdxQ?y5>+R5wC zd#y0vZ4!oLi~S`z5+zdK-?i7vW8@k)F)C^n((X>ZOaJwvq#QbC`u*|H%XF=vV~WcP zNUziQFbaShv1h!#TY~p5df*W;A}YLc6bG!&nk|-mdnz)?egM!!|M?(WLZtg@;frXt zL<)iwr0XrC$TsynU%qa4ICZv@JbmuXQUY&1<(lix&hjxDq~7>Vjw`7skwZES+0=@_ z@qPc~kDdG!_5ANrd0i9NXz1KS1lm@1um7-G3h96TH#r!*dIxo_!SL0d(-z_E5eG_k zaVUx{+jh)-vWamy{WN=lPD%MDiYVV;yfk@lujHXD_IULuY|->F<%x@Bm?q_;xLIXC zTG4ose%O-rPje4kKPn3GUw8QKkr-V`h`~E7q#?x+^Rjv5K515X_ur2yTc=?Go7~2a z&Y)NM{lPQVHVH7Uma8uYQsKaZJxy~T(mD813xgOVNKIA3i-%x1OAGM)M|ai zc;XQMl2GV%!QW)YwUu=Ah=?*czU&NOX-YnXoSbJ1G8-YotVNDa=4qQ#xRk)Yj#<}Q zz%q;5Bx{U(xc7#7BU; zwnni~v^5+MefVj@=jR{5a>bXl}WUNZpq9kZ~o7_f@ozXowU5l85EH}CyL*=@|FywR6WwokwtaMFMx_xuk7LTJ`nt4dL)6slsO zv0+-lzbmeM@r%=^bGPQc`FocDlNc#D-=pq|#^PvAl9#ONG)s4+Q_@?ZXp4hZ?_V|- z7v`pe(c-6@ef|78IQg#NDbLx7(j3=ODPaH1TP6}>v_mKIfaDn|F7`B}p4A1LTv#%E z5g0|!R&GblOI9{EHsS*3PyVaxCMm!PY4wq?{TK4Jck^&XZ!9(YfN(H;4p%%?KH2W8 zVRQh1$=b?Ma&`xAtrHKrsTd?@bH)iMOrZ$9@aC~z7SblC#)qYC3Wp5)Ka|H25Pa)Q zZHCm%C?N8A1eQ;5EXC%ozquz-tzA zxEkGg-fNr+dDC7=(FfeV7g z-iwpo-D0NGM>p+0buXn%Q7nJD)NUlf&QmOMraHE=y847-mpuT(?<+?G0s_nzj3w$< zm{%|lh>cC={gPp95$>2(?eOa2^-kO_3`AAq`$Gx9-fy2L_-A%HZPKwx^`7boaO zs_^c2xkBIVpyy9|=|Hq<{LnARNxk@$FC_p-vFAiPCYzm2*~nw zF*znC=JLyTn-B-3IrJxFbhX_QB-9RuG>T5Db8XyJ+0Mg1EUpv-3?riiClG-&3>n?D zvZ}1t2un0D!VcdS_=y`#8@4)~8|(RqRt6WU*GZDO0}1A)bV3QKheZK4FWWq$*{L`Y zecKuXQ)LYRgC@J~n9iNI1r{dEvG%kp+T{*!*UBSxSP+1M>lPJL^4C{yT0va=P~yT!0!@5R|=i+2Lb zKdKAnj?K-DmV4JV0^8m32AwQ)8~5!2Y{gXlH-x+*#E|m60pKEoX4Yz(Js1$~)UXo+ zoo<_*?hsWCj?;_n3T>UcD3Lo>=`r7LYIiHu#sY*HRH_Fb0)ndyR6sdu^P(0wC+|iZ zudmkyJJ_be15gIta&+f@TShS%@Ltr~bEiYkKL0DqPjOf4T$lVP_9w00Gd-5rg?eC# zrGT>DLaR6c3!F!vpJ;@KC@luKf{xXRYDn34yeIZ_M;OW<1lnA!-4TZW101kJph(i^7Yxwzj6foku%= z^!AS$MAllT3gx9PmIM(!;{~_CZDJt!!1d*9(g081*Bkp``=T$5$RicfuCg=(QNYM+ zu3fMjIIYr)p*8_t^E1&z&A~nJ1HQt@o+Zroy9^z(iGg}lKN?5ohrLw+LMko9QH@PD z6E2YA*0o)5808sx;|bBNc2KZ-!~vtZ!=923-DToIcgujK{2%Lr(W=fmD6dq0>-iHV zD9@wcu$7I|K^ckIX=0vT^RzAP!a|NpBvoPP(Y|`8ROa+P4;ls8uS>Lx7x~|6&u179B@R2otU|) zTYX*rf}`-Z;_9ZRun1*$iBTtI_lXj+AP?jcLp~>V7r(m73fdd3my@03H6A}bk&z#6 zKEI;{3w3z+lY!awwQ@a7GulOhFmunV_;ls%TB0zHmRtGiWb2F=8+G^ZwSyzcHc^FQ zkh8+9dp?`d)b8Jo`cDM6R$*I_{BNR_kKRe)`8F0xiQn~kA#bXsA1ZMb6=sqU?iZ78Aea@d+DKp z-sAD6r9?dlB0mWr%ieu7DQlz_6V1-8#NgEfQYZy#$rzAx1Ug9Qe{*x)s^y5aB8Z17 zFSy3(P{?cXz^|!Ob|f|x)j>^Iz?sS6NCNcXLP=8&C?P5tndx ztFj^i6)j)0`Iw^I+M$FSBO%s_!Ni0)H#-_!1l)JePrhCM4ijBRyP{3=y)@Nljd9u} zNVFfy?Ct`)t}JNp1$%^?=4mzhVqrmL=dt_m3B?f6N}%7bqT^psZP6f5%`I?VK&s^? zzh2I7_U+3%AeXX7uM5s?(~H$9y#d4xV!Tc~J@n!-vSo)Z+NZZ4ZxYlcv1cScBY%H% z@Ky|>EJ9)X$-wBoSW=D@aB1bhxdoF*q|qkBxc5CxN?crA0bs|frlzJKPd#fM5)`L7 z4Y%Z`L7EfDDO%HOg%V5`XX-T7qtMK-1?w*o0$d9fO%u6fjNm4~)xDwh)z#>YIT?~D zBPJ}4n=aPO5MApZ2YV)g!2f1a`iP0=5`7}AI6IJHh;#Z<3)g$G*PP$>)j15ZR=(+l z(H_1JF#0tiPtxFM5)4c|$15YHL3y!79dkxswn_Ifck>*wJqbM99d z)?3P3Y|Ks%x6wO#qWsIcP_q*%mR%;$(g&G(Z;(GzBg8`1TGOVvaksz3Nh$&f3<)@- ziBs&=G~Fd|i_hIUSQURU)zfP)mK8;hl^ELpSrhTBdZkDMPsNnm0i z3|j|$q36*eR|Df1$^#lSGM?nEtT9p*xgdkRmI(VRD+CFZ*KA{}NLvYLKZEa>=iCZ-d(Spf?#P_amMa;MxIYDh(3+VJOv|XMjCeXeyUUV%}JMu z@A_|KFxsyFk*-_j-Y2!}vxUlNFfvVf!P!qmB%KQMJ6O8=OzIB83zo?2pnD)RDFIHE zAw(i}@sJjZfDIZ=HDbp;h$VdwTB57Ip_5OK+zDfP#DD8>u4t2CDCx$OZxxNSoT_`vO|~;N2bOqzd&koa zuJgg=>$U_D>Q;37v5mxK5{?zfYB0B6jSWH%s?a_n^{wYQ!=A(Lnx=PmpEmvBEb3gU zsxT9}^fml)1DWWSd`#k!EdyS5OtnW=%+cbvF|U%hU+Vq%|4r7QINkdo-`fkJsk+TGc4^z z$SgTdHmeW;An`KsNqKI)`-A}4?QP7U{rzwh>}UlL;TFT6xJ4}lmwUuq-o~s7m9<7% z#lg9J_vpm@?4&NeBtkj6S&HNNU;j6taK)^Ic?Cj~z8AM1Unf+&Ojxy%$i?Z%OIB8p zX`Rmy$8u5w*sAQ-@jRu>YN}g%P@P(6%%3+jaqUD8wLg*ANX?>0higr}=l6rIs6hvD z9Hci{u*wD5oI49(K}2-If{4G745JGxw#TMPf)j!cI(IC{+VGgu@6c04wDQnz8O`3# z_>+gL(^JD_+Yy9=4dNRMMzY3h4M$13s*y|}$+1A|+)|zZ@UW0U^HLY|q&b0&E>ts| z4lH;VpmxP44U8Xx4*fHGYu<9J=3F_-*Zk(jY6nE}vB;PfMk(m|I_*z^Gt})c9cN^AGNIel9w>HP26{kWh{!$QlIvT{IIdTlKMg z=c&ht&@{_=B#d5_G)kVf%(t@;IJ&mF5D|F*alvpC1U4;!)O%fco2;w7l!pt<)gZuQ z*ECy;20>;=gIa}7+!&9E%ee@6pe>Ho$4xH0)B-tup_Q=C>(5?a8(_PyvB#?MFM!^+ zMFQKx5Lz75U3`E5C-3sMth+WD&2j+bFWwhYSezSmfa~Sa`3)6^`*Sv|_?z-DZRD*$ z(9beXY!A+#dMCL_XIb?-L;2V<5tnjF@|f&Vb%Ud!_=yI?zTyB^Ct?!K$)RRKVmCv! zHdL_&WT^h(uWb{d>|YILf%MkvM(l)BvdtxqeN8WTnD=-bSZ< zO`C#ZJ6-B|5J|U)$wYR^AX%{-XPa?2+{fuxSI)^HJcG%cG@gxN&wRQRxEXSvfd;Vd z>OYFD;eSkR0S7m&_N?m`y zeP8}ELL<3WVp+pGbnt_pgtWLX&Uz>U7?UBP+zR<`fIBkGU6|=tnEHG@u&imO%sG!y z?lqBeD7hpojv82%;~!OKHCs0F02mhZQfIen#(WZHA@(1S4ve(_u(R_Iz19DfYTMFh zCs-}>gajO=#Hi)J2Nm=-T&t1Cu^%K{%1M+@8Usus2@50CgUSSu4Ryh8t?yF zz^OrB9M4}cKt3Y*Q}O6n73(JdCU+Obzb3El_DAf0HrTVuP<}bDs@Gg)v3!GN)cH(n zL+V%eSD+qAgX%GvTMC^Eu=DIU)S$z_?ykFcR;>JS?SxwRAS@h-g6Tpe{cmyn@iR9P|7h!zgug(NekGah6^`OYulA7Y-ViK=P)#{g zICS9Q$UsU>j6F@~e?>Kp&KG?ou}1RRPgf8dc2BkYmy^)EfP>2{J|X=Bas?7UXochnGM=2ltb^+mgh1D_Reu+CV6I19^#ckv z_mM#4+T0(_MweT@nWl%DOPCM~Wd#xfK02YLc$*YlH;QPTnwdww5*VQyw5Lr#)w$$V z+kDuSH!CwCNDQIb;e2mWq|Fe2x;Tk6?BV_G>gm=ZDF>7?NaoE>LLqwpOJcR=>Tcwv zonb)I!MLrCy_p_O{rOWWxRHdIp4s;-zGW0WorzNKxgzflQw01i;Rw6loD{nELZMP3zp7Wxk{7ER{#z;K<=9BOzp7X7 z^uKB;&(j;Mgny~L9R@xI@u1%l>zX0fnysfKA5k6iM)1&@<#u_~U6*lvz_9x)@`ybo z;K{xiBA;YD9I@^zR7I9#GG)q>O_MpLxX5D!C9M50XhQ{Nq(A#&N#1Pp@I|CGEF!Eh zQ!>PL6X#FsuN8+$xrj-`51_zC=wc+-th_p{q^<3nzhQ-%y5g6=wgbb*-K`3uNI>Gj zEXck^$NT&LwRR&G_5<^|`quC57X5dEi&I4;(jgoZ5fB!jzY5T}BdvL!gpOo^jJzDB z#)y{}ie_@vZT@{HNyTx}ckd2|p$2%xa?AhZf)dLu04i>AIg64!+VNuLBHPpglY3)W z|J-J`m`;}jN6m36s*-*m+}`(g8bw=`NSatdiSg)dp(W3Mvx8k7fuI$(ax1y$Md7#?FcA{E}=5@q+nQ3E1< za{Tb_Zo9?6O%J5!ie{MvYlj*|wUh(07j+n&qzXAQSSrA<1UHE;VU(4vj@uXtPTwED z^!0N`lD9Z%avzqlIRj1v#=nV)c8=f39?^yO49!aq`a)l$3FIP&hge=H#lL$A|8;j60EXDY{gzNnZjX z9jUG_kf7X)Wd4Wa5q zG>pfXc67L_5%}S=T4Rv%OVj_rb zkFE4@Q1n< z2qMd?3EqlRNc9rmwo_*Y^ zVV^#4>DdMG89rbAwByk&f;=!S2ZA6EF>3x`GA74!l(XV$S1Fp>%nM{2-_G=lR>iQz zj#$Pm_V0ft&9vot=5`R=GwE@|-Fkaa&k@NM9^W{}bj){Ulq7EDMZ*WdeT~fn(v!N#FO@oeugM%L&AGx^( zKwI_1S6}`n35sTt>5H?kE1Pj7J-7;lU0&}wg*}*jIh@BjX+S3HRJO1E?i{Y%(xr#t zq)C+3dNnk1aju(`EY#IGEuDdSmM$j*{C^{g{104zmXwfS?m(s9U^~qEa<2fP>6yCx z2t8fpabvqWlw1j1RDgFa^B}-Yh#tt20UIum8c5LvuLS>m9zqHl(_QlU!R&Its4w1S zY$xAkH~NJX3rHe~)(~Fc?fo6mBY^t-i#2a=3RlG%+&RQaJ4~+ZA@dhvp}-i1>#t^& z?PevB*Y(yW7!rbQKC+*or+-m{LlN%ua3>=3cVlYxH#SlMonSkHGjZ6TfWrp0{~J?K zENlhS27p2y;|Csd?b!7P=az0Ous>y&3s51n4V(mj)riZl&cV8}!C+Mjv!ZC7leWKD zUw|P!7Xa)fOoF4b=TndhmJ`2pi6C`-I>&pWz{2Z4WG|*9RqOT`Jb<^ zGrGDueB}vH?DKH5y=L+-L3+rn!zzv{&h&Kj#SOfc7Uzd8P&EXV*_X6ZNy`&==R~)2$mEQc>#}ioK83YW zG<0_Aom=}3^>C@&8~eI()2Vf&`OLm-Z!hkqh>g?%eUx_(6KLkbi$Lb`TUkA;jYN$S z+pTy99gOI15=xQebj??tO=p8Q?LK1r>gRg*VdywtBrwdr0NgxJKO=RCjd1-6JcA5U z&#R;oNgCS-v<0PIzJ9KJ35HvZfvDj0k;>BSGd|{02i7tL&;lD-TreG}F9#xBCJP1C zTpEbv-JOB)U&_0Msp29FVQLWQNCsN3WV=m(1O`SOY&Oiej9`PwjVG?X(S3+xY=CHm zg^O8O@_dD=6i36y+oBEY0YpzgZ;mz`L4Z<#J>LQBx#2hviLmP+ciMN{2OQhD1_;`g z$(c)4F^(sCuepS?rC3j6UT7=ix;t_M&c$g{SWT?N~|jl+S@Kr=PRgcf;MZd zofjj_&8iX*hm~r%K}*&g`;<2;;@lceI#fcq0u7up);c9ztwBy~9xLN35LLO4>I^RF z0f1Xwsq=weWkW+&QxT#dLq#dIPyn1j+b0BU4XO`V=L*Vg>Ny2CQ+uJX z`c^Ox)ktW=_YZtB@IffKz@AXFFo$w&9mTjAwI6*ZV6`l_DGl5!i3tDBQlbWjAK!U) zdOd+%Ejebl3M`6I(2_G+LbM{;G>}=et6+Y4e5X>wd#f0rWI<<0Rz~A(?w#G3;ssVYz8hFr;i_a=siNHA_0xSm>wm2cgkzB)fB`iu;>wB z7-M9e$Ljtapv6Qkq!N}$r!;ybU;+1#V2x%&9soMKT|e>w=%DMVn{Bf=1M-docd}d5NC6Hh;q-teqJ0C%pDyaAXf*e?;%k>@Pqo9&cjfOh|#bHk=fEe8XD+~<=wOU^JW z1Z?jn2ZraQHts?KVW|bsYv%HhkY~D0v054tURn4ZQw%sQhUbKaTob`1x7@)ahlwki zwG{@YY_CM7P(AK(>39z@bs=mVzTR4Kh3SrGOFjDHuv0#Y*>fXiqov@EJX>}E~`W6c2dvFcaF1%{UPe!Ecm%6 z8tm_W?Kd^BUa$ee1c;y4yNLCTDpE`Ypo&wG*<;L_Q)zRZYN5E zj9Y?<>nNX}9C4!rZqwnS!jZT!?`&3*3*NVPx{4S8O7RZD1IWx^y7V9qQyQ2F+RsH> z7_hr@)8%CF@YjcUgmIa}cXD1lFu)b>kZcn!s;@kmy38{W*B#2@KIESR_MhYINlYM% zd3_yVn7SlLAQVI}wo!l(6~QApvOo zglKDseWaZOb#UO-1)_9!HW41@0~uHQk?dAsq();s#|fd47>;+oo9}~1lU7##$1;pS z3Gbh$rKx=FjTI%g1bn}g<6c_rQ5^+gVC3iu4wx&YSb329WRa-KaqQwCC=qIOE4_OF z2U#^o5==E7cmw{Pv;`P(SgM*kf}a;B5K@3PC*S-4J#s>5bjR(u>?;|XGqBhOxCNh# z-g;?;Z~u_nHyZ5-Db~^&RvTbFa*YW^xL{OEP1`L|Tn$3vJshDv2*9;-^IvZNXjk(EFoYQ7l+F8=`#H z9I-WWX;!St!?9jHY!A7_s(|z?Jcb;=(i7%ZK7rr9$U(#>kt-9dlo2wqTCEOb^|P4( znGdeVJw_w3s${2k7e78!vtj|NGtm%_cONC||J85bFOYuZwe)}hBKywL=11*8>I2=0 zz?nh##m!x3Zww}D;wA!?u6GD%4)|?>AzCRcE)X)RJNk)dRk04gbF?kh{L($NF~ z1iVTNvP~l~SI)KFmraFP>T?(y0g_ZNBh1T<(7$kdA_zSjIn?T8to6YRX9XCFa0!qV z`2zh@u!~<>gxn?69R?^2X2-Nfk%GiLICqrg@f*wE2vC-}6|G3H7czSun;}^ydb@%m zSuSpd0835>7hRHP%|OnsxCl(Kj#fPgRsuvq4#DyI49$mJ}Mr((gs58p;RF3LO~eidMG3c2ppdx zrm2pb#UFIxdDZv{MF0Z`O^Mwf>+T&CiU}2{+2nk9##y}Th?Y>8v^jVJs+XFZ zyQ7_$$OjAqQZWVto(~UMmwMu4^rhty=#FG^;^ux&^wv+gu2MGN1D!n^A zb+!o8fdcrUMEK`}uXEd?XD9Nxl0oa^>@QnWZE+ZuuUqonXtn*&y;pBG=&AV*(?)*= z(2i!WJRIe)puvdSb{W5@dhNVes;;1w|7i%1zuB=Qq4P7E!BI~H)@?Gc2VtVby!w84 z+RZe$CIp|OY@kNLNI4_FgXl!D3;D<{$)64%2H_zGUU9W9BmyviI2@upT$g=wL~B+| zf=S$Is+5NUdC4po(4b-HZjAA5}U;^Ei=<1g(8- zL8t<>0)Ue&fBt2hJvlJ<0^ zaakpm@HLiT?DI=fe8*bS0Lmj3;)X;BFHCiQtdiqc&oi-D(PP9%Maq~EaduE~E%XrY zpu6~i^6<>HGiCXcY5(I2R>mV1d1ng)wJ*>fBG&^L0=n0g32Y;YO+&?<@l1pOIS2=f zUP3TPQf~WYeb#6W+#?>S6sk{HHb@&yMRW+$Y?W}+V`be7ZA^^d(@YKkPfHw1SEzew zn(j>Ng~GO!`M0Q73Q?U%ih?cB1dk3xPxMTkCfD_`)_XJhO3HIEEVK>GS9aDm#LKI-(WL&o1Uk9`hgw%aG z&BxTIUR5%IXZvNdzFLPW`bc24BqYK%fT9oRhPtx?#PmxQ7LT`NHhV>HSxXjmcNNyP zK7O&JHtKNbr$O9MqgAQYB7UXy5%1c!hhz+Q9a|X!uN*Y8;LkKP_tYDr&T29J{Rey) zteW7m?PnOCNE9Fh<-Y79#TQ{%+D@G~)8WZ&Aqx(Ji~V>B{GiT?W=qq`3twPxiT^$O zGW#|~X90=mTC^!@hZgLTd=DXZIY9{7nr)-`G~Mk6e&<953N0p!kk6vg460b_2n4Z^ z|6+KFMVwMjCdj1Tc*DTCLB}7uh{bF1BOYsq7DUAiP?BERq#f9ahz`^CNVx4(#lUZL zwuM}l8?QTj4>YEr7WK6$9!PC=BZ$oT*`q?igpY30guDXV43P@)^F#Ow4LvR>cWDG zJ=T3D7u(B$AX#Lf$m#Glt*p9%Wa(z@UK@y?dQm@X=?0RT15rZ^?0jB63S_VTq=7w=$Gi_r@XE+*`yYVImDpT$WN`SeP(1RYiEObE zon?(K@ffe5T&PXVvG61Xt2Dk4&aMVF|5 zs)%@p|8N0F3t0rp7P3UP3fyG<%1dG|nv4R%5o{<_Tr%g0f9At9ghT_(vt|LlGuKdPhEtBB)3+ry&D}U*RjfjRMQ4% zQlSzf64FFNhGzA0gQj6&;OI#dxbA-3)CL1XHGI_+twx~QzS2Gr~>L?Vku zYPN^8y*sE{a*4@?nYz=V5)mGQCOBSRBD0``2YF?Z{Y-ge2LwTPrk0$^lYpD}tY~T5bz?2+fbSDP=jGg{dF8 zhM~M(-m9N~DR(%|MGOy102)}vpIToEe%_Um4UTCgno1+MjGgYMcvZZ1EkgUG`edRF zlo31w6rGt26vj4suKtIYJ1GYM8Jy5 z+#|jz_R_=zQ7#cVA8ZQ5N=>xP{Vkb1VV>a&VUg^dFP6I4;$(a#mDc1Iwu4E41WT#H z&Dhu;y9uDQBNAH>ff2W7ZS%79NYW-mTNj@uiitAaYgFu7gBIpY2jKDaxCt_B(x-{R zNR+2Q&%>P%j;aI|+tl?K)nn6Mm}Wi)LIgB(%d+kJ+>DGLLnf^LtQu8&wwvdkv_+xK zAo+bDaD3+dqbe!-C6lC&{|?>wjR6ZDE&%#!MX8vDi%2pA)e)RVl)jMH%d8ba$n%pMd4cOISMxD|R zVL^;o;UqaIm#AyJj|n)`QD0kjMGx{Kc(~Lo?eZ9_I*qrY`D)vl1Vt4QbVHgMAs-Ja z4H0g;{kmGJ?Rl)X3CowP=>j_h6S&SFjb;h0p@g+z1IJ z2Mf{i;iid{*SijV%~2@m`kMuU4*l6%H4_XcsXKa5D2zjo~!A7}O zul516Vhxli3Bhb?EUodJrSqXp&4%Vge-wEuh!jZ)FJJ7tg|6Y+Sk`M#({Z+4JqfgB zyb(o!|49aMccFLCjOrU4IJ;(VD+!reZfbSONBoc@QFP~@X*tAIUi4`kPF4ix1l~NC z?hl}I%3Tr&K0EUKE2SC7S|kQ|$xl{r{l9+WEs}3r%EqVNAj3h{p<)Bg z85ZKsBVA{v2L6Ehr?zPfXa7mksq2Z4Qgtv=gTBOT|6WqhBFr4X%mSv5$oZLCmw=F! zkcg-%*j94u9Xj(an+BH(AZ967%aMh6br!TKQyWMOa{DrpUF;nO%Y`W(^pL&;yN$SG zjA0()%uRw27{LJkE+fxqsh46Bc5mcS zl3~n#a!hXQ>2bW!C8o7u(Fxz0-)?Bn`=F~a9)LHyUj&%|7B8|)YRIudG)+zq^=iPE zU5m4owjn`QTLFOyqn1|PbD;^@Yg_;d8QIgNDJj$5*>A7weiGmtYblT4TsxTK&1u&a zI(-t`Qa*P2eFiXZ%Db1Ov76kG$mmhoLlH2btS6d#x+_E%d@C22=c%vR(*xYi_rZHBykqzcOkKK-A_X~zldr9_CnCcl68fHCY4{+ z)^cA~?V8V)lwjK*Vha(-*kEQnlJU(OXGj|(P?+TK0B+!x~(`6zgn%ZpamjD~Q#%)e(pn0g4 z36l#mR88NjErnqLLI7@0%4appd33&|J}Lr$DO!$liZF_usi&efbCpC^ZAxukbM#D5 z$yv5jcN@Yt$0t_I{VbEAdqsDV*(*(P}(;}vXJD6!2R=^ml zuti&1y?(WSmQwF6bzaeq`I@NV*DeL7nb;+1V@XMlH?8X9sweRjAU+*j=e(rG$WWpH zj0XX-cAts(x7(HqQo++^b@dm?^RR;Je&lOb{trGci=zH@ANKWWp}i=6dD_6v>u=+= z=s%uN{Xu_~UBZoqADL_H6Am~Ygi7?>{PGJzQH4vdJ`&OYQf{fz@;hpp8M~F5{#y07 zE|YZ|I2)8*o?VjOa`dkG_71yoktbt)-DPzpJl~SzT{SW8fxSh6^~0USzx%Z!)-FZq zocPNceEC=Zb{R_+$Q3wHbL-FaHQbh_du+h-N%kNZJOcr*GV*}xNR|3%no|xO?deAg za{3RUadar-r{ot7XO~jJQ}$=i(&y&p+^t%8y!cox?;e;x9xA!--@l(>Z@)or+s>VF zj~_oy8jQ_wFXRNN2Ag*{UF;ibYLGjbo$4GzWMxA%nzQh|n&&X|6xXj;@tONQ3$aClnu-9r zOASZ2y7~A(nlgKe$$)?cN|&Lst=~}8#ihYui@b*lpS5Eip`=s{R0dY^m^F`Vgc&_h z^6D`^j*r_uy}DA=a1o`G`6aLpg*EX(^HK4E)8F|`zORK-EOxkTVW%F7riSw_>X_=; z6`hEV8x~)e(Yp2K&6}|}sQYHd@bRph+E%Psu}XWFrlzmnAn;;Ri*(@f_JX^o2V#2i z)F2Oz8=B@)fdbTT@%$fVIk)EcLkOhD?C(#3jUwXbPV8@vM=yL?hj!+kP4V*Dj1v$3tPRbvrC?$ zKHe!!S^_CV`A-nS`W3_MB!mV@!Yc9~j=d*&`HoVkmi}`xR2j&5qhex;yJ$O?tlk9 zHt8~sMNLe~_(LuT=!MHK!ClVQa#Z4tm6{`=d1kH-JnVkm5Y ze<#i)jW&~uR5)oL6fOJsyR!!%i0YnN7E2bP%sT%0M2uK}L$YjM=;81p5l-%43eO(c z3lruq?>bAgi0cB@nx>BkjlNz(PSz_?QBkB=fiGyvmi`92(C__tB;*Di?61DBptn9* z3QR`2S@t^1d{>vVxGt_PC&%t1NS1RT4VUMjP#FuSDoy)KiZbS(;m4sK)pYOKFB>%b zA>A_ne*bB_AmhXfT*EcqIGzK=q&32E7QiJeW$Hh7<;s<1aq&1&{-}q1z>mCyC>^IG zG5^SOU=oY|-5}EHgPn+|=&=tpTyruz$%&qTVcEIfFs`Pm>PI!#*RS}06a!b;BWa6_ zX4}lIbb9poV9Uagn~jZ)gp5q>xy8#yL0Y_4{d#*P*Ie9yc_N!M>EX%d9 zKedLUblk~63Xx;VaMzp%6Ck@d0dS=EQ##>w1YZvg)8=n7mKXCTmv^weP>Tc84_HW%TKyBIefQ~Doe=SAzuy8)A zNU1qLyz95XtGoiun*X1tP%b%34MIah$(5nU9BR+EtGq5#D~9XOFb6;TAC4w++fr0; pIk}<9SNvW0w_*SP({JYm{f|2qjT~C}kPL&~-k*NBzx(*PzXMuCUQYl3 literal 30721 zcmeFZXH=Ef_b&P(B6c(yjUZqmMMWS|Wg{iA(lsbmKn0`;C~SH)MvYM*Zkm)0C<;hb zs&v#u+)|}VSLt24^!qH5-~XO+&zC#ymvhH)3hW}N-k@X3 zsPRo+k(1y2rx8y$egO>J&#!rCf(x)vRagVD5Ni z7^|FDLjCf{Y)D)K{$MB+l~tEQU->0waUaEo-(ucu_az^kHeIhwekL5^*h7BSJy^Ac z{IphQTT6aQ$5E^C!)D&MKgt?!TxNN@+Kk>Zgn*^wMxbLAt_l|i^Zu%ab8Z!S5p%*sJ^h&>$4<0)8XTD z!hd&IMkOtYz8g9s2YD&8&rU=yM~Zv(tEn(1D&@rs-KP#juBCh{SMF3+oO-HdKGK>y z+jmkaoPG1*7;>kzGI{Er)EA%sXubM+lfFxv(*$$WGk)c}pUHRB<*F!Vm1mEn3S)UL zZTa1w-ydBsyo!nua}U~#B^b}G@)8p-ocv|F$s$^&B7MVEFr3$cPPuO|E6@9kx}7>9?4H%~6z-o%q#lf#rSSG~2F zw>d6=i&EB)qu8nKnXY4>BfX}ZtZZ#7iWka?&E|)5#Cg|IzTtM2h3TArTdSqSTwbVJR%a}Hot3z3Nw31S&k#kc=ThCZ2zlrzKe8;jPnJlBL zFE+p~=hYU<*ZmB1aeKPu`$qz-i7KUNZB04zn>ou$%e~77m7=Ar7#O2(@TF}lioBxO z%HNxo`fJ$O4CeFMw|{50@O7+Ayu)*%qKt!+iqR&IgIxbts{MS$jB388sC^a?^)8t! zdJMC7LHl>n=$4<3QB z?Q*+Ab~}H#C{oY{59PoT4DI@TufOHQM(udbif0#JGX%8b)LGRJkG3ovg6)*9Ri=Dj z-P*(xa$_@XU;a?K8u{H%rg@*JsAw3?$vQP}Ao09og>;yl<7LG!*SWfi=10mr+9#rF z?&HnJ?!k5Mv+S>V(%)Vt&}%ZKyKtkr$dEwW2V&_Vu%A3LVK{Qrz9+> zF-!v#WLmCdXfV1e zFz)X?8M29;QjU*Z*)Jw~tEwEU6hcS6Mm^*{`m)!wwnhrfVq5424`*suDlIPzLCQ%} z^P$6EHc-lqb#=|n%?30qGi#_RBQ&7F@Y#i*gft@`h@`&wq0!jGHoMt6X<^1^*~OnW zkZ`W3BQ7p3xM(jI2? z*(lm|Q-3)j6$$(Hf`#dvV$sMo5Zo~$xOK@n?e1k&!dg-1e_TgVOurQoyN><6Gc=m( zyB}jNe1rXx=bx8#2kVL{bzHp7yIzQmipf~<>@x{pAaU{352TG~Vxbpn( z9ZmMdi?koO;j=F8yg>Q>Dg&2Y9wsSV%J1Vj-R9D9C97U%*N+#Jd&AvXSOv|f-HIePZ9P-v#PcOhaj$n$#|s-45XoF7ukiT z8e$P4`KAuJ6we#I@#6{2A1#vKCZzthOuRT!KjZQf`;H=gpT((+T21-xgjoM~4-T2u zq?r`|V-`d?`#zI@6J#UsG+5aGYCHM=U7&@@{+~_d|9ynKqIXn#d!`kOA!xs_@cFLF z%!vKM5f5hx%j%BhqDEu2H5*UmrF7{QN?tCww)Ew7eP{AL7x#sxj6kObw?XqlcfrBb z`8QQJ)(G096*>g4QzhZVt}-)n9Rr`J1>W2c*c+XuTA*v9v1W5}s)^3ytZbd$GO^JX z*`^COWJfG+^D?p;tmi$o+GruJFtSQGLcnzVk-KWnxAdB?dl= zIZF#YmmH59y9tIV7Sf^>75Y1t{T^Ly^64}$o*s_4QtZWZ6E?aIHd>PJx-@IOx??a+ z*SsUkAu=lhzme$!fOGwJp3_Zcm5~GK=G`BwAF@IWb&kiL ziK3J($c|#&U9TJ18BH+~lr^lNd(spWDlk z)6u@U{$EoVwjS^5YO+Wgw`Vb|8|z+gmVC8tNoQt+)nKSwD&aG$HvaL3{S|s`p+|ae zR6X|tiV{)7fHR-&*JhORr>!sMQ%Gz(%_aA^c`cis^k8blP)-MrlDNUyVOqh3pQKY< zOMK1ZnTZ-FD60Jqq@=eO=Cd~_U{laKl_@3tSyn!N!;JRxbp7HX8E(R zS0lpTb+J?2H^^HaLWdg02HOj1P(iZ*1=aY(020c{w!4~+AU--W+ZBk2PPZn*qUuV) z*c;@FUJecV7UmsZGorkKnisx&%-Qj4)sevSPUq4a3{*ObSe5d+PZX%?EUB#Q?Cg-u zY?M?8yhwbMsG9IwF%y{o)+YbT$xs@$uKmf%>EhNp&Vo z`t_|%Y7F%-3BjYcH``8>#uVJ#kn}zuBC%Oxmvt_^J7lSNjc;lR0>V8iCUftp+2=4sVa?4xeS2 ziVLd|B0o4Xt(TSmCFZAdv-TDjsRS-R+!PA8t2doL$ykZCzP+oG}U*0jV0<@7SK`uk@Ge{1*gIrq&- zhE`Vok5u(nSlH>k$kLC@oKJVXmfq&f;#9JHY{J{>JwIGlb<&Uf+>h&w+S)yIi^Ys1 zTfJN)EHtMCUoXw;?p@91`vyf7UroE7a_eK2k#hBu1@B{ny`5@mY8dw36A@)Te3F;T z4|J3wp6r;K>#vPZ8~3WoLV$KKB23Z8+o6}qdUU*g%?}lxEA|tC&jQRUC9o39pgoYX@nKYRAEFPKuU`j$e z-C1wcMRew}o!R12)F1qLWZ`O7+1H|Zp`@`o4yyTgm>hTOUw7)oiZHxUH?8!)cRbnl zeruHL=R5ER-fmO%y0r-O7e-u)%a-Oxiw$P7B(!~9U~B^Gm7Cicg7vqKA()&T3fp~E zxu)0$D_@=U0J*~^%gV^E)ciz~oK^|wqxD0tyjv=PLfv0pb5$j!6@`zq<@aLY42Q?X z@BAF_$bDLUx;29qEg5ehes%1#S({T5^S8omHsyH~=}?oZjbx3WuBEsj!96Mht{ z5g{Xbo6p@cP9q`&DZ@(Sd#H4`Hf=}dova4c_L-uAh1uRf9=n7SvZFaB60TR9u282f zu-ELnGSX_D*^!hcls|kq(?nMW#zAsEwJR7@;bK|~Z$XVrKz-}_r9FGW_J(*@j_0P!YL`N-`25?auq)RQmCQu)i6HNLDde`F#*;~PX0)g z4MhT!mcGij7wM)M?>cnp*vY?dJj!!QYB-_6c&eSGadd}RvayzE1a_XZr&;(zUrQxK zc#NhvPw*c4p~&!6Bk6FYRYrwO*#_}~>bPBTn#}NvuWt#e#Hoid9v;1&-M@I$ z(BRn~djq#qF*6>%%<2G0D z_9SMQ-6AAEbegt{k`jXvCO<^v2?MsKHS>809K98!dCcOH#G2%&xVWy5HzAu7iXK3;;#~z=(H;Ipo%~3 z-Jk?@5Mhw-IVm@Xa|^cF`VKWJPim=W`=mX?t6Im`>;=)3$K2|{+e)N0onH-O1_ns zs$&w@MoPvv|7g};(Din2($8C{Jo4Ov8>ReOQLaDiQamCzRaaw0=^5FioJ(2v!u6U% zr(b>AN#5YeL0t%gz7bb1_*q1$EPX9SAv9%-^RzHx?oz&pgXbUI%c!}3dQ?da_AD2B|r2guK=1!WntCGg|zMh$A>f;sKsS2E9Jy)n_&?mtEa zJ!>#HxAp5l66;B*&|pd^f{dC%kA5?%S_TG3m&>>;DBBj4oNt#U|Cq~_5~xpo86Op1 zu;Ad(WM04X7$=|Qu{{(sdes(RvDhbqxjo_5Tfc78Qg{EVyTv!>`O7t|+e+s}w_fXi z!t$4gR$O>|m|}(oC{pxwou$Ho!onx{nTYUdn<(bX>WB5emnbdnpPj7=L}}rK|3T(@ zN{5L@8+a^?bv?YzxUo5LGo^P9F4GBHA8`YmN_w_?R#D8G``ZT|Atfg4Q*HiFS#kM&DYbsCWDI$?o{o^!Ro z=5#1FIabv?r9QSH&Q0)(u-Cj?sqU{JLxjyu4J7+4cbW35MY$&)ST)lk-sCw!t{uj; zeUn0(>LW$@+}E#txCk|@4!*~I&UT|itp?(fv-#ySL;AFDse)jPRMY1Dqb`OTyxa3i zeyUqaTJYrV`{m3C5{j1Lo5=fU-i2 zwqCjbStS>fS}!(BdRv|#TvoxffwZV=pax@cMx43cH}xGND(?2!03j57B;4uaOEaOG z?39Q-(<#yFrA-?193ZAAT!~>l7Rt3%kzr_6roZrj3omUFjTt9_>tAjDj3rE6#D<(=`N=p3c|(dywr3tvlF_fHB% z*cs5aQcmWZl&L==;HW=hk*n?qA6TaPXxSfrkeeSODimR#8uF6z&Az;P4|RO8N0tRY z@ibn@Yd!=sNedvc>GRbqVuA~(*Y;#1JYke!ru>`cg5NC4vJQ&KgaCrMY5lH7? zi>%y4Id-6d4N|deYSpr|Zm0_)>B5qcvwr&g2y3%^ zkS2$+g()UI+#~Lz;=RymUDxpw=l*5tg45J!bflAxgyUt0`f~_-FhaVJ;va0)VoP6c zo52kRMkk*Trzo3|m>Y@vUnH3+W42@Y1U;pW-8HhFv z3h7tU;ZO!Ox0HfNo;B|{nBY9iD<|Q$JRj^soqlIvb58r$XitgU{y6w(ODXsPoidv= zL8V12iOcHg^*RtQrQ%R`hSh8%+<0D_wvO^cu32&b<-4xDL57yM#4f1>4E|%qbgLvf zQ(d=})Q!Ee@Co;InDja50rIZ#_W?p}3nHtiO;&x?U7h?|Vuey}v)y>*zKWBwl+HT@ zZ$TXwUnkz@pp;DqncC4cPb2Amx=1~?Ao*&l5xT+i6r&KEs@11?kpUCbzhmi4ED*|xM;@i6!NWjR; zhWlUhYa06$HVb~|>y8Wl6bO?QpZ&y@lyzOEnFupx?{05biK`b7p5evSQJ8;MurA}d zX_EByIrySARNpB`fp@3TSuDsfCSLuwM&tv;c&sK1;X)7MmV$n~bPWE2HQOt!778m? zHpH9g7XuVRj(kzhT64N8iVQ^%Jp#{<>@2rl!HNoeP#uDI8Pyfe2yGJ*5M~C^M~%sx z*2=U#GvNBVFcDb1@B{;F{$tgam<=6aeEvTy|N)?ObC?KR>wMImBoWaWK7!$NocxQA>mDoC+D?&VkUUY_p?vrrXg zyPyGgpZB{+ntFDtM3YV0$`y}J26ScCGEVZTM7ch~P;^j{kLfWm41{ZP{_uU%wNk9I zZ>44VgRb`{155eEnX7&4(G^I@-5{<$-6XtAE}i}jO5@hns+w|wZbQ!ps2E4o^Xfim z`Gnu&V_tcFykCG)=0$udaq-vtzAN?in7Gszj|@ibJN?vz(E{mu(aAu;D{eJ=wH$_M z-DjbshDM56T>=>*ZSEsy67xF0_Y1s8=N5){0{Z~AAz~qyBgpV*@}GW7TrKs@mY6X( zcpcbXk>FXFYMw}tkeAo@%fEZrT5O~nt4>&9N z&E?925Kb{!hQIjS9yfnAU0x*f%geKCV>ni-c+ZxRJ<^JDmBf35r|Ps>rUBR(jiGeP zPb{jsCTjziXOVh84P40(cUg#c9SF33@NHN){j4;Pn z^W%6~(tfEMoS_)uvw`;IrLNpwSgJp~t>x96wva1DZqlfh#$<3y3c)R!jkMyed3=~1 zyT@FA*HmMm!t_4!;0mUfv%~x2_04Z6`fhxEBV0i~ccQW@0T~b*WyymyOE^06yyvwn zu{{*;QCLIF8-EQ=1?m2tV0iocQw?g<%_6h)X}G+P=9#?OQn@$UB-n>+x~r(_=@Wjc z4F)3cBjkH-*yX04fuun8&8Kc{Bom8S-0g5m;^NQ$sKOK({vI;?%rof~GQ?kH7Hey1 zcrV(>v$JQSJ)?XBEu(=C9;28JMXM}T)UjQE$>M_VG;#$?s-mL)=MTcs=gHER4z$Sb zQpn?8w^n%`;+FEgE2gS>_^)$3w$Pm5#6+diHVy?@#FU1;$_H)#eo+2*vRzg)x9 zb#tfj+Z~2i&d_!!Z{@KKnj8o|vPehV0>3^LL#^KTu_q#s>8#pdm`495W~=A0jfn^^ zTg=1VPG=onau9EClZI$Vxz}R-kII}8a*|;(q9luiXt}j>>{$Kr!aGeMOl1Z52ik}3 zP~mu{4sB&~Ym=AjivdOg*V2@*ESz&wX@N(%vXXeIl6N2M^37074b~-V-kJ=Z`3a@E z9S2WkH^pHfNoeE_*Nboi zP0^3MF$LC&?9BYEChaMm+qaUn{eti2tHW8WQYB+DtX?TkSClAO>(@xJf7y(P*wO;X z4`hF&jv}C}EB)W0PvrM)DjASl_|kP!N#fh@E;wP1&1bO7M|228&z&XL%b){@^=r_B zqFgH#Y%~hp?QsRNW!^<3INXOIzcWCb3D6B6Vspf4LYiv&ZPPrJT9ils#KQj8a~2ENOxF&AdLCn&kY5or<}4bhC zhDYG;4#BiyNI=;X?mRgT4KlY020&kMTE6C*igLN*?`rl_+;>-Pxgg#26{8uWk4A0e z2~iJ6IHTMNmy>)8MJ_&tm4YH}Dt7vK-FfvIvJI73e}%d14LAtp@y)4C(oLUgVC@YE z(p**j9b9BmAL68?#Uysh_f6(#5v$E5RFm!BZ{CRnZqwXH?)$dMf?sftGP?A7g4=|# zwFcnLGCQV$^~P^H-3OqLE1a z?6dUj4n^XoZ(}@Ol=)C=YlFDy@&vd515v6qz3iY;`ro{CP38FPq`%<;LIQQIw^c z*St>YuN>q??0zNk&^ohNzm>%hu~PP?3tx#! zkzo`Ly)gYpN~9W8((yn+9$x*i$IQwY#N~(nRA(B{IFw7F8Vi0zQoN9qJF-5v{wEkr zGYTyqH4p=$9ebUfXlYC#8Ny%+hL8y-TM~hwH@(G<$fd}CDdZ8ORf`~8etwZKL20euyYBt*x^NZ!Y1DEBlB0V zMz#P1(yi|96h;hK=uXUE*~()$cwsDn$U%W)PxTXpMf!NuOb|3sd2e4+#+<`_~MI&-1&~=@)2Ki{-L3M6yItUy~MRwCsut;VrTeEaoMnSVziGklG1U#SmO! zR4uu_CE(R4a=Pu1VN{(Fj(A2a_@v zd8s8{+FuKGu#{h~9HZtAhm$|NqB3Wu`tD1~l4qgzrW}e8Qv#bBc~;_?SVnx*0oZ~q zwjhf7Xb(ji?~5g~-Gt|Nf49hqP1Vx+0Fxq@To>y_c1^0YWazS2FN_Z);o4+?O{=>n z`vWIYiy~tgQ5aPbQiqLQsMwF2o@7bu7rdaaN7!@&J4;9aTi*~F34$*K-YYt_YqIY? zn)Eb|l5qH0qj!JZK~Ne@q-^oN*hc~dj_s5UU{Lh^s2q~mlYH~MJET7JEyYA(vrhur zJJPmd4U))Vx>&;aT~89CDAUW6()So9O4N5{Zc2oS$dgQk*iWd@ii9%4}(?_DI9`?(BzWH@O4?OA}+iU<{`wAe;VNrvi6#?SmZ7?l79DC1c z4=6Lwl@+yQw#EGPUmwr3g~D&Gywe$B9uwumghFgIn`Bqiva&L-M%ec~} z;BqJVMX{jum`!tr&IY9O7r%Z%FC20u#nc1^0&cV1(3UTpaTyEuY=8_(KZyfHvFapU z5(aIjl7Ks|GqAC70{+PG$NbfO_i#~4n~MpFxG~GqI|q}sX>28l(19#OhQy+=xCvRh zCZbFVX`lWJ#5FWzZKrKSMOlA-|IbYT7^p|X8I&YKXt;-9o30z!*ol#Q^2YeK^<5$F zsfaeALCKxa;AM3NK!u*ck1D66Wa;#;2J%j2v|T057*9;*UhyUW9oD?AAyST2^Mrg` zzzP)Z&4^ySLh#m0i}Mz3PK_0I`NJXhKJzVM_Gh$xZyoY*#v_yBPWGc%fwHg}@?L0* zT%(DPm!`s0UBS}aV3~M?l8-l^>&NRyzLc=%etES)(ysNzMt;SD3#t^utU9J<9i`)k zXq~#Lu<+%zT>s-h^rF)&N_^R7-^do-2Pjz>xHcQbrLh2El_;R0NrwsjulSFk!lVEUd~?XafS_06qoOj%B;=nk-zJZnjC=?fK=U-15T2M2fwah|0ND z-ZS|fqW{e!s=TK&nlQcbB$LHNdeCMk^b5NIS5#+2IyLAcZ7EzDk%?X$vXHc{OAufY zNajKP^v6df5j*7~IrqI)onn}CWTw?|7U=2+H@FlJ`^?owtDYR#(rDz;Hai_V&+uGWS@?O&T7snvN%MOM26|?&n@ZJBNPkgNw+q5Wxd^qBm zGaiX=cmiMi(O_s_*xie!p@~ehW$dq32{+K`wjfZ;&vNxm6_H^DUoVk;t>Tm1al^rP zRZqzzX6G7YAM`Qab|xw*dBiP!u~ zfJhbte`wy2tdByCtwWh;PV!`Da-Uz{HmxJiJvl!QrWJd;3F#Rb%{u)t{oaziMp5qT z$46WB*!`wGA5C~nI1W@OoZH(!$?-9w_nbY*0-NN@8I@&@iH?KyBIprv_or1m{*m2K zAEixz9Z2A~dW)CmizogT_daxYhv+-EUS=qo(lnFhxyFgH0G}hso1d7bW+IC|sAO+t zrT?j;JKgW}noZo9sy?Gh4lSExKE$Xg#9R6p4P#J^Ypb4qf0TPrK`1G0Ym`=<+TPUV z(7FroMW^jkQc~O&#!4OEAK%%njYN%@&%)^PVsR}1w`g2vW@lf1b8puys?uRhmv%W& zCv^MYilk^oEABetdXnTyK|0$Goxo%!twFfM=@N zZO$#Nn19%h7k>_qi0BwI?2M20cAuS1I1@`dzy};8ayirlh$*4pzAvqCx_P{;{rt2b z3prba!t{r|@G2J5t&UYg&rA8RX=Viq5N3(uOm0>8bc=lz5$Hly5dv6e$td?sXtuer zC}gLx>%)qX3#?C2ukiJgE1@1|G(qz@dm7$E0lb}Edmdrx$c{pC|8 z;s+T79@%Jw$7zT#SM9r)0z3rcAbMk08NnH#^z@FGiC4j8g=1?`Fj@G#b9qE&?}>YF zUtH@9S#F~C_15dE2~&E~8Yw>cc{0j=_jp2)&(b)m-|sl6_otdzt^k+P!d2p=Li{so zgtVd}M}3y(cgfnFC*6DFLU;48Up^6#(?q|P4{dR7$|kgw2{1gt#tVe~%ghlAU_ZSR zZi*nQ6Qu1cDIKu0o>>=^uBP#zJ^)Ab&yE~HqAZFUFnj;VZ0s`$9LNn>MP3*p6{8vD zquAs<|6d>TP1C@B@pB7UM}$D!8R5#Dwn1zzX%RvKKqCPCkVgKyWuLaWu_jm(?_y5& zn=-9pCJ+o{%{1E}=D~+@M%mOtg}rwmjH$a+w|K6;=6;_50aBCwV3&eB{e&NPFe$ZJ zR7LHQvOMjKUB+`dBf3Je>WDT?$R`W^u3D{7&9M<<*H1SIQ|K)iK+!2V?L;i-qI(gL z`)-e+=ea}aWq{zHrwK9Nw&prImh!rE5mkk22o%l!aA~&K1vqcFepjgnB$OD0ry7q2 zKxdv5*k*xUXUZvAz}LF9^qikj)xXU?hQC1arD+k{iQs|x&HW2|C7R#CG1>X zxZ8cR(!!UGyfi7|qv4t*F8%d;j>EZVUj?dCX~c$U-RsT(3Q^ zZ*x`A&~qSb3`SYibxytq_FjXAVbV4_{Rwp?fZEUIOlst`IUDw$Qepf{GNLuZ$^pP? zF(2qolg9VeJ3S>&-dSOG(Kl}X}%YZ==`T)>`IyEufF8yuTRqDeC&R7Z*fl7a2xg` z)SX`IxaMP>(I^*VZ9TdBJ=@cS*pqy20{O$)Erx5Z-s4wN1W55h?rEQTL0R$Tn$V&k zEE8efRUtP}EqxdWOq-L#$LpNL)4dHrpOCObpaf-^R<-CG{CD*Zchx+kYH&kyOL6bnF$kvLNy#FF*GaTy;_^p$kzdfSShPhzW82n0(dee4ZS?_b-r z%8Adz%1Eh&id7WOv`360D0Bl~!V!Nh00YmRtWlFc*z);rR)HJu^wrFVfcbR8*S>=j zW8io5SU(w6FcygqNlMK-(0JZa<8ozW7#CV)0KCm3(kO_ho6*AHtXFt^c6N580X%!nrLmE8tli2qp_$nTps#03^9E|zthCyIvDk5N!0)=7w z))zJF+M9Z@Q8f@wqO}*6t7Ceur>Cdkkm;L)J}Gl>#0@Xk_1{B}nm@bwpoRv6?5=v=VqaYNI=v#g zquG5hg^2Bb@T|Hsb`volOJ#g0&==r;lUCNv~X_!DZt zeiaO(S!{k$Pt-zt5W_#}KbRZ>03PIGh}IkNF#-frJ5G-kS8n7en6vI*JvvmpG+0b{ znIpU>8|b6$3Q7o@LbYsB5KW><@Gb2n$Iq;;o^&g|{ zHqIdbiR?Uewy&=?hx{B>bKw^;QTFIR5BJKjJI>d`Oz?>;3OLnKQq6OmN1S7jwpJ z{Rd4eKfZXzB3l2IVFjqJFp=|wiQMhWzFDuxagaEt&`l@e4|z-vfdCw>@{8!G)Z^=o zYx};*r%Yf}v%~g25hU^=acTeIy1xJg{1cnrXWlfW&%f_&PnTKOjb0IeUj5sXMq4_T zrpIOXmNkT~)-wXztsL~JKs0MNdo{Lf=9b#GI6qT`{YC=K6aU{ipZ$!KZMH|YICr7f z-_xh=t&LiS16XbI{$(Ztter()ZhH0|)d}>pubI?K(qd+pD0yYIs{8x zW8a`KmHj8cmM%|V39miz}vxk;YI=(@qb@G)P^yt?5Y zm7KWyXQ zZZZqh82^A8qYAd#2@l{`UAA` zLtoy6JTX^95<*XxY$Fa|yF`@pJoYxZ?jY@P;-UybeSQ4n_oBuHhXLRxq5XvT^0+u+ zxnZ@F1`lt2$M&JFF7r+4hv%ltBi{DdXU`*4M>o_1n{@$wuwjeOd783^LVSBNq6czY z2E4EZ(z|zk?_(z*#yvg=P;2Vyg2cVY?gFSJDc{3YzJ3ag82`u1hzPm z6|0OR%&VPyB3=8wYQG+d@yn`qiW?WaY7sZIEVj4cRoztg2KngyPJekZ6i1KR66If<=n} zkam2N1&@&}&-3GVcXV$90FcoYz0@C_j%+x1)3MO!cvlYr>M{g&8qv=X;O(nBrx>4J z2NsLD)qmL`cK!ijFLEh~PutEawst`j|HMI=*P+6&xNbnNneRQ3pyvigOD zdj)d?NkoDqYZyY($Qyp~{SSMo!J)nUv!^tVjQy3Fnb}nvy+mI^>=@*K?1npnMtIuU zXcY$3lCvyS&5FM15XTEq=inC0Siko13F*f3fmlBo1&`?!a%~x&J?dQ*sHK>@fUFl} zcakA?8p*oEjAfNNTK|*Z-1hl;TYyDExz}7uo_-T>%A3`VT`x`*XALLxo&|)RY)ND2 z>!~PCKM&|8CeN)T;}<_UxZOyXM9tvtmWNB*%mRj_x#l&l> zJ{O`5JR6(6-IrnZ|v4N3!aE~IRc-R$3+PF@Se^wprLL83PFHp*WO%I^8x|( zq5rZHTg-RVl&Oi8hvb{TC?2hmD$HU3s@PLKr?%qHljRQJVgY)_y zgC?PmVoI{+iPsJq8PHzl&;KQ?_}bBbmw?0ZN>ff)iVwa|)pdhAH-1q2i`?L()c<$HFcLM>+dxYFV|V`8BG5p)ls+L0d4c{XG{4O|%#| zP{Q=dt<|-M8cdW3U~d0XJIVdXkq#;hgtqedPg)IvO_&?41qVYAGLN7NajXTy`$|aQ zTh^GkP;Q|Z7=^Nh<%yU<0~`fGig{pK{9yK9S$|cTfH_(@)vMO=)V+m6FecOaJ%Mn&a6E-zO zq{0vf6OGi-*2iBCyRlgnuwBwSRA~pnWMPlVd~+j1AmU28O3_q`y?M=JmC-qm?54{+ z{C~OW5@Illt5YFmA;Z%&myy<$4tyg@Eu&?(cu-ETei1HX= zA)5_{J}Rk@9Fkw#lyemH}Xo_xyt@eEP_GN4Fk(5 zB&S5&HXPos!IMzC&TA^kqyl?T({31J69^|6^*V;;C}hI~H2IJ*qi#{GXMA{OpkAam z+Q&Q3Wz_hvbfzfBp5#Y=-`&}ZGFwGfqw&0d4z^@_c+sW3B*<^R&eFR-(iYfgEW-Sp z5@M?ubk@fIpke4>n>rYTebv{vJ0OGLmHKj8gtSdVhmoxJf-A>`otghb<-}{Y8|GUx zK7rDUS?h~y`enih^trOuQmM=5$x$C3e)OYBAzrSqmtTv+EgHK2^k2xcC}$S2dyNoa)=+}zhBuW6N$yp{h-8)T36K`vV=tK1DcbK}bbNBRq&SrhHsT zQP>k9WF;wPkhGB0en5ficz=eC_E%?s@atP>SymSjSOvkgOIAUHs*6xxk0d7usW3=` z$VYbl7ZN}@B4Za)S;>li+osv~(j%$WT_1ISkicgb) zqm4EIRVET*GSkVwe3%f^7y`@F_RAsU9HrwDtLVRlgrMO^JE2YT{QfPJUsq_cy8n?H z+KAZ{iwEe(>LNhU zzVZM(2sR{ia5%|hW@M!^uOXeI0W|;ZUZ1g`%`P6Q0CJJE+g=l~C6Q>}T(u(MGsbPQ6+L+D{3+#QWD~Oe@x9Dp?$t+D)5=#UW1>Nb0Vt1;tS6}O?5{J2(qGj0r zQYb>8Hl83B6fc)QxQ_(Xi=4W$rpT%>7J%6$libr3Zx^y}khq{`G+^64^6qxM0013X zxappXh)^^MdS`p1t56UfCl#AnC-fJ_I&9akIxP%<>`C<1|AV~g16)(;?e?uP#z?Ll zKi?7VK{0ftQCfda*Boq26Ys@G$M1%WZr*tMq)P|0V0jT1umbnVKin77)oep-OTIVK zQPX>(@lypv5a9UN){_fuw%%xUUjF>o9bVo|F>P6y0yw4R%8QE-@CqDAEJXBfea$aY zYm_6tqL>gKz0f7B!XVWylH_zuJ0m?I#oyNZ@4?ytV&(R3AOMt0(H>7mg+f5KbpkqQeS@cND+v&y1BbFc?mPFaUWb)YB?J#i?)xF&2;&}iFahVU`{#T5=Q~JZ z2;ijT5134Pl_CZf1bfyy4(wQYgf1`qcwGL-FH3BM8>qL5AaGZ-jVfu;2flAa&Sv@F zuW+aV@YRE91R!0~kvE*(Rl-gbWH$ysrD9?7wRQM@474enKi zEA3f{>R~iH9aqlBW2@dzV1vWiAnB5k%K&iFd>Y47ES0a|mFYVWvy@d4P{D5Rub*~( z3_Mt}9;g_?pjciacK~gp%)=vd5JhkTB~t-i;wb;zX+qB@?YeJip8U4;bL!_e}WXCwnP64UnC0eTu}{^yG>}*er!X zs0F8hEY%cJM6mB17RK;?Iv*6kS;G1(G`Jq^tCknj&0Sujl2bb`oO5NZwmcahWqlM! z!(~f2SpybE$V0eEtO4tB5=}2S^M$!a7N_EA+NSDr8cf=hQ5y1RcTPbzJukq|`-=aC zF%w9ge2YUFsKX2ZN0%1Cd&+x+vV5>V_3VvZ-hL2>i4zdk_GP1$0A0NEJOKy+!wfLI zg{B1E5{u3ZM8}jj#%I|KM3C{aKtg0*qjwIAXXD9FY8d3iCTXq=ZjgJ&QyWobQ2?dM zgYyXvpg<^6JnQ$gn6d#My80)X_QU-^8uo;lMc9JqkjHp4`ER#U!Ky zb}z7K;M)ZOCbj)BW^LadG*|1mJ4zA!)~x}7AVfIoluXM(efvV_8ch~+J*bMi<$4&MwA4de+c4hbvVoC959Ns$4*wTmzVs9zS#nn3b~rT& zTLYv4tmzg|kAkj3hr91dR=TzfUaknAa%uGAS26~2s-a$27!V98X+j(j$4Q9Woj+b@ zfomjr8Tei5bY+?kbEv=(ICM;;4zX7ZTO<(BU=*$ROWt7=AhdAGpejFUaP_~XZ0*Lo z9_Pw|)JdkQg2kfTCr_aeg%&10p=b@ia^TQ{6`fnB?1inF`!Au0v!x0EKmy)#O|0NY zxnXby&rr>`@wV&Of+f7%$IB&&ATx{A#Gam5+VtINI9bBOMUj*$<|l-JLpdf6uQ#o{+)q%AQ6`oovq->;YhnfwqDnoxzc(*;e*q`ZxUZdgBw(!W(uH=E<{hKF?<$JFVco`|{v1na2R*7goH#(07sy zE;(}DHpZQ8D=6&MF*exE=|6bQ3&lqn1pBVA$Uxb#s!bGBe{+uzRUjGRjCOa{nUm)> zSmk6BM(LLsV-L|?vSMJLVk)P|D{7uytf!&y^9y8KVptIth+`D$lW*E7URx!#TD+8E z)+L+)VN*c1jd0$SQS>5KP#X=FCtJ)R>=Cr*VAvMv7kB#Ok-n*^PXy&g3kWk9hcv{q zeXJlaX?=JbAhH#N?K&`#af}oTaMdcH%6fW;4+C&MyCwBMbi57dk%2dblLAN}(6`ZhX@Z<- z!0W?Cu%47r`Ni8{2t>6ytgz8y4PN{R1Rom7IAsA#bwLBhmKXDyOAE0?YGF2p9rGSs zY?M%i&=a_lXN5s!a*&ars)A5}1$xa2$B~lyHPl!YaT@dr$9CXZF)0v8-ZNh3Qvkuw z{w>ZBRD%nrRKba#1&;tEH}}bX%r(B*$QJuPXEz@}h02;44Pq_1%5}O4gvE?1%{&)E z$jyeC?Ljyd>FqxLnqO$5Czve%)ViYhpy;PUcF02ulkbLedd{2eN&pQdjmXnWYz%W3#C5AZ1B+}g)jumG| zkmuOif-n5&E<<4^c{4SDf<#FRPAN14`~95=fxI`r!|__-#ln%NZC9^ZNr^u44#S%+ zPP17&?r7T86Sv~48aw|rx(l-|DE@ClkoAD9^UDj3in&0+TWDX{JrbDpp~Ux zL+RZYR7>2t0M7*1hGz#s%ol=pd(lxR0y9ex@hoO$k8@wGH+67%?Zbg-7}q{B{{yII zc6~5SI>V7xWB{Vzm&-n1k0LH(0h~t864^xgp~_NXjqX_2JxK;gqJ%@VhC0Q-{%7o? z0JJ8g5_2ExuV)MIgbpznUO0Q=A1-&bG;uMY$m3KFg2cz;068t;=24*SI`jk7k?{Vk zs2Ce!g-NNZno0_&%HtEuVjBg+*H<#P37~B-JXf@fDW8prldvIhY)}*UfDF}lfh5KtAP^P7pn?hvI!MVeqA0~ek&aS?0R(9Z z0z<4>QA7q67z8mYWoS}{QM!>RMPO70q$nDcj#NRAa-WSi=dQc%I)9&a?>+o8i^Z&u zuk7#L?|$Fs`RxVBbljv)eTV~VbL6%H@qnUk3P(DBa%Og-3iz0t)6QS~lnLjM_vFX_ zcn08s)x?7=xd9=0nGmw06UR^$HtU;_V-}A{hMUj3-Z`fxde2k?iRHf*zIn&@+yW(( zP>W}SVP-c(*11fGFAcVn{)H8EjmZlDe=LAx7Y~yE2~Ki@8L#5wBM&9P5+F))ir#<; z5=1WBlZRnqBHxNl3{t`^0&)T3z5+6ov~eljJ}53>*{~(hlj}6}%h%-eoZP&Ov&wYQ zwnQs~ytt|a%kWFs3`hL$5LUr5#9%L@{9R0S%p<12KL86AuV|79`Bo~RA8~qRQ{^ar zS5-!l!#%-z4Z0{s1U!)3M{1N;y%_iheNEZy&ao~%WlP&Atck!y@V^B7$!NVP0AH}| zTxC-ElEl5g0z<-hQ7IS^*(Do-CG<<|LIY3);wp+z`O4%A>&S>oj5CVAZW|c)ESzen z2Npug;l@9h1pMVI2nE8Ou?NmotNc`J*`bm_Zw(5ih2M~4 z9>SXFXu>r(3COr?dw}aG??ru#R8q!YYZGTA-dP5@;Km8Pb-ci6`s@_#q)iV?O3q6p$gNigX4nHzU2I`DVw&zTpSW4}| zgv3w7!e=BZQc35fAj9Ow!P5#0a41-bFZN~>Buqx*}z zF%bO&{JNA-`}e$mtEZIG_-@hnR6=8}F&E>jMCY$N=ClHqmXC0$T&=ZMdq(Bk^cS=2n#7 z2xTR+V9)sLB7YT%-U4qxgqDSNmF%#nz8pF32(9^!b*nol7ns}O7SWjibS8Y9=54R} zXEv;)u}xZi$*hn~Xd(Q~t|@ta9tdLl>QB%rs!ol3r)gKysxu1OX#WnZ-ocE|D$%jIA7!wn`t?->lUTplJW zca>E4zoxE|v%Qx8$9ICwLB6P}S*#JBc*Vmlm~F%%KQ>vOYaf1M86Seo4^w@(d4992 zVEE6A0-2xjx&vkMJlzrqAiLH(hJvX~I8&5w;L^ff$O*7%&5CG@z2i2qJhBYo+Xf56 zx#S~QSl!mZAO#IQWLzCb23+)6nDRz4UoK;fiR)c-H1en9c#dWY!K(PbcwU7Gf~zU5 zr;Fwz3{Wg$N)`Kp9d1EMPw;_d=sQ>}}5 z`{$QRvrtOVRK6MFYqIt2*|F}oUb2d?b)rdT;ZWG0vkUzh3_Se~k1v{hVX8Nks|m*% z*p!Ump~DxfB7fyg5&7V}z2I4E4rG%XE$sr#X-*!5Q1!Dxbwlv?t@v8d zr$XKH4Y{_I8n~1818OY2sH;O?lODAm!y1;=9)FF~NH9{kTumaBA+YHkAb>&X9{|cd zY{0=Pkn7Av1NEjyRNN9eWBl!7{2kJp;Ff*KKWuHy;m!bBDYEolsREUuiWr)-KvPTk zL|YV!u1gh2!0Y+x>eysGQ}>LhWF0uoRT&>?kK(SY+OY{fnpCt|ilh-a@?MSkpw@4N z(C*uqNURMGPmT2kK+ObjN|GNYXni4Y815KW%}fw`ujoogx~#W1aS1?>od=jdRGAV% zW6yR0#r>uN9_j`;(UvyAMJu}@CW65Ynf|d?ds2kw*V_7r@&7Rr17=h7)}nlByd0(( zs6;(!GLKN=WhuTYI-z!BVGD#F%8-blvmP-nyPaUl<{gF_S0G%ZcRn>dR>GYMfIG}C zaI?z2bT%yei6EyaRzYdMIOS(e^ff_x7NnLvJmb|1Fa;qWio1d7y(TiFPT3^GV3Dew z^|do_gVAK=`k;vjMCCbJ5qe*%%+Im^@Tdz49S%wFy>8YwRWj`hN+!3{eSS{SZz8(~ zbpQ0BNG*=82?iB=3vavyu)jp2i+6=Xhp+>&X#)Ew5(p?$ZQg%&w?4PZf+lq9Kgofl zz=RxXsxQW5A!SFX-1J+RRmrSY58hKIO)|&cv7{I(#%A=@)dPAPh>!?<8N!Pzww}04 z-MNkOpl_3%z@%%|PyV*ED(Oes zCgE@cB)?F+PCL!OtOvW^iCA>=AooV#Pwe@KD706 zoq#Yo+m6(l8OoukgkO-8?(@?LCM#Syz#Z##<6$b!^*O9*?bDFTF#fT6iikgor?pA7 z6r_9q-IJnBkJ;&WuTQ}{&S{E#6}T7fW<=_FCQQ;2Xopm$4I(&UiCD-XrW^sw09=mU zQ{x-sbJkBaF=v`=5f}|wB%)Z_2e|}~4bdVlLwQCJCg`8Y1|e1Z0*TbO8Ls<=Dg;vh zb!^=Pc&P(COBY8}JWjR8XYlNsL+l>@GtEV65ooB4K`e&n>b>*#Ll9vIu1>TNHSiF{ zwet2jZ7sBD898%}^QEGAFQethJV^I!#B^@V)R1M2StG_FEU3}yp#_JK^n(kI?{yL{ z&pHf5+wA9PX?4!CP#dpno)7NMWeX*(--L1gNqd2aSzp-3(KbJU*;^o^I*?e3NUFwU zt7er>^}g>SI}H$i`|{aDP%d3YYqh+em^Gjlp%|%aJRW4A;&E&sJ|XrzMAXwBEV$3gd})&2CJ21T1#X04f$Nu(iljBNW9u z3kJ@YCOZ>ZA*?6SXxNv_{pz}^L$t+%d`c1n2V`e9T=b$ zzA&N5hhH0xDN{7vKK%IVYutz5z01RMA7GhFqE&u+EiL`>9TlMzQ&R{}5F%AHMI^HV zSJ_C;0 zxmhjMR-Z@cwsREE(y_Wgm`Mzy$8F1-3IZUs1UOA;A+W^Mhq8z62p$G<>8)2v$~J21GkBj>k3ZZC=lUk6|!E=DT1sI zNNJruv}sj$V3oHesGHB}?rSt|7Nz`kv6xI62fj1xm0x{X*|FJa&JeN^ASO9qdAg?= z1YvG9Une1bAfYvm>t}N>iH>!Kb&5CsX+?J~3!j{BS&hneO=_PSIn-V({OFAia|78h zC;?XscXj${A1ikaA4kp8J_!LV%!+JQTZ6Ozp&tMt&wi0?{v@~THV_J1ysfHuX!Lc) zD;IsR-n49dqW@@cRrXYD(`{^ZV!A-Ta>gOmE1fDQ?{b^L$d#?TN zu1F*loSJV_QT?6YAgNAdX=<1q@JeUIEoLWha>nZRXy)>=j3+w(?60*yl^Oih#X}*h z@{+Xo4cMs6>oPq{d8a_Wp9|x?#~=VDye^*2*&nQPDyyvnjYn6cx|BHMO*!wf2-5QL zpc|kLZ*33iVywaD7`;ww%cRIgUle@}t_(l_cecC2#r&_|g<*DX{DX1@r!cbPQ`cpQ z11rR%p8p~3rl`SE6q9j_mT5o&nWVSy){n`mr&n(}bD%=(^y0Ir#wO`ke$`m*yY2op zu{~QB?~Tt{CAw6~z0qjGN@v0FcKT$t-{1**wG~^{yKb~kX0?wNO^_#l?r-7bV_z&K zMn3=5zrOrES(Kt;iF+|`CEb7B1qr!oI0vt!rKR1_4W(a{QmY$zUjsuh+q3Qd=Jl3Y zp221m6>OINqQ{>tFHAY=vJ(?cn9R8wO&=#Fj&{{01VJa7RlRcAvSrdTGJ9B;A|sFb z_zZEji&EjPFEIh}li+vN^=Qnfs;u07UCkjeuqXlAd>VG8@q7IEaW16d(jhi8pbLqYHWozg^d+7)YXZ}^2Wq;q~2^Sv2T{mPI+9%#8FjMwZxwJLqCFSYVBTq zsJ1jLpUTS1*FnB~Lop8X0CD1ZUqU~0mGJkJehkETeXf!4S_P>EF z+?1sl8X9Vqb7beEWkM9+W1&8**rSjzc0wdu4PlEPB>!Dlf0?of>z>&vj)ysSmIqIy z|Ig5hx|}@uskmzp`fWl4h{+$XsHj*}Z)##<|GW^_A|iynaxT8Y8Yu`8_%E) z&phuyQJu=xlsx4#R&3eR}kvA1&_HEc(pbTUB$6}vq*W- zqoK2q(%16fTE~<;?(TML%ywWtn}Fom(yA!X%Ort*OQ1?ll>MUh4*mivww>ICZ7a9= zzRPWLQ*Yec@|DD)W^l6%ki6y&7<9C@{*9taQnPzN zX}Eun$YJH7+rR%1&ARTL^AF=QaRfzT-<|RQdKlu(WlW}$va;IA+J|RE^ZdH%6sw@Y z9fezBM)tN4weOcfJZ!g0@Bv0E*F?U9wx^Qlz|7MvTpS(0$55<+R%jHfl1`jxCGO@m zMM#BX@_gS{pHBhEu1O4MEI!o{sh5jQcKTa+gT*kk)oM0#JuD%beZV}vg`zlLk#RRd zZ2v?^i!3URnACC>aLlcE$Lt7_J->Az`N<+GX&0BCV3N|a3Yx>Z zii)4kpFhu1?C9u_Ub)iqhib@hA@u>!w=)Kz@x<<*UWo#WqefvGKKmRB! zu~tJIS%(=DvWsjD9c&!Ah`eTYM_gT%h^^k$)pg#JkBWnPup&h*Chu2a1&q^iYGu<~ z)>~v$HfGwy%VWA&Js);`a5A3lr8+z?h_^(|Xi5wcpe`HO1CRJQ4YMS4K9$EC}c zT~UhxCFbSJLk7Ec<-tP;ZiseIUlDySUQR)w?9F6PPmdAm*{_ZfR7s(VI>2sR$j-QPglx*m94GOGwlO)z$*WAV|dCn0fy_@G?KoAY|1+ZXYu{JKGl6>eY-} zKG%lzZ2MDr1>KO7v_p$&0QzQqY delta 19 bcmaFa!uYa-B+X?jm delta 26 icmezNkMG+*zJ?aY7N#xC276eHj7&_no9tnBVg>-Byb1CE diff --git a/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf b/dev/_downloads/2667a5fcc739d282a7512f6b7b39071a/matrices-4.pdf index 92cf3944045f167182d70dc4ee7260d6bb85cc9f..3cb93bc973c7dec88d32826d43259a65864d51ca 100644 GIT binary patch delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EXF2=#@khuS)7;wpOFZx delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EJlWg2HRDYS)7;wpH~Q_ diff --git a/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf b/dev/_downloads/26aeb23613c82467dc9ad9bdc328ab32/plotting-32_00.pdf index 0d7159fd5b8b5c953e5c8f5b08019cf3ff9a7867..0c9a72ef697e6597e3d696e63397e6bbb6228eb8 100644 GIT binary patch delta 17 YcmccUanWN#p(2a1xvAOaQpGz=06-cBbpQYW delta 17 YcmccUanWN#p(2ZsiHXtXQpGz=06*FWYybcN diff --git a/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf b/dev/_downloads/295bb235d3caa42841a5fbfa905580df/beam_problems-18.pdf index 1293cfd6387ce39d083c1f7af7a21332bdc6864b..4a09bceb969a629d4a82fe1b6e7199b38a56e7c4 100644 GIT binary patch delta 16 XcmZnF7(VKkM3@S0=5udFN(-H*aY)db92cQh>*1UGp;+&Ybu6+^lPJ#?ynac^7!Y@y({D z(jI>QKyNhqpAT60`(4<)Tl5B9M{7545BCe3_rNa?5-(uwE}XgGu~{Gfh0U1@7d!&} zHXA@MrFHGR&ir%E&vUaO^4CCrcRP;@o1MVd9i z?T{$AGQcy>&&*Y}yXO9)tl&F`?>o2gp8Ua0xt4Rqi#)T1o<)I~uzqoRY>{iW*tobr z3m43D%!HKi$nb^6`R4Ei_6(cev^XEW7!ke@w!k)9ep#YtiE?CX%w&Yk8oOC$pzHTd$UYb@V?*)rQHjA4?H;Xh^opRODQ@_;#Xn`m629P~*9?Cxo9UV zv=hx%w&Tdxzq?lNipQDfSV*8%i>B&=!8NCk2fh|vGi$xlwLeS8`kbeh=z2^geWT4h zMJapQWli=PX~m^}rgST}lcbN0_~Z^ALd!<`qvL(h)lP@DNKI?`p-bC{E6;~Ze;g5b zh1tecQzOk^FDqdr)x4pW;8w0G&^YcD5Fx23;s0lR(h6_$*UKHch+e|S=BsslyuV#> zkLb@n%spX3{285b_89f9iJ_Tf)-?Axl`i*>OYL=#cK3*? z?XH2X0TZo%+f_{dl_lRp-0skJZZ5JkI%8WcdK+K2Ie&^jkz!n=tIj&*H6v-5VEnpf zJH4WAO*eKktF`LG?~l|RGD;=_c&$!$Rgf?3$b8;=eAAr82ZpF67@VAQW}ywn%kyl1yAx ze^nHr>~1<48=b_Y00L}*wqJ7rZ4@l8XYnHnQv4?<2v`f+cUu^e(37XHIxv`e52wth7xAn=ujLAwMW@=w_k$)4%4FYK%?ozICTG)7`kh`qO-x3-HE>r&{S?^M8UTmZR(fkGwNEdZU~!sqjEj z&Mb?`E{UV_jB6Eof{!sM70tE(La-%wtLFQHd~!#WN$gFIEwrFa+r4Tt3O%hg%v(X4 za<{VjbLnSujtkc|E{RurUQm6df2?)E+1(Grx>@7n*B^APpL*TSRsvnTzQ6y4C7!NQ zru;^ep%`NDWTx!pr8|&GnHXFPglvjIY|W9LQIKjL_Cxnn)|Y=7KD)JR@Fe`Dd|oxp zi1;R`n>=!ik!s*Z;ZK~d^%aCR1sU>N{7lLIy_yxp$<$3Gxk1;UBe~U8kkUk?2#*&KH(yp%Jg)-{UMr6TE)OVrk84c z9I5Ahm!e`PDW3LbJVq-G{YkfW530dFD2aTA+Hd4X*vHWjP8#=QO+l9;zwP;QMmZdM zhXHCJW3b@Cw!1OGqZ553-iAFjPL-y8{Syu%$H~U;1`i0{*6D%qtD}|VY|B*c=)vc* z4PB+e-n0fc5hja;gxqaAEq_#ulN8S>RuoAj9KGW5emCAFbx0;#fsc*;t=+3T)Gt>p zf`4-%Px(r5!j~d7|B+L~?e?b&-^w?fNrD2RO&~e#-aZ4wMA>Ou{(yqXbBmr4>(@D9 zNt=jiGW#*`U*Clsb6=zN9Jea=Mb2^3X?+EU4F9wDlU8~Ag#DRcUAN!8&U~f&D^smq z?*Eq1(obaAZrk>+LsxP|B*!VtV^UwL?_JJ!sZFd_(}9bHjQ59ss!;|ep%5cQypEzV){}ly>#m9#EC8t(yh0_SL_Y=KR!L% zm2thTp5%LWzYSj=L?!VUZON8KHqK;H8b(FB8nGQE zDzKIIa^K`uH78e#sE7xkBGmz!Rj38N?>D=ENfky@D324?=>U-=VKqDRyw3$EXYNr< z=-!Q-6RG?WhuWaUbBSWUw6+!)}VJDq7s$0{1IXoU0&pYy(4od zOE>U$Zq?RUGof-S;MIr$e2j)FJ8FRQH1RoTJ^~%{W`z zV%`~TsC|+`d@}92G+?FtC4=N><)FNgd&PZeF<8L56L2FOiPDuGlSRi(@$TF z4>)4j$(Utx_PntAID#Dt$Hk@0m#s!8HN#{w#YfmP^&IwoR4>7QMR*Sryo~ikEg{H! zh2lYTe%peq-zyZdL(CgPRgvc)`jw6ccnF1sx_fcV;O++h6oy^<=ak0zmMWo2W-C2q z4a{eS)#lMdE0XhI9*jnDA2bJFVYF3vN_^1VZPl9H_w2X`fm^dHA=Y=MwI|Dr9>oTc z<-65v$lWpbp9-R-?airMuNYh_4D_-%bHCy0Zp(=v&#|pJFP{>7NvD!NYtquqUG;Y(Ag z4cCXQe%^_aMvB}Zkin&u)Qyfu{Wjw=09=c%^UbG!pN%Mp?K5q_zlG5Y524q_|BGH! zc8&W2VBTX-*+U;Xs|BS(cHRnc-sgYDOQ*5HeUL4^Yb>deyiwigd$tP8fOk zxmK0db*c3+@=48qQHRPh#@1RFTUE2W9T!pyJj-)MH+3zvY4-|ysWpkY5XLkE~59dzTm{REK#mP({0yBNg-~fQS7W}2RpVDF>ZDy zq@t9EAah#c8f}khE$Xmdr-QGOf!|Jlg*~VT{!o1Csw!%obW=gltf(n-djW3ZC>)=z zbvoc%ddiOt({dJLg8mYPFl@e6uY(GDWLpASS4gJWHY8u~3sSC6?&Nnha4xK(E>(wd zvFN(~EI%Z9+Te)9h(QACa#{He1{IF{E`SU4E-t&J@mumOD>^N5F^5Nof)OrbM%^}is z1&0s+ntE-eB7y6nI9`=0Rl9xECpG=_noFVQvjLmkKSBOHd7W}cOEzh8cU_R2$K=dz z%Mm_&COOIoC!&28x=a zv16Uh1D;&0oEU;IbulDNciJ|NRaY};=YMpzfjgSe@6F_a`F3oC9z?M zylnKYoj`?_wsB$xEP6$ymmq2G4n>XsYP}S)8qc&V#`sro@czbb1ndLkY`#h_H@&9K zoK5{yu?uj&O~$&zNcxsGZw#w+CdXnK!Mn$;66fd*5^Q1#8JG)>^e+w~ zVR^&)!ev0Rz-QnMQN7&Bia-OOVUz7^R1OK&D1A9{rvCMnUYl()y(haEHn}a?gv4Uk ziILJ406cPi{0$l>M3m@i{Uk>%pu z!UlIS-u_6O0ME*OTUj*K$o{*%g#P+ve`^)%lwI!x&=H6sEz<^_GBZItR$YiqpM@X+ zc;6;9?LY;Q@f!H`iqN*mrRm~waQCGB+y-F958RxZRAFZuV3JWCY9~)K-lU&i8d~{t ztK2Isk(phl+;ufOq%TrQLWRRCJJPP2b+FUa;uvyk(^0j>sb6>!bU({h0HcqBy^;Zp za#7a5NXGys@>&8hN`U%!P;T7OqA^kk!v8$^YWE_lqRsMykoQgl@cXQ(vV@IhB-gh} za{fEwz4fc>^;{hSvz5L&y2WAsIZpC&H23WI6aW`{l_5 zN8F`RrI~MKC=C>?zi-RE=#8r|@srN(JE#aJN$5FHHb_BtRH zWlb})v5hC-;U!m&Yc;!c=Y`oAs%n$N(S-k&|pxp z#Pz?paB7ge_mDJ5nxWixUw6I0cK>><@fS(_BfY;z?miIP;gca#QIt$|iT$?C{-=(c8`6zL$w-CG$))SpHI zgKB9-mB|@E$eV44^{D>VZ5##9Qo0{=7XammsU2ANLWIIrgk%DeLUza+QLK~x8Mi@B z&v8lA$x|`TG5uB7fm}u0p+_@JN9cuoJ;zqJ4vw`FXdG_hvE*Nb@qsjwZ^))UO+Pdn zJZ;B3<+J~Fyageonc~~bsTRd@pt7(wNGrZIxIedWKvlGJKqxC-?f&=A%h7pmr!$6) zGYnNfs@LLQzEYv!wKw~Y+D-7r>wtiYSVZh&LoE%2|F6ObY z+M2k6yJyY1)N|lmyu86<;#;4~DP(-CO4p1%d%=F>Xmo}9zK!U(G zh|i7IPgz#k|7c&vJ^+>@!5awu!LSx^o4?l1bwG18#7GHKEkJKN7vo|Jd*aL?#>5L=Z&+Lux>dItqSvZ=fS9PyBFGP}Vcb)pjPRnR{ zq_KcPX3{3x*p3h>dr`uoY|v!yeEvJVFMVH~tweHv5cN$Ph=-!^o2t3V9*B~Thesi? z)3i8HMXV7mb!ExF2TE2#bOS7DO)T-plEdmwgS-LKk>3d_ zo}c=ubQgLEiV67|61`Mj@6+As*kFB*8T@^1X!;b0lvyY2aG_`H;q@ZQ4mpNx`5S&g zQZ3S{IQKRI5}VL8z!|@5D&MeCGAp3?v{M`EAL@I{_oxH|SIa9i#00hC!bi+37 zTlMJ<5vi!#TF23LaQ1HtIZX`3S6{9_PMPlFsKY!pi}aQ}S|6<}6?$ZzG3V^=okF?e z-D?TimAC%8kT4AEd!6QJf;ltBUbE5j56P1*LajUH(U}su2JOiu>*27*QlLVCtg5VAgS5?g04%;X} zM#BJLOiolC6mN_^M#n642OSSTDy+6jjr#aeyrVQd#$S7`8^A2F8MC{+7IO*-up_~^ z?yU~^sisAh$}<8Wr}bFr7~_$Yyc#Q=uG_v;^wv}*8pF!PiP9|GKT!#?`gbAZ%BEJ9 zrp_<28!nIY>#HPBlU=>If=o%_$o|sJ0Wxvoywg#a>4V zKwpxP60`wvU-Q0{g<UNg96OhV)k zR_raaCG@Ms{jH`SYQ742hIX<2bv12vxb)yby-Gw7m}&$J@7BiHmmBsBRA!bvxG!=d zxp8MM{?nF&NF005uya8YCy9#doZmDB3VTvHI>*ajg(OEkRhx1Me@GB;uKccRy#d?! zfemqYE^CM#Y=-rVmmO&GQsSV`{pxi2teiYyV*~auFs^a_U7ES>NGUQSF}O&~#yr zDk7v3=uL#jpIi}kT9IYqMGG(r?wu0)g@cM3q4Jn?saQ{u)c;qBXt#`iUF5b#xNuU)$t#yS6>g*`XLP#$tjT{i)_PEe+-$a)P>L78z-wdPgF z*)H(Wm>dEZ7f&F-1XoR!FGBStmL*t$hz`OXaD56g}`o zK0`~J-=VnlN|;RKW6ALqV>GrhVnZZVkD|OoajB#&#KLGGi>i*$*m8_&J3CnBtKr=* zdYBWcTM(*p4zZ5vZCO?~v9gA_UZ6O>9ox*inZWwchxVB?AIUA;2QZq&@ z$q*o$DNk4gjlAUa-`) zlcSMm0m5Z}b9RA;SD4PwOJ6O${6C-eQwKNvzVd01`R*8fzCp9i^UZNv zChu55I?%k)%8^RC|0?&#{i%^#&DOrnNk~@uZrjB`o4>wl#3o)aG4k=#=N@2rO(Zf( z*U^iCnA#JVg>kWE{`)y?Q)I)M#7|0CjSnK~{u||m(E;PGHk%*yTdz01Q-Hp!K+n|a zV~OOnr{vMC$%>alcAP7aSn<F1ReO9iK(s-or(Acil7LKVE0RfHR6j1hbRSejg^wtu$x*fY z4j`8CGp6PSve(3c+A9ZOdnU<6^0kp%@6|~!yfEfvB?bU zckQA=Eg#Bu<@6HSRgVjxvcrOt=m&=G?r{9EzLzGuvZe>UDu&@Y**;V2 zQU`HMK^ph&NmQ)J-2<%hGug8#HL!!B0==8p{SgK8K&;Ulx1EUSl=13RT3&e#^lYhn z?m?v|1>`R(B~>B)9e6ncdQ%y8`9hmQ1#k}K?{4`N+0?ko@v!dk!STJSsW?UeyfT+FH!wvv+B8VYCmi_sLqMt)8!LLmS6+ky z5a(+4O>_SX?T9s0sMPnz??(*AC&oOk1_oa3bNF{KWGpr1N7rt_!f%;DM;V%tM@hzy|oFz&UXN?r2RK)5Ar~h^a zVv&P|Mg#COENPx_R0%}3iBe`XU<6-2F`>atX)O%3jKGLC>SLHXb-Rs7rEKzn>rZ3Y zhKF&(@S?sG6c}|NAEq2vQZj>o?VrlFd^EF8^}R@lk?WfYt&|OfiPvrZDH-k8NWN1r zdGbVSkj+-3%TM(!p4J{BF!n#JTZWGM+emu``2uV-UM~jOp3FFgOinC}=u*TFgp^Es z8)U&M?#e`--1kA`ZUgRx1rLf4w$<&;TDKnleQ(B-Yh#DciJqcjmgkq>Lga}ODzou` z*0*Wzk^LPTGVpZ9f zBuvnsaI&&H-*M*YZTM2eqiQQn{zZ1yKmCGh81hV%2eWZ$h?UaR#-pqeFT(1?(rGYV z;<9|Hg?e1+XQH~wfV;{=RzCcR8T8Y(WA(}+@rM-^ssj9S>F(5czD_& zX#ebmv)c_m@v{(vrL>WE(IaheK+Ml1} z+u)5raoO#9KO|v3dQQjW%0+o(8#yuo6?5J&6!>$Wh3nl%taC7U=W91LP1s3jjEvuZ zWFs82VpHXgvlP(&u)pQ%OfdSj<_Ww*4G37>G%5K{OI;8XcEmic?t5g??B7YLB`E8I zU>M{geBcve-0kzzN_V_HutiOMAB`lzg6EVtL?jq$AV)U8R z%-hI|*&lfHw!AvH^`aQP?av{&s&YATttIolrbtr>5=^aZ9%o5uwS~eQcw%Bl?FGdd?m5-9vPJv^*(O zmLG$r`%xAcgajytIJByI8#QqIzRAMLbA9V@2wqBTjrx?PF^1Gt1dwKpEW%BtyO}Ua zWK5HM)`%p2P?>3#+}vJUVGo;@D^o8{{9>Q!srSteD~T|46erZUbx6a=5n^mo*&KKhj|b)s~-`4Mi6{b38b=hT+jS0B0M({hU(?HzahG3-k`Yg64nx~;TXh=OH) zZb-Px9#I;WQ0SL@59^Bh5|$k6%NEXBY>5&mgPP7jrFw8wO1&r`%~agp5Ttis0e;%V z&{pQ`M#b(Fks=%hNnnQDg`>(1QoQ^MU4Vt6vMDn+ecR1Y%QNnF6sJJUV zR=o5w0(mn$?>YWj85m1b_gK?uPs8bD^CO}fyxF920CP6Zf&zJAaXlk0gUIG~^6V?cH%O#ct@;8L^FDGrr|WRo z_uS7lOwr?FvrBcvN?v`C+1WdAF`pERS zFRIj+RITiVS_yNfO`2mr?-x(>04g)2paTbwY4R{BYyRR_A{Gyw<&f{@NQX<}jM>>pwpctU8LU;mf&D$GMfJVQs;tMq5qa%!_OeDm1@8;JF>S9vM-|kL+#TBF{+_20lLd$VYV$Jk z-%Y=)9v>$E3l@Z7&5dGIuuD<80~T8pmN$kU)vh0gdeiKM#yo~@z%MHLJE6}Bxh+rt zr#p&k2tFfQ#O_z^^fCXxJG_TdD~F~ zO4^fqRR1A2Ei0F`)L+}H9hFhwj1UF6e5k)&q^7GHD|81+!!!Xee0+(mFAv$vrBc|Rp*HmR_n#L1l}#*HMu1;()Fv7_zG9s(%YcC3(ER> zB}IYZCSK;Cok)JJVDmBcsDj&CRT`7?uPP^^f(uWHo-x-fDsB9n;^|b@xxbSCX7;k1G{!Kg0vNP(nY;~&(Vtlqx@ zmQXV{#kTqkYi?h?>9SMOVsGENuZcEK3zm$XK^^?6^BmVd>*B-I@pU~k3oW^QRB)Iu zj&U98^^wzIh0YH<6)>)6+A5`n_fk(^4Tv^cifkvS+xh8A~Z*p zNaXJ*VNj~4YAvKa9~3flt>(nbi5~252ZItY`l_(QUy6g4ZvDjE2o+!qye`EH0)>MV z@WfhzAj}ib`$$2Xrk=@1FBN}2Ax`a=s|aj4AuSTWyiQev-3xi02R+!bUK3H(OdHmd zfImP5U=nwp@Z?l?)EL6*t7~{y*jo`$BB_pjU*;}3od;;0+?*bZ)DckN)AuQ8q@bOz zu<{)e3K%sJCj)C?*#k|hsfVE-v@5jESIyTu*9uLVX`SKo;r{qVOz{OsQ??C%7;_$W zdL{IA2HMqMOHYKIpemu=egei(@U!p+vkK$$3z{apjFl2aOVP&Sb^Z4+V;r@2u#0k8 z9;n9t5;GQPhZO1i&9n9m;As$>jWnY8ivsU-9)nST5g@ck!$SFlhMo5m+m)U2?81@` zF;KE?%>RQ3w%I8;`13yVWc+=xmw?n-?dLB%t3>JU{Z*B4k@I!_g)mktjpg9`H>eX# z0pS@*xbE{mO9WnV`TgMI<>TA&>8^Ix`$+#1zs&8nR&?#DTwc`gM`G{sRb?rMUm}0l zlfW%6qe+C3!aBb^fkWTsv4XcH2vT1LSvM`z5Q#*+8u!Vd`53V!oP!YtK~7mcw%Geg zs@P_Lh_I%TlUWOX4=)!zD=>`G0lTCTq&@2&%xB5S9=z2V|Ch~ z;(7y_7npXrL)?p-LsR{sTv|iql5u_z>3Y*}M z$MU)VAXP1i3Wn?0r6<3L*(`R)f6s_!_=`}hD@YiI+GDOdG=wnn7OP(vX0AoM^m>EX zRUP-s{rY$~Rl@;lkIBuoE?^%&1g{VnVH#ZjObJ;M^YStNqZ3!YD+895QSNMQ{lgT% zdKtAMKDA>%=*1viS8kMIoQM^TKP)P8G27H{psyMaapI!x-K z*?V}4lX|bkNJ0*i>RSkXEq49-WE{N!!lfXQaa~Yh)K{ZKSxK7P3V!`cqjhNwmw505m(;c)yu;~JO;GI?SBD{ z6CfWzad}SwltLd!i#e$Y3>uDOB+MR*GvXH)RSY1rf*)SZ756R((o0@AhoG5k=ND;t5hBia#Sh$Bi51+_zQMAVg0f2R)Y zILyr{#;$3HO902EW}7iC_PFd0MnvxSITsV)HNNbF{w&Oi0`8R{%F)>?8!=^&JofX; zgT?Y_Buywz7#45hlCi-Dph-;3dv)~WVJBBDnEnX2f+p>;=6-$H5O!{%MW!NeV*V+w z#)V4z^Fq{^K6}r7>n@6oLwYn2U=B7)MGb}M;x{`$d?a@88WYVLjC7tjdI!QQx~oH} z2<~#{?2O_B1O>SN8uWD0{BdB`32uuiecIfz{MSDCE-0xZ>+`-ogd|xh64sWLTt8(6 zipH=4eh5Es@L50kA(TD#bhfxp!4{b3{se9vFhKQU7?V{Azv#yr+}M>};K}TPpJ0Vv z>ioVlU^X$=%6+N~+9$Bn-5^2CPf)|~qWv4e_EHvz^Qc-Yf~Z|9JhlFl{6bYDAf3Ru z_{;)yUCRP$yQfHv5KK6x#w9J1ADsm+VN*(PzQ^uID2>U2X?3tTVIYt&oTfRk{Bpuh z1C-`rWTAu&+(D4#x{(EFs)aKK)8U@P_o~2kgHmzD*l=Y=#yu!cb7(cAyvC<1!BRfI zblbwFFVEm9If>8+&Yp#5;JPeGgKcKc-H(8iC1ryJ%-rlRiQr+>XX4`OP2i>>k$^0; zxDfEH`jIBE(TpnBu`OOGAdYH!QwpxjgC0X@uxDv16|4DYJ0R*JI^1m6VH1O-VGL_u zMKQiO58EpL>OPR?tpD|hbaLGNyU+*hc?|a_D!=5&%xR$3pE) zA|@T8Two{;?yBisW2*}gPnQaxF?L%SB$_+?Mq4vx=f6?wIUs<=k^w^FVYJIl>+=4+ zABKLcN@ENQ$86sjo)m}Dx4{^CJ4_wiZ_SP|I@-mA;g+C$)vp^edukK+6OKr&4Nekb z=hM+sy)zOm64-jx;{=lDPXd%pGR35U9qL6{&J(_OL<&SOhWf+=bdu5Y7K2}$T$xY!C83PcsE)8dT_wgl0}l=X zS==j&S>BbSA3@Yk*7Ua4zOMFCtW1fp5ZD zvO6bz8^mGrhAHV0r^IF!8bJnwJxIpfMp{1n%Py@k(`#YZGh+v?6bl)R=x>!~)w?d% ziipidQWZH1;|%&h?5EF7P4WNwf_(;GtHPCkK?~SB{N0T=7@fr!m?5~7hkJ@6jdB0Y z5x8ahulhUKxSuDxa>nMV`Faf75DlG6+VL8KFXp6>o%Tq_!UQ26W7W(K_ zN=o-?ic`7eb2MD*pzB7qSWwy$+U@`XGrU0*QiA?f*dvoX-PM2LYYxlsS3eM&qr??8 z2?9MyZedEW{=qH;cAT@^L9ZuRHyKnT){pP$@n4K56uo7^F3|C&M{d_Mqyecb&}@{_ zaLWZ>TnFSH3lwvW1-=v@g?$L6bU}FN<1hkr6tyl|^ow7iS)R+|tc3H$wvHQNVn8Aq zu_pE=PJe}^_o~-%Yi8<@x zb0IOl2BDtlw$;boMMmVkLp9mXCwz=q^oxNf1=Em_Wc7~!3$^hDL3SU&{`T~KtH{kCPZH;;4S$G2 z>ua|FIxb}Xo%~nb3BZ(pn8z~YiqN3?e!(R~lP=e{1&NI_&h2l6?~_}^FkOEtq!Ctf zac_7TmkFghB6 zHlAU5{4dvf(gHGAgs$ikR-G3$vK_WeV91DW5Y1_ z8Nh8}Ft9t6`3D3<`M(D$v1nw{9POq9=J4w8%~@kue)kt=!&V2DRV^nD z>KGSUZ<(TxQL=i9)#?+RWm65CS-}r^i>9>ak#m=NT>`y(2=uh?dxZ7#+7|>t@dd{q1%4l>mw?kK+pD0`WSQ&2l*B`ZPVA^ zsiL03Y!_9ClBREBK&`h6p!GJ%!CB!N=d^?7qc$@}}({GirNe3;SEiuBP`* z{ZjXrcCQ-1GfPbyR)vS^Jgx6>AS5PtG*esYs@j=8E4aM%;SlhF^E(I+9p2pmqml5i z|2zk8C(^oXJJ*Q5_18q_7dv`Y(2M{hBz?Sx<3@x2LF_1P#9*@P(u-!Z)X8;LG7RJI zypV#s6oKp;aOA;VYJF-K+Qsv%>7G=Ze%_Hky`V-%PD_8-W&@;Oc=On~E_N@3?(iui z)kIBM)XVRkoTX2+j^u}UPnaeoaPAdye!qxX^jcXZ#g^}CtNse<`zKnx%9dZO6|Tux z`de(bT)K)#q~_EHyF4$AcE_M+Di(V!)^x6ZT3mhlVbp@ro1iRDY7#bu{fcJ)(6~s> zxQMa2FrJF-*!$IS+);(1@7kGA8vgUT_a9g}d+U_i;ro)onGn~se=;Orr&+awjah2_ zS{TbS1#NSn3Wr;{@vSsCa7B*mm^oQ-$+K1!m70XUkN3&>vhV9~^tElmDO-YY@5rde zcip_d!5sFRHItmeAtQ2lRxciSvE@j3&kd)*o^^47n4NG5P2>C`X!n|>lM z=N|CY-PI6FRu9{%p!0-xrg1OLa`z^cENU)Hw5HwJzgT%QsEPa0aCEi;j9{^ydsHts zt2xhB4rP~4G$~fPq>d8`okzd0pfQfd?{jls+;)7ct(#=kqc?g9QG+1U!n|6K7Re;% z$|VbyHF~?1q&=b!ka^EPsAJ`t*Cg5P#KzY*ZGyJcK4?E3XiEzv6GqIEoDm+F#bs)6 zm*~l@=_?jG%MORhmV=vUQyC+)%@J;GU=hY0QE_;?!>Cx*c&Y%P9i*k&atA;}uTBwMV;)hP%#hm|xk(jz* zaoY986fBMi z2~mHL|!8O}irR_y~vb#yfIBr_&1sq53|la>8cFw&o+$_r9YY_KJd z#hn9(px8B!nBJw8jJ?l%J0R-J5v^qx@zkaXzD^td`}!UH6Rvo_p5O}hdBKo&?DM`K zIR-fYiL0VvlXy;>g0pCrP+4xAlX7y4XvP)&(GfTSQPU4?)Dy>8cQ~;tEiLmF{=8A} zx%sS>RRFN4tT_P{I$tZ8amRA#M*G1f)x-Bo9GqU65CYm#= zi=67fPE>98ecvK+>78iO1vM)B2pK47{q8LaG4&fbCs6CHYujde>erYoBr#(;TmzCt z-T6#go;#QUCgrD%^<<^^{8VjoH6z=F<{7(Go*K|Qi7!@}JFI%L^i?QX=4naG16t#E z{t9sLMdhrrTGzD`FcRbPprOU!nQl#RY)gRkG5mOwhli{FJoPJqU6QKFD`r!{X)*-Q z3UtQDh*gV3s+>H_qp_BgtjEw@P9``26wygg@3!9ZU_SW$#8@G81O!yv!FdApYc!4LLkGm8Fd9v6L|r9>Q{sy_ZDE zJCToSvYr`R%!PcK9^iJB2z5G=fTNL218(8jyZGn{_6j|zG*S8#K?Z82Xy}yrr=e1U z8kAS_oOjwufwP=`WAVSwLj$ytYLOpzBL^XjECR>0lN%`kvHwb+gENoujFOAPJ==RX zW825P#F^smBF?~~K^~Zcr}&`AR6udATe z(hDvbLu`u|~A;-AV zPXaMe?gYdj*SPMlRZkzC^1Aimfri|z%>KZi_+vSx|FUF1;%j?Sjn5L&K}~*=6MKPI zGi?spA01Hcbpz=qW3H*Jr$p^fT{AWEe(?!AuCPC zPup;=gX2pc^sCZ5{0f8Fp!;`(+@7j&_V?H;TI^J^rUUAW8jR#sCLRM;*_wyd3kBMr z!K@A8r*YMMIwSsSBRGNOyn2`J%fInG>##<$@SckXjdN4!m=WkeAy>+&;GeZX=R0;V zR$2cO7^XD$S$8sL$8*EqD@Jo4TIX7M@7<>dSj?DQ;o^hY0#{}e8X+=1IxI~vOE3~L zzp3?9(oxrPxjs)0%JMv|zf+Imfik=+rz4!Z{$3(S^3&%XC<#PE?(xRTpQtZ?1AJTRhnyNwva~6FStmAvv=j8!>8ru=dr;Y)u2ZVBMSQS@B-b64N=s+9UIoKOIOkqnlU^mIcqvmL zoFkVP(}Wuyat&)l+FxteTbtV2&-2A^$3Ne)qLi^$T0Ia+hmckr$2se?u<2fp z(;4k}LB1>4e|B15P@{U{37Yi*1H**l!P4RL@6x+GZNQ(*f9O?=ZutdBe2qR zn5Bo)&B7ZKS+e)zh+#UH@-;CG!Kwl9E!dPr{}Lg0c`(?z`f)?4@i2CRaY!6FqP9fC z4~+(4{cKk}m|pz%bIQHg z2o5W)M*95PIrsKMM2i@4plA zvR;K&>TVKE9)5OB3_3f5^yBe@z3k6|BaSqJoaK5V!B|LZl}mF1#~C?yaGb0%;@S`O zi(vE{L?P>h^D6qoK%>7%Y1@Z{sAqUB2M(x`vrvCVfl=s$bwjKEnS z%w|%R>76oi~T*6Q22pe{XPIDZk>pg_lbRpPbGVIT@ z4e(KQP`Ae0i}K39)fWGEoTKr)QD*Buj($4jiz{v=D0lMipIn~;9qtwfhCMS7-MvCp zBNiyMKQ#2F&!8b&_*i3W{flqLACHY0$pm+Z@_Yu4aYKVSN|oSSPoV=`%xK+iGUAgl z--T>ShfdM6md=Tf5Jl&locRAnWoK_-{}F*Pa`>lnEd8N_w<$RCkL!$Q_67Zv@4|)m zdOa~BDzX!rebx{fG>+NyojPzjeq8F%{FN_k35B3bt)V+bc_3?)GpCa|0S+Z3V}=S` z%ioTTUEKeH=HIrHJ^k|kk@e;AQ0@Q!w3kXNg-9j2S(06t+o}>ONf?BRtc|g6Q%RJq zke#W7B3oq{%ZzM8mWgP{ZZKtHFvi&D_dc`T&-d}Wf9c$rbKd9meyz{v>-C-|tBb{3 zmVcYL%~oJV=I=vgIKHCl@+0n%epXil7WNJhd1v}LEazJtMj!v}Dl`A`^KjaeT@mMA zMZ9^QpZSC4_sxO!fy%7DXS__pO!{TE2M&lMwD)|Y@36P)%UcX);uC_aJo37y03kQckt#>E=e8qDYxZwme!9|HiDfzM@5oAs+8YEZ5hYIdS$^)TytCniYimox7k#G|o|h+S@Zldo<4D(737W3{ zripp&=H{5RTW14WY{8j#Y3a>UQM#6(1cS{|q4NxTN?z)jf>TDIqn|!XJl_-uDTq4c z2*JsrimMFw*9RJ|>@KRjT_(edKJOR5f~8a`p>X+MjWwc8$26>9dkM&s&B$Eh!QJ4Pgaa$|Pt)n)JK*8bj7RfO z;<~-}N7u0Tp2MuZdyk}qS%4xRhT>hMJkY@3C8SF%@cL|%o? zE@U15L%!9siN{&ssBe8)+lbP*9?5N!Xjnp2z{+d5AT|@*^w*8mN@3=3Y7O@`CCbb! zsBUAm$T6{}sH`{(dP6$R?r~X1OUF$-D4e-^rDv4Y8LYB;^Lb717%58olQPGJ(XHbdfq4%Frd!YGcH=L7X;L)q+k-Gq zFWa(>+=7zOe&xKg#I_xw%^(;D>AU#3TfIQRtzNyR^YsXI#+vVoM8M6BoppPgFNSoU z(TRUkT$+2$;@aFuz*42<<3BqGyl+?y4OJ9XI0zJ^Mn_T-1F`t3>df0!ttV>!=h;j&f?A*9`JJ=J zW6a95PPTCvn>Pfs2_wLc=m4!#@ui&SXF&2x;xEMyDfNi;AO#1=!iGQ z=*dWN*N;lc!8_4_tp<}E`c-g1yC>QLFd@?^j&x(L00kAxzF%Q)&@-8_cf1XX7c^&E z^SA}o5`37gHl3KOLpeMNw%=n*&{Zlp`U_Wper^^$ME97N29(4A>@#trA8$0}-9iwh zW&P#Xtz2p+{N1lEsmA}!QJM$(jZp}!j5{n}b_mkrN$X{^s%l5=s^nOAGXkA9O50E@ zmo3vEeqH~A!>QqW7c@T#&D^Zes~ce{rtQVN^SQdvB7;MwN8sDc1gDNlrT#<)C}4bd z16$a$?ZeN6rnfS~nHRi9Me31}mAc^LyTQgL4lpr@S$kEM_;BY;#@1Y}=6XZ*jow zQ+SkG*jf?@TpGu^JryN-R$4bs>iQ?gw2oV?c9b0#8u0xs%Nz`VCo|4l)v_J-(si6( z!DgmMcUx&MQtDXWppz8n;W0Xo5YN(!T$N;IupJmf-tNAjI? zmA5PjO@fT_AS%1C_BD5Fy-X+`y+ zYv;u=j!~fUZr+FdKhUXGVlhvr;`C^yT%AH6*Wf6RILSX1Gs|_nCU1)&EzP4@CI7-O z)=VY1YTsGZaLsu7pX1Ft=*)J!*xGqN8b8mI6RTKXeYhC{^XV>&~pD;eLKU11$~cecHm0`DmKXFZOZ}&r`;Fh)=jlg5R-zh5BH2DueUF zu=Ey$b~@oIG5{#d*t^e*@i6cB?79+h%_f-lL}M_phKUq+IANvDj)`G341&WylKs_PI( znQ>1hVGJ#6wlE^KJ9tJy+-F|EzA5n+84F@J$HE*(OL@zai_E8QW5stXJaaIc8x{wQ zD&nx548s}zdX#fdZ5kOjt^eaK$32i>WAu+xtYoYCun$#7u6{iR%C#^9!5t|VRsA(54z8D`vZ<%mNvu8f!IT*0}rRSh;e>CaO&f?|Bdf9ev5b>ixUWZ8cr z8gpZbs2Wl9)5rpZ|JF-*dhdYQTtE$QW&$(BXrv%JEP*6YE_jD9=?pup;!65;7jR70b1dLcei1)!G^QsfTNNQ)ef5rrjAN{>%f-8 zhhjOYhOV%A(Nz80vbVED(RE`7BH@AssV`fzgHK`NVuGC;%cUB$xBp!YB*i~qN8=|$ zh?g(v4|b@oZ3j7h)Q_A&eW%Menmi`mwRf7wirzkTFx6PVYdZaXGL*VM9?{qkUlDg0 zyBSI?t@0227y~*HHX}^D4CT^50k;T}<*b^_$GMKjeBVYQM?b>Q)Vf#PAmJyLwS^OV z>TW*f#E!HD3SH+1p*(3DTNxP(O9#t&`oSOuB!XO@mAM3>{Wn2dHgI=!not-tHp5jA zrbm-;3CN@D7V=SJgB6ou9F1s}N4Z@8$~Mj&{(4aE#E#}A9m1r?>}^9;2L9s$r3a^1 z)eTBCM9q_a#kGAHY16R)taJs=#%b2(OUnO64ZXLXF7>I1nW`whke=6huy zv)zV9IP)tA%u&*H*W4>>C(#V_Qf+(XhCk7`aT;3GJsp)=%Va;I|$A10b^;eF#J}*6Rp`~EcGcBj1 zJMGeDh4sXkG&@*WTb-X`fs_fo(U^?YdPON~ud1FId|_K@;%#AV6iq3b{M6{&QZ5sE zY(woxsFHq#rD2Q?Ev=saHk|m%C-ytM(*)Hgqr5`u8bT^-&^D!o2{1HTqI=T#^U=>( z3H~wg6Ew8L@?#Sk@Si%7=>z$E!7XQf!zzRCxV;%#-hSy}k2toCRrNN=)YmPC_WYPj zyJO97l_k4%_{3K99c2y5l$+sMvA_2Z-@&*Vo4YOTRy1&H*NQ$Uuaz>OyKhbJ+|*$e z$W5%*s4Gp7m~N@~;3FjNe$K{cM~Kh7R{Fx}g>K>XRlV28yBa4ee*||;4%EiMJC_id z(|sBtOTLUxkAgFb2(|=b2`Wb(uU_tuH}02Bd-~p8+x)}}HO$oV%<}l=shVYPxTs)a z;EB|aa#hL74squ%k1Vtt9aa!L#h5B8qjtwu&;8li^J52Dq{udVCBbn2iz%OtUD3be zC=YG4u0)nUZDz0fTJQ#6TX<%Nxh<^($rWfq8Et-N;OUd)xeWxspU7rV@uN+uef) zIxFYJvFdfV>N7so1&@i2eUPq-swOEq%ij6bc04|71ue!@c)K5hs4I^!Uj%y}gY4HJiZNMEpvG(!@SjOHxI? zeXy|ylGKrDXnEb8D4g>ZlbNY0&zyWw)Hy$qjmcKJzZI~Pl+c4UWHqwp}s`4qn{ zwIL5=fd1$Fu{kx*kC+jAw;^l)u_IN^f<2Q^x~lMvrQoh(`YoTQUMn4q+lYwOZB|N> zh(%AhhUPO$JS)=*=c(k2$R*^p{PnjgzFLXblM_|=UHrOUZGrNS^40|rA|Yztv%ew5 z&|U1d&kkLmTA<;kWMPwwp|G?Ys}2Vg^Kh!cxQNz-W+wLQV|&M7uet9q-kJ6Gn(6&8+lxvrC%&&!sUcSK>P9!xq2u)g};c13LGR#x5%wtHcxu1|eN zYe6fx>w>N8eQ;)$P@KYQ;P?BN^y{d%pUu~wkzTM&x7OY{a3wAYK6G02Ssj0Z`K<2g z0QcIwM+Q&3<)4;Ly-zf;^7IdSt+5oKc2HjB@B3HzOC`g9voRj-&M5iVuCT^L-6`-Z z7^!3XgU5>Tc*mlBYh7itk6)I#K>y8u!P*~5o20H+O%L(z6R}3-S^KB8?;0!)u{d;) zD{pF8sfM#dG-kb%jL-%|rfGmkN0x3%&_}|~+Q6r!U2U@?ITWqJYv11$QY32=rL7dc z&>1cN^h-%BRWzQnHrDPfB7~W!ZGWoLz1#-Za}HLHvJZeC9Ux@LFXZT~T2P-RD2KPG zQWMSF;)Cuk-1reKK33oR<$YT9<9jc?&i7tEd*Q;!ZDiOyA)5I~qMWGzV;&qiXQF_~ zb5-f5Yt%YlQn0e?(=%}ITWO|-4<*R# z)PG}(GMD9LvMe`g029G1;yv z!BZ={^f2#!>&t6lyouDNtmx}0gu0KV+4*1Td!!Xc&0K4%s;htWj;@Ud$lT0R4@CzWU+Ae*x?KPPT?-g(&4Y`J$lvh@2b%p`pYehGsc zYhUhjd*tCk!=U5>Q(*qv<2EqwpGz<`cqkDP67)$sJ3oO$zjG2c+@s|ix9~+$FxjBC z&bvE5QAwIVZ@ezQl7QX77X9KxqR0BKt!HmuIA|>@hA8~nT}xOi!0+NOUR$!Zs`$Lh zsL*Wp2mr%s-n(k;+-2V-DRSHT!z9wEvCek!W9;dNIg5Mh8#@@HA2Dz<5TR!glkwC` zqQYor9U;tcwoWV{648lEND?e>Y5O*LEm^`x5D5X4098vtV=)ULhrLFVb(7b2gEYwV zEfW7uMb$8DzV&J8him$n^(k)^HHMQNO(35Jcmx#!xA z6iFb)_7C86iU|^O`2*#C6~ei2H)E>aB+c$OWvOyh>~*?Vf#0dU+C$cjn=vteU)h39%2|x_OF}I(P%@T;XCSA@Q`rw^PVMr=4ya>B zvaw}8Yf)u^D{~XHEVt0$;4B1f`q^Hc*6o-NZ5Egf`cgj*yWp=WH5(lgKwH-)W@bji zC@!(nE7#5}dUnD)$rS5mWgk(y2zhX4-_{9a0CMF+Y3+O;TG@oI_+&xUW*%8L`WpZ% zH-6v`A*grdEsrE0YE^dH0_m*QT{g_~TEBsn8kvr15XBW!q5P=^ocY?T^Si)8jHT9T zE7CimDE@V?%*zmGkJ@0eS2gWa_RhgHlYA};?p6V2mHrh^EK0S zZ!76$d-(6#gec)@wDcTqhtVqB{!1Zj9g1P$W-)-uucn|BEt{fyQv9xqFwZVe-7rgb zJ!Oh8hK(uo(KNipiAm_)a?QaZqlt9j1~^#FcmEks1^RSog@H6=Z1*%?$>3d0k$X$P z8o0%Lzfk3H88-6sl(LT)dY7=%Dy`Nr_qj-WB}$V>UVN&TM=_WGvlOz%B*3e03?@kS z@b4#!J~Zhno;RBzm#>*lecE~kyP>Y<(Dvcxh%>+%5Q$*aFR|-4TU-zC+xk9KyFZ%; zc15t~?oQqG(egd}_WZhuQ-)IbxV8JOt_~ULtdaxKeX^MBsMRI6;#Cvm1Ug?j)H%%I zo17S9(9c}?y#ImvDBE8Fmy1R`=Wm`_^)IrK*9s>Xib4s=8v#~L_`fN40p^z2!{Fcm z#g^1Zd?kkax>}#Ii(<`3AYoARnY9ZgpA%PI3KfXz@0k^r9}tN5d$#OyCdKEMl_05l zs&(M(afa2J_+{e(JmQ2dL;De8h}L?wIaqfp4liYtN&@B4{CB@uDCrvTXeE{g2G&~9 zJXg9_7SiTBcMq0f7sx8Q{;M1cZ4%kUu)wrOl}|;rMFJb4#C7)c4epI8C+Y+ro{t0js0Ye`ZzAUUiFjF9K7Ggt$ zNB59GW~)Za95eO)KK)|!^z!sO3fVKhX(i-kN?HDZRV`3*w9>PDyN0u~M}eOaf>Aa< zAg#GMcA6CkHd;7O{jZWBl$kW)2Wxu!E&mF8viX*)fe`Ad+oy5R4FmzHJ%}+(nnCC) z(lV7<-{_f!^Uf>H#sxmwJTP$2EMM+!jDX-0lIf8=Rq@LbVN3{I+Ds(8$J&9*q&!_O zs~~yI#Aed(gD!W6yrlU@XtmdySbo$wkA((h*HBe{RLnzncPK zdjm|)=LfA>+upBGD>R=rLYcFGMTs7FA(*?6L=OY=-j|;{;*<5`c~2T*A`up)_&-@+ z{!5XS%B26+Q0fDH5s*PfiRZ92OF+n_sK>oY!wF1(gm*G_u~aTe03?% z5L6cv0js~f<)p6$=&PcXZPE$8YkD<(1`&Myw{Dmq96t4{V8m~q3QxMNWBYIQ(On4T zX{5rzs@!c-b0@iCXRmA)Dk5~Gz~e>Ux=DDz73fR-dcnp;`J^+8ON&?Lp5Ly;JPl49 zT~`XAN(4Lk&`3}Q%HAOh8Ghz&g!&3YFKqJzBy!s1&{`)mccXi!yAuyg>wYfFzHVYY z{Lk9n1ibuBzChU~6Q|vS*_IXAeyb7fP_`dtx!y9x5W~a#X|CxkzDGUpR|O3sBEirW?)HYclb=A4$_T!dAsmS(gD?Ko3#zTMVoAl+N zr34%K|2TNdEgZ%KYnejh0bq+%n5FkxXu zNGkCQc*!Hu#3n%9s!FGJ;+Bz@HZ-#^{OyuNN*WJ-WWu*rvsbXu1V=U63-*~sm62_P zIQr~}fI-|OTP*S)xMC@#TCCyFa!O39%UZT<(Kai2`Tu}?094cfa0>W)S5cmO#{dz| z9VeeNcvKy^lE^0EtuAk)`eEfb0-zo!f!xsBWtF4{3xKLps(7kQuWCjARnck4U+AgN58ieB);69gYoNkad9(BPs)qI`{zz) zjfT3OVYO2D^>S|Vys+%Qwf3}du409LF?ecF(bC6J!pqdVfE9uo6p+k{&b|>A607%2 zibs2)`mw$?o2c_nDND z%Cf=iI1W}mV01Z`MO6_O@QlEJ6ds9UHq?!1e>UTz$bfS1qpu zBHPB;q7u)-T5uqA>x%m8ya-Q%9{E>T3(H^`*WEfm$|eJtGzy;K{ptP0Rk`@a{M}{h!qz^$jt*JrL1up1(7fVl*E@{YduemCf;wzQysG^Z)shgrUv<_RrgV zqWDPJsHWHZHjn(#(Bz$e3d|b9B=8{)ZlI;)?O#Q@h%o5xP=wfP$54jpVGgi8MjHpS{`Tt;s^%+uP0+-C%uM%;dOr9$jjQLu?y@ zlAOaq#($sTiC@0I1&M?LI50ihaqMs zS3ba?OA#u!?f=z=Z?p$pHm8mNvq0r^7r7uIcyRg6?8tv_J3&WIMzYa;#l7*+b*OP@ zA1>`6g<~0nWnzz*(IQ86AHV}rx<`3I3+q9wVDC3M$)-St~3n<;Ve6zEkG0!espf1ujTA{7G;-+Tftl% zCTH`r2}BXAi^%i0yE&GJi|X(0D*l~!FkqjF%ry#su~NHf(Ss=MqCk1k6OeQd`dpFx z8O&{GQIC{FBfZ$niy`(D4wR}alSg0o)JTG&@KEU@z3dTBY#Q|O9Jbh^wjEgH?RKL~ z@ol%EwiIBqsFX(oIB8q90$rLg8#m`>IId``fUOmU@AHlY9I&f0=B|y=Zqss-4OYSS11>ImzDC@A1tdgxW3Cpp$XKr|z3D6>7KpLobe9%c1?LpDc@nymprQQx?s zurNaX>mbBX=A-(H77BMb^Y_048CRa+if>P9FetK~Kkaba5|+kiz8SJpq(a-fxHD?- ztnE_GA7Bgh_DM^;r}T13OjVQQ;2YRRk)K8dvo)?CYD zn%$^e&oRjBX|5Yya82**MMaKMTHzDp1i0=OwUzjf0w+YRYQJdWc0n11XWUCp7U^_P zt?2yQbB5F0h>Db}cVRokrC^>JHPM}JC_{=0+CWfc&L3()e(7wWnS)wz%+62_a@BT^ z!$s_FcFbMZC(H?{ac7rPqFDR;0Nz6U!gb0xGQn-zQL=c;pVHOoCCXi+3~%-;;(mJC z^I}y{J;79&?bPrI78iN1QriE%kK=S^NH|%pY2cIeBB4FCQqTMO)|{IYqm#n0-RvAz z{zDdT|9h{yeq~dZ@d#7mCth|XAFTHe>n5={%dG#xW>MDCrClt|hsed7+(e=Tq5Pqn z9bC*0ST*o`$&hQxoj4!M2)5%rOZvf8ew-IN=p{SJVEP8TWHZce^nyY+JS+pTLxx%Z zp&u<_;>)P{b9^~(dw;OPL`M8ox#lCJ<;u+Oq`^P=R<3a?%ZhG|R`dnmx|nhk{{6i~ z)f(Btf>7npDSWUiQPA!@m$5X+{Jys0(%CWiA%YT~ugA#HJM7;}_J!-haLOs=x5ztv z>YNRoCVa29LY84M<{v>J>xz-@lRkdQ0KnBL)c6~+3m`!%?!}M2>H>9PujBp}cFND< z0wQN(MS7NPN1pdAMl>u;uJRzRU-y{nW~kqv*#GspAFZaXI>RfM#&w&lGO>HY)W9*BQvc_E!0|3gT+m2O!lLq)HF){2SkfT%CN+R%)Dt+&$V8zH2mRtb^Dg`Q-JZ9 zAH?D1As6qp}k1l?NeXmxVaI)v^L|Iz^{Stj&#&#{o4l7U+Na>C)t)R7r_(xC@4=1mQ3V>q;lAdsy(-d5t#g zGY*@v__07Mw1%()ZKn)72J7kBVJD6-(1=o8R~oSWTVyu}P(#|Va0QewXa$T?zjs(Z zvRkEyI_E|-udnU}n4m9W_P$2HG(15dN;CAOhtt}P5`aK>(+1xr)CriGJ;Rhs^Qj)Y z2It-dD2VX&n>Bn%pEWdjIB{b9pHMsarFpBtg?fQIp)xMX$C6v10iOB0S=>SmJ0{#4- z$;B@TDSqQ!zi7Ua8HlN7@n-JqSHQU}Afy3n zcgl^`Uc)A^0nUrvan4}GI>fLxSUPxm@8Z|h&mH4VIaB3kVnay#H^wmn5v!R8X`<`= zhYFM(za7|u+xR>?F)3>I?Gyecd0qxBX-PdljEB`jLRpSs==1`MC^(5cWEkO5MAN=? z3#%T!`y+*L@AHT1%y$_NDw{UZ;-4a^WVf3@GkyPI?AZr7pr(|3#L99gNlPws1Q&9? zC3l&)B)L)~VVdG|6AFd{QLd;;i**AdCZxSRcePzl3IYz)(@?XUZY8m&xNWCh5@n^9 zRL)%e7&~XmhX!PU3Q;rPquNS#;ncC(;1Fbdd!@lDpzv?tHFS%iLhrPJqCBK7AAf3*fO-j!B{u?ItC3B@fTb2D=sKFcEzrz!_z$<0*Jx#AMu(DCAf?(W84hg|S&w5IEan!Jwk$L%8aczJF88nRUQ zT#87qoLk6xNm+3lT0%Tto(_%r0my^g{M|1%LN(D|E0f>01Q07`e*28koNJT7a_|G(fdC>;C((nM7W$)scMd1y}aM=8Pos0k-G; z&Hj8yN-*y@@(VuU_AQvk#PNxF}(XXUPM z0eztY+emqfZZK@&NU?M|V*fsN6y)%;PLp=p{4Nu5L|^)936md6s;bw{?d%u2eQH~x z%u8~2H=mGD@W82)?}c27ze4I{ftd7j^FFX<>=NmD&Z1CqIk8gA-#>r01JGvSR<4n0 zD0eubN2&h0zalGnW|6PzG}$~u`-t3_3Ce--9}y?wPv{)pH5jMs1WERIEI zb?wxruB#0-s(>Whjoc#Fdn(B>aMjqW&O>`Z@yGnf)*ss%FuK&iJCpOjgQ{mhPe>AF z`myhj9qEi%OO4jVp{fa=CMipWbp>q5@f!iEAtaT6S3r7#$b$6He+YCfRp)T4*04#; zLWnECiNmZMy976LJf&3t=qb?`r>}hm5e6aaY9$OKQKZ?dc*?ogmJH9e+uOYwLZ8n{M2Uw7{SE5f5gB1fdnAiEgC|`yHqyE1B zQ-;Y%fZv*#Paz!C3HMo;JOvmWitFuFiVP7&0Vs1CIS(Sc&a&GfXpNArzV{IV5Gz4x zxVOgh3!sYBbS9nb%+K_^7IDK*1{FNHx#{Fvx%Ey0Yh}fV#B&u`bRHu$LdNiO`dI#= zra|43$9o(&WUl<{&*f3;iinwoD#CN~G>XczblGIcpowf6z$ER(uOfrhIz5^DI=-KW zv$2^JLT3zKOZDHAm??V$&@_jhnYUzsHR>=|eecV(D;a$6Duz@qd($X+b<$o8Jk& zXR=Nv=TjW(UZoIP{)hJMm{ta{X`Rc4}JnORiOSkjjsgu2%zAg5;?B5bpLFZ zLHa$@cYr)e4o&Yy>s|vKf!W_){(Wf{sJ1@~(d+NE5YZFg$b4lj>gg5P`q(zsH~Pj8FE2CHc#^!kanOHeCX ztz&?j>lElVb;H)zEgoX=iT3586AiS3SkRc!dHEP4AW#qB|7AaQox!HI1|Wu(gzvOC z8)CQLX=J6dEWJR)X4UIhz5YDnxq7|FwVV%1UU0s5Ow zKTgYcwKE@XQ~uh=7I#LnRcj&tCUe2aVZRlzvS^_sTrGf@c?;|KeFSHXRWLn47J7O% z44KMUuPRj;@k226g|*RJv&ZZ%ti<4tp?a4VkaEeh*EWq`#<&h!SvMgnw~;>!9j}L1 z&zCw)NHv2U}0Y56@+tuw+gi6;6|o2q~wGo?`W({B38DK8-<@rGG>i z{k+&1qBVoM^DIcV5fkOO)2-S`Kfqv+i9~!)F!B^mT!Hc0X9*BfqisuBztDAaXYgLd zeSphS6{OJ&9`?}cBYQZ0ZlVG5jMoNqp^S+nJ>0B>J#u+I?ZsV*fK~9TsDP5pUunX3 zGa2zJ4VaLX>QjKqGFAxOdC!N_bAh|61od3_rul#@iS|rAiRojb|FEZrg3;mkhNkQ` zWY__GsHQ@p^c>**O^yLBawV)0Whi#tZHVzr0Q7y#5nFIES<1`6h1SfMY7$15z-4E{ zR?=_-%gpUT2f;uL47hl^JmjYD z{3Ic%XUVQ{VaY)l^7~M~safv~5tIYijb!Td#{Gr8|D+YW<~YO-Dbo7l3C+Cq>CJ|g@s(l!Y)XVO%k|}2#jjP3S4iO z8zVkX@v2TA)DsRcpRtQqL=u(`bEX{P5rE`pgDTC;as?Lo5H=HktK5-W`!XvGzXFO4 z3RBFAfv;?I-UOA~|AyPgOBjfegF^oUc;8YnZ|$q%F6_1Eb_o6dYsY0F4)k!aY~fWO zbTF$zO@v_(I)Bl2x*!!~X#9DX&zXXT8W_*Hj9t=y_lbhNL8lPutep$3;?aDlz<@^i;>4D}j?+F=Gr8 zSxD`0yLHhEf-XbW#qowoY=D^gS@`dr1GOx^%y6q2%O$Li_rZm)@<=bkf6O@H25qRt z`ovJFSxaCi8y^E>fHC!)F~G|+$UmF7;0sDehBI`sMAv=C+uen8CG6533@K4+bpe#c z8j(Qhyo_W4a~pBzI3RM`5_v_LjeoHJWHpIUb8={}UT~oTW<`2Edw)Z2*jjSIMI3cZ zk=-e;SliEo7ApiBhl|Jh_8c*6wUCaz%pFnncjNF^#*XjrbEpH@Dm7-CP@t^96#)Bd zqoYn>K;sOt5gFO1Fv3;;a<&Q`Lp_rx^WM(KtB9q$qqyz)0X#|c(_Pq;wK}C5zNTUmlDILkqENCXW_^_<6wbCTRE2`18?n9%YEK zhPdq2ujOF@oUH)_h{i8AtQYV>{(q=JF=tR2vY^F&G0q;HeV)OCPYKE8EbBOi+A6>J z->VsM`Lg&l6E3zxNdCqqiI`f~o1ukf{^lNN(ErfGExX}_I(XpEi#H)CPs2U8Y zr8p{QfpM@X=adT@+4z_%#vhH_!^QfHB<#FcsAt#=W1kV6t0NNl%3YtJP64k}SmciY zayA!EM|ljTp}+{TW|Ks|S4|61C@EH%klMMgCxWhquVHZkLHr7LX9+`u`$`f){ zf^Qz1`axetGqg5wCkTDuwk?etyNcgu9`rM~YuUJ2qw3xn&5vV~(bs=(P}!R;dC}s` z)^8P0ZYpbL-~E;J%PWo;E4nAM#v#+iC*_20klB__!SHts%*oup8&7Q44Jo>!6^R`% zwKS@E-IKeUXx0utlaj+<+}?I=;;{TAAwr=Te#ONMOnr_k!X<=UYSs3$NRJN#8eDKo zP~}N+0{aa{C5UQ8|G|!CSQ=}HB#)K_BVTsoLCLmFuXeDSFjl|juUD?-jj#58b6wrZ z!amcM^d#(RH~=EPE$0hQBY)AnR#~$iu`syWW}dcqkHeFH5t^@A2lYc6?nw(E}Z`ymrsW+A|_K<#Mv<>-IrF( zjbZ5eei2!a9RC2E0Qviw91iY2tsTN+1Q5r5bCG}F>ASoK9gv29t?hk#;=oO$m)?+X zep#b_ghQEurK7$4ebAow0$QW?D{2Lcygr7~Bd*!Z32;iNd1SYhLOO@x)!swo#gi5F zmLwX${8;q}Y*kz55Cq2zc&us}AnMP*=jpiY0!PQeMA~%V-YVYE>kYh*I~x{RE&Pyb z&b1bT3eaAT)4+8gW}VsaFRb=zJJ%JX4p{9&a`&SwQ05hvG5%Ta^98gqvX(S}*ZG{p zRq;`APIzA-MWOPdXus~TS*Z_C{1vD&+*oaO{6;eeSy>hHd%!asqWKPg6>jC_f2(yZ z3Dgr{UI}e(#$B~UR-(2!l${N|_r2)cw)ZwP`;GM4ys9=Gii}{Hu}b*v9((p$$Wem44Z{y@9-EB5VaSB4l)sjbCd&8R6|hfC%vwhiK_6 z*W-n=e3duA3ZN;Z_=Tp@_J&c*s#w6ZvPT3hQ3G2ypnR0Gpn1X3pGHb7-ngl>dOx`z zko|13m3*?*{xiG13Fjhtj3Q);-o&ZHmq`OE>U zQd7(g_(`k~s}Kl(C(8|$!3d=K9}`TJW)l+i~&=Uf2H9`c>cCEjt%Yg77ntXb>{jS3GVv{wxa8q6TlvrTS&JU?#E_CjV!m3KiU1NHgqJ?i0;`fMki1Vk`BG}{ z+MZ}Hy&W&M>3&(4pf~0O>-FQ*F9LP0wHeA5wzOHrn4T{70o z#A0c#bwXguZ^=@xb1`rTQ4~A2a#`SGw%-)ZWMEEhu8z`jb;H=MU})H0@7w6&YFX4HMmhExQ{`X@MmuzoKUekqFZ?y653XJBHJ+cL-yE!{} zY5(@BxxvPy-3Ol`Qn0>j1sa3Mtrr}fz>!HitBObZcCFh}rMtsf-Q9Qq;IJYwk^f!v>@!j~{#icl=9q8Pq+g(@U!A zSh7<(M=W!tU431U?V>@>KhkmQGMJ>hM!x;Tu(|5~c|zrg%k50>!SD-?Tld;BWo4dj zc_ZbmX1>8TXwdRu?$#&i{B@sC$6wvF=Vtl0vZO?`w$0|R{ky@B!T8!9clzr{!gUBy z1r#}w@BJuMb#K?FHESB_no<4RWRD2WEznxc&1{XL@z3->Y!HgxNN~Ld{&})B$)=gL z@`JDUwURb;rDZc}AGaJ-{S~wB_KR~@WD|D3SklN^ckAMwo8%md!%$$W4F5el^T3V{ z3gd5}T)nD%)T9z-eV|EJbWgyd_Jd<2<@9~v)0v+gh9Wb{5NT10F;lL;+mV%2!CThL z0hTZ-y{sP*S@`0_-*Oyt2L^!c^^TuSS;x6Nv{8=|y)Aj4q?sEqcFKx;5#{w28@q}G})_wScf6(e=G791c2IPLxOa71I3KRgnpGvX)nWUp#u z9Pzkmz3_#C0-0-am~~<$5^7bRY!R+eT=Ae?&6{si{IjyUH2K)nqpPuA=w5*Y#0E9PO8J8@&QdO}nms*AWV1s>ffw(&z}2s-QhS z@VEO3pHiIw)+^#}MuCp#j=}u5aE260{CRocOQ%L6Mx6k;pt@aT!kJOmzoSH(JwkTk zUmY6*lTEEv?;b9i>j}okJ0zj5nGSjtZ9-KhtEvGSC2ieFX*&rp z`Us?ap- zSe|qB$Tt^ifpV6 zbSlVsnY#C2o}{{3km#ks?;_D}lue}U=RCAi#!&Eei3 zmofdA6>u1$MVLF(jPG0MH8<`n1K_lxn3y7JP-;x@X}G=Wv&KDc?-^8qpr2QB95)DU5B~GftkisKq0m}^OHrK}hLdjEbtF5`Fe3r5*X4^mG1%nnXoO+gYOZ~xmd#zJs!(-gS_3`DB z7p3c~HP<+;mpm+fRjWtn_N4a@hUMqHy~B1)zOLTHhF|!fk??vcr`j9G#KrvVX~IxzZr^IR|@2Bq?oE=A>VIj6Ck=_9*N7#r?- zm^fnATwb@@txBXk{kGCsSVbM*;fE2H7VTpEey&#Vf<-GGSfnolzdQ0Z@0B_#&+N8Q zbg#WJ`=Ez^6;trr3R0hZeE4s)g@=^rt&96S2aLN+x?;mAWg_Xpn31q1dXlCZ3Io1& zeZ{UN@QK$h&CT;7+Z{I-Xc#-#5R*?keUaW=b){PHGSV(xMODzcvQFd^^dcZ;1<8Pq zC4#%_ZH8@MBde3Q1s7HL+N=~!I#_k4{jpbu)hRbollP2r;!WV0JeMd!lv}{Rg8W(q zNyZ^elj{$jxVJ0Pae^L5`m-f@mjpgbTBIwk!Wm?3HhO9oEJa^?kLR8R3JRur1s~fZ?j_ z=n$C_zHm#l-9ymy^9e7l(kIaliQ7Q3p@H|+KDVh*&ZlG@f8B#ydJiQUk<2rdmW6xB z$AoX)#JS{zPL}2K4ab9+1`fc9!L4pxJ1wtfTEowXEjYrLAJYsw-6oQZ`HaJUW(hoa zUGpGu+m!rfQ~pOI3`UpA-sfr=F=j&nt3m=NkR!Ng^D^;9InuYllz>UPA6#hgfvZ zOZ$#MA$u?TF6ZtydNbd4BOR@_BiYn+l&C3yzw$eBvJ*(M%^;;evz&l6Q4R z>s9^L1_u)zxwC#`rj50=cTSC7-U;b?s3cw#qNRq`bK~HtDCAXch-Ou)V0+~(;hvc5}Chm z&;q;xe`A+)#c?RW6NP>(r!TKbj`r>Idc{`Jq6Z~#osHK*Cwi&Z9&7AWnm@w7PYRLI zub^#Zt>mT9Z$Y2m4xGyEf@_gipmZ7@WGp5 z9R+iK z=0BxogxrtNzx1cD*a0FE^42~d(gM=_;A{Bt#Ye9g>4v1YV*X}d!yk4y71=+;0JZ)& z=2E;%r3%*QcFk!Gm~pKuBJaM;!|7tqaN3de3`{AUzA$tY&@>iIp*JLL?e?(c3Dnm~ zyMJsg@>#X}t(8)g;EnxIhH}u0k$YicL)TWQ-BugDLj_6}+8!*H`dWQi*R|zhR%den zEXLt#rnix1&fWfngjd1aLdHuj`fG37mBMgU8cz0izp)Zc2q`-Oj-8VAt4y=4ycuHb z%tbf}(WYD|lkkq!d4Fwnhud#n9mOzm+5olv#s;QL(%*w4$M!?vgN#H935&EqU_FSRXX;Gp80u!RGB)k@OF8Rt}s2<#_>0c^9IE zI5=48G=T>gEZo}{2D&&{=ia?K#Ccv^0G!*c1sk}>fs%<$`KbIqD2xLa77>!Y^5(cGz#16pd+nEjE~?B3^crj}b47hfZoAa8NyLM5~C#cG6y)grG( zT*%xW!@<319tWTerk-Tdb(uo8zT5&9g?+G&b$Ck&q3JyZ;5fMlo&mb9v<~!Q=vO%?fTD z9zkYl*?c06+a8H_eaX450r#?VFv{cn5!EA{)GQRqW)_71gkT%6lB~GY0T8;0z&l zPyIrxDsRKW11)29#_O<}{b*8#;{gaxz1E zB%#y5$c}Ct?&T)4@`n)@T|ws)3%N+sK%p)B#f-8C{O<51xs;*20kl)Fj3~z$a1Qvdys;k$GGM^3V~T!b3S2KYhCDxL|T1L&BhMLcXk@6LDp8<_*0 zZdCYY{7BqrA0iPm7VA&ESE~kkPJyBRqr-daf3!HyI8WuZQ#0Xf8rZ~vmx&$^q{R^r zp5%7kn4J6s8PNH)BE&<8PEPMM6VBH^(wnXUO&7q|_p>?!M+q))g|dE2--isDKkqGn zqnf@Rt|jAlSy*QeahUwa*kWGs_UjI zGR?F#b3?nq=l732Y`AO5en&nq#|QqaSkf_i#f5hL*S{Zc=(wsNOt?9*wH1g-PNmk` z#CyjJCN6IMbJA6|d$Ls26KcbjC2RkF_|`-3I|}j(e|y+>I)hC?sJ2X<{y`m*%dB+= zpr`;Zzw43z)?yGJZ}KHP2%$S76+e1kH0lN^OX56{V~o{*qf*;>P0QqOZLP5#pb)u={@ zEKG_RvVx4-Eek~BG_|TGeVp{(I`01=SdBI&IBs+@X0=Sk9xq{R> zz7rJ;t-r&^)8?a2-F5%(#n3;=o5)2ZA;?^P>yO+=1uo#?8F0&_B*&x23s!TYq|1s> zau@@8jjoUcZ6pBB!DH3Ddk9Gpw?xq$+tAYrzKE&M94mw#DIg!2-M)M9p&ey;AM1tbj6n1O{FKn3KAo8&Km~ z5oxt_;Xi3L@1DCCwIdli7^ZlitFkK6A5)Gm?u4$!gw9uO;dlhNwmx)fn*Ojlf!%V` zfh%Sm&5O4=%wsbqVEqUv64B^)?IZu>TU2S!>x6lCK}xjnS;DZCEiNb{|W>Xp)CwQSXJEY5#&f zuP~q3zOZS-G{QTHpK*xtL4k><`dz;sN6>9`jo!Se^gNc(efMaM=T}`($;Y!B z3ijN;rYZlkGH2T9m)hylgYSkMYh#|+%=eZ27V#0IZ~262|7FWlQvtEF`uJE;+ZWr8 zJX{F02vJ@VI6hW~ml3;W*e2$>*&(v)m>)JZzd&#~@cx~1iAhiWFnPb3G82D4?(ibc zeNH5yD$tel&vxzZ>ZQF^>r44F9`S0$>+=)){F9v z<9cpQ)%*WG#79@PHkISsGt&ELxW#2vQeI4;P9mp5__EdYQ=^<3df=*tWAu86?%L*_ z?CZaFppulf&bz_!#i8Ftr1aY|SRvcwZjUd9b!gS@QUAXbp%m8KYW3s!w*oe_#=-d) z|3;+}Ufwc#_2+{-g&D^;yertTw0x#C|F|X^&P~px>qRD`H{dTevUja+ejUAc+2w)+ z_omZ7l*M{?UQ>Z!TKY5NCVLfai*w!E-uOzUiUw~_HR3OLvG7aBdlRvm<%kE4oucj$ zLdH9%2M*MW2M@WPtY6Ui6A-iyNe=6JTHEy27HIhXrLsm)_lnLzF_6rMJR1rVJ#t&) zq{QQrNB@({d+W85yrqeh!`Q8Yq2>`^vw!v61@&?>y!MO_nY5258}8hhSRLyIZ8c%L zTo5@f{eD7|OEp@YbE!3!9<4a?l>WF;Fuo^$&`s=Vu{v`5+$h7>qjo|A3Tq1&Uw=1`{)$fss=G6nH)uGL z`=dH(;yID|NMalQIY5Ohf3p3sC_;W73%V)I#u+YD175*%} zgQ0Idn&g2UT(Rm~^V%xwS4Dpx)Nbj7d+c$P+`VjP&N|U(J^$U)d2t}t!{vzO#++wA z0B>Td`Cf2TV#Y;N;ngPMyWfKTp8KFYl(4`xDM z#14`#H%;}gi1x0*<(#2fc7hopFXi&%MqBgo6AjjHe+0$8ORDZW{ClX>iofcKwYkc= zfzMQOrkq}=sR`0TR|+b$A9+FWw_*B4BmV8SmE_IfC2rQ%L-=^h=;6r`rYELt zT$D`YM5efveNcaXCd=et#g<6SkAK=%I6~UV;m>bw^2zV9sicgT?c2BSK;F6<`oHRw z_I`76M}+?T=;e9cx}#Rt%sU4P1Izsjm0l&NZcc9t7~)%$3pf96VzOH1J2d9AVN3Ix zgYhy&_1!3^55+3eN) zEL`yriLhej6;8fOU^;x?aACUA`gNkzW~h44@i3*rC;D%X+B-a1cLKVvdic%aCH?Fr5mLGQkL0`n(&vyXEJLDBhv^eA z`0gv`9G(r?^tf8q&MPfS)1#%7ZB+}?!-ovM3s%II;Bt?L6zHF4SwRsAwXm2Px$}YFB@W2%daH! zq~Y(3W}Bd^aCljscS7W|3*?+@^B14go4h^xm-BR8nGWTo?TlG&nP;uuEl#bEh`-Ih zA(Cpk#jY;GA*(jbPs@TYzWLPmiRakpQTBXOSnKPPIUd^kI+Y6mq`{ZlwxPQ<)U;+rfWU)aRv(ITz}McAK|u**nqkd8ONRCjR%V ziqetQvD$92^V=ToFpR052r1RFJ-;(NpGhX~UzD3Q$ZPZ~)U!PzsB-48TrE*+*u`(- zZ2X7gcWSk6k=dKCnwq>jvCf~i>vQ!Nn!qK8_^uwHx(Z6G}SVcJS*?sJ+;nd;;x zrK#kMe4{)zgK*n^`l4O!wP#l>L&FYkRxXG=tnHB&7w=y9l5eq0yj?Tz4C3NeW-!KMGCEbXH z7gx1TI?e295B;#niGUl=95$;SYjW@Vdv;sDkH;Rq#g=>KLoQZ%6hd7_rMAA^`VR8u zN74*_XIB@d%Ay!Ou%-W&mTh4;``Gs@PUoIePO8#EKf^OGl;+uc`H17wi)MjM>}TOb z=825d0XpUD<^jJ`?9f=YFQ)a==eirV(Ndp7`p`Am9I)c&?Q|`AAuX!Pn-oPRz7b6A zI$6YV)1a)8mU;4ioo)E%$(lHkZ{G|o=T#I2y}bEnJ+x;->gDJ;2cm(^(RR};G%%=Y-1-hTUPJAP1S1$i%)j^P(!x8`Ol4VA;T~F9mj^J(jsZl zVdEQoNL$Uj(mz86Lf4LrzZGIeoK{z2JNUk7$9Z78FCBUtFpt?KD1KfDtZ*FFFa0gI zj!R3g%G`+VYr|syzGXXupZ#+~%o*>~bQ4fRNjB}Gp`~cItGL~l&S*a0nN#v|O%79U zS{|Oce!9y1#Yzh3xH*9* z#RnO)p)dKC~U#lmXIi0;ycb^PHkn(aJ}S}14#+X%D9e?H#)>RYPzF#Jm0pc;BqN# zF&Ifm3_(NTp@B@*^N+;Ki8nBQ!nqWf^%>^@UpT@XJhAEjfQ|Xk}(H# zqNdvE?=qTAZ38tD$kI&pvRa%a- zT=DQI_U3_j?25x*>1~IiCb`3T#+hy`V9y}q*r6BvIw_V&bJoskqs@s-L7Edt81vj$ zlL!9Oa3~asZ^>TM9b!;?t_Sks(@KWpW1LIHy?oz*tdFqP?F{t*Fei*xm3z9zBqd7o zu5d1yu$~p|4vh%wesU{y#UcG29?UB+(WCafL}m@$N09UE;(uSUOh>=+68%bx86K-& zOd6H+Iglj0N~$r4+Cq2=EuuutDbM*^&!Lh--yj`mzwCOIH^&?;s?a(1A_JLYffUWM zbl#{w*np0zg9IFnn6UFfKYl&d%XRG`J?|{;75$ZF0M;8u2BV%R4<>XN12-*zOh>xr zKUQ775!Gr35@nV|v_?F$FNu6qZN{%`j$-XCeP3zhWE^BG4`%#%XvSxD@LHq$0of=p zk3LlmGN*i=Ee9z$^_9Y%1U(y?L3_6O1Jtu2A2zY}#)TzqCtMSTa#|jmj(+rM!of-DH%#w(P>gZKos18%m0zYsI1XC~2nepFpTqvkhY=&nn~*tr>OgJv-+QPS0v_{Pkd7&2ZbZd9#6?S5<#-%6;z zx?u}`-46ZD6p!8yc%9~&e=d1m$SC{JBg8qp16oSyhDgxE&f01w%5yVMk>qJlI~66D z%eG}!?r{|_znPo) zMvX+HFN3q^k(U9coSwBKaBbM-Ctw@K?npQ;{TSqo8G-!CcaQ2rJ0ZhiCjEX$gk^Vs zdhvLuqEKmt`N6l&vSFEj23nkRd}?9#6#s{QLXZ$R!8>EyrJFi))*UR1zoE%X&EU@Y zB_c=k-1K*15tNMT$e08U5?dn_#&2P*fZRvEtH8aZI#_!pJKpn-x(7W z*;}%d!1wYCg`r8cCu`36uh+e$6?TUj0;VO$ zG;9=gz;2VUs+`s}(V3>v0JWrh8d>Fx5A=H%qmUJBfUe*yFL~zu@8e*92E(+@I4aD) zyUL8Mr-)bia*wyV4xd9;*C}ZvXIze`ygjX#7>fk z?Yb3yr7FRVV;ucFq#9q^Z(*?e>`{dw{H1<&q>rfKlZK6%8CvAIscmsjC3WV9O++be z-72xxWzpiZn%lFVm7V(Fbgi702)zC{1hyd4#&X`u;n z!T3*0w+EDQM(5g+2884EKT*&0yKgr93-7QCRg$%)oqJ`Ges<|9PG`F>(e!$|?eR*ZR43MxMo$ z!PPtk-P8zhSG7Yp^x`MwYejT@l-l!awc}0l&EQ>S^?Bn}<@p3buZK<`i0Mwum-9cZ z_nZGJc3-#HT(f~>z<)kkrQDJ;_t9IK0r^TIk9+SMhI5_v=hkU@#!`oeF4Ze7GQ&tcIBeYasK)NI@UTS|F)LE2ABn)PA@;`5IY~u`Qckjvco#BvYy&r*YmRG+?k^eeX`qm z8qf`lv?cv9-?UoU^vZvSoLf05!e$iw2`7`|kKZ=bDKIe@~2n>kN z9O?dxGJneLKx1}wj@1Ky8rCQN$|;157%|wAXru#ljr%*XyjDJl z*f<+rqLDvP9|}sbHuyq{UtC-XbiB6A5`-{5i(PyOa2wYdhps>~7ZY?05Sh5UwSGEw z8_8i|_n02d>r=aEL@74yn`u}bxTM7dfD_C2bRWs3VEr0Ew&D6eMz>%6nQ*3Kw;)nrwn3F%S|0+_l3enujr8~5F&I!e zb_al9t;OYFEsyJ5rs;np6wpnf;u}pm>AhH5FAWzV5tdM0@4bAea+O4iHw>v$IDrO9 z@3Q@O1_%;qnlspCw)fkRzXj{l%h{WT1dlbygh=_~!|4^{?vF97!^9`WT8UCh7Z|rW zd3eKF1FyE}%1jXmi0@tBIa%Yrmc?DGv4M+Z1IKI8Twqoz?$fdja49ruW?0x%&8NI{ z8%YjU?rk{CXkndZ2#`u#E4fRat1?eCmTiEcx+1HWxfFXqURtS6G>+f^ zaY)%gvIMm@q)w~;PH!WX0y}0++-Kc4I){%a7gzxX?OB_KDYaTR!VX&0OLrHUh3O4> z=~=d^uKhd1^ta32=}-342fW#`;ZlX9ijVQrDzZs;n4#j2WFem{%8`If*3j^$lSSYB z{aK&h1!;K&0t#6B%G;v{rkiUeox-5MKsTk_YBVP!&VqGJ^m>&#$f>=>C(}IY?pViE zrp8Xy&D3I)3tq@SKk{wE>wsI6ULg{$+mMBt*I3c+A%>8Ud1@J|SQGHa_qk=IP79Ok z=3bmLlYKg~2Hnw=HO}6)<={Veh4y1=W8n>WgU_fgcO6^MDyq*P4>g%$7<0Cb z27j~q4i*!;W^?v7q3AQx1zS{)KR%-TBT%j>`en)8h+NfzSnKj*MD~woG>wPOl7>gL zvuGWDYMjO;55wu;3+7;X%z1oMx_{Mg#wyU=iXWLeQ%kq$qK`kpo3J-+B9UPK1nj#% zk6n9a)9mx7Az}ScJ$QR`9)5A0>>~>HN!##8=|ja+7my8BmzgHETszYQ7eMOj0i)+1 zDtENAL4gpkmPOlMKvF;7oN5`Mn1;;UkfFck$iW8sNCVVou1=0w*+*{-o-6JB9KE?3 zBnR`>UGo25i1Kn;R;|w}$V+cNm>5qD%gv(q#1+Jru(DI35b-lTBc-7?j|NSzP!Kfk z3Sf5~yiZH>*?LGTETsT8E{@Olgv79}vJ`tYEt1Mz1(p>pB(tEt$zlup{a3F6j&#^+ zn8ItDRw-S3($oO3y1$km3=(u97J1O<5i~{rZ%CxDWLxryZ3r8jklGFpJ4CzY)lPWp zW=O5-_oltRb|)@t$HlbA4M--3b=DS~wd${ITkkD~zAcW;7W)FhNN-tDPC zAeRPxm}7x>fC{b$qxKyrn(hA*NZ zp1&W>%}?LrruUP+Lt#(93iBuv&u$oT;Z{kpw-Ruvf)JTQsJ|t^5~_WFDa1LbFQ*eM zuN@H8^v)$J<}8;zIhX^JAfT@Oyt+ER!Gu9r8(DYqt|{|G{;r^G{Z2oDn&=dH;b>cp?JXt9n(DBbX} znafDD&AE_|3*7dtRnG-=4mRzXdaJRT6<19q(VJ1&hqqM@#5*RDv5(ZILq2>o? z^4}n9e={yL8V4PRX``_mF0RR=U})1%@EtrLkG#MzBY z+SujKvturH@kkqb2^v2B9$xsSc|+wdgASEIOk0GH0+smW&MJcg{_EWp#s_r>?K!-) zM$z7#FB5fo`L5mAnba@;5nXrW(H5%|p_E8#E;@&m>%Jh|j%Nv7n-@}%8xv?qlj2}B zi?xd^nTLrKEHk+Lf-Dd98MmM_>!Jc$mqQ+}t}6If?&c(Bpga$y-Y?^|+p~cS1wm(u z<*cbe3sq;?8D*ve#D%o8r|Av4G9i7jVt}a;UR0iG$sGSG*0DlZ6|K2xI%46;{oJFk z+vlAi(TA8!?jvIe(HJ*yUVoVI9JvZ&FfLh~$Ng0vg%)O2 zRmM&Pkp081!j*B!`(?Lv0gDF_OeG3Df{F8G63pUH^D$xkAB*5kPSU{ZJ>V{3LInRy z0pX=FGIun%JQ*NxAGB}@+?5?J`})O}I^ZD^`T(OE;UL}v~EG%rfoE$9p#ua)Kz z(w`p$aCZg3AbvQC(qbYaljyX4z#B*nTa=ru(}_w;T|pV(?aFAiF`v+CTczj~KT2?3 z)QlcZ%ABT3OJeLhStkOHax#gjeMiUjOV*P)SBa;<5*D%X-u_IBs5wGH_Ec_I0ElZF&f{35R{`!FdF zaEifMkL{j_O}(Ia}RaZaYZ8`>T>x|ZCKyOlSKe+ zHP_m`9-e%ayOWjQzGB&#cTA?Hjx|t!Rys(@SQ5We%ZG>y`WoWC4VHNqzw_j)mtPXG z?nqX@^lfoTN+@=>${8ucVXrv@pEZW(p9d~@iQAkQW*tw(RMj6*kXGO@{Woth{2yhj z-=K0F0_T$eoI{!Mi)7;C8nSoPLnHuhfmf4_*1!yeAFFzezWDG1JD|dYOpF~cU#y=o zs)yInj_+1U@Bc#oiLcLF`x0n$p91-OftHuDU&GR1X6q??7F=#y@mH9GdQIEoG9 zq9g_>fK7ER^kv<^6Y<;{Q2JgmE&g+xv;ORqv}3l9*|5g zw>LFu-ThKNz^XsLT4_VfSj~p4Rjtt$vt|0eCP6c2*=gqP%Qje`uOA6F|EEyHLz=Iw z%tVpfP7S_AD6hS0uo!gL$JA-phKz%OrbSVlwJIUJ54RCq6V${bUjWqttY+PPw#RWtiKi%@_24(z0-KHMXQB z!56=-+=8ezR$pGZ{|11O0q3U9sLdXdDZJad`;GjQC|mE`ZShJ^0*yv$yFZ6tqI7h# z-XK83N{1G&D2f<01{kY(Bmp}F5BN2Fm|j**XXq9+$Pt9sR^xZIrnPEIwUp6ZIEM1# zK(jX-t%_p_+_)_-u4Lr5WbUq~yHGlBX@!oeF=}!bxXu1edtRG(X|)9ZVF-7jI{vbWFT!M* z_2aUdP{YVornjd=ZKBkgtjk!8j>UEJPS;x2KVts}=~ToHMhOjc1^XK=A5n!I3PEyy zgtzy(xo&4ld+s~lK;|g^QVK}|YbUH}yJ8fZLTQgCm6IN0LQ1L=AvtNJ_WBikEB<=+G?&bZ3R3^z(-z$pvZ9+q| z&9h>WA*A(kbnU#PWSYY&Y-znZ9)Rru=r%pRTb41ZwCTY53$N*l&ew1|{nzh}rmW^r zghRgqh9}tRkcWoL6+rGC0+K-bA-}dDO@Up;facXVrp6oEB^z-@z@h+PJS09hb19lW z3jZ}^s2_2Ph0z9PpG8XMhiB4)zETViIrg#>Y6i0PPO)46C;L6w&6>KSKg>g%Z}spx z$AI3<^!_Lv4cI@z?0BBnF2l3zEV;;{sJ(scqEiggGfH0|mb8rQ2q8APl+lV{uC9NA zq76a76=_FKgClqho?#Y0U~%U!)96)pAm(o;-FB(?r>_pgO8@lvRmQ$k0Iw@TnjLmn z99apeboSrwqTJQD`6pYr!pV?+eg99&S7-q;y~IL7nQ;gOo}FySs;B@p;F_mo43j@4nJX$&E-;2x#MO<3s(ItZGSWMh2S! zM?jP-}U@?^QvndO59-0#mOUCfm~%l91Tr@AZQ5{R@*qs zVeD$fFdez)cWjsSf^tw*Fwoit$!jOw?*8@y#Y49WP>D6Gs~1u6^+-8*eOOeTG)EH@ z@d6};Q5x*zW%hckTr^jeu!g_cz;XS=sQB?g9VkV#v5qS;G7((y$?^tJ(I?M5`!Wz( z-g~RE3GP%B4A|o85$sfq5NBtB- zgX4JDAH~f{yolU=ghX`go0lvPlSGF8KxqQbM|5nqZ$zhG%swPP=Iq%t!ZpoUR)pP` z)`sU)e)TiTBa;?Xpd2}hHsH}Gv;iVZyap^hM(5Wnw56Q$S|-vT_F&PLDlqR3^EQIvPu$4{C>F*}_oKGxL$Z2LDkPvt7XekaoAFTZIMu%9T zHU&Q@yvtY!xGTWJF!*6jH^;F)F;QObxkW0&VQ1u%LlJE*PBZs9VM|*%F2quz`O)K6ht3#L`BCgzDeA7 zKwnn;po6s{@Z=_iPT=}f6gkd9X)Xnyy)BkpK9G-blbPtwYrQ6ejAYfY8R?Xs`@@2^uuY!f6ZTG>-jm;`pIJCBOqUKg-O=_ zh3a8R!~z?V>8(Y+1hM-N%}d4m$ab+6=lzpXLntlG$yHurw-GZ1%DnY|o0gfKAJGwJH ztd?(XM+ADO7LEkV)d3b;n7+*90PY9us(eVW2B^k&8@=(i0a`20eP~&F=@Jd=K zWFa6ZD^0$Ptp|&MwYaN667Q~E^WtW!8szuwA}F&y7-dA8fxV66b({;{x~}V_o1!E# zGRd2MZkgHB&-m;+W&XVh#-BWosA6KE4>E+dR(8o1@CZI+{Ti@*4?yJ$dB{Uc%a!(7 zG=Q^Wt&|`FeKj6|jGnz!ZGK_MK(~h&8_{S;6BKI)y<5>tdin6>?#hG8@Ko`ZBTn># z07B+LmQJi5_{kRi)qzFpRQ#LtUWy9N;UQU7f3Y@8+wM0hRMF8hv%ls56rFG&Vzwz4 z;C>b`pUCPnTVs~u5|Fl(I%h~D+Dki8p+qwRNmOl~`@XjlLc&B${<2cH|1i*$&&Ag$ zlvDcWkXSlZ>Q)IOKc{BIH#yU}kbtX$_%Rfv-(9=~{e;D+G)z(68FLDn*%#d8@HIJT zK3r17T>5N^LU{%}0MI})tCC|?N!|wMw}qF7#T+RF>TPO>`JtV#5c)rs`_5%gNA}w- zNH$z-=W%v(6jGUZ&}%!shWs0VuQz1YmC_RhJP^h3LeQ6)bu!5BT)UX>ndOM# zyxkeY&7!%}Q@ZEF@cWIhO{H3bl}Zk}fD};YpY0Buz=ia{5t{|4yLzgXa3>Ihm2SU6*xs`a&rF zyr}wF5tziKn*z#~?gqYDVZIts(Q6oHmicGf$!~?s=by;z4MD^##SOS^Mi6{jU3A_q3GCPV_*&@qq>X|HYsX=^h+q~?{MNFNl50RlKP4s zv`1{A2$pYqUgHsf_0UH^glAt%+2OIKPG!>vMN)Y|9{6AfSp)!BeW5=be>hKadPET0 zMCdMm??;WuxDM&xgHdT2OYNuZry(c!erni&j=aloXZP)Yi^y4XJ%?hhP>jftX(2M|q{g-py{vCzLZoLRrlb2u9(AGc`zjz_i1~ z{GsmnQPlu$@w0NeWw<%{fmHDoZ~4Q(p-ywcxhskxU+kuP-bMI`UsE9i(f8rvtjp5c zvo>Alc4Q}UPCI(IO)364gswaXOtHqh8sNa_=0_Qxp-l?IeX7X1JKOY;`^m{*zZ*Sy z7j`|ddkh7pMzUJ->AJW_n-08?a@L%A)4u&lhCTE_@HnM0Z@3XHyFDYb3obxPabo$< zYlFshJI+Oy#1FQNAolw5PRi)GKN2@Wl4)1aFC=VKV(vrTKSQ~Oe3Nrsq~7OMZ9x{J z=5HWZK5g!NDQa)xNc=oOyN*sA>l2Sc>WpJh>r>UmcPghxu?{``5r5$GUA9Z)mZ5Lc zsk1%^rHrjJ6R6%g7Dj$xhVvns$>1mPkCXG>JMJCB+L!3olCjyeQ%N z&^Z}Xj7I5#6FL@i?dX&XOhs!^)#cT~TB$yK$Xy}|^|3H7Xa2cJ4Q#rhO zXveFafU2GxhRr~%7*`(X@SF1l$v9Bv(m3$P04ppP=qPH-aUV(!pe?p5LtDIh8;wgy zKN^?iQZz0LZoEK~cp<>^8i9oiT%m-qs&rNZ;~~*kFRUCbTh{|En?1}cyN*|O7_aQL zOw=SGKt+&Un$jS*u}}{h(Hz zgqm21G!auf3G)&USws)2=Nnib3?cJMB=B1MhS%C#ptY0R{4GL$`tD-;m@rfYw!K6) zXX1vUD-j&@h3D?0UEfp>zlW%-vc0c)jaUu;H5erM43Gbw)?vNfyZ_9%{?|q+eM`D>>iwJO`zKgNZCD?!X(v|t znO?*mq;<8bIu&|I6WYUwqJ#dHufvhoAF;pZmooasNs$=)-JcJx=VwP=)JFPsIpl># zuYBgTc`s7nM2+s+wyYTRp3r++6nndH0)$3iPTW zA)JZi{#_@zGW7or&s~$zxSL^sOARblZ1HiAEa5J8BPC!vR2|s z`KFPBXNp*aFFCpw?Bv&Ta~-;N)Y6C`()dAEq1$o|oFIJIUXGiq+Sf+#I z3z?m(@(K3_^5o#eS7AsYP7@>hybzKz!AGo)wB4vFP4ebzNk$Wr9}{qM6}a|A6ip1SjIplDqUZuw)9eHssVPc)<>PSbjZNu7aqe~@dMr~;|u%IlDd}LL9 zL4v&#MF(`n)7ax^&WmNOyi0wu8dTK$oWJLO`j;)<`1807?s-J82(vtGGdPrYXt+c9ryj~rt{iO#2<7FV_; z5^r%%2x>R8q~9!9x6Wb8kug`rEgf$0vb4S(ANa`gAv6rtIB~0F*G1cC%$%l zhNpO!V8_E1gdkvEe58v#j-dT^Hxeb7AC)poShS7kgiU1<0=VXbvqN(g?SdJ$rZ{cj zq8Mr~!i1eFKv*^`8E{EPc1=Y%VLtPKnOzb(<><>X(1Z7K{EjB)Q%!Jk4$elVTB91n zR2wg2PvfQL=4fiJM?i4_hFy)S1c3kz>;;a=n6QO;UfI*UVg}%1z;Py>ItgK5zJr{R z6kge6UfHyKG#Qb&h9)DmXs(Y5{EOEEKHlqn2b}1D9)SEEIc(Q;Vir06n&$TnVX^fD zcqzE8JzBO-6E8Xuys|~mvb#KZ#gO4*Kzb7xg{C)Y8+eJU63?2KdIK%HwwYIUEK)Xy zYIXe0(G^QGk5%1XhvqA(+Gzs3v{dCin&sGJqjBvw(NR>LVLbBLF7mkLmL5|bI=%&B z7thPPbcT?;t833qPfDa9<f+OF|g9QK3$#@eeX!F{e?S_tGi`8BiFdkd!ox%<{U}t?>ES^Y>p2vvP+efC61H02 z)IWg%P#Ch-I?bWhT1Qt@n7V7tD{~GlGi*5@oMz>2D;@XdP>D+MHu{@|GvGI8P3dh> zmj`}Xkp;~IMwWbzfNoYvRQOm9NK*;ZYv+JNaJ4e-( z2N!yIaG{775D#AJPv@on+uY$`108g15z$UC>_K#@Q~|FlyaY=uK!g6uDw?y}OL3tF zoyC^Ive<=wMdpUfh?h9udr+w@l4J^Tt5NC)@H0#{15y zaP6fg+wx!d(0kQkAJ`g}O}tv|2GLrRKBKkXea@>D7$o3>yd9@_Ya$2qZO6*;J)g|u zy*-1>$X<7@MroE(VgsE34*cHh9B|eS1rU_Uw-J$oKuf# zM65KD1Fx!&j3GA`kSS?RDi?1U=|lHWWGgaNCL@e&nreotCh5zZAT!6cK~4Js$7Upp zA>2b#a4Q!UT|EHK@1uWdFVX|@{tAav^}(oR?GN@wT%7W-gzdJpOz8WVe-h#>hv|&p zuO$3La&9~9ws{qqVFWJe8uUdi38G$y%7tFC%4z6=i(766#<{AsZ^MU{w*!7QJ0Q}r z1bNH4&aqV14Ipn>_qkhyT^MyEMh=E`CFNcoa-2d5;($R|9Dd8G1?{1Lt75DIKLiWY+-l z;$~Hmoe7Oe=wIipE)1diflpJYj4(J{1u{}0YG?>`c5aV=8*~P%@&l``>%Em?%s{=} z`UAif&HAZ*zp)-jQs9`YmN=W#XvEJw&!STq6K1LE2JC87YACgySF~dwv6=vin*XKT) zW~*;2{hkyErcB&$XTF1akcB3f(|4;@l+8ljnC@(ngR2`dR&|nYITGBoA4g?-3=kZ2 zQ>8)#lMa9abi@Zd{l9s)QWWIs-2Y(F@mMKv3y(OEda}A*h;cPYj_sKqCa~`Wl4DaM z`%FBM!HH(Fz7`YEm#sZu$F#&fISQT+yXbL^k5j8fR`^mAmusRXP#I^1VY+Jr&4w3gqh`Q@67pDwGlK=9_VnLfd|BpITXJVe98mSN|?cmWYIui zI|WB>?fg~;zFg{B*|`fzl$jK4s>hT9*9%wWI?bXV)<;)TzN<-C=$xajrl=L&Gs|cQ=R1%@%l@KZ!xY|XRt_|l7mY>#_r3KfQ;1ppvG>46^`BQfx z2cfE&CaI+L@E=>4I(1=&1lk&KK{6Lol}xOzD57=Z*)`8*xaS|cL%{LUzq1DU7Pp)R zhJ_k3IjBkvQ9Wm!!b0~PMUK@bJ)d7WhW=h5WqRpmJp#${1?ED!@~PZAT}m~`ILyw= zz}c#>9Uxj#jH3%I`Yr?KuR_+s%E@ayYbPT(bbkS|k(u_j(6@x6PTkm~&sq<{;r$55 zS#vU**sUZ0Zk8cer4W>Mx+3PS?2OnOh~d$7pp!mU4-Bzju9^&4>KgBgz6QLG8H)g@ zVYYq9cB*$OC5J4N$pp8Dz4f6tH{Lk(bLeE*^s&`O$f138XE}~?M~6n*&o3{Ybl^qG zry$H1cJ;k**vhTW@WzD+A3dt&`1B9oon(a+CJ5{5oqZ!SE^B4;8stA)yU zPI9-&?BWN{P=_-0iPt+WjkAzhEw>-tQ}pVnYsuybFtoa$AU-CroQ_P56dJB;0G(K| zVFE9Uk+xX2tN0*oacAZ$q5Bz@F=*(`^(N2g&iCO-eflU$BiZr8ZvnX)wnsJXb@6@p za5yXQK8X&F#&Z?!>0x5vm>t)ETg7324LV#NZr40;@AZsMW7T5qbE;n3l{zwDdOqrz z^IU1YmH=$n+i&Q#$eI|8QvS1X;$+&z3)+N(?Mu94{w*1^F6+SnfU1RVO z;^E-%4;M^WvTTc$Snuxz<@787!ml4$8R`d{s2|tCa~;()2|!<0Gk<4`jhejPuWlt+H#J(TA? z|#Oe!5#K#L0)7-2iBEV$=pWlHSPr&iJwA20jD&IA+?Y|2-2Yi0Pk0yaJ$KcT5 zR{g9W0WnQ0c4RWcoq4L{`klB#1QoZB;GjrPeQsy}d*$p#grUb*Y(su797G!J%`v3# z&5wuKon6aP(yVd#_#*Q9Ues44mSbn#{JEzNf#K_RBWn2a6h#eR{DVI#x+9wfIX`--0%}Jq z+PAbN>Wu(^)Ks6-(Jyr=qAAx%Fd{TdU-5YJ=&HoMYA60SmA@L_a1YSGkx)^GkMnV+ z!|tnV1F#D2)cG3a40-p!okLsLi7!D}J66=oSgzMaKz4m;5A5I6oN#Qu39j{9TW-*z z!so;5+O;+rtGe(L!9AuEy1qF~N_4{~KyM){~Q zbsSa@Z{YueAcsYsU+?#Q=oHPo2e%xYy|LZ~n(6WGGp5eX&s>NO8+4_J#p^L-_!pPDp<|X9v!sE;UZb&nEiZTn#RecKFsIP z#Nfq^p=G%e&L46rX?uz>+!I%dl;m;>2G@jxTXkPgTTvUgIQyDN8MErwOM5?gB#dLG zd%~Ru#%g$?QwR^rN}|e_o+-e62mLEoBb0k@HiZzTA{XHkcmDx>S3SkT-5x%`5ZvSyNh-l(X3Pg%=Op{FZzaGTHEYW+xK^L-;(_LNH*{Ioc7qWf zXZgB^aJ#s*N0F%$Xp_dB4;4RFG#}A8{$c?h1cmmeIW_M%L_GLC_f&a<^tQDV<$l>VYz9qMVQ94Mte4=bjFNO46xhkL2` zW|gxY>}t7bJ;~y8=GGI_|X18?3B90R8oZT%F!;agqA|ihgP?9X?M={yYgz#=^Uqh%P+!fO%OA+cJ@* z0^b(af?ko;;$bciPFCi4c(m3mK!2Hx{eMBfrN?A&C zBSO%dc@YpQ@}{A4>w{Qu!@+v!;-Ub~$LzTue_*bR9}zv4as znCeBFUjA_zdB1CAc=I1rg~Q`J_Q%v6#Ckl9OkAkbn;;h1i`bhA+BksOGpa zNX0MYXZCK-E*F>85panfR`ZcN1&(di+LV_|z+f@Oa*u;8T8?_Yx0VJ1rgZaJhXh#B z0s3iFdViy|EShg5*J_)VAU~*HT%qj{l7Xup$`c(?K%p48tV{Ju$oegkc+%*4!M)`^9b40rkDY{SkbJK^4pAOhD?7Q%L;%E|g-{GSKS9 zf~Jvv+e9VJpvjJc2m1#UZR_444mErOLEx_jx9|CDpaUQ(2~|GmVGv63g3i6B1}>5v z*IlJ5oqc*n|BY;2aST)QFV~`}$G?*pixi#3<$|8cp5E?UesFlov~4;x@ey(*rX*vw z2bnJ3T2vDMZMehJ&aTzAo%QbF;D{7!`K#}3MMN{wG4(*t`wg|56-OW^-$D%3sZIy_ zzs0?iCi>W!zbF%)03dQ7m_$rl*7S8KfwQcjlh|(FvZw-cmlHU}{UB)&UuQEwL%_oL zvCymo$T(@yGRy>EH?MWFYhMtXWi+cooPjSO(C1rCG z-1{`28p>tM(UO)+_k(LEt-CtJP?#{6D&=Hi0`>8|>%ai@BK%LQ9DKHIUqaQ>fLfon z(%F!e^YU$ci%(AhJ(4crI*q8E%%J3(zFg7u!*-IuOy6_rbuJDar0!2K%HBFld<;Yy zCiZmqD3S(e+hJ+iaL=?nG(36`_M@e=@%3XEY*)sqh8D!3lWiy}9#uff*{#*cy2nm` zYwzN!Wc|tB7}pLIPcgeKJ-N!}vJVhZ&oRA!7eh!K()}CN5inv>atf$A{x2d<)p7Vf zfJ!&b!e_?v&=36FbSR`P>UCP1-674Y=6gUAR6|6&VTBq5AR-n9vlhwO=LI; z;3gjSzvz@=Yqz&GLi$;MG96s5Y*Uq^PH+n72MgmNjWQ|F2YpJw&!cf z{s#s13qiFz2Y#k>`WIcz?Iz}y=5Bv4xUI#p)FkWWNyp1_V)1P*8SQB{N>@L{%39-y ztz?fp3R~4!rCvVycF$f<9eXOjD?a9nS?-SVvB28hANzl%7hQ4vr1O9xohE{O5_OS2 zwa)bak#+9zOuzsCS1L+{PUILWq(TT8dq+_eiBiavN>PLy#+Y{}%3&!v6k8>yWIBoE zu!<;F{~_ynVB)$?|SXv{ki?V|Mh;G*IuvddS1`#`M5tH*Gv5yjW1mGKcOLh zu}G_*MaReJtBz{8-g+>&w9%_HDDFh0(h}v{HLu++_t0ch=tUcRb|T*`Auw6)H-Gg= zFk_(~kaJe3y5vM0{aI+zmu0J;p;U9f!LgW;hQf9(y;f)wwuZl>%ozoby}0M+i_S47 z6S?E?zL#lc+aGmw_1ce^?0T^UdbBV$^M$GNp)L5KsIgY-9W{hS!;8+9bd}p3W*iXS z!hA>>bKTo_eTuw;eJ}qWQ)Y8+SE%{dfj^wKWAE6*IaYd6zOuL4k?H427VkDl*4PdR zKEzt`Bl^hV9|u&@s{E){q=^5~{o+gTZr6Q3T9w`qGjISxkZOQef28dP*0C0Uq3wrhN-AyU|kz>b?wVwSmECeKL!h> zm(%pCt4dpK3y$B|#&x{78yd=ct{`hG%5A(_e)HwIsLO}_gI>bC3r); zZzH*f=4*H}m@j{Tu*hp^YW7H61&wLva$`m#=tS6a^)cs9Ulie+S2sGA2Gyf!3I|p# zA9%1YEErc$$cdW^G|JoZ0rnV-V|al^*sY{m!KEXx@@a>lr+wN#1xwF+vtv=-qH}ND zD@xq1+1@Dyp8+%IpL@+&v2#rv^#2`{$x(jNd27g%mfib3i~R5Vrl>~oR4#%r+|yJ<_3 zA|k>Qk=mB%z>!A`%0FC-9FDY4RL0O=djxVroVU~^)rb5n=5x?`dWJk^W$@2pQy!sH zo?4d^@w>kCY`#Q`WynV@;ite)M&zjp+E_#YCh49FcapFP+{r_A z+Q#`ybc3>{(7QVMN|g0CjISS!tVODv)=fEw|FDnHYPP+i!`+JP{nYcKN?Nbq4kFq1 z%!z|BQ}M-hq{-mbKJ~uH&4(TgK#S%$sUt;t_Zrf<2UHTTb&PB6dcxWci-P%b9WDQH#(s zv|Y9t${2nRTz1X4-MY{jL)_Wej_Kp(k&U_-b4Sw2vGJ~h!VxOrQkJGFA_l{$CYQZiJ z$Di+BMd#In$VR;K zDkw5ZCTw3zZ5X&OeK_9sS?i``Tff%ylk2h(hZdW?Xpb zF#|L{WzI)K=QF`~C%Ja!6Lt1!)_G6xXOLi+Z&_cA$afaPPR4d&0c^<unfUGQ7bAuAg>Ujd1imSxIS(G=36DFEAVpVAH>quT}Fx#Hn9AgG!+!DKulSj;d1L zSg=HlpK~sNP-YIX+#9#Vk*Y62-JW_Im;dT9Qjc928(HgxS&&Kvv(SuLGfCxWeJPSqZiTW_SenVkg?v#XntMuX9Fy>yhx(Bq;kS(!H5)HNT zE?C@LtQxYuX)=1v-5`9>Ddz*sem5wYebjxmU)5TUtQ6O~XoagXVb8TqypA7@`|Vcf zT5ee4*3(hc=s-F4b|aL3LpUSz!Rez3W+bi6+S5&2DmR*fKric?q3!8gNXF+b*Co*! zyIC)SAC;swRH2r#OiD6bwjSEtU-%9~=xS9GG0;4ov)41KOHdS0I&e$o%bWXMlEnHLr9cdPWX zU;~Ou0sj>4MTE1)L+&{gM?piJor=*6Sa2ZwXR~rREBEFas{~il&BtK$ z9{6_3{DSd4_hvC}*0W61jB((PA888mf`WnQj^5%nfo-v3enp2eu?sDS_#0@=wi(Qn zNiq`emP_jwCSunwFcHHv_zSMg= zdJ)+Y@2HJX`_+w2I^O^(dNtfCuRt0u;LD~rd!n+zjdpj z4H%)fVZC(Wub-pJaMTAr=^cGa!S8WR-B(+@t@ zsBOE-fTRsodoCNz2BvVP8{@tYT3{jx z)gx5K$CJ`Ae)Y-Sq$Y+t;boI)?C%(fH&-CpLB576UGqZKX`4r>Eh+|Hf1_|W?C~Yn zZ5QXmvxwGqP()~7{;ko(j?M^^XuAS5PcNlN(JS-BZ1WiN-e>Cm#kN_-z2KvcMieeMZzjSyA^4T$QBp*o!>0-Y=IU6 z6?JiEFxpV^km~FEW^r=E`vZ0?%gDbEt~s`&)<;ep0mo;fcS#6^KtnH2bzX zdFl48HjhW??+-h~Ui=3tiN86(G(~$s_}?6g_A+Ug+x{GEMSIrRv8PF5Rgy$^QoO75 zS)h)F4SD!;HkVWck%l9B&d#4(B?>JZZS6;~`sofDbH44Z6?6iul8QKE*(nL3cCjvE z9(@}o*(BKj1uC=l=|1uDiNTK52jkQwUToHfe#xRX3~M9bw1t#*!Hfz^7_Hv&!T2%Q zvch3yS9Y%S2ht9Vwr)o-PJ5G3d-Ww7>hJeA6-fgt;tG$g;!!0`wJ#S$a@64Q@$PA{ zbehW=1-~v1|1u`+$mIpisNnAOFBH|N=Ij>gHx%R6QDWOM*w4auBhJjyG}Fg|SSs$I zQk?5UzeV4a`S;T1>M?JET0nGIRQ~3SORh>6FBBpIairGXy50%jjQGBK`G%!=1N2Aiw$wIZfs?qzTE-rxuZ(yZMK zzEeVk0_r2H&MrUd7xB(U(%eaM%po_AVsY;0*`ni7E)|X>#ZHhJzyLE@YaV?RF2bnG ze=1JLh_zm;O}W!Q5~6kJuU{N?O>m29>^C7!qM>G+$D?qu;uvAmO;R6-qB<(^yWb{A z!y`gyXge4_zxajnuVerGEZjXtthh26dK9d`O7EYAG38W_GJnqwiHI#J**)57Xc_JI zX%cO*g7|&Lv@;d2zv>N*BP#{V&*H7|m_xdFPEO%J-_-mlOt;}lqwb-rge-&Vd-7b4 zNY#fr7{t=;gnYa;fwbK$c; zloWp}#q%qE9(;tk%6k{=6^k^3NgnJM9yv_C{ojs$PxjfO|E~%Ga!^D85S+SEsruC7bpo4IDfNBBL9b7lV_NfKpg_ zUi(u%j9e29p5P0a+u%8^e_EW_{jw2)JtdKKgDs@w_bSdQdGL- zM%cPTNgoB_r{wos(gom;C=#q?{5|rb(<9Nqm6#S$d^N-|$Bu|`3%gcG{W)P0!U?~z z#}-|%$ZP06fEaVI*=I@`F@V@)`%!nIOC;X6{3GFY@T@kQ1-tT`z1aJmc+d{yV0{gi zh*rEI&2@!n%rHxXyu91Q;hD; zPP%-EFo+!uPst+Ty&}|A?8UbeCk&5DUS+K4ve8&qH9HOAWl<`I#^OQ7^OM#5RF@DB zp1I9$K^Sjw>vjop!;Q#CmPXd0v81Ed(IuGo$JHywzq6-K79mcWkXJwR^x*0hExFnFKicP#slxh`n6!z$SF-kx9OrWY~ar}xa8o;I+{-iRYzRMrIy(quD z$ca{VXytuM!Y}zt+qX4uSNMROCHQGVBHtf&VRtB^7OD2c98_;zUxbzG1^vBH?H0BE zxhan_CTT$Vd1LhYKf4qx&h}hbC#$8#Ts>+En966HIt4Yd!jLibXiTjF^2YE!ETKnp zfhtI(1W~`kQeo=H(bOj9sii5CI9gI;Sk*KsS5BA4nUDC$E#Mdnl)$~U82_Dj4uEPj z=2;)sf9E!E^>h2gS8t7$Cu0fkPH(3XE+jE! zi6J^--FVd?;pVzDh6&db1k~`T~ETiA@@P$ ze)%=>tG?dYtFoF!4lnAPLFX*aX!-X;=D&9c4V#7~ zSUh-&e{V6Tm|1Z})_t#v#x&CAmev!GDJTL-ckWHs7up%=ME|5urHNNj8yY9FE?6~c zdN-)zw;U)~_H0O^ZSyrr&3ey`|9WdVS5BQ6SIDal9?LA!G7xKvEo%hiXg@P2-{te7 z6DO@?EWD&%(Djr5@cMbza2*_OQyIy=D5Ti7E~ySMI6&9DwWxJQ>JA_j ztk^b-fWXy!EflyH>vHEbTbO{>!H6}>KhzCOFpn&Kp5&owFNaXEzoB;Ko5n@_`-XCc zj+zHIk##VWTJd)qwS6G+=?%Yqb;;!ijnWTSMJVQW)Nd=gQ!yJjJ8oZ)p;RBTY)MPw z@qpR~LkD{mDgH?(la>YT340PU89+!!-TbBqLE>}Rgc6`69>&QJyL$(Mdzvju4Z)1d z1V4AyowGP~R{o(pa(LSd2=~|}lg*z&z)|=30&rB*6Rrt8e)vt-x(9X)ARN@()%>fW zFwb;tN>}^Y$WcrmNtihU51L!wCEFZRRAw=-hveza8V?UtH-x3d9_#6NgnU$#2SO)? zcQZiYttt^I2Y5y}HM#^nL!?@x%w?@VQNzYxvA}&#(8u zs^%u^#)gnQTkZvqF{1Z68tojiL#5bVa2)*Zp&B&G=ovls(rd26YpFr6D02`%<^U`M zq^GjKo2hWjP+{$EoMR*a1Z3=4RDV#k^Z#5Vv*-wT%n;oV32};1G24$9l$WS$k!WX$ zdR!qe1S#YuZ-G}WMhQ6Et@wK1`J<#vT7{gtkY7Fz`dJaguD)^XXj!w61pVHe&W->d!MFKtP{?6I%HJ&dMeB11mR zZ7*KVs2PxbWW73nW}>JSQuYw==G)2`;Fg>Yk=z_|(y2*Z=`#s&Nvk<;bx5P<&-)Os zq1ae0V|8fpCYo~1`2$(qe=Xbrw7UaO?>>9N17fMUIK6;fFLnTyTGdKgZ?Lg*L)pih zqf*M<%L9meci*QxAMdcm=cxu6NbX45L%tqGMb!;Q;-Ga^!iZf}(7m{+P5LlrjDw&1 zT0W`BW7o2MPC7%#lJ`~2tkS7xMdU5h>48*GsxMYn8iE%xssBH`$Z4U=0W>s^)B+48 z)GN+xPf4Th&79_H>>K8Xam|OquYJrs+N%(Rg@T6Q*17q|i5Rm758;-$RGn%W|6RN{ zpuhtZk??ja)p#}}%ll~ix`*52A8ikruS=-cy6H?i0usyRsi~9tfjb+(#!+rA2Q!J- zO09aKO?A(iSg9N9(hNq=J0R%rUR$Hh=j^iLpak7MybM4!cGTJea%5?n#Eb2e2a|Y{ zeX|9)jWJYwOqN|8?_>epYY7JA+wM0v#~8oY2A8nEzI?~M5?`81y7qE403Q=zQiR~+ zs!MI@c{~}((89>Wi{3_#jU1jKNNa=TuD$p7;H5!3Xd9*O2VqlpbLNcNjTTY`tzxAP zwIOGQP2CDDA(?gmKd3}uyyD>i`Q%We=4<%oD;HPpxv;`2&HAh7yZb>o-(hO?K8L@l z52q0#w1-@&71!>bKVpw5XEd!h(~nWR(uOLl0hnnI&-2)QZ=az1n=S?HerenAi)eeEf-P*oC|9BdMk(DV zK!2$&f!lMXKttky{a@#970?Oj8FeY>o9U>&K63`K_OC)6F3WI{uAjud11Ia)g?~!$?40a2gB%Lz@$O;bfm9G|junQt+FUT>LUbP&Ubhi3n zrauNO|2w2(+m~JeyV1Xb{aYu0WBR0)5akve+bb_%k6xVSk*D#*Vp~6j6HEPbK0R=C z%0`SFgNpcl31#oPXo0KS)_5x&fp|f(f!hjOk@|Ba<7AD5h2hR2?rudfC^?nvvr}oc zP;-+P8CtL`h8Sl{+>7XplUI1zBCIs3$n01&E>rUg!1+P9MDpChS(p8{}eaL@|`BwXxae4-S zp%0iwG~HX>76*jFskw=FN13dHOC$R4h7QnS!HInfy;!fBAk~cqqT=3e2fAe9bB4WV zBfE$8heK1X5vh)bUj8YC))FnrTKmas0@YhFW-O3wd&m6yvxmhpH2Lz|xt9}S71|!s zB6sxTo9?KAb#>DHx-lX(KSqN~T`L9m1(a0dfl=Ps#iC)0d$o@u@BPpTOy3;$;N5Yb zMW2Ll9sHH=a9so8p!GN&Ug$6ey$w@eB~+d6gnFWXZ!bN%Nr(xfi+e0e&M!a==^bYe z36wql)$noLNVt8?SJ0oXQ=E;yAo0UY&=_{45vL9aV_}q=)ueYxthln;Rlc;Q-PJ&*rW@3KD@M1OmE( zIG(0ANalGmE=eD)XI9Qt59f7^r{21s?M}T+OX;^VmJqQjHr>uvQy83AE&F@3gmCMD zMHa41Zrn!lgD6I7oM%Nr{QXKDC!}OftkoHVrG}!R%BPPiTtB@nXa^;Pwx=O_sJUF! z^Jj)0Tk3+3*uA9C0sq9Zx#X@bxR2r;hUs(VAijh$lPR}hJm-@|?j2tuyUC<32C>xW zeC$cHpU+JO(pu&<){1yzPsury-p6*vrTAOBcpH4e#I(rHkzut#IA<)9Dqoe5)V@)O zi2PaQl#i#yXqU#wUnUG5EA;ZFM-ioBEcEJah?cx)O!AfLqEAQ&2gN@#VQw;AJi;_O z=5(f*-@TO+YD7c`n|T$l#=OD_k*r*yW6>cSewoH7*~`6awjKHpx?Po3p+w2%*Z1dY zEjxFi#JH%>Va1K3H~nX@ds0)d1E#isY8SswrpwMNKIHcS?ah1GMr8gt=5XWga%{5~ zvyPtY`VqOP?&I0~))S;Q>Q(h6636dIrDogv9JW(p*Q2RPF_;h{y&QcFtvph-qDK ziBY_0QEjOYb`@tkD~xQtxwH^tSvjfHR8Hjx^>uL%hmzt~g^`oc`ziz3HCCHv@g*U4 zar>5${Uh?DL*kLhC<&KZh@#-PbJG6`xs*o&(krr6Ec`ti9Pa85-SM@#`<@o`cEXkD zqU0FnmsHkHEtg#-As~9dy>d;G{bUhD=avxcDr1_=#mTlvt2b_$7~%Cz2B|Aa2-hK% z>l}vF$cqzVs+e*+`VNzLw>3Y%Mh}GXX1mCK}~S{PPusU65oe>u~WyMz)86 zI}^b-4`~iqsY2RYm5L1d@^(qavQ&UT$ND4B#*3DkQjQVPS`C1r2gq8cOL7K>gmVq^ zBX-V?$CKy(mAl9H>O4rgUvH%^b5Zw$*@M5XO8(`?w;x=h_gS*RG51wnYWMsfsSI80 z=s$f*_G4c&7Y&1bv#Z?YJ-&2}@T;|MMPuT=mZbBj!xmc~R8^57=&VjFlF-RsppBOYoE7Me zxmi*=V!;unLN>}4YFS+J8iz^1Ow6JF>0HVjEMgM`DXw^0PC0wcYPN(l08E1MNktA` z6JZ@9-@-bXd1A3Sd!~95dguJC9Suk>7hnm1-{_+;mOw@LevZSo(_R-1#TWLeJbqW} z#|hzXM%MLwCSVJbk;zCes$p=gf(G>MOb)z>Dm?&LkW76j?*o>6<`UpRj!=K~9^T}( z8CmFN@V7EW4P`~45O?`p!n!e&m&NLg{f?00PotYD4MBd9NjCk|f$wv`qLT^?J#eRY z4X_vuk;K6q^*J4J8g!m#<$1@MQ6r0nH=Zkj_UIfnvcI+>?V+!W@nh#?q(=Sj{aJCT zz#Rfdho>Q@gpVINiW!Y(>Ifdbgj2)G+18FcWe3ba!>LuXaqv7fF5pSd{7=Y& zmTyCog6yB3b5_xo;jFEE&nuar;)R;KyC-dcVWoocDRPud-R~JSJo)L>4K(>^L{(EY z7Cu5HQepiVb&{u%BJk-5Y!j2DrTL)N{p{-q$?;EZ3n+stG#c#S zjvNhOxo=~>i7%-kjfCyEI(O1KY-ejjd28k9pmli6x|p2@lL(9xF)>z?zCov;wyncq zC@M;XEps%u{Z@tX{K<-pmo$9eAg*ygXcfmm+QT;H3+SAidYvelkF1PmBIWkLfiL96 z`JRY%IGhD^gU>tu&kYi56a}nBZaKtSR>-?O9KUy40dDV5@0)pubSk<$V031Ju=+pj zmw7j62s!s$ZgTxKV(_qi7r+q%=mcuaY$Tu^=9k4#4ggtwO*ZfWG;ht&jEFgB}DrvSK!i6!H@TWJOasV}_&f`qUL3 zq1AM#D`%z&0uxmurXOVz=y#4jbS}h8v>ANbwfJ_|uXyDoT0opNxL%k_t%AkFZ>n<0 z;io;&{m~fSR!ip^z*sgdcm*0DQB_*XpY$wxYMC~0yob!6M3YPMJfpZkrr?seS3H4q zQP(eUi!s_+`yJM_cI~39=5F8qfNKgH$Q>7sM0TwARub?7-!$mE$C}oICjOo``?xet zvCcZ?47rV?jyk@C(bIvOJFcp3mA-tzh9biT4DJrj*WMf@7&n&M|BRb6wyT9t_C=78 zJVLVU0&n$*W9*MH^`h=&=1p$mF@Ga2)Dweji-KZeEPaW;t7Sg>R8L8>au6BM!RipY zx^}5CWnrrK&A9L7l9uO;FSkG0z!+R(F}1ESiCiXDq9)khAx(v z^xTy#c7);KEi)t^8XCA6P*Kh2m;%j6-8+XFgUlkvw4(Ze@Y-f>)Y!D1DRXiO#OUsKHVAi_HtZiE|Hwh74gH^oMsVeF8FN4jZ+Y;PqBqT$Vc(|LEYO z#tD80CalW)6hKm?L!`^@lu{O0WT6I`ti@*LGe3Z-4+0yHuRnnlBX#)a;661I9N>(I z-(h>P9Ir)nNp{RA__`0k)bmlIre~nyTIzXMxa9{};>*N;o?;%x`-9mkSV=EMsGG=3 zN!@$%_e~<_eydNfXExSbqeFVREf#iseZrwu}Oe5?>lI{8S|Qky_@ zsMET%BaK4-wB*VdAwAhQ!vjSwOU3Lx4B%u-`pahi`!^YzB(86c4EXpgR=3?PL7uEc z>g~7y62YvW;Q*Y(E^Nu@Mz(Y{vM+joHNA673~p<-(?v0-CgpDd+7VrreSOeq>?<0~hhZ7q{%T$&hj6V<&oN2K&6bzb=P;*T+iAk^^0fL(&!%oMAq zBhH`5o8YX}5XUYm4HHD=Oh#H3-?PG8+tajzd3#Tjo6=7ij$*1`LOFvwU3zloc*aZI+5^?3dn zrlgY%L@qyc_3>Ll_YssQL1dX<)n1hELBz>;$b441tQRraCfQUY-6*{|^12q@1Y4oH zqLa@J1OGOiK`~oCmq_7<>E(UpMI;VamBDBt{{flA&+ZXe8r_D6)oMYx2LsOZDM+L0MtmT%M{PM9mzRoNZj&bpULc zbCKET>Y%vbQD@koTz!5CXmB7ZYW_c$6)+pgL@2sp$1U8>SdrANXDYK8NprKz&8DcC z`CaR8mF~|qA3;i>D~}xr!p2n3#fkGtb&@!fc{mU49)0DNLS!FUSn zSX673<{Iw34Iem_&8E|aQ0ZBBeNs&p1R8F4t!*elarr66@gd<`fkHdRE7lmN6C{XphBdOvoJx?^YQwERt@u}F+}Gr zSs~qE;|9)5y;b6oKsl{kFk+8@JqEL9>2h-%(E>P9f9f`}_j^M-a|o2CeXCa`{uhai z&y@t^Zndio1s6v zjTd%TeQEGdV|b*Rp!!3dl>N^pS3a3RrM*!2@RQMbDO|8vR7eyIzYa3yb>o^VH9$K- z&W?#V`g`aNFiX#UMQvR0QKNL%h&u}Udt?VTkt&niC1{+E(FxIp#BqiCq&=5;TeT+( zx+lQ2mYwTc3i`Tf3Hp}x8+0I>j<3bvG;vO-v1<9uPcvg4wvpO}4h zWrM)?Zpw?nHZ_yCh!jL|{Z#7)Z|u=`^n5GTdLlJmE9_3;XVYjBmh`5UXtz}@toEWU zgx0UT-K9AsaOf%{E7PtPq=qEX@4Uvv^{u%_)~b%z1qN?i3yz>46cZsR+?g^vx%0nX zN5&#;Au6CklHLDA(A0^f>c7IqsWm{o;N&74B6cVj*qie&k^Rw!>!ojpKrJF3Gs}X1 z>Sy$fNF4+gdX~Y(ZALb#Rz>jaseEp82)DPNF#+~%=my}y)qT{Dg1o}j8k`QVpQ-^9 zkq;c$e57WU-Nlvq+wpoT9Rv?I%2ami4d`eLEof8Tp;u`FC$V}Xa&fnA-UiClj;P9= zcvZWIE_uY+)Z&piScj|MW>juU)nCT@4=4B=tRvsR10bk_8$iQ`+}S|szF-JVml^)M?RNcWd73%o`6jL9DK4XdvJiUsahlU;tx&J| z5!y$@zl^JYdQVw6qqH>x-z$YW%8kc-Y%mh~AW0eXxL@=vE>KZD{qwx&!tQ_6;>WEOaOy;BQ zMxMwD=bjGxhvc9Ew3l%5zr0EpJbnqMjdkg${pcS%RHh4L1kUhSo;?BV*^>x0>tNc?1`o#TpBJ(4nXN(D~*m#HJXD+Gy>{Xb)Zj)<^%d7?Bbp*gLkjJ| zBC42^O#kS5EP4VsT$4-`Jb@0M<5XX%d0HIwH2IqE!d!$_DQwpJZ@O3me}oCz473Rm zmlu|NHzV9)7qov=59^clQZPAia3diNUh_2+%_CFrul@Evi^;Qc80t7fHJ84#eN`h+2raIFZ%c7K^e3x;o~Pf^hAUIPpxE3*zTXr~9Li z2qF!=oV?a{A<`@*=jTW2ph}{@+_qu9SiFcE(U|!of~52;*Bo4zJH0XTYvS0Ev|&I9^68`Etk{I-)X2HEU51^a7_; zohhPer5X7k zmUG8_o?&&Mox?I}TTZyXRL0iSX3&h`TFAodDcLLJ_`pjGwG~yW<}Ia`83KT~Dcq68 zq%G63%d!P{RSTn$OSJo7KvN>GKc}y8v$aZ%vHuXn%ht_OBu~l-Hm+mpmn*L>%{UL? z*cQWg>jjk{ve<+KuT>H+5t{xzS1I8dDMRtL6)emcI0Sh+Sa>Fjc&g-zpD=zXHLUc5 z;#JFcH+-{9n4A6EjRRd5l9C*}ZY@s9uxc9r|n zOV>9LhJUWxOuD#J!lze4UlV*=XBqaW(#nto{}r#(eR|O3m%*_Yt)W(G-yDM-uUrdI zGB~QJ#Or&{`+M6gK?gdfXZr$8YL|C3sn+}AMUw2UQoP+EtZ^FDd8#?N>vY_(rqGc# zb&P>+uArXgrP;pcyPgwgm3%7qWQ}m!wam&-^pZ6oLDu?gn*)X}kRrYC4|(+|#6!&% z8wlN|PlTUN5FkZfPz-^Be*Rj_Wc^`&x1pIDj{;>I&8zJFf9c}PL9}eUM)lMeFCK5) zeaCF|eA~1*fN}6&k&lI|vnBA^oRcl4I-Z#YozWt5f_G*K&TH|R_2_!!5^hv^@)beN z^`m9{yMlO|*T`qEuc!_SKrNzCt+(u}hxkW^IFlq{mBZv*HCrNJUz>vIKtiG*_1|}QMrf;xDTDhZ2ta#Sg7zbm)V&v5;UAl zX|Fsq4Ah@L;2Jb!4-eAPU1Pu<#I|~tQBx{?e%sf+vS+}3X_&<5XRcOPH3of#Maxbnr(g)jn`H97(~5T|Dklv;8JhYt0(=x6mv#R0QE=W`YX3a( zA?@gCIk$(TH;cgE*D@m>X}-T?1-!`4k9>XB6dT@S6kvR(3>z8Q^SuO|owXPf8aM=J zXHBt4ZPw>TmJ>8QBlN23`DU7GL!vUN(uNwL=~KHxA!9l038Mz$27H-(HxZ`?ooJn}p;0n*$=JEw2{P=iNbcLvnUj{mEv&UM zeU%@|zoWMHyMa49_$Wxi%i~7Z_pPp{7UiABuD!Ht@mF6>dF{1u_ToiZfjXt>8qm%w zmfF0woDfaSY$~vUF?Yr#q${17?>RL{C@LvTqEa)%cK~^`jRd49Cm%7i7h3yCzCL}M zz%#%e{m%n`F&b|Lv|=5}l01IOA8SNn2P_w|Vga5zjm=3y+6*ZBa){v$NAQ++aFhXE zG{lsd_@!c|42DJudFJbA!F0gN&qyAUycohj7v>8D`nWP7_P;eI65nsDT-5;jyK;lm z`q-_7Hd>wX@9E2&eyw4DXAfk(>#o49-a;d*(Wc&Y46?yIO#jd6zGzMzat0|SxnS0{ z&@ey@E9}{694I(S$95p9(?@Sw#SxoVzkD?lxSqe`8Rqrx?nA1@Kr559QpjJU51Z$a zs0UZWi@GV8zS}g(WUyQW2f>+pZJ-r))SY9MI0TlC6z_kIjq{N)m_h`1wykG|J4#~O z%~J#8nT)_Dbu4FQ3enPMFa4&3hUdB8sY1b+AJ2jd4FQ-u69xiIz{^lEU?X6bBX^sp z*fm3_f#113b}n+>^h^~|Lj=v~96QgbDP99JaJ zu;hy^BmNp}DzBTYJdE&SA_MD6ZK=fg$>hR)m#N_m>#F;sU`7vd%HCGT0?sEb&DJk4 zh|e+h^P}VsSrYn6Bw{Ef_?pvv7>{n=%c8Y?fecHQoV{Zr~h`g|md8JT3t zE70dBYrUK4r@?O$+azn%)jmg6^U@6FK%iMp^TNAsK^sXm4V6fz15;c}^xw#b6A$^3 zG2iR2@|O-jsF+opD^SN;&sVV2&-e(=Hd)jk;RPty0mnJqy>K34UAnL8h~2jYvRn8v z05r*^CFi5raMws+7OjMKdxUbC1bOEgq3XL8yeMD#f1<0685E<)pPcd>zBr&4&eFn4 zRm;LL%c$eko0~w~9Jh-H(Qf2a-kG#5ssHBZ(EYj{1#ck-=oMQXf?EA-g_KN)k!w{> z@5ZH9s(nUQC7Xe!Ti10f9R$4ZG@v@kQ2y^5j7P(Q64AM|A7fdBEE=3_US|=`qB*s# zfpb;*58M=2Yyx}($RX+WZxDGsZFU$F7eQGr@VN!R2uYE~r}SehW|htq=y$6^3(y1* z__m2Mu<^qJ&`=?GFCbw7P3KMvm273_u} zt^LjI&&}@qhrrOm(#?}0I-LLRIB(2TpcwwwyL*u~6}K1q*en5;_7ilK%+cg&tPXUL zn#r911H6HWL0Hq>0!1v~%7TPq+x_{H9kkIn`*zT17HseZKTk%?D3EL>DLE&>n+}HA zJblpEqs;x%r2TiK^-Nz6Oj&kz{j|I#yalx&`XlfUJV*bq{c5cn}>xCVo(aRh!@HRgC6vuJ+imr8QPl>p;yO(6Y- z*GNL;u@=%bH6>d@c>y_^ zT-t5E?fW#$9CZ|SMP0CAcTfzfu0bW2Mwoa9e|Vkfw8etfsIP#+0)N-1P;u_3fg zFw>bTh6b0m3l1fc-EA6E^`BNeQIdW58le)Klv|pUA60)yBc_iqQx_er&YGF%vo~J@ zE*$|w2iFR^2vb_^LbCGTdk@C3+;Q%T-?~TeFd8vYr6KyUW%5Is$5u*t$+-4RL@R_$ zL}$E1CPT(SdHXOfM1@>@da)Uh?y$OWZ~7i{ZAKUlU4h_uK|k*W zZDTViPNq$3AJnUq(rBk7Xm-d@?modrDiuxF0o5;z7qu4*4EVpENc@`~#mNVJl?Fv7 z@43R?=N?5Iui6hMzd45S+C$kO2>N-Ost}`Wq#B#9oS_5H5BhP zd+p=|Ge;3GrKHiZ0y-O4Sh7W%KUTUw^<0>w>k5N|dzOO65AsJj_HxDV@BWYUpG8yg zJQ(vZdvPP?v|`Slc_JMkLTNMFo5& z4eyaP(~$R5DIMHBrsZ(RC(+3X^zK%a=E(+<8+Y#+s>>PZ8JbKEud#77!56-(B;^E4 zR>ltullSdYvm`>i{c4ZlkZPM`QrAZbV01g`(1(eDEJ&-_LEjm%gJlmWg~w;IPyTjH z-rd5I>tI#x>aWY0f!&n`qc z62_c#YCb-vLpD%j`iL$#&yT4LtdeL!uZv-B5_EIa3k5I3c;pM}vTEjSGb|suRX3J7 z+F{d}4W(fdrBoiY?&Q6g@XK`l+^OZ9+?Is9LQs%pmjeM_ALS zW-JrwBF?s{d^#YO^`j(+*3WMUD#xi8-q;OxG`Pa3wD~b8g>|TtY$4*pvYej@$IjJHwu6dUU?^1CGHpL&uVwKSIAgz)2vh%F zyd$J8eAfMUm4nVgd1oC8-i6*EA(5oAlA_LjG z!TXthhwjYw8H{g>e|_@upgCD-F$8}<8M4;UK8?QHF#yYhNWHGcy9U8G@e5AZE+}T2 z*Ph^K(4Zigh{hFp^cCL#kKdDjsRKSwrne_2bGo!VI3=O-Hkq<}yQ;;|JhF;=2NKga zsY*{sH?fz+W-90UUqUq6iLD?@HW`6a+QA6f-ocO&U5MM?<<3_8otMKr08K!s^P%2l zhV~VKIxBQbkF3EJamFhY$`0 zY{a<*>((xO?lmFoBxZN-sTM2zK)V+-T|>bcnn|`6W`rf7e-z>_h`>w5NvFYyitl$L zb(rI-?{o*Y=lnhH&yha;tk%3^2ES=e$1+dBav&iCyxs^9TKSP+*D(`5Ph?u;?w zM}PQ0V-|EyFHR9ZgfkGZIx~`W4c8-gRE(e#&utbU!{m{!!(Q(fA2Jf0IlY?dY%btq z9P_^2@OfJ?F?1xq&rKD*3u;Re-PcHX-}x#nXyyWRX*qXR1Vj6|eha}znT&q`rI?#J z@B3b4MZ3j9jj_%#`r!#ZkTL&6O}1KZ``RdvxFPVf5x?QxcQ1AK|#bods1L8g8AXkN(e@myj#!nG}^WI)&}J2Uex`6@;xiEBl?F z8yDp*hmKf>$Z9PUywjmMx++@#2B&NJ7CV%@^SkHjldb-Lk|rM5PQR}AA0m?)3l4kK zDi}hZzLL+2ODdwIg^>5=|GTjV?+Zr{kNs04QKgZbWSi6DJL{iXCBWOalsbXWrGA zyHZF4er~;{VHl8x!Xk1 z>x8G9+4Gdy1J!yTjB}tjJB(}PHJEpl=Z$}zBiQ6Ch}p8wv!H##bwT8Lk)N`K{XICk z(yOz_VN`@E>74v_n+T9hgl0=MU0!d~jhR-hC=L_3JF=%NwELYXKji1Ih!&ZfhBuJc zttu=frt4ZoEpFOeoqJD5#lerUKUrj!wSkdzbOl`8>CXXnM|cs4XQ=Z^%);GXC!9*S z`ly+gxMe|BoV_3jA{93$Rt#Y*N8Fo8V8JY@qCwN@Bl8#X8rC}Tx)5mkKPNYvw1``7 z2XgtngquR7Nlr2^jS!Az371?^gE_iUIBpE~Ej{vj?}yG1-XB~;z2=hSKZ~s-cQF&d zYiMOec$$GS1Ai1bW$PD?j39R{TXT>>!@4o1( zn!n9gXPk3{-f`z|)<7Bc5%_xfgIcQW$czQ(y(4udd`__+Qi9wk$$MUlBDaoG^LxRs zKzDvLcTzb=)E`%4MAoky@?>6GaSzAe{V*IOS$t9%wR^1`Rxg%_Vzio_VBTld8_hwJSg{ty(K}P6IA0@R76K z9h8LG3n4S~za8ic8frI1?uKNO-6HJ&0M55yxA!d;m3J8J<^&CK&l>&Pj#J^YTG+o) zI@gr&U$g)37GAHRoj~WJ1JDS0u;w5##yjAS7-F&tGie-OBm)UUW@?K{4YtUFIsv12&OJ7TCn*2NSkdWRw zJS6R7i%K~HWfAqNXX&sz0&xOwMLA@2NH*;N@(0CWxz5e>oXGzhufMC|ILpTB6DPZM zIpX43{U~A|@)+%bboYiJH5c%Q*m=QN2{1_^YN7zEGb`D*@B|ulli(-9C#Yved3z-p zh|3HrXYTwuVLo+wlDbefLYspP$HTB5h$5&p;tb1MLmQG1H(TNF z==$P%V8;(L{gq%;8<>PAnt4}ZFl8L;JEq(hJ2jGK38&8WnS3a3MFr+ybiMR!lNsf7 zuOK&s|8ov#@e~T)5C;HtBSq?YqIytBzbmQHCJ7ze2II-*cyEgsRA9N0HBjetT7PId#bsv=#0E7IU`k29qjm5yo7`Wb7 zu&)XZq^k^@AN9w0{8~@r(255jCmUJ)B-Iyd>5CoT(Jf2|g>~n^QlmAK-e64yTs)~B zy|ah*<*)W{oyQP=phd|{utwX1mFlU-&jF7i#_p>+sj@T;^sCC!fR%Ye9dJ+rR{>?< z4;5E-3EYieh5FE!d0?u0hkgzN_=_}N=Rf)X2z&QVM?=m*jWz`^fjuU>NRRFiL@|l= z*gHkjpKVJ;%}46aSG$w~$iT)nq}LrttX~`CIsC?~`#o+M3@VZUJrMGwt|<@vm8;>} z2o6D%x#r*5X$!Q?Z$t9*i*D!m&>Z~Gtk&nNQgTAAl|I=M%K~}fj;jNI9zVHR4*>J* z(d`E}i>^r5O%(MU_rcJ+*ydPH!ODhwugSRSfQix736b&uYuRPq`ou?PRuIZK!%%bS-m5 zIoL8~;mmv*vwXd2?%U6-iA=lScw7`!mty#B3!H*NW@iFa7F*uTyE}7;m~;(de)cbZ zqs|GMsBt?QFi!mo%y(oD%r3e|=bo#Ls~g9zCtn-sE#fI}O&}5+5`dI>JynfV_W)dW z!r|{iE)_toQovz3?goDa4;$QrSoG;-c_M%(T^G%b4&~YP9z;#OPEm$t#I@tOYCz?& zkyo$1m5#bT1Z~zT6PizURC|T)R{&SI9YwDrDuqKTS^Q=NBEz6q@cA7x$FNQ3QJqi@ z2q1^H5>(DZ_ap%L9WHewOkUWx8f^2RfENVtmD$D}Q6o$s(f!&b%mIW^=yMLT0sjau z{ipLKxqPggqY5kWk3NUqE=T}6M%YLHoQ+cjgD1WFgC{Ok;SRjxweJNmihDNxQ84G^ z1#q1sucZHze&`3oJ%Wd+(SPKq8x|{NoPK2BdVB!^5^P&N`Pn@Ax8}lF{@r7c_W;3c z5-h$i$C)(;5cO{Z%9UEiDOO{7aOWGjc{OVbmDZ<=>7lqWY7r?&bsnmu#E!C^n zzyQzUHU;*<2tGvaR;cXMbC?9$SHlV=NEhB;{B zj-JAb%DMipbB5*MX3`fGnrlG2#?xjx+hIWKj9Yhv{4?TWUOD_0Ni^ z3WCOGOa~I~|0G)u8qYC{9sc$vNh#BKHw0F$6wb9uukJPsLH)IAFNJ*nnJ>r+!~=X- zG(NI%JtTxNxp9))viQw@TIU4dkm{Tt@~plp`M1%En_s?7f3hjnCe>Tdobbc_=YhDF zy{sqj#cgP3m-rp}Z?<=Bj`LBGuMvvmpKU$yo9~g=o_RDsYR%Er=dmx3KUrGyO`1!Z zU+=m~pxjcn>vyFtBa$)maG^_*=e^cRWz)Td_^4 z{I9z{?NJ+hh5zO{txu9?R7D4m`lKvvs32iSgbl~%UsFWgrT6daQZ&{xSIv)08+y64 zYubl-ceU89N=uyUyVZ>+69@TxMJrOpvv@3I%uD&6;f9z#hsJEG$=jQ(O8>kZpLRa`dB^eF{Y|zydtYLGu5Y<~ zx%16%55;oc04w-GF<-;hYp1Tmn<>Z|4$8ZOm6UW?R$!lWk+dU!(DyA%hSzhUaVJ(W zfuua|FuU4Exb_2+71Mb15tp@Mbo$MWLCb>TDQO4ipA*d|JcC`|aAsU4!t8!Jf?eYo{4vPoe>N2TsOvyo%&5Y1)mm$` zYx4J*-1(a6+M>y+3q}tJ1|>fY%~yHpx6>RZg?s!G@BuwTXyT7Ou`{zNUX30^>Q0*b z|9lL(xqg)+i-`M@8H@wS9qBt*TFLF+S6?``d#J@cphkOsP8UP z!h9~N_&?dfcS`2IsD1X3T2AnbcC-s@s89};WgWOQPF!5Ca)F zb?gt5?MwSJRqu3#O}j<(g)Om&yPI7_COMWoWB!(ZmGTs3VUS{#GV-7A~=P1q2jV?OV>Jj`QUsj=7K92IkEXN?9 zI*l&WVac|WXTKIIvx12e(>HZnqMOpx3Zq5W`|DXj6k0Iui4oqKpj?IpA>u~!+V3-%u4=F-%#~ngXzK@^gfd{~LcP(^ z-~}BR5SB5nvJ-iz_m9!U)gJn-l+`0m)dtD$J$(mfRqD#QVcx9FKc}i^zG|I8AMJf$ zS1T+0S1-%(8S^M9N{J!*PG8nP&5vfv)OyGcnaHv*Gm7Y`#mqn3)Ht6QYTz29IgZN+ z%ZN$4p*o&tBfPJ3G9mb2@wY9iUaUBD4es8GU4>l)jW_Qeqb(z^Z%l6r$?;#-@6VYu zyzkQ$R{X7csU`e|JVK`V&=XzRD3JjxZ>xTY|2>x1QD-8#jrHR*{qkH|l#eZE<;8f_ zM;S$>Pqe`IHzx;zZOL{!|9y4kGMSf|`+9`WY}4f2bvVk7+E@7Gwy18#rF3u z*N^nAiVCD$haW2mTH*P)l-N#}_$hESm+=0oKo@h3pV;)VuWFskx-l=R7nW($VkfHc z9MAi}*O84@aG+Ot)C`zxPnvC&t)lBtb3H0AWH=ekwybm41)tTn{mG}_uiLo}`Q$T+ zYWec^A1uK6X=J1)xg=0w=r8itq>@4z5aC{%_a^vqMriakz!=_<&4pX${6w)` zDxc$2bVyaynN-z{F3`UET(=AQIPK5XmoAk3O>(Zdx0nN=KbK8!2d}utZ7!O8uf5fH zo>4xV_#-Y-d4!2N?XFAaIj7=c_7Mj>&6+|6w-p);lVvyuE_!$dA4r(m6K^^T&Q2@J zu-K(+H~R%JyXHpP6i(h9ACMltPeH$x7w$!}*wdS2hm)cR1=XK9O1CTZuF6%E~mh>v3gKA3*zfafCI(0iH$3={4zEiEO4}A$7 zSC%CzDFYX{kIV&bc3Ij#?H8%%sfE}xr)XRYJXf8G6YBNGS4IzGSbKs&S-Ci*Zl6_)@&I@)eB;mQ*T(eV6Cq}4>K9Gymjc? z_8IP?J}90P?omVsZb{%~#G4Ks@+2xf%A3mNB>s%>X(w)S(J_2Om{3t;RJDlO;^*h( z4icra3#rS5{xjA+G}})KDI)w#uu;O5olinY*T1FQ@1CAg5zr&cmlmR)n(|{KcTP!( z_E!oca|$W~EPqt2PcbE%XOHQ%x>%W%;3l^wxcd$+*SK2|;0Afw8!sP~U%J8r;4G|y zq%fKju}wt>!GqUYbL$O!lNCilQ$duspSxzX^%~&$A(;aDG(Z z)8(7vQ-xu*(m3M8tFucXfrruDx_we(&n`jlmtBL@EluU%-5eLjcl{;O` zeG_q4p^d(%;y)i-9MvUUnFl@yBYWL0(4X9^a>uBQe<$G0==?{0C{KMek0^{cl+8Er zRV)-JQ&?%}rWTCuTM#0?;rD(g^!i!^-5yn`D{&oc_L%;5#?y_I`jV3zlKpd6N36lR zG=_1c7jO7%hN7;LvSwCX$QTJX_K$p__G6QT3<|o$>xyDw7xbM6)qsv42Ulr;I`dg%y$qVw4Pq|3FVI(4j|VcF2KS68th zM871EnX8wr0avLyL8s0)>qg^}UQ4^kY zrhVZT&KS;lTlhDk)(Z+>sWaf28@A(kw3}~;cD191(1N}8AHj<(bk2$9%QFemYCj-T570}9CV*fVecAvty}O8vIY+gkIn&U-D- zX+4Ka`)2v}@2|ylZ90|K*y=hPbag+&KMC6R!ZF`R&{LT5DLcaxCB`yKletlugzUO$ zj^G}=0T)#&ODH_!tT<5KkQp9j<2-^}%#9`}5qujQsmJL4I+Ea1LY?^Fzz;LkS4aXW ztY=zv=tQ&|ZB+@_o2iv8nlq&YGw@TxHSsZg6$-OEk(H;jgYr!TAQ!`HDTHwD54JG$)X_;<8;5(2y3LGO;g7IiK>jy0P!%xi(J>a5;2zc{>;=ApS-$>cQ*CGpIFr!p-|os#LjuS{+uLa zMdrkb-(N@tUkAe7u+$3*gq(O|a)%Ip!a}) ztOh?KvGE2z=YTlmPNN9ry&00@Ml(BJ=t3KRvpA^OVO5C4CN#C*-v!nM8!V>1PO&81 zL*`C&uiFSmZsTZF66#Sxn~8(z%CyApcF@L`h5s-;fr2vSUSeNQ_z-Hr4fo~O!A#Q{O7sJkaM)$;r{XJ&x2loZ?^wi#We9Uj*Hvxe znB|Rfu&P{0I(QB%%tszJWvhKO&B-J2jxD!StG0RX@1NhE0YWemA>ZuDc?vHOm7V8k zgknVKK&cHwsCr!w7rXO$WZFsVj`qKZ>RPw&w zDiE*Ujkz_@+(;(oE^jLHPI)p5;C5y(#xl627veT%4j$zIg14O|%9Ebin#bd8ZDmC*U4Ng#^u9X8BKm)-tzx#49fBbgse zpoV-hG0*K`1X^WxJ2~{tT=xa-*3J})i}m&o%XM~Aj}NbTpC4-PF><^%dud&l>mDL2 zY*Wq9tEHBw*=Ym5DW_sd6GllOQ%t5`rqw0y2L-zZt0KosZ5db;)V50ZhOlz}kr*y> zeS2LQ{381t046QCvS!A7Q^+Tze!|cnKln!tifL)Hlhf2}&7SrMQlBM}VaBbtr>QC> zR+=YHyyEB(KkMVK@290kfx!0q-JG{~WyBrdT3IuwqM-ZkaT~J@1IK8ZkX2yQxl59@ zf}bh;Q$GYk|7nrWSePML7#vr|-w!?6FAi;*bF<`qEH4*0FmlN~e%h~o1-l;EGQs-t zK3m^G=YAAtzP8ck#&nxdxFpWG@z(v9EQ=5z=k~olx*96^R%=I8oc7l*)TW;MhI^Q8 zXI{Ejp8-xjb3eK}gk%z{75bMil+tl~+C;BtgOG!MuoJSKOg>+O(FN(=Mgxtd3z`4D zVYIRt*vqkUks-y@*Lx7SMh7zx=!htotD;xjYrs+1d^YFX$HJ($Ak<37$=??UzdkVD z&A3Elc;v?>fZoNRYN@XFQ#)vRdnh`fJ@|*wUPY`3uf=mNnMEPBn(nG;Qw%^C@mGzh12a)#qievp)T&dq({MQKe(wPiqM(D1>_)8WptFY7{b|H%Ays<%{TiRE&gV9*Pt1*^>d zNSy2X@oMQYUJB37^n`BZtAS^`H|yGS%wGO%v22=2t(?f@Z^aPyjwW3%2h{^RNS1TV zY3%n6&QQm1h1)?+Z(@i41Dpw2@$$w*_wFCC%cs74d|aU;p4=p{gfgG0WzLse7MDmtdR?Y5Z8zB{qHpR#_5P%Otr_|@*px=TS92RH+5%uQ$a1Z$ zX*DU$lI1EVW5odqrKWIHyxMYuobSaZk>+SdogthK?p$bpGZG8;A3iE8m?zFuiW5S; zZRwC~8;Aq;k7(Ru6^4#sWzw!k4*1e>yK`owd~bU!zq&WFkK?Z5yZC6Oe8U8U)7eUcCbA5|cpc-uiiVr|Qkxoulnl zvO@NzK%d~j>d_owPP2DFgANJ>U5-+A7dbS!oOBx_@@V)B>>pp*iN-is0d5EW4Z!!DKcMO_QNK{zsI&d^zdkh`U z z(=gy+M>`gayBVu+eiQu1eo=(D)11?~0P$qPbWktwA zB7~{`f1U#bE{y)^fv%z!P0s0XehoPdIN1Grt|wVAf6dH&Al7u%*!tXc8AH#ES1yu} zHT8D2O-^Bd#>aD>M8HVByzlz;zO~^)0=1c%;8{V{^p?5vi)>zrCPh z&4p2fKzYovNL9ORol{3r5G7?WL;qc;-%6Dk6?EO9*9AeYz{rSX28kZ$R-UtO{}o3x zKB2Cmy(oQ+J`B)B-5)<(?|yHv{WQV##?@VnX~+IP z6IpBH3eV|Q|37wE3tio2>zBvNz5SDV`v<$`_@kqL@8d^n(zj1 zBZWvRZ``ntAu5s0uYUG7c4wv5vg8}Be;lL+{EI;Hs*O8AS+Ue({7HAt=I=`xcdsVX zN;;3-iTBxhzM{w;fYYzZ0spjl=maC^*L38|NeGkoH`n(3jFp|2f4B2uMcX_2y8gqtcT1%PWxB$;TsU2SoJXX6=E?Xtp8=yZG50 z^E+3zF^lh_^41Qj2O9Zep42VpVNK7RameSUt$MA&G<*DK{VU?irNAK>01+A}@^{7d z>*Wro_-9k304#6!so!%xk?`*ixR72%8#C>=bLebh@%)iP(qJJ$pOPxt#YEYk>tNT% z#9bhN-u@^#DsS*&(t2Bsg7V{N=$mh3M4qzX!P)w>M@niC%(Qn^m&glMnSR}ISu{%S z{>H#sUL;@d@VgU7Hv8_r6z^t{U1PL-;^;Hrd}QWCucuJkIu1Bl@|Gd(U&6H&o9p;0 z$9kuXil-b!xuuzep|y=Qa2*5!-Jt}ZZ&bgkO?SFjrparNgx^sFF`S{}$2CE4dm8}A zks|z$>HRd?{ILt!0Z6~^|0f{(vSfzbMg%zAYfy8iFQ3&B^@! zMyhokP!6;Vxoz6IgvN;>~fy_HEa*~bJ@HhPn| zBawYd?(;GSk8|!u9hBXE%tm0w|5R?w`qMc=S^ra%DKW59Ge2GxgPw7E-Mmxai&hH6 z@A&tJ#r6s2mqXIJ+LND7GL(+xqv3kcxGlu^@ z-tYLruS5~;w<7kmkOb_ViEVq{^tSH92kKEZ)dz&tix_H6xxW_iI*&w^R;HbF@3#_e z>F(VgI=Tif#&d<7bhQr8rAseQpW1O{iy~ci&KY7;ZO_xqk|rXU{3+It@`A^zJDPKE@CsZ_!TNz@F4hCMXfXc%=tKCuBOWF}<-C{!6^8p15bP-% zWUD6h`sO~|v$HEJ_zZbmRrMn@gin*5rs`2Y{M>7YCmR@AM{~xA!I@B5LqvO*S_rn6 ztluDj)dqWIOAf~rM~MuEF-_&n>44rdO(M@TAd@!d^98G44q6;LSUf4MQq4CU1f&{D zBkg_hHL&Dy`DLE>KjzDEUYm*wqz8i*Aml*YTnzIVZ@ zn#&`C5F;<(282^tF&Q0pLG8}f!<;+|B6og8<0JHl5Y2Qh8S;B1dVsCLhP+?dqJbj^ zJJnsd&1_#|yx)^OKKhOF6N ztgrlvAWWuPz+T_iVBE}G;LJle7xSJwfEnb5SzH#11x)To{!-y=BFP z)4S_ky6|HJ1m^)N93-FZwJ|uRRtwQuP*oWB>d4Jq-Cu9k-5 z=v5F$N%Y~{j@QP zuU%DZ{ZOf7%?63W!c_iQ;|w)Vi4ZdLr(yHI?F{zXCASIjUueenI)gNh3=qB!vXUzX zFVm0Bm3~6wrae$gJsoe%_OJOM2#LQQVRm}?!8ZzrR>ExGiTpnf#ZHi4&9Ry(5!Z}f zb5>{D$C!KRw-!F_VR}$!Rfj4jKWsi+G``y*kuvY)*6G{DV2a*UY*PHs5A1M5t7d|3 zI{8@HH1j66MFf$3y$jQ8RoW@3P@@W(Sh7oe{0hDzou{SyY^(%QB?$}Hck#6oCL@e} z$&?q2_%0I3#-YN&7RFYob-sAe*4BAEWz@GP05W`Vxnbet#LHi9B?&+V!2DuSgyP&) ztNY7$@N_?=xMDQ7u$65$a8A{2dSV);?|?2vXvYm3rwI{wFLz@7|EaSdEdEs$-2AmU<_*?h6?biuU->E45kX7|;~bf(6Ej!C+;DaLD}>wvnE6_7 zXTj~z+Bg@_t4?L*hh|G}OpuN93PHc)N>lUNMNuz|2c&m#e5pg;ENB)$?DVkK5kCgt zFvnq(5`CZ~zS+~a44!1)TMFrx5PZKUM0P;U&o0H%L z*v?L(GOR5qMrqA+-WbaZ5+kqlC@82tFJXUp;*57g_3&uewH!b6*;#7KeE!&EP?Ogr zPJ7LdGS#gSd_&{h9#Sv%GTR>RQwN`v(%D{UUqvg~!%Y60rhK%x%6j-}|YZ#&$792&Hx*q{_SJ_L%+FV~r<9DU_HJ zrHZPa%5&TKq!IY6f!Ze^917m=G}rILYUsnR*7WF2>!s-dN0cWt4IL?_a?W7PGz>-x z-)Duc0iA7uoDSl3?mzwTuR4EJG3MJ6Cljaf zlPV7?RGxQD7~}a&yVtbXgPvwF^6hrBv1o&9c6agLfnPc zXTxX4kF*%yTDpQ3F}&tXHOqU8!PB*WsVXZg#`(L;8v;oEuk~IT=@x&QA8@PX39coq z(y_5RDnDouc68gXB3ENj?S&osFG_YR>ukJwW2>9V;p(DJ(#P`yooj#-oHurNL7=m` zvd8R{h)_q-dHfj4cV_vecs(}0Ctc71zE1tyHV|2>gn=KDL{6v;PQHUa^*ppq(5Jz( z_;1D@DIGo6$tD_20}b1XsXcT?WcTzP12*pgOe-S_yEkOFhbya64eL}!u0IsJvJX-> z$G-ti_qOIxbG(&@m3wgqKf1AThNk6J?)I9MR#qb@?LNaRLrogvNmgrF4}?F|n{%&@ zN2J$ny7IWIAJkX24eHenW$DY7U7g>bNFjR#;X8R3^amyhnalbqb&FYk-uc#dJ3-0=@S;nG|1yGw*e&93y4(?+Iw7~zlt9)Jr? za5}*pM}Zzn`}%6;#7d6a0_djb7#&`a5LyHOgXi?>ZCB?iY<-?QS

rV1SbztQT$p7=}M%TF89=Pb*QOr*V-Jy41f577WV;xWL3xaCH>!>ZIY=YpJ z9g$iaL?7A;(r`)zsx6^A6KJSPHnj)bRU<2GO6vxe5bE&tc;PS^;2rZmxND-%+v6jl z(go6Z-U0u6T4R8VXJDZE^Mx$Rt5%#5Ckx8u-q(YK`H{K;)M3gaZEP|C3}DW0IxiA5 zg+G_oSx?s+Trp5|VNeS86`*ptI}5P2ye`~RtAMh*M-__kb2lm@l2<|8JN40G&~bqJ z2mA#`gA(zV_pr6>qI~}Bs&t_()-qjSzi!|hyCsM;^@BC-+k|oS9$fB6l5bHZ`Z-uZ z_H3BuZ}w~s_s?!o)A4$!_6c&O(R=*6r(ep8bZj30a`~ElW*UEZ`K~6rtgF8cz8|x_ zm$ac7f)0VsM^mw(sAr{n4OG(D?qj$+4b~oyfAD74*Od$t%V4hCp?EGRXHdhz_n=^y zN>`ca+&Bp2uXntl5|mp3A_DXfm*PJG8d&yG-me&3Iip@rRm9TP2^5-__SUv11era8 z_O)#~myKb9HZkz82+LbXI+q)Iy-lPmA669Mu86EMiFwN_t}AOCWKy%{0a$g-!NHzz zXp|G5RfN0mA}&{P`CkpYh++}Tsb1#~<;)BT+E+MI>a~FOWfvccM2IbdaILxmfcYU} zD+D*sJQhWZT?4=@1dnH{*R2P~5EUR~5_Dr5hZ!*PT zJTJz=#yr>K))&eN#>ODgnbK4Vl{!YdK4J#whd3^&o8F`LQ;ZdR9Sm_ufH+x%HMNW1 zn1^UZuw$bfpWh{HZ|TQqbj;s>fgB1;cg!`Wdm#o%gGC_C;wKSI7Ni$0wL6!1`Sz#= zkkO=4bK>O8+-(lrqzhViR=gE+AM6`K4_Uw$b;9C`H|#G~5cyHUu6T3bzkzxCPY@e} z?hYrECTwIZaBNu=H;wZMeJ=PA`WaxuNP^zV{c+x0tdi+6s2p&20veW=JlwL)O0CtpxTB1(5B5%{2sSH>90}l}|#ng2*uF z2JCX8op)I!5rFQ2T7nmWekgkvuLY80UF-#TE9`SF8Rk7lUs?=mGywAMAdJl22&6h7(geaFvmigRQG}s3gkZ1UZeXr78urpgAU@Oz!#I( zL)0+L+gD!*B7%RzGAHu8eQ(9&wOvfgO|c!F>ZRGvEfAqpePabgwMlmM1YcVtCJCgd z`Y)p;Y{hJ&!LC@C{i@>-I>VxKs*Lq2>)B za0nZDQd-DWR$AD9K>N8PT&s8B#G>4e#Dv2nvsXXoH*p_ z;FAs81JANFn-=2ho}AN(2=7R67(bfuAMa?oMpweGx^YvNEbyzP^D<%U^OBcz+hKqJcD~L!qaq3Rmmy>lV!$HZcsY{hf=TNoYQD^D3;pi=;*#R+h6%= ziBb58z6+%S(!p?ei%qr%K4N+3v;vwRR_-}eC9Y~f^lyTf zChybUu@2~@cJ|QTsmLutLBQmShdXoX9uVqtgE++5r?@Qk$YTXZU!F) zeE*O>wX(lm2gYrjBNaG{46vgeps&qff2{QVW#X&Q4g9!OV_ zu=urj2IahPgltyW!%9Tan3)z(0hn!Qqyxwc_tRrufr<-Ot&m>Gq@{{gE8|Q;Gq*1i zAvLMk>lJ5{08jxZ7hEJu;QO=@z<=Fj;|XmV&2Qv_B>uATr8>G$`*f|R@Ny3E&pq&& z0vTFQ-GzV4)BPg=_j+L&-Pc4O(%HP*kJs>|?>OXX4RA@%($Ku!+#}c(x-eLWHaPLN zYNM}MHloKq-u+4y@x6$?Zof|G6QN{NAG}9@K}JyL=QgsCFf3nlbQ%zWlVze+7pw|? z{a!lRs6Oq5#Aba6A}I;+N?syl9Dyt=k=Of$vm<-x$ipz!sEG&1oft0n5wev;oApv8h!^u#m;;P?=_ zy5?}2+!bS8#z_LhKKl^w7hV=P{^NRn^VavBUz(9{gCl?Y?-5)la12E8pb3O4jm1J? zW&;v{6OGCW)`3C+BCOAshLdvA=?g-Zu?Hn21UtIhnS_{!c}m1%ejs2^bwCdzBu9KHHZGAzS1`0Uo`R_nXd1?ouRPV}`K z^<0&6KfUF=Ug+U?1I+{Hn~J{o1zKkhaOS?xleP>XnzgjYmO!(H*z|WoIu`;Rk%RZ7 z`v4%b3lBK|Z)Dd7!wwjqAfQGr0(1z0iYOVu3!yborufx@hO~lYnvINl%$LZ#JprOD zQnk_udE#>q!P%?zu(0W%9zZHxP4)TBXQd5oYD>mg286pm4PMHHKuQj26+6~)AeMr$ zbx%OBJdsioJ`BjWu(NF(`xiLySjnTEQWZW36ggSFryyRb0aRVobJu43e_=;93?gDK z>F#Rb>zvisx;=d%%}M(UQLtf4A1vWWdoNh)gd7s2YJ3o5E(v0#;eC^};(Bm4n4-QE zG2pDiZ%}E96pa-9TBtq(n?};~;tUK1bH$Phpl^54Dm1in8h_zZ%Bm1@QsY2u2kDz2 zAI_AQJJbNgaBF5`{^}m`I77dB$TMHB_mU~jyREAu)^XRc!B9NK>gUT8czo>S`1-sG z6>Nee#^v!wgH+5$5Y62VFZHyj3@KPI`E9dH6Fn>!2(#9FV3)@J>O6@wQjM~-0h+DT z7Q{FPBbaB`m>$<>MC^jJist1n+u>vh1av)2(^4RVhvu`0eVp#|(Z)!`qbBeO8u?%T zl^hqfQc!{Mhbh5%fx)#`DhJ}l@^SBZ66V-*lsGt>#hn}PohyXQ;-@LAn>!vy9BXUliN4w4rFQMY7(&6>f`g;1`g*USYnV;MseX zuEWryyb=9sS8YM^f7J^dXN-UE6;S5@Z7TIeV12#=CJ6F7xS~fB2`pv+Bo}GqQx4X= zpAcsc!!9<>xfDqfU|b<#p3nRJwb5l)0$Hzw8vxk3D?) z;F3-gQ_KPq~9dxrjU-^i!Ky8WP8-ub*9* z0AOYt*Z(f5`*f|?37V2|fJvqWEu>g1vyDV~O1dZBkFfwvq`)-c4EB>Fwe`M;hXH~p zDDBUZQ2>@cmHVX>N?kyqXYc9<>UBu%vDP4Vq$1%@(9FS>G*kMt9P>bu)haD7bAC!v z@gzF}i zrHC*S`}Ut8bM+dnvm2${HC~!+sGKQ+)6TMf5Z* z;Af#GD(IPrA2AFt#R9)magAc@-^XJ;2HX=8W_EKnmP>3wC8k7;D#;vGbW!n`Fh2#d z6Ac!6*4Lbr4mU86&aC)WEpQ+Z!heN@pwvz zR{DW#hI9#Z?Dmn%w}Gr`MdZJ%u$GL4)J~lUbvp+JPhhEzfe@QY_gV$YAw)`sKEmTE zpn$MyB1bUgC4BbEaW71YKO9i!v%XrynZSdOYYhe*ESE~Q^mc{2=Q%;cFQy-e>)mJ?=}Omt*a>Bei#ibx2hB(_?E`3>VBzeo z7}nds|K@27n}gCm^#MKh@S%L)3gcAg1u@u|=Dod=D7bU_3)G#$gbc-y_jn<0+TLsX z2#>MY&~4S9iZ`+}PQ`ACWFt|70-~=4q8H~3UL%RD^KDEB8*nwDAbcEpjQe*l`!>^eEOcW?$d5bfiX+H3_64^ zGf*I4L_t3cPZsvd=E1Brp*frO0Nz?5?yx3Mgk!wGoB@E?2r5lkvi%&LFc=~mqjLIa ztO;T(Dqs0&N9U`8xMVctZ&yj-CAiEATHM_CYRMsMI%n1zUu(O3Xa9BjYu zm#;>8uw?9%iUip(okA^Zm2_ZFGuoHoKi+{yQ{pyNc9kA~tvDqG zq^UqU!RvUZxgbE-G2cBKGX+B$NtRd5K5j9N}4y50=whHst`4zq=FSuNX^Y z-pUsKNlUhgNBx{Hr<-2T^0Xm6G1=zr_4bb0E^+^9+0^`>J~7#}le-;BKL!EQu?xnz zT>ZVIp{mR>rM(|Sa4nEkIK}UgZ~>;6;=8yS$T>lZduP|AriebH1R%?AP59A6k9@Zt zSa;8KFVp&J+4q3jPn z)SRXpr6Q>`F^xg#Rfw2AgTHZ~#0RJu)13>Q{_>2O1^sgtCp8dcTyc3B3r+GMwTpUs z@;30-2q=?9png3NE^x?L4;b6Oc%ot8be2e&c4ZjsrJw zFV;#s;f*N`07(&PI>y(ynT;;|@Y8Z`{Xqi=t@3mc@loUVlirFFL&7W8* z=dMTcsTvQ@Xth8EDHiUiK1aB5b~y2(StQ5-)!u{~&uCw8S~sJT;+={JH#>tmcYqF! zbpP8#8uo?E!57aaj3S^hIRU}b;kP%s!>i!9UU7|Ph`r$o$A=ZfADnnzkkL6X_68zE zpcL68VUAmP6<|9*74Kp=Lyj4{fky=%UC(88nX2?eCCPtUFJEJntgHR|C=}xMf$N$4 z)^1z~DnkCK_ERY0f3Wi)eQa4MZ4-5~HC`+b?d?ZTF4V;{+zZhB4HTbtuvxQB3sz&p zp2Z-(9tTWljLreI8DcdN?LCR>Z#%>ItV%nk=L-nk@H__i!jrMY2lgXk*!Pm^!UBq@ z6a4kD3p1h5P0JTL#h*j%))M2w*{XhoCI{eJ$h@YeW8uM^iGD53vamXwdW@3?;X0p6 z*|{^9%j;6e$&R**ph_qpRcfVp9?+q2&TE?lJRm3eo?X7+z1U>z*g8x5l!qO^cBEmzl3ct6f#v zfCT_Kk#u)*q*F|NQO2!vfcK9z%~&h$SmwMR9pr=Y6FBvS78Uh!uDdyjo4ZTC5kh(& zqN1j1P0@{a?T4{MjOog^3o>N+;H*`WnkxYFjx9dDCn0$Io9j%0a_XGZ?2jpGQ=|ry z>|bl1=rpo~m+_K)@z%X-aQa_s@HsesY0`cs+#U{;5r}?=;vGvG!C1x5EWsIrzo2<2 zK`*0QCO{&#-eb(`IS?)ZT$O`n=La;!S@pJp)sKLPHR2FZZ~K$J`4|8o;X|VoGugF! zBrl}YUDvf$hdL!7P#$AjUw$tJ6mTqDVb(eLPs$Cb&cPE!SqH?kvq_@Tt!HMxYV~r- zO#PjQ6%L4}7RLJo-0$`aNTLD_n%jXZs+m$dktgXG#Fd=8u~silW#J+8W9il>#Po=i zrbcX!#z%2QHtHk!d?|`PuP3Jp`TxMkt!)1d;sTy7WX{UNv{p|5&1h=DXqqeosxAOA z=_`|_gan+oY(-2%wxp*Quwy4pcg{fbNox&e=8mS$iR~_$H-0qb9`a`o``+GMRw7*k z$qOI$Sz0(Lq>BH7depe%#BPv|F5cL|?wNfcNkOJ%ukKq+qrkUnu`>xH=_h%OdWu;f9~$?Dtzx37z7krhZfCaEqy%Z zjzQ*KWPe2!Tds3rLxcFwDwoNYEU5w5+6;Dgr%lQH>&$hEh5JEwdrH~#?2SC6oX9fe|@FqD}?&nHZltHJ@_xM4cF!d{m>`eNhjQJ*IcajqQc54B|1D4xmYjD(`bogwD> zrO2U$-MURueD*T8_KMD`1KB&W;4h)+@<0#)=gPp#s@EWp8!66b=Xx}O(gFt7$DbyN zJjs%FC-6Z=F$BgyNKR!QZ;zx~J!Qz=tXr~HT-;b#^o;Hk(>89Cz_byut90+shDJ{- zMF00BL}lE+WW^xzArAQN(Y;8KtVY;2xyC>WipJLu<(C zeqk^nRPRTD6-HLnPkhhg4wa;x!s=O)=j1(Th$*Ny` z4#h*0lAsc3t@ZG*xE=wwGgY;$g7_K`#)f)^+^dVBg!iPhtqDA=ctgK||Ay-z&Y+XZ zHRwe!KL)yWuvBs2MfrDMgs38L)rV}GJ;ryTjB?K875)}0Nzk|}H#RhnNDP&!1Fq~w zpggypWMA>$YwCNR)fc~nT6P87fIP$6(&7<+feeBJ4yd>H%pZfsa)#HIDkubq|DT#r zM~FGn;lA9^`tDAJ4#DLW$({PJheQVy>JM&2c3j2ed$O+{Z0=ITJ^y`Jdf$KR2?j3_ zuZOBV)TD773Bg5InE~K<;6e5AO(s}xzt2d87>GT%Q!fiEKHlyjcV};;C#GJ*awNNV z1Fy;EDUc}$+g4c?P!YjCt|5M+?AVnNj$w$z*{CxA(`y9gt?gZ>9Hj@a-HiRW)zC^2 ziwz|^emD2~gFVQUj(NWjkCvc=r7v;G;V-rzFYDu+ZFbRH;VWKP@MuzYJS;`o9+J%=l{iQAv1;c7Ok^WRf=80f;*rQS=@4?q zvZN9zkhAYTh;S5th6}IWOUGIaVrp{E*^V0$`(mzL_Ptdmlcf3r353x!m5HBj;;sKw ztlM!FS-KSQVC-)$e$8=A!KZU61|NST>frTT%{ye0Pl#V&uAv|sp(3`%uF{_o+-u0& z%mh^wR$Iq%@M!wz?*;qvQ>01V2KTEjDv8g*gR@Vq4s>E&Lu!qOsL!#K4&~^LNK{Vf zz(>gFh}WM*T}917_9&Y7cwE6=eAc$ZDx#uKVkFhnb-_*&AFlMK`+wq&t<eku`-|fBG^AL7BSvQL*n~fpG}C@kI{B4_nsaS2gf(3Qr;_c5qz(7 zaA=}b+(HHtInS@<^&rpP4Zh91lsjC!X?c4*d%r7v51M;?c!|+T>yUIbN^b_py<*x*S@>QrsG45?OH~cUl4c3&f@EbD%1wOT)5Du zZkw<(a$>;O?hsa=#%7`n%v+X1@ZQ!ZMW5ZmCJjy~L1lXQi62KOC;RkVp+Uk8^5JeC zH}b5`dAe?ya(PlT80+}qP#833o_nhM1@D0U>q@B3zZ}{DR0GqimG%IZuFpT5iI0rP zZtb(cnq!4okh)nj6#tro+*1aMK$fcag%^mjz9{bXt*goEBW>IFXO7s9>roXaicedF zAj7csUPWeyU`-lO3(On-HPx~X{*AODZ}zvk3sAKRq#LH*J^d$7BNq+eDEcUBEGV_k z04T%FOr@|5mA`q-o}G&de{~K4+$pwO74xhpBC*fe06qVj99&`Ai$)Lq0V;4H?%?>Y zBSu3PTY*7os_kfp(?ulwNvmA(&DA_7HtF8DrA$*K(+*^xH0Ts(5JO5|@OSryD7IjB z%saO$bMuo?xr)uP$TfPSYYIt@3j zo1XI?R50?()~IWW2XiWpoZQ?@-18@mCjak=k(1-Nk^$DxQ&=+&97Xo+=vg%}5U9c& z8@9MRnuI7gnE(1+9u+^9fZHFzRB(Wra{!O1JdX@KE3x0+h>A)f9}<;AkI@gJu&})kbW9X3##PqqbVrqB7$6S zSrs(l)3DA4gVy?g+WYc&D8KjbPa#E-RFl9+Zkt9otoyI&X?s4O@AG?p&+GZ;SFiKB&)n|&oa)?d>ao%%&`bc-oo|*3H&<@}j&#PE*#|KjdtHZ2 zoX)JH4R;SgsVncmjvxC^MrE~b@Lmht05~cwv~P~jv}p&}J=0zJ{@HA#f*^#))J}(+ zKlKFV8*MR45xt%ySQ;%{Xh0eD?tM#mukU6uf7i>6Nf8(Nx!&Q8^&jIi0j_x)VQeXt zSShdqBTXW0_CP1+m{iNy47Xj1wWP<|aXxS|5i~vQzOZOMs%^Boessq;Hlh`8$6~Ug zJwyZTkF+Gda;3OrU_64uGC7JFs)jUO*bh4kCA8LiY@x9Aqy3xgUa&xi98DdoSSVg6 z;8c%Nx6YWFuw+@C&;_H#RqAc?mqxOeB&nwGH|-NDKHD1Lrru8J@B=F`kp|Ye-vW!w z4cr*Az`+n(abjWAQNbqh4$Gzv2xHORme?4V^IWDQB^5$h735_Fj7eytSJh-(b-0d^ zG-EgZeJ(D1<^kvOctruU#1X{RtCDpn>qmTv1p1B59J<=CSuPwX=I|cc?E(n792m@TkqsJC7Q zhrlf@3psk&NVN^MiavRk+prXB)95I8)L>a3ng{Y2Zm2xkN6gt?xsp&p3Klc2Rt9tL z(w(yTx(8Zr5wyYpgWSyoQ)>buCp`Fig?8j#%%nNoV|dCX8%NgG<6lPJ)vs-A={D#p zBhQMZ5zA)Xz`0nf<1NTF*@fpS0wh;!AnsCrJJa}tt3Ko=)lLwRewihsI}E>qpjyB3 zRrAv~A}1=vEAkHq4V1hf^cPa1c;n~ozv=g?f&CS7OGSY?y}6BFU9E97nWZ%0RI?|* z_PVi*lxJ=g77S9=r1K+`sWE5zRLzVra{guYkOese*im?HXf(VaY1YZR>t2q#%M!`% z2z%~+vj0FcXWR3|6--D$sEkR%xp(Nh=v&N5Sb`axuWt%?+E$$fu|z-p@^cS^t=Xfv zE-Gd?YO8k~ZSv}sLop|Li@=^JHqR4KVJUuWHo(0 z_GGXHrW&1Fenp>EyLCz$bKR-FtOoeUofJTkpXfuu%BTRF*@@ z3G9M4>q2%vcrWQ(dStaD*tp0z``b=RfI^`?EH2cI!k)TCZO}?);D7K~3FDo%-Sp+D z_toWFDV0*&`@9GRoQ5gkL}k>v_)mOb?Z(e)X~@ zWm(kYqnj37ZliK&JNs6UIdSdROm6$0xxRh-C5+{xz0BA92S#K^OEqR{f|hsidvB68 zxpi41#W=g8Wa*%S-$(R}SiaF-@YzyW+N3sdF6eY2wP!VFOwsmS_6PMW`$TfANZnjU zNU#g}P?_?vDv9`Pa5DAI@WH2xy!}WiA=W*YE?W`3ZVUJrBBk0Sd=A$IbTyn~8)k@Z zL^nRF&FZAZ##+S4g!;av1yPYyv%0pO_|ceLcOl^icDhA!3?t7oJ05BaMuE?N00K_M z+);7a89q@!+ppLN&P(ST6=RiHA;2ZOTHyIJE0X-o;S;{JePGu~!*mqbr=CAKf4A}T z$z|cK^BtXhthP3GX`&Gl4w}4;5?R@VMoH%I0YK+6p|NgOFe{5FK5ti=Bg znV?u8CPd^eDos>4U%xpjNj>ElJno?1Y<;-eHHWRb7hzysg>LkYYM&VW;J2y|OuRL! zsM8)Y(!HHmr;w~Ng8f(12Ymzt;d8a?CIr!AF-4zMl(YV7u=~~c2-we zi}&JK^oQNWxt3~0A3qE}5II~?Yv|F?^yV|`r*}P(ci+NTDTN2mnbk1#A*C8=pQTJ* zi7ASvZtfYqWN3|>y}lHo#4>$*oo^L>;{2OI8O39}6-Z5;L-K6p?SA>wy%?wKI$gCy znhsBHw$8Ry!Bu@X@DZZp#4hdvkI3B1g;r?=pwUwmN9zg^LCJjmDXU8y3{y9V6K|~e zKT};#+O<`Hx4-+GJX^CG(_(Gk%3@HifVO?rl;X~hCKjANsoTUv`xSktjQXkM!O=rS z63nL{7S7E|OpbA$=bVScW^}~B(d`w^eY7I~N)fS3b%`aG@jmI%`Nsp*abK5VEY;v! zXXkJQwxZbKxg;}ezkNL_IcuwS!_}jb*O5}K$IqD+*eV{X@s74lDDX@z>9oEfyEL5L zJGM{l>(1hg;~?BvJgs)9Ww(UN=S%vb-1q!XAR7u@2e#^H6e#H`*K!mojuWq|CdiL> zCZCk7pr@D9IN(HI`;^bwtRvCMiK>=8RNvqX)&cnS8O5jT#mTF}KRqdj;>*k3*wqU(0YxBe{#0Y45@l?Ye zvLGEBlieD@*iX;+3dH70(1~)>sM6Q8-+*LusH#+lCf(ShbFbeENL(HZ*YJLW>D8+F zmsGZ3HYJz&h0{k+l3fO`ub6cmiEW5!KQ=eLy6yG?*fbd-J$+%YQ6gUN2NfnP`Gzyw zV7t`AhaTk$buC*+tGD1fSF25e@$sc*_%&9VE73f5d#GuH1w%e^4K}SRj1xD5;lD@e z^|lyA*prY9yKUJ1^FGa6IC=&hkUib42GO>IOn$x59!S!u6AU9tK)sNdS=9!e18Yd_ zp^t4Xcb+tHH}5FrIo7({z}Q`tFZuao2JT&GeS|REPPI$zyS`)uJ+&iPN%*n0wz4M# zlN^er)q5j0glta~y)RKrP?>PO(Km@A_s+-M zUR{)bUH*8;1$;KnYoe>kmDXsNpDa1iS7eCvU7iTc%NoZH{&AJoqY;T|ryYvvQwZHRpqnrK@LgO93{f*2)2h z6Gtg(mIwZ|nCrwzUgrmIF?IJ&$$7IR>2%w_N&{N$>YImo2Cp})!KlX$EU*T+TLN>O zr%z6SVmK|cFh&@PQs+q*=DfQ0HGiXJPdR#Po7YwU^`zC*`(Psdl9c&U*2v3mPK=z_ zLwR|6%dkRO#I1g_1!emAhU-T7l(^2q`+6SxU8Onhb|ESY`q_7I2aeba zd?K!$*%~MP1l4cPSY0A{yNFqqh0^om{G%n=ZMO)}i5FE0OQp_sFM0tv6(P}wKUY$Q z)a0(YBn$_c91YD&fs)T20Ef3nPqo)(t?!*}F1oz&Lr07?cQdcPdz#A@jeXuj3x~55 z&Q+gAE^Vo(Kb(8N9Pe8qZTY3YL8RmQPpjF;pnkVO}WdDoy(&Q#T4RgY9Qh z&O_VCwmw60{KIZRK|J4W-X}J2;XE#n9OYEq8RtD}!dfhP7jvKL*jV&U@Fxb=uJh&n zO&-Coe2~?7&z*m#HPIVr8?ej3 zSo=~8YD=`x9hVy;q_$g#{@Ux0Ic9f-7JL*CkL}A|Gb*$>eg?->EdAE7Tq?2F_Tkr@ z59maj5Bsn=@D6rs;r9h#w{OI;X$@SX#8tf-htcu~9);GVI;li5cTSFXI(auaU!fTJ z2Iqh~h(WL+Bf%tUv8K&hU3=YoaSbNaKj z0M!Zh3LR@-_y{JX4|1kt39?QR2YD`Dx~?2IoWxcmuq-d03&(Iu7kpKs-WXb$(@D}5 z(Bt{jalj;IQQ83i(4`qH|Y+{dLPSpnjBW9YYwQ zaS#d)kE3e^yUM`#phq=2ncAz}SKt3NUx0eBujhjak|4d|NXDx{9JmTtZhut z0d-4}i~wF*uql-)$|4GX(!0xCFc2e5(LJB&PA1nlBs$;ReRHBu&Ustuo{?hG3PRQ7 zZC#>!=^dAAv8i2=V+*+hEn>Q&_GzLCu2HiSV1x9a`wcd1t~Kf9=s@3Hl?Ae49QSk- z1K6M9Nfs|^*Oxbn*O4wRmhVy&ymhg=WtSf`ES`-Z)1m_F@~7GQm0L`>*{V&nCaQNj zuCT0aZp6$e>2_IRfu)t;WWI1%Jp-V0?y$$KKV`~^4L9p zVFct!1n<%Cy8)aiGcUQKF|!V8FLyrNt4t5G=QnOUCQ-(T^DRRqwP z=rjYvL8cWx=fmE2E2%kG3I+)2wJ((G_+8$R+DaUbQskt4C|x{JsHag4 z{4nPiya{Thu95V-NuI59zx9x<)*Y|NRr4(H$xFspdpW9}n~^NQF?vT-Fe^gN0pa1N zXP0d~Ud5Hn47$J1_u{H6#F!dWhDv^RQzBTsS+k%$)3LQ?R!5C?#)RC?%5P2!EP9`* z`V|MUvtMkh<}=EIY^xTla>KvC`(N(X&3rI-WcSPG58XdJE~46=s-#@=B4t(~pura# zYYt1!A?CAZb(brTt4|WZ0enIgt^HEF6O6SlyJwDi81BA(qM^xUeh5T_y_hSokys9qoRp!6fpL};IRATCN15#>EUpqMI8#r63VbWIklGkX? z>$noJ(fPuX7$HzVgpL6+%#AwRzx(z?!It(C*pbC@A*PdrKh%3-&YKF8MtQXPVC^WH!;ze9g>WlDEQ2x zeyRHYU7Ov4JotL^6NII$&tHT&aE#xT?#!D}kGfyKz>#Yae?{A6%kCp@E0J!-OuR7X z!xa&gdpLEDj!?ttbCv0y<_GlL^zR_MJfBpF1rO-i5Fl7fJn9ufGA(0b7%4ejq4AbH z>OlynD$0@;c-tJdA6WWkjy?hs(Zt6|>u99yBH}fi{x;S{t_*_p!gXphO7kox3(2-s z)s@a}Pi>(igl4agJfAeV@J^1M0{t`UOp(IMmuqG=6&-trYN)tI&pM zA=&p%s?gOPp%H$~cF;Rm#uxV{;$%qhubp0r342X$Q&z>JEkT63c?Zjvr^3QmNuDzC zhDZWAj$qf{XLQtatA<^5Xrfln1?luzfPYH^_UxB@B1_g8@{^b*P2$<@D)(LXT^u~c z6MvU*L|Iw*^U6UDvzHEmyud?VGsQK?zV)aGg^Utiz~|H!CZE8sE#6%4Tjfs|o~4d* z@kQY5v^_j@vo-hQ{9c@Ib6Q9EmSS8c+W2z_6sKbcaF0eD;@PZ?)p6^>smTMD6da7j zKOnVp`|Yks$ulphcCFGpk(CEdXR^LyEO`%qL%Nd`=0#X#<8708GygtYdFA?C&9GfX zK2S5q1d@fz3bILB!?es=ZOp-ymi+qN>$PEc*`(#Vf4_ zcsPBCb`!EQ6yo+ZjK7T*Yu)-eI@TOeKbpsuEP` z5Q+nhv)@ibbQ#!b(51K?O|j}J=Fq8gABnyeC$UMHSdw-l({e`n>l@yJd7-Zg)^bJK z`v@v%;3!pJr3L3hk^z}hUOc2sSN16lb)6`{4`1+NZJkh`_cvNHS3WA~F)$!bqS#lp z+6CuLzLSvR#a(XFNeAEA;Z!_2mL|(EvSj4@xmc-j-|B&4B(1`?us|9WT3QYJa8 zk)57dTA;$!mfi3=&SNWP-hV+vSmN<=W*HJ3^0l(wqEGyi|)I}3gD^wP=sZ_yH?w6M*jFIeQzzoDzK*8R9P;CKx9?KJB{1~_c3?ues&H4IL z6bGIfp0@qw>j+^x?*q@-A{APKZ8hC4;1MM1TWp<6>LMn{Ky5OJt%diAPL+Z{OFkZ@Rr9_&K`z&j*3btUF`3}I^V4ilP#-csw< zw)?gQ6}M%4HLBVdOt{gj#BqPbu;w`c$RiBBJa3TSNy>zQXm)x2)?f)99tSQF0} zeC>$OIx0Ea^I_r8%?M7{>#_B9Jsi(Ng`-ruhaKvdmAuIbb>VK=R$`P}w!vz*~p zIR3pbX%`g;E-V~2K6W?hZj!Tk#UpU?d3^=WkIWvLFMyy}+3`@?<&tx$e%~jksphV14L(N&E8YjEjLoq*ap1jbKl$GVh@CCa z!XICgS)h501VBmfm%r@#K$)Q*7!HCtG6vO)KY5`-duY<<(E< zPx;F(8B0s|CTziixvyh1qjJ!=bkwJ4n!m?F#@;xJUO&vJ6<3>2(BsfsQnGMgo2V$n zG$^-o&and}rkrcCn0TPs>;A|2Tv02FQ!Atg)gucHoKN0;h;-WJ((qTBW^b

eEZR zCQp{vJZ^zT1NsQAB4^h$)Rt;a4vETg)UJYu5ek;pkU~4wFx8Y^*EpYL)s+*|pURuX z()^U_U|@BHQOj1b{+9=j>e~etc5u=aJ`y5T^ety>jv*b7pypIH-g}I^TfN;abyvINlQIEyS zw#SBX0wuiImQ2OL3h_6rJdX72K(>T=gnLCNjVf(=b5Rc(JgnfeP-QmJ`Rr5 zs%`dy-ClyhU&O|<+uoC1dT?HOA1#H$!*YkcKHmcz24M3?ZKF-h^GQ~zmIip|Ye%AI zMJh_ToTqwWaACf=CNI`&X?gL&=v1S$$Ad;`ug=CY&)oZojb1rro?UOix1!_-vG{-` zSG|(LRZRMv+FQ=D)r{D+`FX7+uc?JlvzwlH!9hbEi@i$$fh*gR$MS;oyyhlmtQX5x zmq%4N2M6t+yRBUq8I$&0ULwI?!ll>xr;2(#mg}x^dMyoG7@&w z(!J*M%GOpHrB|n0XTv$yR+~v;YYPh_HF=z4DbjYwcG$!z@4otSS5vgwm!!(v0WYM< z8ft(@H#4a@D9DtaJ;GV3j9AI`b&^(iU(kE4ua|Y9_A)ZYsSDOr^KGr;a#t)Dp0t#T zM4HK%);6?WSPL6)KNWRE&ECY7M))hPR;oPhUGT)mg!(-zQYc2W*SbL$|S6Hv|drkC~EiaFzo4?YgLY4HWAdX(>Y0Tiz z7uQ@Qvd-CdlGd(9uO&U5s})OZTPp26(#tM5888yUAsC?Y5<7zYKC* zW}kO&<7vXxn6DCUw4Oo6d!6~7myb2>gl}dv?l@+{8F6@&HRWa4^5OnZ5)bv#Ggc+@ zuMm9%H@k%|nLBXIBWj$gF6hj9+IAuGyH1()n@Lr!HcD0&Huj<`3R+ecqc~TG;Jx4o z{IZo9(wy{;&)o`etys^siJA1_Qe)5bkaX_4iC8wTp0$b~PSU|8ZSBgJmpN19Wdhgw z4$s1B^ElV&EhX-0(&4PG*gM$a4De9S+R&U1frN>`C>f+EM*RD2k@eeJFrDxB#MbXg zNWkD{a8@P`rZ6lT2A4OpbimnxtEGVhP7Y^eeFX=TlA>F$$2nS(Aj41&+e$rFY$*MX znrZJ^v#4bInqHB77yTJ014S`@h9l7$d#hL*csQkkODZqd+>MV^kd5vp?qg62*z^42 zzI`zUOiyyqZ|95oE%X%yzL}ZKlobuSZd!|F6Z}Jq#D6CfA&U49=nO(Iyb{?;?WUW_ zd3>{_<#J4P{1NvxYsQ+>bgxWhiau7t^q*gP-}I#1qDJA3`8Az!?)zIbcbn$j(0t@5 z5GQW>HHCX8UaO^ubGqLMR-pJ0( z#=+VSh7bkyoQJ{H91R`FwLo>D=-_7!@SvQ3ssfaA;)Jy`ObaH25J6yILMSu>hQMG% zU10)azzhHL7!4#B)B9{bYazp5$MnXdW zcaguaflTYax7pIb#2$vlP@49St%t#7?2T}s!>~v!3=T0I`XPiwVL+P=Y);|KOiUf1 z-nqDug~3ld7+9Ja$yk|K;sCvHH3uAC6UrzXIFnlj8ip2uhT2B6pmsvd(t=?`ME*Mx z-G8+l6ha&(3i?+RbiX)C9EL$*=&*oTF>w(XQVb14VMWLZ4d{ga4n2>;AShRq81(!< zCAy8jqrkIJg38!PXcUk;5r_feq9B2Su;MT=G4LCOgrPy@Vo*XOVMr{R4kQ=`je()j zpb!iSCMF7=6$b=}fIM`C{*D3(fq;pD_n|Ve;#hE{+=H&<#-POLpesZK)F>!nfZ##z zqCvwcWq@Zvz2rPf6fi=ZoX}!e@)auv=mqyN2qb7ArCw1`FB%CLgN5D`g`vS!954&I zk`oeo4nt-FbcO0CcN)Y%Km%Yb9aJY8yhCQn2651pEI&|9qR1waAUD*=k9J=4-|gqg zfC?ta&abJP?#4vh;hCbIto|7i@knY}#w2DT=b3w;TKG_Mq zA<{6~@OgE+p*zhUPdU zU=zO^FL`S_JTQ^p%@UAPAyF{O5n@(FF+EFgDRn9F@pW5@# ztdwfV%bv0wJ9(}0`MM>w*|$XsSfMIqx5R80ys2aBJsl=OudQ${@Zs=dgVxe-)B!Vz z=cmRPLt=(g`fd(w+I-@G@gGS0Q7qO;Lx}<-^KYy`pT}BJBeoB%(0RbFS#^zdz)sy; zF5B_6V-J{Cw443_C33gm&%{8@P(|eYNe)^Iaq7Z=Omn*5qm(i$td9 zp-re?pHFx>@MOUD&2{O@ge3Z!h1|^a!Po3T92fU;$H|o=t6qIM5Y{l7VXWmDW>y~L zd?WhE2cepaH0N2n#Yb+>#kmM&ZSgOO47*Lou6b*pr_977g#eFPX7!7(rV+N&HiTQ} z?p<^8?mV>}>n7-=$~leVN9_L6$$F9~LuGB5?-mAFZB6x1o(=%VZ zzpkZEyZ~RFm#>pAal2d2P6sox?iml94iRQnX+3?%sc<)qvZCK{^sCoMSI31|!K| z3^%xIrFj6gD^S$;6qoO_s3#57GP?+A@&OpTJxdAjAcvb80m+DAdm+4Dqq4ZgyWxu| zlLH|fI<~@m`{5~U(=!;V{i}&3KtA8{3QeD3)s?F*+ zrnRrP*uQ^?kWL~kEK}*}Yx)0yhkt+rNT6{4m4|3mECUtS_Tjm`tH*f=aA%cx{`%Fj zdP0*XM}_vyoDiUN$LW4F-@@9fRZtK61AibVe8VpM8CaZ9 zR#p88SU}AC4k&;E{Q*!=T;U%81#rp#04QMVfa15Je|4q*sIehu{hxsZ-48$l2|?Wd zGavyBKHL>&XAOf}TLIYPa24bnOzm(WZ*1*oM}`-4-{A%JR|C2Mp8peg@f!yKbIGs* zh5V0r@&5!?h$4UR2M|#E{s&h453Ja5y(zfhpI`-$pZ{K10i0+EaQxR`1wc%|Q~$q! z70B<90)iI*e_;jspJ9bKfO-(z`~gxx`3*R+as6+D6=dbQVLr&ZkqjR|1PRidpufn< zpQ1aFGb=}X z7#XzugtY)+8{DH9-*W~gAeIGJGP^>KXi=IA1;(r$LBNRIfc0<>2qgXevMdPdLh(C( zU>9vHtsN}Q3}H?vVFU=S3BpVr9Bk~5!r}Pue-pO0GZCPJgGk#IMd*5NBQNBB1Mp*2qXf4c9a+zaarI8emUFWjOjq^K!grN3D*CC zAPX8mQe)Wndr*82`UkV3+(RJ2C#wfhfeU_mChc^Xokn;`irJASm$D zbI=bA=wj&K1}z|q0)YCbdk7>F3!eDt9{7P20m2LY+jti|Coc9I%_wov-{?a@p#7J3 zQ79-X`g3`rSP|gD{Cp3Ig&eD&@1aCMfZ~^XVj{oOhY|n14vZ+~w>rc{KqTgu@ui=yM@J*gs3_rCyGFOE6@ literal 129104 zcmZU52|U#67x%rTB1N=VvL;EgC2N+_q6kIyosfNttTPd*i0s*~E6F@ zc=)1P)*ddN?p9zv(D=do)vX`eStz@BgExwS|1L|3iOBFsT$U7(0*@EH4kiZf_TZ6) zhj-1{*#&$Phc5kJVL(4qrFYlb+4k`x9&ySWZ`nD5`SOU~as)!SVQuB|&>9-H$76SE z3#Y^0DdBZ@dM~O)XGuru)SleR36OZWe=3E;_3w~}Q6VM!^bfol$xfT|}*+kp{b4IAoL3 zuJtx?cl-G6`YH*H+|koVUfIzxTsw`|+$C*ji;z$S4I$|C9TajKzq^HL*w)1FP9yWZ zc6U%RJC=pJEi2OB1kca8j3T#Dt7aaiB_%tE@|~@1>rLd&{pjd6v&g*r-8eHakS!wk ze|$$4AGW)-y1TXB+^};}dt1#S{_D=m>aBrzhm^eMhg|qu z`YdvdRQ=I>USxv}@!J{XLw_pAWMjt!on@%1acj>CS zEKTyMBPUM zwTQIicsPbJ!;`kzd~NA&?fa{nGQEvP)~XgI3gsOt`_QJHgaCT>_#0R?Rdd@4@%d_dFnX3LGkSz0c&Z31_WXsZhW_rYqj5<+Uc^9{u_2hd-eQ75WwBPBmBc znJ<1Z(2*y;&=3bIlQ598!M_z=>RXueR46j#jHAWNmu*$pK;vl(?71zlI>uN2-I~el z{W2f$m-{0n50mzbVn1lTF22dV%&j<>CNYg;FV60a+R@z_R;@Q|*EK>A{_^4&&W_e< zkVf$qny5)ugNOaRFW)Y1bxR4GpSJpo!!Nv`{jG%atu#07XE|D>+?TU#M@4W&xerf? zr_+u-(diZ#phR07mv-B*j^fyfgQuiE+gqEbp;cR}@UnK}^-r3=QP5dj|O@p#VS2^CBEfsqudBk*8 z%{3bTW|AL_YHNcG6Z1D8H@`(GHNtc!SPwrXLV4Yq+{3q$Nya{gN1f*InrT+~3Z~Vc zi?`+2Uq}yZ;lPS}z?hX%2H6PiR(bv>=cZjVr zEHEek)me6ND>@q!o#U@OUkRW8ZqSyca(BVu3-kK*VpZu*J{bk% zuOIjzwHq=ZgX4J`zfifmp+^~~D-L;Ng*wrOq`OVi;Rtte&%K;HjKZ;LXt2^f0q^`q z2WRBUAG!aeLrSc$jf7R|cY4zAMp$jKS$)=LoHj!jBEXZdc{^ z7mD1p5s+ofoi5>)p0+g}i1BdvS+~t$9XwpP9?mh0elT2HE%U|7*k|F>F^01PUXea6 zD>0Bs%-0wY{b@VOCe3O)y}nTXOS!vR32!kufXX;j7sC zzQja~1!iussqrMXTuDxg?-SW+SR4{mMpwzb2*X#&raXIt;R*KopATIYN!bA5?z2u;_h8=%VlbZ@#JgqN~82 zyE`3u6MM?{E|Y`B=-|~^J>mr4YDJi}vF|Oj-PDJhkY_bIPv~m>NR@}$@v#I{IeEw0 z8sG*q+hg3O4Fn$P#3BDImXgAKd|Z#QR!XApSu=S*->N^o#MD{UU*>uKUN6&mBn~Y= zs1c~-7#7u|C*5ag?cCRTUC(;%#?o(QY}(9PR*OpLjq_MlZHGu4p)D-?d)wywQsK~* zYFyI6h$|F_sntxnaBR*tWx(S#W4C~$bIHyLEjzI-nk%Pn>#$4NpNTUc3ChuGZu^rb zpl{$x{CmW*+`z)2en|Jy4k_Qsn%<||<50@r`FyEWixcjT8dg#Sf7EPqwXJ(RZH0X< zUwHjX{-HAS4@I=b_9&)l8nrvJ1bf22Bme<6{EdG#-xLfVVFxd3G&0Uc(UHPOra!H9 zUP!zdeil0txN97&Kzm627k{YVodA)gOE6r@w}@94!D=XYFB%SZ$ft)DgcEm6J(ZC< z+l~V)08>GGai~)iay4mLgJ%SG0ifb`xcbdz+7gBnV@7lenP3;Lr}(^YC{AkMRM|K6 z1)-j3Oh4FMwPe2i#Y{(u_yX~NIkSEkDO9`J82h^VG%o3o)D(#+o)Qe6x(~JFK_x_n$O{IC67=GselVZvM=z30bWvJOljcTVpswHL6zSv!Jj_)DSDOC0@E zN0Rv^t4dqkxlq<-9qjNT&Tsw>nuym_wScbg|MlrxW!iWw?(;E(2t}R>j?8JlzGYH+w3G8~vHPktO31cZ&S@A~Hu}Ak(1pxp*0iVG z(qw778`}I+=w_}Nc0&_qk{7Ze$1#;dmVWI zX>*OQ-ne8~KdnLqa%O&(X%oG(dAhoyy5gH;ii={MX;sDam-sDD*OTa}p%0T){s)1fimM;WZp-^3cMErEt&Jb~M(}EU-vYuyX$LLs$X-t%qc7mX zs#d;>UuHen_QTgT)*3kO=P`=`NF`4$n+6)QJZnZVNm=qMqS4XxcQu}=X}(lQ5mh$u z=bWlbfA!tsk%F@5G*`Ljxe;IS>i)9+C7;sC%Fn>qr~AH5w!T^96nM{$$$OhXx))O+ zAtGr>)9KSgG)2C-zDZPRGAQO~i#ya6I+nYXsPZ`MKlhq4koo>Z@{xybF9(9ntsAor zsOjm5`Vb^>J?F)o{lxTqX1%6wY2}4}G&qDp&+g*3BtG*>|wHn(9paH(;nu{3;p+ z0`_-bFtx}<ei@DwwyKX*A`aii`Tk(7XhaWI2cP)) zE5;+Mv9CCDyf0D3^Chg>Uqu1b^x0r7t;-%uvRE`Ne461YR8aZ%GtHvdPtm?2dgcGr zSG7pZ+Po5Xc1X+UJhRYk?L7E*r~1)g)hhui?!xN{zTkVVrpNy1^XS-}CCniXgsJimRhZ}Y(<(aj(%}v^cJ|%6Q`$KLu`tsv zP7Y%P+ql+ae+(GZL>AU1c7ne*R+}6-Qgk8u(R|>j_So0F8^3Zcm@IjECt9eo!|)+3 zKCAiNl(F~B`hJp(OTh(XU7<(e<^hkV=>=%?(H{h>3piV&m=N_2iTiT(kDtrpu1aG2 zqE#cxyTDtA5M>o?7oR)PzgO)E#WZ|zpCx4o3<=H1*5=+i6NT+s)05blS-&=^_tLZ1 zbUwTPFC`;n5C-_1|Wzz(%|4-#%F|A>v#93 zsJr_X@zx~BG!{;a%>hZ}&44^ssH?rvT(_Zg|uvJrY^z8TnTwu@F>|yg7?_UqTDl}FtI$fGGfpR@jkz9+_kRxi*Ij#db#UG zeto&eI&r=7=_2Cuz7gZI{Xe3MX^gHP#0qhkePocg4fYK5__h@OAX-!d|EsFW_fvI& z&+`jiEV%M3$wkbrgtKlH#q=yG)%~ z+0#28YYI@D+QOu?`(XbXX(aQGXlH$DD$Xo%onhjnfWl?fq1Ar&Lfn_b%`7WozTc0W z!NyOqec;#^>D%COTji3oJ;1y5-ep7~&GW$L$zP9~4zuOL9C}ce;+EARn0{!=p=MFK zcYktC-sg<%ZpmQ3I3c_IqY)iYkc19JmvcrIlx3%rL3Bs^Z7WAWCz458(XPA4AwshU zCm>*oJ!V;_$Wt~wgh-W)TYu}!F>>l|9D5^rgyU;{cE$cPSvMvg*mu%R(GV`I=R2S! zbqj(X<|{g!1JPj7pNB;c&to43nqv25=C!FUlnXYbPsdDC>|}ao8?GYS%8n^HA`glI zL<2YjCG($C7ObEc-BV%-=w}rJp!DNE&%PzC>Yb#s!5kY4C{9{c{FcGmN`ypS~VqncL+n#kUE*j5dvlY~yqgmxHC7dzAYfPz5y zXY{3?e1Y-(S?-!mFS>G$w`-oXhDJjC|0cUx2-f{-Yv)ojs*G;Ft$!G1?9BXk7!nS5 zvORef_*LiTrAQE_+_6PnN>9}ppqDptPL6x(4ii-lN}NqLN6n4xT#r8Y>mNw!8I*Su zmBV(%_{o?ZLo9jb4|LXz@gU1k$ZK1yo{>#yz7fq@^!|!p^$SMJ9;!j znQm-gDRDnK@!k7_Y{KGJaESh$5!0?NX7&%JXyRArPiFan_(_kROlZIK(WYS#AEmw= z&%ZdSG6752;$wx{0}$>&0$y1$;a}0!6GJr^%S?(*$3-wbf_$J>LvQ^U0OOXL$h;xUGjU zg?Hc3w^uVP#`{Fmjps3#Hg4p3|ZQvNlg=Q`XYAIpJ9J{Cv#IiE)T2N z0}+q1@rKe?ZDjr@YOD731s6*;>8?Pgc%4gOtf~O^Zb>)GRdk7t+7K{kkt=`;+|3WM zq@`e$Uos6>lfLv+*#+LUxbOddOi^j^FqsGmQCX;p2DUinEh@dixeeo zq({-p@)Uv$6*2dApRgKroQ9WfQ&JfR8}Jo;b`jw>qF}qbvH5LjQl!}F@We&{G7$=| zP{gED=G`)SX-vxU4Ht^MJNe`Mx?XS$<5=5lhG=z9<#YK8<=S!$2tjWvk!$#&fGY5Ra+TPVZc#CJ6%nv*hOlPELE;X2Rf{;RooKnx@lZ+t20tUr?8zKrkCZ$ zV}|>NWkdWq&k$rP(iMVhcI41}_md%rn8t`kX5dz2AFTl|4=g8({NS5g&Bl~@3YKp+ zo}7jqGi_S)ddDdcg+p}8S#I7|^^1+~4_ptqIpIE*nfe9J+%VP77@y0(kU~y`G#VWd zchThqJT|I895e@A6qMBF4KA#4HiB$pyNY}@W2QF0j#xrjy;x(sLC!<0ct zRP;QWr*MKZ#!~qG)A0u+vZk9cfm&D0-mjHO>@1X3Ypk|AsElq7-yF>Zp+saKv8qyT z@~@|`#aff+#(d}C5eKX;!|jPrw>UrCR_xl|77H+MChI>r4?!NXlyehW#;6|S9ypyB zj|t88oZvPTLi@r_rFNBL;_2W7MBAz?=o2q;Qr+{nk|S>gD0BAsCD`bXC0oGTii0^P z9SQQ#V~$HM+;Qk%Ho! z_7iRD{-FqMWO%}Pke(tMD+8%-!Ekh?F&L8SX0$&?wYhh|`XaW^!_-)*A-jm7RjV`S zhrkWMb*D&tqKkl3P&IO*y7J?dmWP1meb;tjwnDc>^em9Qi24D31F0$S(GB^}b zkniHM9zKz_q*zZMtkL=LfX3p^KmT3`HrL)4rFCWz@8uGHR{yp#etK&~^@`a}b;Jk4 zT|ndIr+ywiK^eCH^F(4BS|$&tAScse`Gv;x&{M3(HO(XEuoVXZd|c47Nj$AUp+b`s zD~*JxgZCQSUq>1ISwd+`&+Hv?=xiYrLXC%1c|nRRZq@L&`LvEu=9Gii%8yPsFR{K* zu~T(U6}bU#Fn{&l2h!D)O`G7_{hFLr1QBoFl!*uyR<2Q-t*x1}Ta=5`a`>F7pB+@k z&GrKd5Dt>%GE-{Ep(|L@0!*6F21r{jS9-Pb-TDr=ui@1sca%Pvk`7T>EdO!T4a%9q zN#hrb4^v31xyLtzX7&7^56`|QGth@4XYe!u^JKKKNunLw9qfIKK+x}!ZNpDJ`5D8_ za|zJ9K@#-UZ^UKobvEF!gyfSV#b-sx!8%A!R}T;r_<>&s%JK7lZR`mk@v5cp^2pD` zRwK=fv1)*Lm@Dx7LAhLj=)i~WyxKU4a$Bzd%>oHNM1^ReHaZR2&{ezz_C0yt)?GI* zssJ;TC?JOFmuK>SM{Ev;=LM45F+NB7xD`YCtD#8jR zWntW(EoMIkrUd(1_Dy)?fM#%Zb6kd5lR!1D0}KY|rTC8t^6$gwH{XzMd`|-a)g+r+ zb8j(!<85B1wJm0670RC{Oznq`@=}y2s#lNspES4W-;xP~kSlaVBJy1H7%5BpT}jmZ z9-=MP*E~fBFiY);Zhe%LP%~~g1$De*F+Y?tVs=4*`zRwWVt6BkfOq{A-y1>%=q+f}#hjo?gF49C9!G?$5uZc^pmj-lEcHCE6 zpG9{?YhSbXAkK04wYqtNYV|r)I-C+H3A@^I)}}oxf*Vr>*<0AtmtRq*j`6l)^W8li zFC`6Aq<{`>FXucj_>KaS8?kb77n3P&YYKnW{|^;0XO~}B2SpF?b8DrpI#K6t8h`%A zvP3-!SIQl@9W~r=8&SV#SE)ov38bN)BvaeE=tF7-zHG+79?l5y|^(@)wIEw#UWlzD#-aR|CQ%80o- zGHgr^``A?7`cy0!cw2CNqHHBOqsb=DT*Y1AIS_kk0GB25jGPncu$}i{p(Z;?u1LHx zdH(^f6W4croTAY|39){`zdNCvIIz>t-{7gXxi+2Az=|4#hRRX%#i*R>BtI#I}Rl-x3mbbEx7c%D0SDeSqei zyw2XT8hf=rqPR)Sy3c1H_;PN9CvG>jDdOKkOF0HKB?suRA1&zCo%E*FLu7z|5nO)fOg`}!fu@T?n8Qx}Na$ z>)vB(r;`?*%TOk&(AM*MopL=(>*h#~Hj^;2q?``O(?fqq(5|*V{YV4`v zccq5e4t+{;AS(f#CCw`^6nphuEUmG_7RT$uRDT)2;oNkLtZ6j!8K17?$&fuQbL0yG zzPKu<@j(uge?M^?cv13xTIhFVPEoC};OY_7 zacOu#yx6=QgSM#m z#Zu3=aw%7=$s1IzSWS}O|NhqZhMNWSV5$xA8E49;#1kDDZlyy(m#BF*7rWq>R1M@qZ)PI_=*}UomDep* z8sOzLD(Q(T<)$OJp5 zvD4k$uo0c|nE8v?P6?$)@fXFAGEZjZ5l*NrzI^fUb6^W~%_=EPh{=JViJZ*ET-Hva z0#yV;sa}OT0PY-w^ZFYq@WM>K@{~ZrTue};@#bhZH_an+q;;8Kw_Ta`m89v~eJ;f{T0W27OIF z>yQ`WaO5Okws%11ZAz5&3RU35O~IQ#zxww_OA$le$#+czIN`J(iGhj38y1D^ZQqc2 zqR{R_T5WiX`DxLz$LI_iOHgDQjh3<9OE;jMdWtCEE^@*;bz!-u7UH_08bZw9H->>2 zQ{^JfMud>Btim6;15GY7a|m(tp_bm&l9H6EgxEs8hQ6u_RYRk0u>r;!_HnlQ*`@#C zZKA~7F{dN-Bt4Mpx!h$#jWj_BgT7c(6HL?PR_#^P;GfW$NwGSmQEF&6hHdL?_-ah+O>zzUUD`7 zNUz?z@T1W+X_z@@Nwb)foeU_Q)$6UwlfAgf(%w(-)6oGFfGT0lQWVW}bew}ynSmy# zZ4XDF^@TxYPpqe1%ch79XD95q-dLUs_9V~Uw(D3 zrVWc*G26^9j|pTD$76ke{ywc=fj%1LxE50fRzwe)f8h40Fv^tvqqLsRdbA&um-xH+{rKyZJN!d^Rm1#yWm&976y(B` z%0DJ0l065qc3$Hu)tF#V&LDDyc{!q=tPv%q<4zl7nDY333pf~Zpp8HqJ^)p2WM`7s&_%f`BIYTIHP6X0}61Gb%Cilz@ec3I7P=C(uMiSI)?wU zR$HeMN=<%M_>Z^eO~JLkqcW)N+f^=;C*9i=dMv&-$h3KlH|8m`QA!zSHl+-K`j|{D zdiecz$$V#`5Dh>lKPmn6fE0|u0K!P{8n1_@0F~G`s&%f;)lg;^<=?xxVv-6{l`_Y*=|bClQwhk-TPMO?byOxzu~^LF#lj5d4Q%`wPQ_I@OB=13#l~{Pf&W7=Eu5 zp3KjsRH3_c!Z+{76flN%=^ObLRMNnI@KhHiAY5Pg=w+B=Ha-uy4FF3w4n$hSmvvZE z1c9PMAZB|e$;Ry#{a#GuUvP5!W=!$;UUVhumimtXWOK8&lX6U? zgWv)iz*3g?Y%ZRlW)#L$Q!S|LFs7ZG^)D!V?ZskNI?c4@2??dp#vev`M#$~)Dk>;G zC~6_AfUWxKk1~o1fQFGLJ7r9t&{ambMWfA7WI-aX?S%)%V@r3}hxVS|cM3ywmRm5g z7EF@dM3Oc*`ywB@BMUBTWwNN$zQ*C>B z%x#KUxUG1r8;}Tda*^pHYDm27@*@ZozT5fQxvhMasjAc$W9+~59&D_$!(;z%9_(+V*xT4 z@8(lf!+xEk1k1{It^Z9Sr*rsxlw5*FTPRf_sPg`@y>-C-vN!_cnsn*<^8eVpWhSax zPi4kJye}LZBh!AhjQtB?tmqAuu%91WuTybldb+Y2ES?Ztvo3DOv?tXEs_g%1S19Xsa#M~jQp3WuGX6Z()qQsW znI1T}6RjH+ZJ_eg6Xnm{eoSWUIVk4Y;eup1#>z5po|F+yi8SD^7rbpwx?VuFro7;ZhFzajQVqk=~=A(D*2G#iz`7oYO)64;GsvK-m*j4TY zMPLBo{i;}6eo`-K6_nzp>ET+_#8+8M4*`;2m@{sUD3)V^DQ?-HA=AoDJfE2aPhnb$ zO7t?xw;S*A#Qx8{e+c}$C)%8;D)vO!6_rUX?X5+;KN5YDGXJ2;^7ZQZoe^c#GiwE2Kc-QvYJ3JP#qo(w`4G$fe9236)vt7l)EP++21|~VF9i6^&#u= z&#;HAb~D}VP2u~@_9TqVLZFVC{u!7k#H|(Vv~H$goW%CZL-PxI_d@kf+37vAGd_&Z z%zGBra%$Jh_Ov5`M+eAHr}_N3FEdtYo-J)Eb)uiPYu^55}~TH&B! z#?gmDrK~TMtfUGDM4VJawEd8a93NIg9>&Wnq@ZhD$@N^K4&#Z17`|C@5Qk7mLbZC< z@!a2p!0;yNQQGw|4`4N61k-+B`z;I%CHqJxhgGOsRm=82&Lqhwd~d7nZfQ*4hHe0U zOPoZt-e6RoIfPtCm1Dq_3I*+nv0kWlS~{{c_Z zCe?Fqk{?&Hb2LD{6k=@G)}N|Dc_Y}PU>z#KcJz5iljUOmwmefA(}gXhgkOzS}Jm`vOZ#h2#iKeFYw@f>AmQCCt%Qu^Yp^( z%_!?V>)vO{R00%ZQz8JIXZ&|~yyMC}dk0K` zCIfAI*u|o(Q%7#Wn2kNNmy(OdHE#~555_i9kyXRM7t_i%u!f+_P-(pWWc%hh3jn>z z_F2C5KK02_TU&}-d$SvNP%r&XHX%x@o_A}g5JA-1xU$xPIwNGk8KUR$D-gYJu#Gdh zy{B4Z%76Y-EwrxTOIZE`7%m%%YB6nntkLeO{Br5)D28X^^WyfU0O50Qb-lLwmmJg` zu!*Iso?NsrexcuZsl8?0z=+VYR(j zuY7To=1O$4J3R;S>6n#|?#^u<_9(LlHXu z3rEHuWj1O{j-Az>`S5!!>$GP+;*MhEn-rj+w%+{1?Z7G^x`wR>g0WdL>ThGXdQ4|wjG27 zCIygvggG~d=;s*D8YpL_HtVAB92z^hGoFBFErQana9$#|34iOp+x1wu5liE zSTgKj%=*V~Rt6BQXU$Zk_Dihx=MvU(3YJ&2lr^O)FQQwVdJ0G>QZ{YsT^3bJWeM^l zZQWJcKcOrXxAn3XEG;FiM+BC7`#q$j4Fwvo`NbK=Syqz4{jS^-ZfauO-`m)4_TF(S zJ@B4u1Tau!xZPx?o5|FB<@!;08O9h-!FUisZo0+`K7=a-|xqsbf zGqPs_S!om&jla1wOf@i~btFZ~WG$2JsCH1%!|6Yh#aZ0{5Oy@*uOFshOI-6ev-5NQ z+vw&!BlOxUP0E98gEaALya~m?+LD9$H02l2bK&(_W$SI16^3N6;-Fq!K{fkn7+zC| zwTI2V)nMOySR2q`x2!2+qBXtl0EwCWoCQon(YYQUj|?dL(1&=P@(qT1pweY7;QEEV zCyB>0g~3nSTrcXOTH7tsy~RBXs|k*jAlvK}yuV!+6)~>KkE>TwHh`i$YTG;F=w3uY zOmgyMC#PPJJEO8Hfb=5ole6h_A07X(qTA75T64%47~YXJtBW6Wo(-t%iod?efmys> z?Hwte1$u{nk;_CC6-8DO6OLE?qpaAeEsC;CnpQW=IDDxTH z_IZ8DJ#S-?MTHx8DCKCOd^Boi+w|jSCr!gt$M0laNzF9_=>`dBvEI(+_=FFk;1Gw> zbQdPyo*nT*ha;ecwyXMg^|oY-cuYr}O89l*#qGXc&WeQi56|6l8YeSKbG`p%3OEBg zvCik*_q;R2CeUhZRQ}A>Pqw1~RAC(g9nnXVfFteS@3$Yc*M6@18{79x;`q4|Lu1G7 zgs{{_l(0tORc=H-|eFvSmZoXUTZo@{!!e>)AERvho^gIgh z{*>qU{qZ)|Hv%Q_paPsL@CGI7c@cqd4?bAH9Ib2gn&7z#o=>~nbUU1DYC||5v_%K~>80mw$2}-;^JM2#pMV{Z@VlQe1 z)n^X=3{6gvtVjr{QMy=dN6k}0LQ#?bazTI0oohpE{^P-xK$=*?`kqaoH;S-KlMs=2 z7*FpNjjOLn&md_L<|N!7aic@4=BGUos|816gd#`z(kolXyI8904zZB#i74nRfud!! z{J-Q{V@i8rCCPv0=e4T3TE$HjGS@|J8cX$cZ4kvjOhfzjtTjI)9>>LTHZvrF}y!F`V#WYg%`=}f24 zXy3gN?oo?t+8D?C;DnK7W(UgTm3<-;7^c9e=FJEeru0%Hlv__EWQ^FcqR zjD$w}t|X`V$&Fs-in3*6tI>Y*+>|4mlObt~DzcW*mBl;8g*vp=br)V8M}n$3(G#CS z4tOee$WPXivjFc@2l7y9=CmqC?e?A+ ztB`-aH>&V@E@$Wpmh`@vg@EL(lzZM0m)*Ma(ec!7(>m=+t>xcJM(rONYF+MV{x)_# zrI*CW=&-9)=*L(&x)S~vLElCW!g^I2ZiryZ(ul7uNu4*HF`}pB!08q-H0R>pp6$*& zM=m=wNd4CgL}`Abt|`-1#nU8kgw1r0!?+lRcP?*xn7!N83>-;*t5W>U~ujyxLa#A{bHemsDCF5@_$ZgVF%$@yq zlAhIYmDt`yADM=(c5u(Jb8s2Y1E=^f%vmY8%sh36Pj?B*_BX}sgWAc(K9$@$!?eGn zs_(PGskTk}rYnx<4ns_OW>3hi2?ukACiT~>UQl)}nq4OW^sUUi`1zOGQKL;@eM{Z@ zkCis^P9trA)%y*v#e z*WKtA4{Fa@HQT0V+-`cUhv}`9O4`bkMM~=LKGBG%nCURg9Lu?~ z^Qb{83Ktid+-{0aXOM+cLGKOv0M`3?9}8KPUAIwkebXrdLKZLtbD*$vph_H?Qk*U4 z#PS={uDV{5=rGh_Tj|Lq>ulO4XFY#TkE;Wdp;zS*HInAJ!M^lfqXXgv;o}9S?L5l9 zo65hAZ%+j`;dBrm*J*v6Frd-3!WmA9kiskPtyrC<61&Jl!E5!=sCs`kM8#Jee zjVjtOk-&F~Kz z(}!08N1Q(RTfS0l`lGC4JNF!>`iGn~gESha7Esg3oi2^>QVCL(3w%rgb>HL20E5JA`Oi z-?3PE9C5-_Pv)qIf&&`~a}v9bnf*Y5rsG%W=1iUr;t!z`F>`;L+T^CT&SpzW=^1Ze zZ~|S)IJ@2+tX$FgA5)!tYt<98K=Lao+!_&IAx_4C3=2VFecd1@IC}|w$jmv+I15Cx zkhS~*nv-fchBP{WwRHZ#I{rkr=lq~x#XGQjg%}H&iVo(mm5fj3BvKBAGBOACB+F&@ z)IOjBzO9>pN`QUO2l)`vS8&n{HP^Bx)zC*Vb?E_pwj+audIrLBg9dGQY2H^^*C$s4 z(EzJOwd+7VuRk#7{mxF&7(F9#=;sWHvfn@07>`Y?H2dWqL@VCd#~bl)+udT*z^6S{ zBI1E`@yu`Mi`+kde0gIzKvVd@!TGM3)b-reevWgj4}SBsSEkF+4l)~CPlVqpP_6mB zBa^|apN1<-QdUqSAW5|aZpOHipv8i{$ct!d6ge={$5*JGl8kl3ooQbwjfl*SeT*o; zOo0+}(VX}zEY)*44kjEuRKbDr8!dFXF#|Y9%)#?{k2_2d6}f@T8~`bbUEpxCZlg8> zBsiRG+pj&(_fWWK5w$TxUqGYOkhVd>x2fU zxY^d4`^SYk5$Y-3eM9*ta%f7Omi$J7Mjlr8SYVP`E6C>zbT${RBeufT&_00$-R||r zCu+9_to)SZ!0`$Q^*0k0T@L3t*Hi2vRLkn1d{TkL-InlMwv+Q%|8aOblW;Gt1 z$Ap=xU%M?_=y5Ctu9eirdw{ZKAx%1*?FTby({4qj9|yJ^O)%Vw(Vq8w6~mp}vZCaL zU9-$|lC1!JQI-w&xv2Q4%@h_cHxLTa1IR?9@E zro8nF;>LWnz?P)`Yfd`2>+3bZZG(D?8!`Hy=hRp#693ZWlvSvpS5?0Rmq2{>4wwp8 zx?I$bm>(Zt2zRt=LA-GTe2vbjl3sAcnkw{=mNeGc_PHlTzuKVkW%>>~-i$c_?v` zBb-{eR1t9!DsNoMZ)hRT{Tc_yG=8biX2!#fG8ZBz_-YjoGC(^NZscf-ag*AyH!WWO z6rb=G2NvHBCF&an&R}d`sY|Hc^8=-Y0dAl+sx!t&X8esX*c{+wiSj%;g%w)`N+mdE ztPpBcfxF_+w(@L9Z>@kj34+lKbV}ls?2~7os&c>yBI}d=%3Y^{1U>4N@&2UFO30_6 zeK;j7W#Qe{sMam7X{_@6=v)IQI)5eyiPleA{&jJWo^*hMq&G5To^@z~} z;@~)rGNR7H_)Yge;$>+WgFlvR;BuBlpU_X6+eL=GRbToW%K2X5MxyJ7q`ZoWk6HXpcwS+|XjtJQIDiMug>|Nd5CEuiicIqZjJsZ1+PC#n$2NoadbW}b*Yr$yg!T>?OWd~zZgmHl4p0_R#bBYbjnUYOh2Ieh75{KsDfI+C&d zjnR0xBHY)p#N?im43Jv(d*fb~hye0QkLCDOPfKd2oky=H)JH&?kb#UTaIT#(Sh;J- zyR}M+>{|66QC6Fa)dL?3Z&{^qYZq57(;{92M>5BRB_|$r0le+D9_5neu>H+cTS0U? z13GkIs!Rxn-u?x`e%CDv1ub&(Dp+|&=XQpsxw*)p)8gPbAuBZ*f&1+#e^_-=Vvb!D zUh87sVJ2-ChnQT`Y4}b)oyR2Ohgk>cy9u#PA^0A#s^{9R;?hz8`iQL!TdLPnkza=S zb+D;0Xw+{|{mB9?$gq{{eSCsiZ@TV z2r>JVq>@yUa*Pggj^%ty=6=H&AVOh^I>iS#@H4z+k`Z_gzu4K7mpc0xe|*r0FX)`q~mea@OHxuB_}s2_EXw37z*95jTVv1IJq6Yc$C9N(-Sp z=}6IfNH047UCJ8jHbYu9CUg4FeBrl1o&Gyr{*QilkC!V16`_*`#YO6<%Jg#_Q+x&I(9miH) z^2~;dH+SA*%DD*@BgWi1nqu~AN$kGYRx%S}|AeQ1C{m3eWR&&2^M3ea z>yooz@#Tw2rBV<0;>K}Ji*&ap{*0}5Y){S->uri#dJDwpA}zDHQkh%GOA6NNGhk+s zub3|FdIb5#7q*0Z$yCSKT2B=dAMI>l6ROwV?DXz`We0er5(9E;>ayxY|If;dA^>)-f*tBw*8tswJadVzy|!;>!~J)$Z+%X_ymGdelC*7Ex`Y@fY&Hm>E z>Kt}yM%Q;h;opg^ORy}vR%f{F)8()~h&$&lz=&7lxzhAfkse4YMW4sh+$yd&3G~A= z9J`7BC=0xYQ{TIRXQKXai6Az|rQNpo>G#d~$Amj4nC#_XY4>*Lis>A?P zzE6dZjTNO(@XmT0iWD-BHKh1^X+F{#F1p|$D$(Yr2y^K@=u)3XSwwUE_2jfGsLXjpGJtCnhf>BcUkWGAphO-LTQ%RRAKPTTIbfXV-nZ)$&Ebtz1z(= zHNm}E7`2nNxb13#2>eA_pYM>hqrn~4pX&kF*?anY(eZPK0vj$B&sSl)>hc*sQWrn4 z8p$QU);gKrGmi%+G?t&n zQ>F-fgnRL3+-=^)mFEb$n_D8FOKuS+SBwsx4iG6uw0kV$IF?ooBSrf3^-S|tWW>TI zIAot@aKhMxIjuK>Z#J`k@X*I)IQZ2D-Da6`U@Jts<#IDt>{%`A@B1YV`72gGGVKa&{L%f2eXRylF|8)9Y`$grD!nTD@{|2eI;uh4G#rw1*xvXZoa- z?Idi)wJ8djTpxIgU8GW^Ur0mCDJs=QZr%DnOZalW@FFC_XqK?3R3$Jk?WOfv5DM~_ z3C2yBW3cZVL&lG*TI*CwJ)>7(=T@OlwHwYiSAYX|nU{3c8#hiB%3|$bmt z42d^yHVeGj)tCG9A6Pco@aS*SGrCtxzjByFx@9Nt;ovXL@YV0ZjlnCjwWH)>+v&AM zz%O~(LE}}<`*_IqLnR4b1h4Vg%HTe!fmpviIHXs{CD?b=+b8C@d6_y)&6|InLmal` zM^GtlU0)}I6Zekgn>FAaeH2_AL39U5qL+X~z2gv+N2;oQvTD-}t!pNeo>=0RDb96A zAoDj6E^pBk*g2H$2J6gP5Cq@gPZwzU21vrhr=yPHIqKEAfo+#e=Uq9z)!HL=!j_}x zayhJ{P_F$i!}uT@YfB-kJ`r`5_6LQLIkDf&`@248AN9Ma2E)F+3>!wpaWjtrX`6p8 z_&i{1V_BLY^Q82HL%NEk?rI$xFcI=ndXRJ|9`fZ6t2<{zG7~=qCrWg_H4oH?$m;v~ zO>#!}V(C}AKn~7Com29V7cK@*J~{~2g|^2$HHfz?NIh!demC>f(ku7CoNEvynJkgL7v86>i=|MtD>lha3{hD9qWskg!9yzOIBo zdKZxqc{gzGrzQKxl1BZbM1hUyM8D!kf@its74Idxue<2;rvrW$iDw!dwT2&FDE%Tf z+ipHqI|7ooUeCS9$Mn7mB3JgYfv>9Nc_}hm%Pe}u8^o-*K0QUlDNH_70t=xp93R+b zZjbx$GzYxA=2&UU68>2u&#R~gS1N#4@yd7dY`*Oz2PPC zZxpkF{J)MkLw2fCo{u}%|4pwyoEPrLYkW|up7rIek{$i*@QxUZs4-0XH9G9 zlRF9{h=08|IsZG3x$I?Mpsx-FD4P8KdytxOcVr z9Ih9Y;~CsH^B27Ty)fk`K#nsYK0?P7+qLR}oX1V!Gdr4n^|A$34ec-qOW+kGx0JtV zl=q7FX{v+2YDU%bq&Po~h_l-rwkB$aLS?-PZT#fe$}1Nx z4Q4h%>339#`1f}dFdQ%Jm6YGEg#FjpQ`Y)-p?>2TtMH{&Cf~X(=(^Z`jpMtcxmP9J zP{J)PWfcUaJuEV-mz@6l4xqh5g>H*GLF

C~!~fa}kRCHI?-HVkrm~>DbG}mRjh$ zA+zGv7Sn=gArlQgzF1im=Lt2pXcU6CD*i9C!TWG~FuJPZk1XDjx*nsy~MG!LX2ml)WNl?&@csMG*eUFwnxEdtr~-hL&0pe)D=+vB8R zPhvSVT)E3FkpNzvvC-Z-RPf(3fu~5n*v|gsEMbM7{*KR|mPUvNC=Tr_eLy&qdgQi@K5Iu5Xf&`LfV1Z(kr^3M zrogy(l1`483cv7n`Sl43FTrekAy9YytvrBKz|=rJD!1|u-q_T-66FD*4;1&gOmo|p zGFR9-ep3^VZP{qpY%yH(higE!%CIhBc0Ru~*dyH}QRTb%26Sqqw6eumLIkZEp zTom}(2%Er~2+gr<_NXwd1)E{Zt;@`VFi!D!#9zJxAtyWrU*6@Jq&_1aIk;9);P!Uv z$ipX@+;($*u9y@#A;`P81AMKvt^8Xov%yjs`nL}(`$uLSJd;{6vgpL#YTgn>L@!8y z#LK3oX}osduT@M(C)Tvn)RPpDon)k<2EAWd+xwN`Y1ipk)Xc5R0Vz#=?tRAfdS;g) zhad#B;Y%t5Yl7@{&udHHS_pj07)MhH3ix?g5m_qwhkg#TA-oYISE?$#4(-qW%j#Fm z8_ldd9E(=V*l3iEOLsY;sC@#LDfc~x#>@TBNzruBI;WEEjGUJ`jSf~ZS`@F}E>UHN z47q0-kX=}8(J5!@yGTpBVbFX;T&hkteALIx3DD@-HrcE1ahFQ7wj@s4jr59EtCAP^ z_|-?4`c3L|S?MApUCO+__R+OZJG6l|Ygpnlsi;1phr&y>?)lf1mr`Dj*=}s@O-4>t z^tdnm86@Q+J4dRjnO82EJ7{%(+R*L(H~av456)=&v`taR#FlM~mmk>g(02=rE=!Je zevEOHsT{!E2x0nM^=_UN{-+@|Gtt6Z0~vmJUCHE-{zIsu3%S2`Qw9~^$C!3P`|qln z*#p~Y(>@ny&u3|_>uNA|6TjNvb}toc7V)=iOeV>_ZOA33WTcb95pu$5bVvp|XX%z@ zCQ{#~)g-`(XhBdKEUUk^r}AuN?K+0#V-2akb1{;J2OVFR?7v``y=k*5PIaoAg2lBR zV|Bw)%wvoCb?7!rV#8IbbiG2#>#=iEI+IYNE~X)DNgrG1X;plJ{1NdKQL^b(KY!7| zJ#W9tG;co=rKZQ)aiKML(<^PH%Bzw&2J&lhLVfx`A+i<4V96qyJpvqYLEhUrb%P1d z)Ms!985%iOM#CJxyk=xA{|MQmekQ`(jJL7EM@4hchMaTQYr8iX5@ae!jDR;f0&b?-Tw|fB$h$r;+fT1i4(2H;AN8e-Fw32Px}4g zsSo4Q&x@UY7mV1(x!`+l=br`jJp|ki?k@H}*PA4e&-DWW&tDxG+PB|r>X)BJyq`|D z1#u#??f03`pdbX@D{(2tT*@cy0yhDYU2mTgo|Xw)WQ(9~j|}NM0FPlm9!m-M9bq}` za}in~Tm~mObtHyVu;&O_s?IWjekQvzp)aMKv_*uM!i_^i=z2+hf!43yzns^v-G3Te zRNuMiFCJbS^m0ZtYE?1JDU}4h_sZ)gQO+hh9B!M(prrqvkD)eMBKp`Vj^x7rp6=NUlxZyV3jXKC2qzj|bmQJ@{1 zs_h^3V`AcWh{2&6Y{E@;EB0b1(<^pb$peqp(g497LH$09GB<=B5fTz2DtFC?;$s{m zq|+WA$|q${m?aVp=wdP{I)ZDD;S zHtyiuLH3%c;lxSs--X2^`%U3#OSPE@xprHP4&)zzo`M9=>O(x$mTh)X=fMGJ?Ftu7*8F;p)8 zPocKpK$|L-s!M2Ri9B8CX0&C~Xx+N1n4gcQ90F1t2HpF1`6dZ%PT;x?*O1|}C4ZM` zR^bZ8wE98PaG#iXiV`QVY4hVg8tnc-sQiFje%o4*1Qv#Uc95m!^SqJ4HCAidP(5ug zOMd=sG$r`irv7(nDNyeKdp5V)G+U<>`^&*)|NTC=c$0tVkKq<@E_#MG)ouX5^6Z{c zUYD{vb#ZL<1si_^&hMaScc_$Yn`Up4;~s0fVvreaOog}=v*}n}?b1P)tBDEsT~?dF z4mz7;?}^?pKPHlXa4C9y9$H4xQx(P>k1}%Ft!h8fzR8W$$nj;B3*R4HGi+%ljCI0f zyCOt$J&sZ8WRw#a;M@!QAU7wDaZuB$`8DkbuckfZ*0khcAz{BY zcB6;Cn^bt8dOhjH>rDTXD~tmTjMTEsu;v?-vsX*-<03`(}kW3vc&$r8wqvRJ-qT zM@-hDgoU5jfxZ4ovaNo{LDAL585=#dCZiz#=m$j?0v@l^PPiWwM%&e3P|1^DlGc?3 zc!Hm+_iR4}ZT(D!=U!`^=11A@K z%No=)sY5?M!!grym@5nACbqMry1VTXIi%7`ChLTyYDtdT#$B8f z2U{Tv{jR>=13=A|*}&8Bpk0-MHT(BQlGT$}h5X7VXqjGKW6?=NKkv!jkn0REv-QiW zt%(O+UdpH({+TtkIn)_adwaG+9VN3k09Q`H)s*z#k;o_ppC<<1=x*1B>? zQM(f}^I&dB`2n5&H9a@;s*Pe~9z(+|0jqO6$+6Un_+;XFfHYnoiM|CE;3y5B(pa!W zuB+S?)fj}Ty)(a#;q3nufJ03RkB-Ohchd?@uoZDnf1|QFH+MQZN$&7!7xeC#<*htG z{>-I&pp5%;)a!%xsq&Wy$Ja`WLFf^g^W3@455v55vF(CzPm?65K=de zQW|IW7t_P0>b!hUVWv;AYtmpvCu|K4K>*&V_f zouBvF3o1`BhhLh(DWz|bg{{#)I*kz~1b3rRT=cMo>EK9JG_gEuvfALU&w%Or5%7&IZzImGBqss+RHahEb7aFI6!_b47=PkUu11sG@6EK6CB=f@F!e0uCJhV0B z)t>qm-j!q+fw*rq=#-M^SH`Kw_~CbKh!=irQIH)1tPfO5Qz%KYK#J6Wu;YiEmC36oM6xP_Y)gxdM32!My=8cM#wqjE>#IrtEb{R>L>wE%k6FV*N z#TG*%=2Fv}0w0KfhB2*FXcTyFS4bMKyYC7G`G2#*b2 zop|r~JxLjWkgC4oq+@STlbOM(zh)~oZ{6aY{isUQynav`ommj#x@<$PN$@mkRj$CFd(s zO>#EZ@hr5u;-mk!!G9k)dX`1LL`(OG^<^ZrlRB`m30tzp-KKu_5?;AY^^l$1vu*6C zSxKwZ6>mR~3xMM4mr4+G?LUuUUP`T0s`!RYNyzeD zIApX(uV>#)jmnNNkuP>gwZg6M=g2+MErvn^X}b>DJgl+VY2A(x$sP5az5To3>a!mh zax=O5W<~Z#H_!fsv|hAag$P9PkR2@m^R!St=0lSDR&iUZhVC<4E{uoEvz;+8S4=IL zbgLx@HPd_9EW~f3WbzpC@GL@Cj09mZyv^BB+?fQCKWDHM=jHt-k|%h;%vo9;Ximu2 z39CWUV1+NNss`@4C2WhcLd*uYp59H5HbPmbJ}Rz6i!&DDZ{K8qAb|7{$NUa#u3ef0(7O3&46`g_mYiu3c#C>bC|w9gUYz%&zw zo|R0e{jm((u9+R%&MC?!We(!^a8xJeD_4R2813zEsXl4HnDtzep|$p{j7$A>l@{ZJ zLW!4aezm}L22!po{=3h}^RDw@~!st2Jnnb9J>0<>{cE~aqAWY^W z$L#v+d)?asM9HI5y=wVf?VsPi5ibQ;C3fm^E)O}J#|9Z$3sAS5GMOt}q6HpPYDH2I zKrT6Dnp`UKC{lt$EE8Z=42G3^?FynunL5nJ@XO@FWJH?_Nw|clB&Z!)sRaQU;hyNmv29|*|E_D8F-!RAJ#-Lmj;4(b-) z`ph0qcJTKR0TnFg!ZrUn2->lL3IXu6{VBmD&#)S-F8uEX#5IdM+$UC5Jqm^;$2|CC*0{3*Db{S>aLeTX$s; z-pS*-ziQj?F7H6h%5`0_uKa&|>z+`2ki%O<@Y2*H{I#tnR~Cz(60q}j(vG1k>^xa# z>lNYcox8#_%5F!GW72QwlxB_&dh9D~RA??Eo<{7Idrkz=?XxDj=@aODFG7sJ z2fl=NpL&aNUz<?eDaSnf`pJ=q;?$%^wIG?2U-CDR}Ki51wPDve1 z{Q{UBe)WPM#JF%-ZKM%SdhY?iSl|N|-PS~2Rvi1dk@5D8OJFF&&#u?0d@ru6$J8a9W44TFZEUA*!_KA{&ey!Ah73bEM5f$YX9i|_V?4$#QT_U z>;$<9J^@bDFbfPk{e#OtFZmDMZZQMTa0KXXkjD%C1J!=;Q10D}rEARudIOwV4KC+M z9E3GDp)D^_uB})z)@*=mx~qjJYtSoJ?06uc&^?kg{j-_iXjq6v9+{~%2mBCMZBR#H zT>0uJ6eRGTuDZS6YCPPy6~%_JPYOuN3cszw8#+b8KhN*{T}Bj>==u9$mYjsUNxt!+ zb=&6T-(b4>YayJQ{AMaMs4sm- zX)7ccx@dLpGv$$-AY-9!lFX0ra~1-YP0tn*EF;*pmvLFT@T}26b?4PZ#_b-k-{}_T zgpQn6C>_&TV)QCfQcm0G^A<(N^H)lKqjT7JDNaXmyDi5L1^ay{F!Ykwyb>}V-S}`i z6*VMm%5=d$!ea8xYy5C@;{8>)4YkqW$wg#?){})+V_iB0qocd zxS&(krQC`eM3k_;NC}pM+CQk8(`S61uD{p!q3qe*`;qdPzhvL1lc7&c75eWPwQ45t z6isePZ(#CoE(zXW8S^KEN6H%A>*_LaUx~A~H^6ylT$ZsDVWzLu!&hD*Q#i-?lvlPR z#w24SBNC(*Oy$|-x^_ME`eoVDF=n3QWK%SyUCDGHj}6vi){*~+&@T~I(t;4=r8bvOH>Li z_;?+c{$65ivB-M=SU@uVeCGOV1f={YiRIxmO9EcS_DVQI`7l&a-6VByC^LTPdNC<* zs@Y~sx`62OKwGNw*s4Ow6w#5DR*P)qzl}$5O23xooE323Ic|r3h&DD&b;$$CiB#A3L^^TNUIVkI!z74c6=@@?}5cvQm zgS(Y`y`jV0_f}YdnqL2QNb>=g4#=tHsb0)mr|uZ*uViSqnlWDH!P;T-sADpRK+EfQ z$;RUMo{lG)EW< zYl24{X^7ZV>ol2yWO-715qH-p{={&TJ#?C`9^@DaC6`lDYm9K8L=z|RfZ-V#m@sYMZXNt z97DOBP)0I41uYQJcN7nOn(uO+0#Hg_?N5y-p&>fdS-3QjfawU&TKqFW=sA}xzp=F# zb34hWZnNKh^pK8sf-4#*M!RQB1K4DDrq;&&a*sSDDOo>)^hY54?Li<^OHEs7fjUs& zN}VDDtVa7#U>x#PkHhoQ9qu$W89Sh%0}@u%D~SGO8uijHgdvZVL0zrD{DTzBx2cvhreL z$^rN|bAxgwtRLX`ZL3Mb^E`po{~J7Ek@rfEPc2(4y99nlJVuHqL(tQ5S*`@Rsghwk zj1D3)FEgn!x;Dnc&-c~qakVl#u5S%i2f?HJ@Z!j3o53~*_n}L~iK99jDSwCr!fG!I zJU!2xREwC%@Jd7o6Lq>gOt3$SKBlQ|zYAP4Q+~^_4Yhp-+h9(!_cGYbpDvh+JX=XW zb5#H)Lg-o%%J~To^Ej_1CtzBus{qpqKkuLNi}fGN38|apQ}b$+3$MRAs&$Je(>*I! z+Y%0#QzU0P(tI1-jGCcw3-^1Hao!6d8jF4YmXw(y?O_()vtCFjYx%topd(N45Nhhuv}_NysU54CKo7Lb;n8@i6DCu99#8YBBMrT|I}rry^Ap~ei=lGI>K z){;$a3?esIYqVy{jsSq9@Ar-AfqkseA%A~W^VP_gY&3 zNZ2%NeWmT=UmNR$n6f7#FLS1uI;28rYDuP1&k~j0>(`Q(VBvi`MH_$31sKMYeX4Dc z_|W>Uh4&t7O~APs*Ke%#;T2>+dx3oz$*{Fx`oCoq`K;uK2rZPfanx>UA0X;6z3A(J zTwE4&Bkd)3>8zvsOAU}u2ln1GnKVw=7>SBdVa&+hb(IuhH1QoL*}@2e zFeNqg<%?NafcS{WN-6aYaZ%iN&wYwn$L!km$7^Qh^A({x?yB#;Kx_r9R{QWzf4iN3 zVjrYDD3SBuQ)+d~6kxqM&dCyCl-1&9+fH+QYV;jCcm3%yecix?C12;9nEPc1(G7Fj zG#_0^tszZ9hfY3&{pu`#)p)X)HQh_Ik1*VaP91PFK@+u^*5zG4OM`+&QTLp6YC3P)7`HpLVt9R3u;v45F_5=jSGZ<77o)<{hi@u8vrO7syhvuik(?d{+Y`%M)urk%bh zZ>B{ht}>lRT&LU?H)<=i0>hl4W#hDhn%bDYl!;l3%-`G%Bo6`v>=qKdYu%J)>?bsG zPaco{nLGrjoril)>8{z<_j{F?SZil^=r|_D*%csUm9j2_r&&XVj6Iy~HxjZIWyV^S zbSiI~g+MA5^3Ln99EgUG^c}2W4MFwxSncOPF0y8G?r9&nhp6fyd>)i_F9a z$zF&O^87d;fyjOce3d#a?1x$a`@erN(~qu#aR`FnG#dWsF5rw-5e$}DG9TCmZZL_= zjLg>Tbi3mlg^7oc-(gT9HB)TYu+FGM(*~ooGPFJZixkLTl zXIxltadGa~^7N`-=Zw(COU$|goVnxXY14rHcH|0erIQln^_Z^kAJ)LYeUsRNEX-)U z>t&~TL{kK}7eR2PJ~`UNs6k{~K6zRu3r#1(s(WI^1y>Ntnp!~tlgjuq?3|?1$!Z|m^3E|8*!61k- z1KBccALkb>KveW7yDnrr2puNmrYh`Mw&Tx2dER6=&&ir_kXimN$CJ-X6%h_9YRfLp zVV1wOR(tun`1QG)pwCIyKdW^-k?j{PB-~suzWMPItzq^6v|X)2D7!}X`E+Q90G}r9 za#Q6{axXva>kHXm#0T%0T*7bO`7j_nmwL}i1{wxM7FY+UsaJLl!()>vjWwV2)E^My zmnNz}2kVU5R?J^U>~}S!8=SVAD7OD8oQsi-d4jU zqebcJrhclBuky4m3>o2gO?t{Kt}sbQ-NmL&JE|-SZ>FK;;^*(hMo?mY0A2SChfXf~ z2y`;<(|h@Q+TFxq0G*Q!aVp)4wp#hx!9qr~)_S{{ZnyQuX#7PNOr|v6Y=+s1oR&I= z_%+gE%)wkU4iJ-VgMA_|j3}7Se>_8Fi|H=7Wmn&GCyD%D)}L06Hsa-if;e?R#Jwun zqtu7947XAEQA%7OD=(y61{|_KQ)6A%4YtmOEqyUKcgr7;QG)!py)M*~taEEyj|IJV zozhgnU&Uwr)1RK0G=J-?_gU|1qmn0epx{3rvr7v%kIw~uUNFzI|2dQ7Yzw3phTj)0 zcKum+kw;YF;oNtZW{Otz*>@C&Uj!7((N`L@(41#G{k=USCsHHalJ)F?JS1lxr*h%8 zd9fxvm*8Ov0~~HG_4^57-Ua^H*?$7t_zSpGMu0v$Euvq5ZOhpF*v~P~aW{`(yB0VI zw*L{O3p+t#vP?bDrafVeJ1&YgNnO7i6cwh$pqWZ;_=jO*phY_=Wzdqrttv?a zzS0|@*`L=pUSD6HTO|~tgOnwfi=j87Zr8p04_KTgcVxATALF$C|MWnBOk8*XSZBs9 zeSd6^t~@SvcAvvk+yk9+?N{0qw)_SoG5BHs<44p}vGvCe|0(#Me_(roH=Q0;yo!?U!8iQqoa4Q*CsiJo1>IZ>wmkI0{#MSNmf*ZwVWSnY)0(6rgq?(bZU zeZbZMPQ{F_Kmd#!c+Zu$0>HiyPB~I3K&Y&}w(ueKhKv^<1lz?Nt=)WfAynt>|E3OC zK6Rg`){6@y(#V0m0r$V8chabn@Hg8`UT^!i5 zfuEnzeNrb2_h-spv?9~muQ#qPn*C++bw>_5O2Nf!P~q3zMM9}zPD(JC3V>!xaDVud zN=<|)PXW}$DTV#u-Ge??tonY1gmTH@5(O?aIrTRGWwQ^Ew49ulwOEWC2w%!*uX75-c+7{kjnZc2`T*60frCThvztQssah z4wLO6@{te9F@2kGkl;_R$KZ;i^F_h790{{{#O-64l*g0xIq-jeB2BENZ+pIssF=;So7!bWJ|I2hATj!$5J8h<~iBf zA8S4eaC#5@avsa$Xkk-RDqy@g2qWxSXVlc@{Nmv{&%i!23J64Kd{T);*oZyJ9iRL&AdCOsQttZ%P9p_e z0wH!WQ1KUk%8%k=zg8%O1P%OAtnAnJiFNM2FMKRU3e2@}5nN_zb05!H?mbo(`^txK zI2fZo$UC>_cN*kadhusNDyB}VV;})hW4)fkW~-HH#o{z`a3otgG=@u0Gv~1*%Eb4F zSE#xH6IY(+85~{q>i}AN-Yi2O+_Ziuiw{$c+ged_Hw#dz$|4dEBMZ;cBzOwAV3e3~ z^Jy}0RuI<2;OJByx>n2zcw!(x&5dB+{_w%dh#A*pm>>he=?P|B)NYDa@Ae7KF2({! z<__Olle6Mq|9}P}q{-$)hrw^_yRQNy@d|)u-5YEAKWKtT3!oDl_Fe%w_IH4%HQVLX zF88OcFP_|4M$namheOU9203iHff})xYuc788j<--)0b#~r6-5BS4ewUXZWe6=LXfon;|r!y{3; zqVQFTd=dpYHO$8BBw4-y03Y?!0p^}r4gAXZMZNydUrRw1t{fz@|rlpQsd!O8$vP3+=kYQw1C+o00s}oJhY zAOaYf{hoaXyMe}K-Xs#p_McYFAlstn*iU!LaP+_?&%$JVc8aDdZ=p7C-lb^*q(e|%WsRW?XrBM@tyRrHLTVK5=>u^50q0+QLJ9pY-^!BS(RL9(5BIwW z%Q~>tY{P(SbZMwis9XFrz&szMB1W4f5L?g$`yJv@>K_3I;WM#&vcPHU@J6A5QAOgZ zBQ-^1uNe>_Cxld_Asl%`o$lW$pI{RKg`o5?2=_rbj{9UvELsF=pbF|l+x24&UR~xB zq-C86aL3}i5DN6`sade%$}k!g(ObatOAeD(9#%dNe%%Bb^dzqBH|`RIb^scQ=QA}v zlIpzzZ%6)>ec>WV3YvId{+!bT3o0yU^BcjJ3z{*9xeFzUXGwhlGtV6Dd9*7{;Vj38 zT=%2k>qj+cWQF+M?2PU7_1^&yh&)x`iYw>`8#UWRdK_;;^Qy8U34kv*jELHE)%ABG zkW#+^(4aI+9xPP?TRWKW{WhE)n1j+ss9D_vz>5Xg10fXdbF8Vv@ft5vQ}ZB`d4gZ( z#z~zggl$ctaBaoKuC<+7P8WMEl9eM6cS4;T%Vak(_J#c|Nw>&5vSfb6+<_WQ%NvL} z05@y+mOAjShhF~`-3u2+Zfl7SD>Wx(E}P(w(|T)yv8UZ%%Z3`aoejaw_?)*znan@# zEP8x38+G4C5yAv9Wob!%x!}Zb4C{MZ#yUEFdcE~K&7#7p#{U%3r857;49D7t{+1%h z4jP-!xEz(dOA6dZ?|6OoLP^DtI%1Vjy|#WMI^e&UqOQ^IAulzpYeh3**L^o_5ZmeT zP1b+MOVot*&Zj}=hv-Mo7Cz>@T$>B?&L^$AIPC9DT%N4Uiv%FxuSXGvjZ}?wxe7kT z>sHr34s>}sd3ZdxY3-Uu>d%cQqg(L0VZtqT(obBR7Rk8d`@Up4I#SkZcuJ5%Lc~Zr zgU0d~DcLSMnabAMj(>7q3@x~_H!;dxy-|j*=-KrfW-gsmUu|7&qp*5V&OT$FJk_-S zGy?Zv?}cr3=RTZ-#`Cu-c09VPMfZDqZq280rOn?@UiwOWEM{sD)Y?xQKJ2r$FUre6 zX0-|fvDQgWM*cwL$j=bU2KJ>oR3DO^uU1sWg1HBH*)L}AC(tSKnVfyqQgTybY|Xh0 z@x5~Q|9tsCW@0yx!lf<89!2EcoA^&QXy-{aQEK4QW2eLYTXXk5e|%P*23!0@Bp1OvcESf?9izH?^jBdX5DW;$5^Zh?}4j-_uQGk zW=&(<)X)4N%m_+1iDRW8dRq1)Cgu6RK_jSusX=<@4IASdecB`cILHrfJFBf6m*Ziej^?uq9yBgS_uV@wL z@PonQ+Og^k*14W2YwBz-7~2Rir)C}>B?O-uj!W`cCmpNr_;32QA_bjr8ME$~&nZVg z>}khs&&_?|6Wd$eTq0>EY&cPpNgk@d(`ixD|GjE9W%Vi2sHCKu%k|sac0pW}@G!j9 z|3qDw!I+(S==fp}-d1hhS7q-=GGx5+15A=iylGCo*jjmiI1HA*x#} zRv};w6+fusZZc+FZN}_YgaiJHqH1V*e^*FE5jdq;KEZ;^_VCrnK`7}gwC|dJouc%c zh%j#ZNq?Fn0l_3MTi!NQd!BxZ(Ho+Nhh}0DT_4wAKE2!7UMgD1oR9eiKqK4wiOw(; z6;Kife>C>b{0eWJJpj6+teFph$0DASY^z2%Dy?>DHBT-c9_@94_9>N?3rrq^>uxKI zRg(l z*0{J`P|l46%I{aZB1GPLyea;XSxN_kVZ&hW8J=2vGL{wf#i5tj-2X@e99wbY;`goW z{#AXKI%;O0nr}v*eOl{Z?`9_byC#FBa5KM}I-cZijeHPC`BV0{{NJGS&bC$NQly29 z7lS8SWZ~s&+NBbsA}y6_zZZ=R>|D1SN^+;8BSm*y3{2c}SLQmSV(F>F5PMQ?RiB^e z9j$$lp^iOPrI3pgySE?{XAKSY;?bS9cYn{gY-)d%$Ld%mbm^mX_0H|10-) z?dy&yH-GljRs$pw+suxc;4js?HQs(vC{I_aO>D<3j4t<;uEN&AJo{#y6vazJ94`~* zESrljUpcn;&}QmdV$2tX?F$jEkucHM>H)%!&E?CnZ&o=)Bz_rN74_E4^^A12#ccHh zi#dSY0t2<>jXV+s2Ksq(A0+}`C(#%D~uE{)2qaNJSk8Mr{g9<_GM%ak8{+FRb!d#vag`8y> zWqD1Z9}BNs({h+;y?2)gi}h#3Er3&gzy(Fc_p0rC~zFMUbD{hx&?u=&nYb>q~{&RTe|K_{trk8RmqGh`**UR zdi`}+Zu0Szb$8#^(DU2&t9Lh8vV(5f9u+$+n<*RnbT13Dx`^w{wq6x-LWo9T6w@>} z-|V>4E!zHFARz0c`#ra^@%*ZhK_0KKF=&1+4?DDw8j zj_osp0pHt>cp4VHT1|?wj&j>>!XeEYwss7p_iVT~Ly~o*2CxQ-HS~j zMIGhdOUcC5E&E*;b^QAATV|-ch5w+5>J!??*sE$^H=A_Fr7bGe;re!o1YX+xDRDej ztG2Y~Pe|o%>t1&>H8WkIa4Q-WeZuL?-=s;kaJcgK^gZ`Ku8o?(xrx|;a2o0*Iqn55 zis7Z!$_@};P}vD8gJJIAtL z`mVK3^#|k!Znd++qHYkh;=fyb*na0*eV5l-tqqf7Mn4dtYh935W@XhE#usp=;>N0i z!tapcWpUv6ZtF9ZvsJX?|86VXnzwKx@n6G@1NV0k8Lw6sfrZ$9@rHq0Qmzds+WOwq z(+AZVTXPMCpv;$c=IYO8hm72KtzsQdq`-oR>%pJAzDXA$u=>Xi-%VYPTD3K*#;tCt z{FWoCwckVXs<8^M_c{4oP`WRn={{r0lPF}=WJ2e${X6Y9YMSVO~hmE`aYH20JN^Z&ND|2abqN9fS_O;2j*7l3f4@GN=S&Q``%9 za|xZdY#pD;vtiQ|9x-#f8X2Ao5f&hE>5i+?18nKu;pQ4A&$gz zR|Fb6Yo)h&g8L1g=l(|!(V>UFf+8X-)`J6|p!4PGO^riVHlo(lyZ`&%DF4bESrw07 zK@=m9R()_gGC3yrr=__@~qA~+e(0y{WibJqq!s4;;R{ng)rcu`MxoXy-j+PUkl zyv)EY6}oR3Dk%QEP3hN%Q}dp}LgqUM+++RNia(=hu0To|{KRBADn~r}ZeaUQ%Y{7n z$B7$1okid^+ynEJZshadhEsmMk%x1mPX2RKAkL&zY~vzJkN&BsjXZ5AQmhLUxAYt@ zjkqK~)pY0-!lfe{dCU9%aCPPJP;USK-rJ%@DwQZq3q|%MJ9Td*OB99dno9QU%V2Iv zrNxx8RF=9z5<|A^O=7Z6*(L^4StiEVCI(~7?>sZlGkssb|IEy@oada+InVq3{=7d2 zPGk1%G(0MkWQ9VYO@PU~?9j?CgQn zcVSkXPS$Y=zY1_1#xJL2v2-%$3C_nOCZsy(!;h>OpMyyww=Q;U_S4-BZMqlU6VnJQ zHM70K{1%~XbOw)P@?{sW@gGL>Sv@vQi6?*Jm3g7^-xAY&Jz1bt&(3JTRRPr&=jneM zyaaue@9gWPUcl3T9crC=FGD*?{kOYh_cYk9%pPo`^|YCsd&I2m(7Fz9jU>G0o#ejG zpZS#WbY|y{I(twuu@7>1(qj(t_5i}B|7}0^qx|iWB&6M{*`YVvs z1sfCTGqKdeXulDjD7HM?Bmq~+Sjhg*{%)Dt{LBU_cccFAikeHhf-CO~fv;>5l%}hI z2qyH_LxLl8ec&TR%Eu#+>^L{xkeLxO zSu(QQkoYn;e3YBNEW*nT38A)M?K<8ss9X`L0{_?sIE1$^mx%Lo1H&5)>Wh(huC@NJ z44L(b8E}C`kfy;7Xg4_ihG@ONz|Ijo!JB+%8XghTRO&(#qB7bQ4!{-yutQ`oe<{oM zOI8u=_vTEuvFGcBl6~|0$cXq}d)LiAB`g>$0ASn5I=E72Z16Fb4BMW$;b*QPu}{0d zN~~0=LgA#d$D;j->tGKyesR$3l9KWvo(787Tmg6a)BblNg1v3XcSezLNYCup5W(BJ zZ~bg#Vbq*{$(D9U4I8`$b%U45fD|i-{Z4DzDR;BxiuOwykFYk2W%CwA1W0uBbPwkz zaB|9@hInr-Lqm&&q3NJ~vi;VqW{(Lc&%tNVmQ|HQOjhR(OsF8`loyX%Xa)i}R9(b4 z30D{84`1j+T=~wPHg-trBG-kNVLP+@&GG#DWkDvwQz;NxI6MpaH9wLzxy(&@d)uji?7PR|G*b_G)9>vQyS)Wh5c7qD zWA$qKYlXz?rzxcf{D6i{VblRsoB{D2(9wB^#Mrg~(c)@Q;4;-RC=k z_jjTf==1{F0b*=Zcy$wS?^0jSaMA-xiZ6aozZgCG_Gu;O-PTWp4}di6PN-$Q_AZcL zJ1DN-Hl$W63$i`W#UZBjUI-=Ve-Z=KBjC?l;J%AO^f_f zvmlkNZ=$;Y!fLGXAFGWWaPCsehrhPyw`8Ir86;*!3)QAN`?B!C4~z{OttGoQD1vhS zu%sT3R|WF!qeW*Eu9btg^P7pVBc9 z>)Gt0u;xXm?e~C?7yl^UdKJ8?WNPovKk3ajMcWT8(=%h#F0T)W0qKL*{*wE-;}=|&7ru)UZHk>C zjtSB*n1hHGX>0m#tIWk!E8_>69SDD-0q$O^GP^eS^}#$g19!LoJxpl`!(*>`l;*m& ztNN!$0KmQ+>E;aTdJWBS8=g46>46Bkfb4%-w??MXE$P2&PmW2wzan(Mjy8F9rK;6! z;lV+UVqkgQi60B<9{7Rh4%3hurJ8w8s^omKZj{!|_H@HllLhiQFGwA7d`VdDW}V$% zUi%ItTaCIlDK=pB;%8y~oVG`d9@t;U zwUqRoF1up~*Mq94a5AxW#v^B{(r(DS-Vki8abT;j2}mSAGmXuY08Cy)IZq*X!(rJ= zDc(aDT&@1In^47l7Y2z>SMk;d*@pTz?J zxdWr)_23VC^nUb-fB!2R_rGPU6IFa)9@8Dz?>c@vJ>=T0J2^R_EK1Cly$etNOjH}O zzhjzG9EWGkMeOzk&l(fQWdFD0tlYq30H!o6#W3mxS6_wg)8kx;Uz*>jk3O&!1paJP z?s(2=xut;{&!6Vjs#nKcNsII%?OoFK@=5rSv6FUXHJ^=g1|fM7Vv-X3S7_{m=qPDD zgLWSUL;<@sjjIqcqkq<>0*-{u>Yw8OSbF5u#`vT&teckjCzxrq7C(-ZT*X?H&OMet zVLUUjP>@v!UL0>3Q93-_NxDEG}sAk)ZIAp_QA@Bf1m5j3pg<(wer&WMB2e! zLeVdWoH}TyQ_0(gb#+2xXoor-O-FLZoaYSx^>L9&2u;X2cq(R+;xY7Z&MeDkStcZ1dxMR}XqP$F! zT4UD-`LO>Vh?+*TS%2Z>ltYU8QA5liCr)#^qS zq^u#U*U4o2?LxX?Eh1T$*5vvyK5;sfe_EavS1c^HPD*3tvA1qr=gj4X9QX-(l~EmK z;k3~+mLO{8$*N{PmdFZv=9rI*HTc(Jx93==U%#3Z_10RvYEA{m+n&mL#0!wUZ}p-I zpoad~{?kO+`kBR1KL_W)4k1)|6e_3kd4Skfn%@Lwx2^8w11}VBcbxGwUFk{uhZWp^ ztGMtvq2(cI?{I(iSv7o_vPkeuvXoi#ChPv*Gi?=<{n^h|Z7;az<-6na7C|$8$x5aY z>vx#RD)r;;yV;rwC%V{G;ynkVQiMAyT9wJfW2pDp4>VTQN9b?zPq1}9lSaQ5ovN@w zasKIQR)F!>2HZK<0*rpJ@V<)EXkgFU(wjDYbak#b&_rNL|w}t zqEcHV^^AqnxYA{278BDUMH*dqY8)r~;wMn86J%CQC5i5IHHH?bzpPIxrK*24+_*HY z#-B{XpBT#tHFr_QbgWS$yZ=Keb^B6Y)JFPW=*4#;F4fql?0Qyh32W%WgP#_O4-+-^ zrT@e6Z7vT^_ph(o74bpIaO3QC&!(nLWm=?yB&FdKs#^Rx>PdHb0LJ>zyL4s)VJT3Q zs~8|l*40bsuYdH>CHCch*6iZMt;p}(@5VFVf=6qL+HI0eOmsc*D+3ywmaFx&X85fXs_R;2FBaVl| zk}YGKYPBlw)Bka=HMq6D4)@pe^knQW1v6PNSce=D=@yNqRVt|D^^b{sBG7f8JB+bzyRdRfnX8-z$%UJUEm0+LS zxmQwV>o;4bWn6I^=rAq_{#8^)YL3q*-Kf4lds*iaim)8QRhz*$+FGf$XspR;>1n{< z)^MCSrPA=o^@|=B0D&3!c{qOG_Dl;4OMO$CIcF7-B zvFH6ApAWQVI9WN}DwvTpK0r&;sk58;#;h<}H1KeV$r&2xby~X`OdQkb%Fewd$Qn6Y zq13vcuq$lpOg_6mQqf&Cp}3UV`ciuMPT0|Gy{|16)mcjylP#oZ$D%tdtE)tu#Qq`% zM(TARXIWc%u8gj8iOo!4N7*jc(EcunzfwiTep&9jfmcl!*Du?MvVnA7g$)6|IvH z!VQbIMq|zNFD})iyMtI=WoTV7dUy(1{(IFNE-d!3Cpe(ZlN)k%PhH;yo1oV!!{MmO z6O%4Z86VrfNuycfLic%B5S~IqSC}2cyDtUEj!7+9W*%eO88&E&3X6d@a7WW6;#LOS zJ>QvAEk#+5v=r*qH}`z(vSSGSdH0|lx?p9;E)-K#g0`dRb!E2G1XioGIXoqa*9z^s zNGrt4PHMBh2Bj|IDWsz9bk@9SDrh}deNAijH|V|cO)8^PJXqOZsh`YwnCdDNnOLKVlQvo%aq zH_WIJANu7%Q|1BAIPRY3eXwjREchnw9dtlj&w7yTeKXHj6P=qLUy)uyzuG(atA{4c*Tv`v$Yu@aC>F`TB{bT6hjM%tScgu47kDO&_=7?7aa( z)rr_lf_{VDL6IH2_(;}hSd!(pVVK)`8wns%p5)yi{WkjJt4?gU(Hc>fEG0{{Jx2U$Zquy6+ZCBdzTqXV$eKGOVXGFg6>LewHBpX=A3b*ib= zdYU+^rDF9VjDfOZ%aOsfNFgt)Rp9&?g%03LuKAxAlkLY}o6j045wEOmN7|Hpz6oj5 z9XY5?`8M1qxbC7^WR9Ik7R<5Za37|}rI9WQVy65t5;F}}{6lS)smUh18H-=8N~lij zo}5n7;my*pPg^!f6T=$V`WFLe%58nd=1`+qC@u$_o2x_ zW3~C`?+@aTTQBOIpv2B$mP*W_sVS~NXEvhCKh8YDwj|Cj z`VF7=1IrsX^{T0=E$^j>{-iYMpsq6J{fZVPdH1+} z+g)Dpy|+h#?_PCg3TC{*oI}nwQLYpWUe<(Q@JySLj{B&DjPs%^!*kIx;~2Ba;O39T zt&(8ka*McGKNcVBwA`Ur;8j+8>q%|sliojTthjz;@`(BM1oU-LTsm+m(E+L_hJ>d^JO+De{+_XWRngmwS6bdDf(t$^R*jLxyBJ%g(lST!D z|MS^SQancV>#VPkrUjXRB@caF zZnzg+4%R_#>b|CeQgKDXufgTkEtx4EE&tJ*aP4;T))Ui7d!Tuje5nZ@d}2tA95QXx zGT>=Ln~h|#e{K@IR#%@BbYhrb%A+kB1+P^rYr$*P;F6>s2%C+|lX{ldofR*i3$dy0 z3jTUd$_%{w>?(=kXPZhI!1{>d`kKfM&wpbLeT(#0(7%@!mf8# z>0cMwFQLBRUl;l|tv8d!RI3<42=t}ZE-#v&E`Zl>ju`nnXeyQ{lhxfK(+KAmswzZ+4_sS8mwa@of7Z7$ono`bI(`+ze96_nYI;nh zh2yVHVjq8EES0+CsU}F0xpG}~MS%OgbYq1%$BAsL?N+*mK8PY@ivl8^X%|qd;BG(A zK$QZcKv`C(qz(EwOy^ibp=Qy)Jn-)K*l6&U$C( zcgkJrLsNhZEy(cm0m3e04f0a?>&HtA*$(FiwKv2^$OhA+R8N`#RvK8!Jp04NEvaD0 z6Nmx9k}aAlld@!O=9&3~fW`14FY2EUIZ^8fJ##>`;4R)Ew=7IoMh~F| z^6y5yCe|8W*l8w1qv{9hw5~FkKegxKU#`00#zIV!k1C%N`n*Lj!PCX2%$J9u##?xp z+7ATCip#9S;$q*ZCG_pRh>LbTpk|uC{su$O2b=^#_GD99L(wWo7%^1^>|@<`7bT!^ zEQSJFVzWkw&T0!HB^j{h^GfsXmwj59EmP&)cGl1$GpNuyIpqGl?><(Z=9q1Vv6@vF z$$S92({HM|G)7X`=wUuCBXU2?fdiDu{8ibbmy=-*=54md0SeAL9krkgY%V|Nv{`U+EW>y$( zTAAaFdYYc=pO29?yzTT247xwodVFQ{#n=BV{Ya#QdR#3iGPIr0*f8O?S7d}D7JNw3 zxZi_O`kp_d3H@_>6QaRThc4~=2hhYtCsu|iBxsob=6gx;OJ!0R#(u(7t{9KQFz?Di zXEQx>gFq~){3rQFhBNtfg63NqRXaSx+8n!H=Teum=^}NuwA`(7QCxDhsp5u-KyGeU z-Vnj$?Ysi+&2)-2_W3B5Ra9=dPy7InlyXH_Pp^Y{-*}y+-6=A1%Wlc$ePs2Fennpe zicg+GwDa#y992EJ)nLw=Zrkp1Acy+>`$`_&``?wv@I#cYM0b4JTwcWT!HBGg2qM@> zC}r6=&YMlKtRXVk;xbvHuB&t?Ks*SoHnpA6=aBSy;=vE8Eqi*H!GiELYO^m)&=Z&8 zwI5`*fv#Z~{y5Qa1={+tgyn)>OFgl3_rqQn6z(gbO4zkaJKkZ@8i;8Z3IKmnCTISX z1Hn(gPz{~;*gQVq;SC5{#2YE~gwtXl^HS~efwE#I`*@XKt$9LS;@EN8WSg6=vI5292uT+{sMLjzC5@-vgc%X?5PDWjvOei-p zDyhtwD;oNX7dlGP+5>4($E7lbX}TV z*)e!M$&_^C4ahp*yr>iVmDLhDEz8u^|Gz$AT$$cE{@#@qkCh3oP-Gdj4Yue4H5Za{(#fskPHR@jeqb3skJ|?1TX{xi5BZ4e zi0bTH5K@`oV{>fNjU`ft+BwrGh*Y~3U?iUgJq>FQz_kX z*7^AG#_Z?G&6_M!ing4KiB8(tNw2AyeJ>y8hXE&4wOz=exMaJJ;NMffgVX`e zaY2Id;(+V z3bIZkpc?-K*!c)J`JSt2~ zxdL++11lzi z8uE7MBPvdVsudhTXi0UL(ik=z6nyz!oi7ATYR}fesvB;Zsu!AmfXJJ5Xb}y(?Wvad*kvn~kw(W({c$LFHF2d=~ihe#-Q&uZbVJ}eNq&qj_d44(G` z6N0PT9qY;)V1{(v3%TqaML#QMGRAYn6o8iZ5Kh{Uhmf)-9&;R4_HZvY3xp2CqkN$wz&!+4F^xz<`vQ=wCV#GnsW~>fNZclE z8&BMd5JO@u=WK4slxYGq9mM;OtJ(tX$B9l{QihkObfV#wu&od>%IiW~ixJKq#J|h0 zkgk+4Y|v6V4T*&APRJY)CSP#y1o;!7r*?0H8|w;TvMu6VW!qWon926N+>P zQUlRn#gI7K=YvRu=+$EUIP%pP{vXli-@C{VY*j{vAfS-n!(gn47xOtPjALedox!@3H4e6D*-PXLdhrYbw)X^%D|BCUAFFd_yB zm(B>p0Q&`=7%++5V;rW-5QqU^?2r*1@kIJw{4LV=+*6c2kSr1u62x8QSC*@j+$~2a z4#w?ve(VXfYe={KB^cdldt`KzKOEv8&?9>aqDE5Ck~Qj0uZnd>1<}v{vEb zeYO7O(!dmq#Jl2|ust`T_k#?EvBg9$Yw}&?w$!ca39RuUZ+&dq!yn%oT?>x2f2&z; zE{#mn8+3V~2tGby_b$*zkBX$pZ1l`61yj|+?=xkb|s z-P__#Dcs?;2tzBjwas1+J_WFzm?>khlNodX6@eZ>i2S0a+Cy0Cdg5%Vb+)a5ObgZh znsafo+>8A+lkjq4CPb3E+F2KRz@tAT34;7p*pQk^Ka4%H19qY(rC@?#z`VSE;mqmB z^exNmt1+0rEPc>NqfgnHdMvUe*KPD{bh!OsrrSQO>1sjQ@#=37lXjA92~i&ZS1Ueo zG59phL-o@K!wyOF^qQ!?*~vv|?KDMDar5>)B&!B#?;zcrDM-`{?dxpbVbyqMS)bO7 zpu;mDJ88|6PrA{1MXg8^D<2>*Grjh#77Q9`D%(V?MKMY86V=%v=@qoQnB;3 z8QH~aA?F>7;Y+9Kzayc`ft>~cNJ_upRFx|R2O$V;n??9hWhke*#WmCD)+vgA>n zi%LaVOAeyktpOIFBDevhh~X}{d9}cvik8ia*NM9Q_J)J13T>;9{eqj* z-`3IdF-lxAC5_d-b~ThrjjnWd4s1KYqc3*lq*_J=^Xmb?)!&1kFtyI*3sz^*e4>M6 zdc}fEhfZ=nu^|p#er14WbqfB`N{5xWW+aGI85p-#5|Yw*Dvj6v?A{q;m>LcDQv5c- z!&r^A)^v`B*OtnJ>YnY(Mn|VV56ao2=&g?>!sYL7|MsFq6<_*BICz?wFQ0ex)IXry!bG_MN zlDbF-Q78B7ly3zK@JX>MqF-Oe`AFe7?7OA@>UTyvAlZ_}d6Y8pLo@c+x|C9;;wYR& zkF4v81O|k}li~i(tb65Ww_ETjvn+#n-U0rBOt1A~&TY(93A;)+lE5Bua@iw~wV&WDtKGc|D@jp?IXG7*R#o$`+O@s&XMcPvgS58(wlfCl z)&}qj|AytFn*=K_%UR?RdTqlu$jWh*7AzfBbI=3s8TS$tGvN$8&??F7h)bP7oSVF4 zimrcRd7M5gw^jYt`Kyjn$Mc>0YlUM?qX|NDKDANS}_rg=@iy_+w(`ic2@B{`$Xk%Z-=^VD?6 zXJk)0J2zpa$}`7MS9m<@nfd1^#E^`_>5L4^C8MGH|YDpd_4sy@nhtyh~SnHTbM#skl&^Y5?Mc6kh^|K zL$YxhMoBOLH7ZkqsYP1;&Yyxj4>inP*z+#W-XxxUf|ra0&wc7t#?thgcTg65Bv}A) zlOTCZG;78VIl*>_mWV%ULu+Lj3O`2zcrs-0EeFzmxzE-h3m#gKqbEcyK9$ zt0`TV-Bbt`M$cLCb3l#c1N-82*URe_D_&Q7g>(@5?XCd=)+P7wmm=z)gANAn&?Ha9 z{VA%PerUC+jD9n5&DtajK+EFOhS9fgH17vy0AtdO+T9Ps_#JDzqNXD$z19o?FUyfY zAn*w{RUWCqE|Hdm8&ITpUi!%e(mWtxNcxeIIPGcJ8Q*`%MqUSgCriyXAk1I5`#GGc zCk6_>yjLaovTr?dS*PE4+pBv5dpciBgwTmyHxN1@ zu^Xln%eqx{*}R1|Z@F!9O8#66JVM;pql?Oh0G%=HxTnk z>~4e?wg|f-ys&*G;h~@ZP_-;39d5m*G^SNApZG{Wetp{NE0c=bMpeG28h9iK|b7FI%Jp zUrzo0a)cjj%hTMfh|_KQ!H(I>*7=n)7X)J2H5p{&vf`1E3(;GPtW^u(XMV=}=40gN z-5^Q`4EDf`#7AwZd~K_pDAx1RP0Gz&5zP5lt?+wf@~zYUw>j#SS}g2fWj^3cu^ z24RXxwox;9#q5{py*YZz;AJqQsjxQ zN^zNuZHx*H9b)`yE92h9u$BxQjDK_|$=&14Q!W5Nn9`EpZ;m+Nr-}#m!nWWEtbI!i zOa$nD1JTNnFiOz%n4DW<0K-tatU_2CI+MpX7X45ZYH&AG_jnfp<^yT@p2rXgd~X81 z78pBu`K7SxF!S{5KVH~d1o3d7Wm`4H21we#9NP`>_eYTtV2*8j*vGA5OXdB9eTX&K z&H^o&buiv5*@>UqbPl7+c^q64o|<>xRS8OrFlv0t+KN{ubahoQ)d>gS~@8P z{Ww73ByGM~GPG#hUuw}ms@MCaA$~Q;0SqzZsH5|cDi7ggui2%x?ZJFg_7>V2X|h5@ z@J)U;-d@UA2=5Fflt3;rR5w}L*HtB&`Ck|3>tT$UG~7WHQ#G>ueSV5)f*6&xa2?O< zAG>lKoo&}Mw-D<2MrJ)^0%ZlLZ@+jPc08vnmj*W6X;AtkC?tHo}-G9gb&(*g#g^eskpM!$}<4$pPUf^Fo zfxSc-JJTD%A=?^50P5;wNm`iTcC1-c8QNfA2cMutmRc@?1L2|XWCa-Dw!xTa;*#$8 zizwLTI$OaUW6nCmcbi1{BrPoRyI@COB#LU$eOA7mTADo*Y1?~-%`v^m%VbARx;=3Y zzMt?>Y>!VEJ@4m1$#JhUO5!J@**$lo7uxC#cjXT)Vkz#fFa?MQ1vYCpL{9mspPPLy{FI@)?-sVsr>26_s< z4pB`ttb2+pYvAW(oM~rMsd;x`NZtGEJne2F45_nAy&Hdz9c8u^T{8v%c1&3Yma-n? z+4I>n%#k76|l?1e_|xV z!72~RNcP&3-d@7I+SU!+_Tch~rQt2$W_A~VtFyP?%77iAwi=#Lli3#cu!UEDW)uJ` z1EW9SH8Fy)>WvgHH*YlIR+bOIWV+yS>fZ$MYXsaD0ckyRX=%ZiI0HC0?zm`vO6P91Yd|L-}^ zblS?+XT-T&<>mOA3%$E)ypf5lZ+Yr>7*oD<7}Q=vq9~o5`apkRBX7k}2;oxN*kxu& zYxPsz(=9H-k!WB^X-V=zJ}}R8M5uMcPyE=kmu7JqiC8kbE20tk$!`+cJV^rQ?2!kTB;eR;+wQ~9ho@8p zZiV%UHcEdK0Jl6B2TQ^MNowb_pNOzU4dFJHmU%D7Z-75U^-Co2^R#y5lQ;47Zu%}{ z(V!K!Qse)Cmx+|jL=)t~-k-IdgAi>o^DT**10R*jv}O!oVM;Aa3v9D-yw6X5))?fo z7F4$W%b%4#vRyiYD^w<>wMTUEHITeMB6ap$czSK`U$74d<6Qz>g@2ww?-RkH8zzcM zB9}eZ!_U!)WA_{}h>~dzM#mQKepWjCg~R7uz%xB!ivXVD9!oxUsZP`Q?a}V+%nmthc^@g*6-sMhF)k_J#$ldwegYMIYC5B@y5?5(}e)|6LPVpOL#*b6Nn zyHH9*1kE0jQqR`_YsH3{FTpMEx`Bp#=#$ZQRlYsif)ZBknl~`0atSi8ez_*-+zn5V z&Q*aEZ^K*-8Fhr0+6c07-4_um$Z3STnd^NP$pL=JX@R}K8IFQ0l8}?Jy0IX&310sS zEPO(;Unb9^YPcASI42nuId%eT_R}Ybr}N7fGlVvjUPc1v*I^{RmqB=fWQ`r$5LR&| zC<_MCMzwHC5XU9|GJ|t$*gym1bgI~unSa?QL(zI!Sj^yPX;FIR?0mEkbi?BlYm??e#i{Oc6qjTy&ds8kJ=$nF)2K8;TZBN&yXJc5(HBV_M6P&-@kOu1xSBg2VbzS>GEY+clfDC z?Vq?kTLIINIXcI~Vh9Gk{fo2M@z^CEFDv$^)iTn)si%M10cRp2=`;iI34RTayJ=>W zA`jVTuU7XRA$^XTDVO74z&%6D2v)~f!H?e@7K2>=(7Q?V+hMQOU=C>CJBi1^f^ucH zQp#1GPIN`OC82U4pxW-)?>5Xjzm<5O z1G!nlDGU0CS0x3iLMeBKK^dKX<}wVNJEHoxoP&uS;K4BkNRnaroyn*$jG*=XpP_Et zhR>jcVT09Sgv5u#~j5^3-dM&Yc7i)pki5->hZU+`iE z9NG+DzDcRoBI-DN$?_ET())`a`M}$8!g?iUj{^KtiFD4_E$3l8?Nc&wOaI|E7|0LI z(KDX$ei&q+6ta3&pduLVSL9Rd}#&@^-nxV*g33eJh34 za~D_|c_wiTW0=kU3*nBAfux123hVAXF_Bq6P&CV6cYvRu@;*Z9#0wu#BFM9a(dfBs zS4}S5)=581Yg!#2^G8>Dm&jm55SUzpqFp9^M;P@x>>V=g@2%(7nSyk|WYqX@3dt45 zwgz$jzZN8swSk_WO9P*H8Qco|g-p;_ zM%0lGglXV?!^>N;@$kZs9jxf|9mOa3llmpqBw9fOFvH$aA=jh_>kD;^$pEt0&Pwr? zg*6#gPnE!=O5wgu)XGAKgDbfO@?R z7-y|9Bv6!RaO+RcTTosgq{1ha5+Q=H)`;T7kpOXcDp92_JkuXo$Fm2A$P@Lixbg@8 z&^vn1+$2s$5?)YD$wJ5W!+}hXF}cB`?FW39DfybMEY@ZbYmjFIWd!UXbU`}YwUPae zSvu);$WofeF)9c6^HE=cZ^1QN<|I!BlN7_{YaJCAN zfRX?xUlOnos(^)zz%1k&O6nu>-tN7P+~t?3;4X54yX0RG+(k)n7iYm;8U=UBRzvVc zFdD%d`T|GX4jgiqK$HL-tUrjLgI~J^w>}}b%R|9klmrmn7lG)w)t8XFI5r{AVwZs2 z<(GosE**lq1S$*e;w-pJo!~AH1$WU@N1i3|azg@*To=xy?Upt5nfWGhKL@#4g%xtM z;#UHwYIO-1qwtjvm;^)Y391fqnUNr*u~Osw^Ak`5&eE)bT95wI(o18U;prsisZU`) z)5|i}3Xt}G1Zm@fuOR2^e}T{ElEqsQ2-gpPNiei~i8Sh$vEX471rMtxK&#$@yG#o1 zvf2Z=i(@Bp7iV1!LKEK>@XJa7J+Fc*KINv}sUGT6?@f`XNmu4u?H@N?0NDrJXB~ag z&q4vK$gedt^H0pSKuvdREU!DvSL@C^b^byY{Y?>@oRca)37&)o806FQ) z-BSp=y6FY8D=y_pE24&XgD;`-s}k%lH-s}~paDHPv!pjM&{mi~4BDE-?;Zs%KIG|i z(qd~=_23Gk6?xFl3HLyU6M4VE8}0&b@YOBC{PKq@-!H>ykuO9+|2+|)eIo(dFBPEu zY8dS&aGf7%BK;Q_Cg{IP!H7hFD{ci0{~wL>Xdejr)VtZg3U3 zkPbnD{M6TN_7p3;`=0mLbtHF&cy&8i?0B}fVpH(spp+OW1Zseww4B*KcOewtAMjPG zD(d*`9pCeta`#U7)r7qes@J}mp`L;yN;Pf)mIuD~W)00h%c0b$TX2m@8wpU>Z# zIG%gm9NhV4L??fE^bBh@3=8II6EY==6V*l1zGQK}6BEZePvpOA^(2*XpSpS%cCE>4 zrzE^?7@Y8#t+=K)pYE-lj9TeRY~tW}i}b*zAOMANUeT$E`60qDO!&F!bN_hUxc&iPmXgKA znF6=J`6om=os&equFw~+J4SwdU}QEW^%tGv_jOj%?9L-w>$?HQm>0I%pvLu$SWaR^+Z(UdWNLr?GGV5enxWV)Gjq}9onV{{79?{OY! zeZIVsIWXUsT22`MkX}`1201|R>HA-WZx!Yh$Br<3D@#)%7sbUOkN$)={gwp*Dw7~! ziv6}h`&>X@r$y>E@p1BwzR^X4kb}^J3{G|HlOltqVK1DPzg)&xlz zaifuPx8CF{qvmd-G4Ln^^fq%IpV$uj?<}=7;Y0Gn=n1Z1x1qo>1Li~01yIql$^3tpIYVxirqkw`G$$X#eMO}nxI%BjSwm;{Rz~|c{u(Z@GLpF8r!cGt3~YHP zJ`x{hoIO#Ba-$ml3SwO1&Fe)!>c&&=EVmj0MhfOTOTEkt?g*57vrs*s z_eW;Y?WOCX^dLF1bMRy~D7OZD_Ru@4vAl~&=0Blr8O z2F5p|nZWPT!)aR`SxzS`UJmc0c7z$){cJW0Q9|IZvOORT8eRWL`Y^+FK8e3QDljMX zK1aM<4corfv}bh0Byp*=`8+hx-vinIh)iieT{ zE5$_-ftBLOExwf^nyZ;zN9zcp@GKhQPGhT(ryAXkK#D9Ez7YkOmAuw9BnX8v?Axe5pSRJ{)Sh4G1DGvy znNYow(UsIRH#4FO;y~Mj?7~4z5k|mv-9f~vW7Z-#@Gv;=-k)1hHR+MQXvb#n<>{p? z6VN%O(l3I-*_N}Ref@YR%?CD7Uz3Q=anTP32QdwD0*6;i2j6r9c5OK=_|ojR7c5lp zCC>}CRmH8kh7uQ~L`$0-U(egy0B`a&!LEx?EbgkI6F>QN0~~D2Z3Bqg8@oblO_U6& z_|`L;zoCm&_t%$%gR8Yv^EI->TxE53F2*hMkK8aZxwH{J-P)*caDcuxclFFS8+;0J zK|yJJ<&+}&fDqzl3eXmZ^GwMt1UM-~^b$d`OPU9wr;S!>pWGWZ`1M}Xf6p~vJ|1JpT)@ea7-wYE3a}@~YjQKF1 zS>5e^jpc4FUtRcRH8=hzidPs2MjTkK^w9AiTX89+)Bil$rWrQ8u;I1~QeC6H840V|K7SGn)HJ*lSi98^q!xTzV2$xH25NK z;C>${40$rBYxt438J?WaK%=Ved>*I)&y%7)lr=ba$C*6WiZ=~OXE$xrT%gD0jMKhl zY!i?~!^6nfWO*U;-n;!?w9z!%;s>pBJ`ePulRMw{X#O>62GpNH6Fu$AD?Z}{NvHl^ zLDK21fQH5b8ZVb-r&P_GykCq3KcxN-z3m#DP71%#J<9O>2wtu^wcn zFM2IL6l7yHv9*58UOczv$274hd18;JUbgG87S4JWMlts;jGC*5QV=(|7dvEe5Z=lF zFxg{NKVOk7k=U~-W$3a2jo}gqhB7KfD{0Lb7-h0%T{SQ9D?B(>RP4S1Htow#>By}L zkT-pjTdaBKP&F0!xQ7!v%}ClKU{o9#}R6nhROoI(8tRoWo>bg$kp?f*_+Pp7qNTUeRk%mP&7J z53c0HC&P(BUrMjO)}3!~aTRAj-sF`vw37;>+DE=OM7Z!)Nga;@>BV*G*70yte{-Rf z05?qzj3a3X-SiNqDh%C{itf>NBZXE^=P+6^(4H&)=R>%a%0gt$CxPuVafar%160&O zuI_ToKszVGRESr`v6{6|He5yPuZJ;Z8m3anO&8kpq=Fq(*h=dbpvR1tonB!3Ql7hz zt;k6`HwI_htn|0XEXjebe8QiNvdC3o)v^~ejpcHS$(m)Dp*I#K1n^)96~zIy20@Xp zw?Qte&XO)nGTx%(1MipFy$L7epgkirP?^I~;ziNt{Y0CtzhhOT?*+TwCH0kUbROvk-D`M4iE9R3KzkM0Os(1^K1Ih*khC6;<;L~?z zVWtBDx+T-`t^BPL$1ueg@`}Pwx%+|5Jj$f2!6vl)atMZ5ESwseE1JaY;VIsEeG9&o zm9DzH5;*VdvLy~jT6xsP?m4iRRcBW+lHh!SLH=aCJsM`fBnMA@aejKrf$0>CPy^?5 zxzRVUMxSchuW8>1XM&Vj7KcE=7%y!@wrelv??%usJIQh!8i#pBS*ako#R~fRx}S~X zX96ZUTho-J0ygh}0)M%fxNR@!33JdB&a8}(=u8}JD9ZO0(nhw=>9y_#;tZX zRXJHJ_QtEXr1DYeJpHr#%>EYLL@Xyd;Bap}{!LoAn6WsTKl^`VeR&|${~y2ZbfL>l zl8}TDGJH}|Dw0Y$lggE2mSe8<>7pE?gtVrTP@$6CR*}iERgUFc4DTY=%*+`3z1}-~ zzQ5n^KgYKB`~7@9&&T8OdhL*^3OChwr+m9z*vp{`ZSkMEbsn90F%^-D+B4fW=%~F- znXRKFf116$=(*Yl#N$7w&rF(F>(#es3wqzMM`IPiQN13WufPddfvg5|aOl;*>&vJ8!juX)TP$og z74}DtoMARF@?&xhaDUq50?p3*-aJPOIy3bmaTcL$EK#vk{&wwKNBV2Kl+{u6LQZd^=5lf_1@+vi_Xh z@jWj~W_y&$7RrEP=0DZx?}oh0bK1x=;6Ih=qrQiZ=6^DbvU7FPP(ifQQ*YgS(L$#b&HP>OPgWYwGt4oN|uoxndhXo|IQeYw^t?y~+J~UZZhi zA=Pi#J~;l{gGHD6FTCuCJ8~ym{aOj_@I~;mpD$z|e{L-NMCS{`fixOxr)EMvt@E!T zs;qwB^VxiNo3(#;Wc@j5(PKvWCRZl`R^4GP2)llSgO=})1;)}i%gz0IOojhyCf0^w6*1I2aMYCLT3deoJo+jeb5 zYNE|p^O&4R?d#LVJHek_yYeXXP#K5YejL1Mha}zptY{TnBa>7&aPR$)jlEF zVl^u1pYuK8i1gkFS{5o<#z={Lv9xcRzUbgm`6dZs@UiQujy9W6mQu8~iOb>>585@1 z1`zSD;~I8btLhaRu4}qfl0s%20_wTiw`b?>@vOG#&9_$pSK2dSQW}RWus5D$W*^IN zHOtL3sg676$#4lBEr}uNZq4utJF?8V{_>&w%aBS|-iKa4H!;60`hSwa)*ojKEGAfA z7cIg?4xdp4XaBL6nXulbD*Zet_e3)V!oR3{{ht4@X2c!#g@*X1(CR5FGfAc+P1$^a zWt`X9=CPHt4sqVar?2c!hdd7#QCG$Y2PZSuTUaaW1t9QE0o4q$$AJWSayoky<&|)8 ziUlrpU~6-_QfCwAO!`Rt^j7RwT!TJQ#bf?&_^wEn1P^!n2B(%*{-@o7i?Wd#u4e|z zgew_*P_a@>{-bO-Fmuq+BcdtC;+B~v=@SN06<%fn6T3~Xrh(q!H<2yPc({UbQAx#w zQ8BK0Y^i)aKN+Adt*2RKhs*m9?x~C*nW2K#(^g|gh;i1(7r20Jrry*{`xu%9{Ms~#=Q7opK%lK(cppdsqkIhtS$?p3D~K| zHx>DTEf|cTx2`-UCU>Vj$z6vxGs5*Ioa$CarsfX2(BJE1Jx`0SFCP7MrpU2cb58a zh4blsW2NW1%&k8T!7f&i)%twpp3T6;+(w}_8rKpJGC14SuA;~a%RWzkqRl+TMVz&f z_`5anYifi33i}27tvI0Oz z7ETUyi4UseIIsIqUgx%AMTj_Sj#WD5!E1QsI8Mma;qz(;BYSt&#qdE(W<|8vV zeyksO4VMJmSY6pS4W&_zMPBhssF|tw7o0y+g@j*aGIX19Fs9V)U3A-&0b0_1Q0nf6 zB0o|jh@FiRX6(s~b2-NB<|lRuI*3A@MxTxxZk*1<%9h&*)WAksJ#ZP|f(oXe%NWgz zY%$zl9+RCElzWjGYR875E?W6ziXTs*MYK#9^3n5WoVgv+GcO)H+WSY>^}l>M8vq`+ zYbH*M%$|Qi$o=KIq{V`LF=Bkg&fj~gL+e`NXMQC?LmO#U@YQ%+LgWJ(9$JYz^LYX# z9S8O32YNrnMMk+Nx4t^Ukpd5pxdA=gds5&9MRUyg?TsbY4AuML7TclwD00=8+ejK5 zt%;bv-*wYl3C=oQ=9eNz5OGZ4k55BdBJnatc%353uXH)3(vzAbGiJT|{}(&-icj2r zhRf7QA`fM{v9A6p1HD);v%1yBW5 zczku=Jr6e%cC&oGD5XKYClhogDp^m*Jm2S%u1}Mh)&3CuEUREp=8voSoyr-f0ef|P z>44R%LqY9PK#5UHXl6Bt3DUN1vYT5!H{3wzsX`nX@81 z#md`e@Ilx#*t`~qIkwoC_YxPjY zylf{fiLy1VN>-Syp{xG&iBMB_Nb3Z56Kff&3HK(kyxn-GbGrlw_coEUqwD4ftmRg_qengnm@E?q{MAbWy$58 zsGn1x$r5$>=EEqh@sSoS^IUKJ0L1(z>9^`X&8&y^0SknU9%R)Qb=;gjZ@RMAyg}bO z7Q6ypH;`=6KzB_|`6f-K9RB6`tYo0D=H1s}-DdJmZ;)_u9t)zn{q z|9nEVra{#}eWF=qI00mqx6at9^>v9vRH@^W2pVt9T#WhX*bnoS+fa4Jg4hDZM4u!o zCh8b);moYuzH)L69wai}F%$N5&6eD=>4MLNDk0NI+(Z_X2v;bw&rc9=1HZWv9`8dk zoQMB`$!|fmT#rNId$l+D%NDDJDAf5VcxZlmI(z~A->M%y7B2=?$=DcPrE3Y74mTzl zOQ;%b``Y|u5R?#b%SEh_w+2^%LBrbRUr=VKH+|?QU3al|XC3Wh6nCvL@v9~r^O*He zMZ%3}CDs7?wFvGewuIUEKN}P^T%ME6V#AMCa4ysen~_c$y|nn+{lR5$SQ4{cbvD7x zqj)fs+!WoPj}-Nrk`8rk8u*i;zKKS$d#$$oFjj!uz+HN6Bloz17CJ$4KU;gz^Fr%H>;&P!sg z-f*X1l0#GKOnjZj?=X5vyh>t`>MJ$4+X-bWIgr=zTdT^_sF;zUfUD?#;P(7mxBV)S z@i<`#1f62t(|4u8bWyKpbu3$oZ*I0me@2#BiTpXG<6s?375noZofE8ysd7#Z*xiqC zt{G0E0Ld{G_o7FvXmO)0t2R1q@anJq;E@WW!~Ha@iPQZ-XF^{nk8ifBRC=}gugzA| za++cF-&1t|X$|kBUYG)g;=Ct@wHVW$stbo09CFQlt@*@U-D%Yf&Gqnc*+& zCKX9W#iOQb3BpkzgKQU;=)qqfBC|FiRJ1_3J%v(j$#OSA=TgvKj>8x&ama=ToRW&v z&0BAr{QGALZ=5q~o0U8L=>&09~W zJ6y=U-N;0{NYUVeTIXRPn%aWbqTtho!7ykRJgZRkPUtPO6;HYIU8{utQh9&y zqz-;n)d_vF&)1z*w}lw$%7$ijVnyG-0KYNw-9-sIEoK3XXj_8BVyqPzGo)2N?;i*a zc9+gq7}F>ej>2Ky`R>%S`vlfTX30Nx0lx``je?xnRr?pr&GNgtx>hjoveAWRg@FaS z!slw@EE=2XTjeSA78z5V$o`bXeUx;^IH9}DtyHxS2f_kwLPrcnP>1F z*|vM}N4|&5ZeWk1aVi~${!$p0@SL?@gK{uH#(`L@(tyKmb`BN!iwrhmVSwIv8$U~>eHD#j*5wk1i@vT@I^J==QFdN2$5k~#_tL7f zUj7(@&t9z$h)mcM@)()#h1f#9qF?2u3J-xfX$|bp8Sm9T7(9kC17DBHW?_nX@Y_MEDt(mJ?Y$%X4FL5%@o+{8;7JoEH3>kaSfT ziDlM(!P^GYb!6{M%2f3qZ_a%IcgU4i?Ki_M#8r!dcO)1nV5OXuW zpw7Haq@H?HsQSSm3%Irw-7G`dI(})92ge?`x~K9TYzvz+WgKxuWatz!p>m%vwjRwt ziv74*Z|IKK{^Y&xt!pM6=4^e8JM#_uj$6w8D}+=`@mZ}e>?Xjspz#Cnh4qo!LN~B} z)n2+ZV|gmb45X4lRUnAxC-3x7g#w|SPmGi)OZkavU&&CKmLPk}hgHTvfr0>Zb=aY1 zEP7Nr=a(p3M^5%NZV^1^=Axqc! z=g$#c)t2jz?%7eIKi3=cNjR)O!j5h?5axu@kofB;VP#F1+MI+$yxOxAsWuoNk&OEo{`ANnfc3L^tlytu%SN5Ee?H*s{fs~|C^pBO!M6lik zQt6`}<`ibV6ujUlj%i+BwxPfERUh-tR~_R)h5a)x)_DrRAJgF|#a@-1Rg}MGA;x57 zRP+m~=2~@tr97PYDJ=3Nwb;?wy>WaTCaJu`94E|Fm8pK~7m18nK$#H0L8hOtnBAlQ zUY@Zc6*LF|C9zH-1Sry!{6GtSJb+Bqdw&tFn^M93Y_Qt_tQ(8$%2PDE)gjBz?`)R- zg*?*QzYn*iP1CzBvE%MLj*mE)oyYu=<)LF*SM%_uo5&k7XG7zS#z$Gq!r?=fU^=j% z+lYm+hRe_HkQe~-n7dA%QB29MI_d6xzoz!#O=4374K8M$e&GNRe9~9e#1p$BqmTY^ z=xNVozKU?;%|3cbEMw#$irvH@4s^z+E=6WD zdd5!V^-Z@IUY|bixS?Y8Ruy1#T5_PZ|U>FFe@@u?A~nFg6IFiEnp6 zH#*$EckEHLnHQcOcM#l_5r2xe);>XE&a$qJWxvn;avi)g85iz~`nwfoc#*y54KBHp z%e`#fF9;@-;$6Mc$T7~t=Q2&`04L8?9-+}E9A*!h6IIX8zZSw8DRB$1hOf%71a_c0 zeH03Yp_gBl@ME&gAWv6!i-9Hq6!Ea3Y$8fsa-QL-fcnIeXS2HWiK|Y`GpmNcR9w(B zxKE*wO$mDm9=<}-{qhQx?iG>4=k~+nWoXP_<*f1`_~`={p1wk700AQ{D6HeQA7}Xe zBffT>tdZPjKNE`w>7DJU@dq0u7KWW4`|Ck>&L7I-l94p~s&`VKJV{RmnwgKRgrDi_ zT92JRZ-JcM)Fsgp^U^J>?mjfO&FcHR{dm6y(@(tZWp582b8+FSHr~VWg82vVO zVD-(ccC)%r_dC3YOFou;6M#kP`nq6{qwEewH)kHlp=)TeGVb9n?x_w1P1EoceRo6T z@Z;t6iPnr@Gh0Ive_=a5h^7PUJ-RUP6aOCDi3g6?$b7U5tyu9r>Joc(NQp^WjQazw zy!4l{w_wa{mt*2KgCCobZ!v+^*3Dyj(WjB_yvW%Z+uJ!Vk=*Xb$)(oZ&=(V1fQNw9 zkDxh@T1LH5yb+*0_@EXEC{OamO1D|)hZAh*a_Ln+dr;WdYT+J8S9_b{9qpUW$yuGT z+G4*#vJN00Vd0iwep;s**IFBwe0}xajV<;?30m<_p@+fw9#fMF&NanudO7PT46`h! zM5Jor-Db@K>9yH7^;H-%YS~N2FN9i0up)$IH!eR&oTRrIBf|U+vKk9dPufb4N>{ih zdyz6PiY8V4bKs>dwQ*+r5ec^pe0j_Nj!5bg+?LyFCrxW68<1|D6P6D=*4@6?b4Gwk z-a9W?csCBA*jd(5=`)j)U!X+vdY=m*jTL3*!JFJj#EO&db-&%Vnnq@II%CB^OUIIB6{R4*&XDC=7 zM#m`A%3tabIeLToq)B|jq1SJw17nv4IR@4!W@a1kFOjhr49T}M0jEu0{XZxlHl|$) ztYfd+ve6Rvu~TBL!pU=ZI}8u*fL0`utIm>dLq_8F7&nQmgC>~KxA4s^g|^{MZru|B zHtXsy^n?$e`4k^3V;y-^?<7D4?djkPKrXF4A%g$@y)FWNFiRGRw;p!BG|t58A$N2NB5Bwr@3fQ;+h-ebtPY*EhpKV7uwaUh1p*kV2iSvomf*ktqS@ z*0u}Kq{{JB9)ilql2(RHzN7xhAHYULf0#|0yfN*8j6L?z+9B%isk4$4InYseHMHAE zLC*jDN?Vj^a&+TB>_G-owM#GXa|{i5$DQ5qj88Wids`E6RXNQ>a#H759wo$eaaj@N zH-xhjfkr0d_ZHxd0q~78+?Ttq1pWxG{yCawhM%QK!_eD&T=v-4@7~qTHTdGODOpRK zzn=ywG98EJP8ql^dhW5*>&9J^gj8gBsh3H}P)Je3YHG25) zzhWdNc~K4wlN2!?kL8Q-!jZvsu(h%faDc0a#bw{C#C=Df-aQ*ZvRzJ~A%x~t&lP1& zed|aVYRWy)(cO59WfAlsEfKY_?ebc=x}aP z52aME(M#i(!rH^-Q)P);!n=PSlco1R1wj5M{bw-RP^0nxq78ZJ@&KUkp&xtfHrj5x zBzs#}oR>L3c;cO)7=bzR24$k^} z8$~q_+<%uobjyvaLDY+tuR%HnPLMqwgPKQOXIVZcOe=*praXQ!x z%cN&N^kZ)UBV`g*Z|DI-nxR59{sR>OCM)|`IuLDM#avtIdoRXz>Vk_O*GjSix#!b< z5HFSOpCZO6O$WIUhg4KG9TG-kWEAC>y(}u3;>wPON<80o=B(SEn%9)2)i+SjG-*!R zf15R~ZfFU6p((K7@Wm6MeE9B(RrL=sfY$`LTe6&Z-Cli~)Q?N)VaIo`NZK7>kQvL| zHm_gz6;wM1>;K6;iC(0&)#0`wb!4%FWY_917P0?=XNiGvFL{m%oGv0fs;5R-TS=wB zO4ku61x;Fg_O!xfO#rOp4lfv7)MR8YzqwV=WK2B#H#?57R-;7U(P(*TX8(&P6uh3{ z9rgQwPCp7t3Lm9 zzM3!ZCa4Z4FR8WovKk)p*S%rSKE9!QzbuVjUNmbo{3~!w*iR;D4mpVn*)oTbesc{0 zzQsOdNDdqnjnJmhkMZm4KM1D<6COkOvZ8WwaaOXWw}jD$mseq$jY8Iue-jz3$GYaf7hN38Udv}dwY}O>pNjZESL;Cbx0N1(4t^HVG8<{Ivz|ZnlC+af zi~93Og}E{b8^PrYdT3Ec?u;$ii*xop$;ez}RdZ@cYxMEOf=Ne?%nK7?Ktvhr?3QU; zAxgK=uM%rb7l0|Hs!5zZ&sxNagWwEga`TEZSF9rmrdU;XFYXfg?WIgCnMk zk21f2F+D4H)0p{R72$~Hu3R>rE%}Lm*W)?2IP=-PLPEG&ff&7U@sC6N4zXs3)i%L> zrJT>ATXYF%W(&6QyyC@Yv))Vp+D+WzbNS`Yu4LO-_@(ZsQVir1QA3?bmH&C_pU(W4 zGS4yAUX4ZEWaFKt?Gj<0i(lsAbREEjJ+4sk%@0^_1B3pufW7R zC8sw>Qiukz+eV|gi(u=03nm$1XOqH2Xi((fl{v}P`KMt5V7`h$ML$zu>#g({4xfrV z*5f40zIP;1<{aJ@cJI_PSW5xJUtJgM{`sIZHYYajt?N^a55{iAY=~pI&xt(N6UeX*8HmD`pz%C zMWfElD1BWK@JyC?le6K)Cc7QZC0*TQGga$b4``iqL!@!K303@^@J1sik&1S@{QGe# zZzXsRp2&))2%Id#=HY^q)kjCW*otiUeDqDo8i&|F+iX>aIi&2*LK|{^4Vkax=OAyB zXa#2Vhj&6WVwcM2ud+hajLaM&X`Cv%MbAfRhtzO1Sf)As7jiqooe|XD4Ik@a*jqjf ztKDagjdT87On``41k}bA_8S-NZKkC%Y?XHZU)e<6Pyq+QMjWo;rHN0&)upY&9vSYtj zhK)-TyQe=2Iqu~xCoDH?j_g$C-m3yJPyHjS)g}VCJq%$XUiVYvZ9^;P@&tA0QBt38 zs3@&Qv_&beSR`~p=ar(;;cZeq7`ZB6gpK#^_hBO?1!y=VhaG66rxNc~`xYoM8rb{( zKH|fha}E@Y_0E3tr8N#OKopQ&P86w{h)9Y!sM2f88B_d805Tgt$I)vgKeRC}uiQ;J zeqx91T3s?+TpxX3$^KVDPzGf^nvIsUiZnV2Nc{KRA`B}k#z0)iK(xC-5C07nB1V+E zNhw0<4YdA${$BdMD_U%+FmIY`1_|{1?F1U_1zsZW_EaKEo0InirnE5CF zk+o`F`sU6r(TwAt41YF-9E?gi0T^WqtZL#>4$Sv+^`@dME;P=7NjeoMP;{~ta!v>V z5DGG;Lot<4r)MRtA17ux11SXVt#crEt|5O#BS0mj3twifz)pOZM&cb{YEprgVSTiL zF9P6kW(~h*x6rl^!rU>p+{NKrwKC(NEsPoj%_XkkzkNstLl_JfeX8Db)q{;fU}2;4 zBcfd$e2JkV6&D-GIx58hzVF=89Wufzvs1f{xYwa=VZi}7rj9u+E)-d~qw>sxNoF-V z4H&$A(l|>@=R_l*lS@Zaun#-}kjM5-#mv*@ei`^#<1PVsQk6b*AThWA7F;DprJjKF zHXsYZ#6Bfe*sWTv#5j1gv%qnlLC>?!j6KS~qe4F%M5g5c%p@1c1~A6%mFR{WLP{1J z(guD3EI*aP?VrK9j>odR0cwML>&W|?o7PHI*}%xLo|=foQ2w-{y^W%UW+xY52}{(6 zEwG9~(Z>eoZJmLt)Jb{A@5zz6IAG#R$T0 z>>v*YfVNcJVue0nLSs}{_8R}+ZE2wyY9eT7eH*2}6iBHTHnJACW%t&Fv zhkJg`C8@cbQ$n47xj#5_xqm6d2 zbY4xcqw)#!@1D1|ii9AzBLG0Fs#aZz&iz2&iNfsx{d%};eks}f50EUp>0021i%)VlwTPy;Ml2YgK6YWypBQM|6o3K=TJO+T1cx!LlL3`){yu#y%&EV2|$p^r+ zwRZCzG|D(r{$tfqz zH+fCng%EQJgSA2|4rBL2B|N3Cpu_v?X$K!k9(vOH9gX^nvgr=ft^+ldGH$A_#LThI zQ;x1X2?qvWA5$0JtgO^x=P^AAi^G0|FCYd$sEMZ*u|sAN?;#_JfiC95_!!3NBqim0 z-J8O|mpjn8KTSq)=REDXQKgv@%28mKe=L?SInc;;OZ&crTl|B<-IX5J%uY7R&4NQd zarxNm3he=dq}QoMn=2ox6qZ)i2Bh=uLFv!A2mTF4yu@S$l~7NW*%V%iC-EuwF5+|$*<;p^I*=l2p2cYdvg78 z<8@%6@s9YBME8Q#jL)Hx717CF<~CQ6v~S!#Wf%%0Z+QIwDu*VKYmi`N71iOc;jKn$&;YN$JA3yKRZGQiGb+EAsl&1cwPErQS@=Uss3BD)X(e-FJ2 z?OGQ4PjTf)x&pG`!P!Eck{R?B@#6g2ZJe;5h{4mI9IB(wL{j-h5-u0#8$~HiCLfHR zjMFK7@cPlukaRr{$ykrJ&C4Gy_dh&$P=CON_Ig%M{*+(&Orh-0qQOX>SMwNxHx@!# z6HO~LPha0nt2r*hdC=}^Ae1@Cnw02q_7p&i*+$@eMos~ljVich*-6MDG!4$K%p?Oi4|hctwe&Hb1CY|RR)BZ&RbycN5*R42 zClG>HrJ5+h%=$X5OvrS~OEd4vd_%EShA7dff5} zC7ist&w4s=bDc*TxEhCn@mI7XLjG^B&)$is(o|N;rP3% zH7kKiX5tq`9`@BSyVvtjDUglLEX$H$mxu4Q3$3S}{RbEs*L^5!?y~utSR{=z=3VU4 zr`M@{Os1}UxU=odhpagGb7=2hi{D209@$#+W5Uv1YVZMB6PEsARow}j0T_j{cpdli z=I4-unk_G4BCaN0G!OixbLgDFUerofhrgxoPOQR-S%g6|KzOh$VZ!3mGav(! z!pM+`#Zs*%wx*6=R_5LGul)HrG;z5&0PVyj|(#yMA1MEXTe zn{qvx3!P6~Ru#Hq%>dn_rYKg7REu#Bs7qIR67x>)lsiC(xo)q3h|~+S?8h0mr0<{B z^^In0Ax3-?p?U8$An+ASB!Rg%oG45@j_sNC`bmIlYGT(blWoE7H@?^_OJXbdaah%C z7yd{db;Y`HpgiPo?0qLVxOKo`h90mMPlp01`hO^~p3ps@aQlNks@wh7=rsgWTn%KM zf&3vxl-M1hq05r}^j{S*ZrosP$6!ou`i!3EG^`f|2S-B+d^%Ic*RHq-2r{FetrXyP ze1ZoizJBN{>spq(6;bVaVlKMryu-YpC?ba#x$i7(uY5eqh+4U2sPSo#UAb}=@jKeq zkZE!i93<+uYImmE@8@w^Em3!j^Rwb$3ay5r@+ zMG5aeMqS_hfwSkK#Bx5XmbhZbQ9ueru`@O})wPHNMd}S%SdseVAm~o8UF9){WmTK$ zJh#8u6IGi*D0<<3i0jBa2dzIVJk}J^7p;q1C##h+D&?@MJV?utyt&|<2B9z&6 zLYC1j!`~)-PIlY{vigIna!M zyGy#)z}X_zy%CvaANtZ_;)((vRAFDk}KX$Uo! zMJgXI9_L${hpubExSN^*1V0#b`i$J;4wnUU3#O)65ks7e6-^!rSiMz40x>Y=c236u zcm()T3#@o{o0|roh$Yl@__BeU zn7}JULq5B!DO{me`y?4n!AsmE%vbe+`^kmxhm-PV-7V?Olud;%VzVz$H=WD0hc~<2 zz}Y}9e*9!thV95hq!n2fBwZD^>~sp0dsO3^8U$; z72!1D%!qk*<=H>w{GA7lS@VjNo8s5um)#s4LAeYRi>9~+Xf+jnezqZ|Vtn@;l1@Xn5J^@bVof-!YHDz1H0%DoOu??YrB>Hag)>$igKN?(a7 zCQzoALvoc8F~leL9w?%kpkymsS19%J#r~f{O49a6{f;*#Yl6KASypz{0>7u)nAm`o`vmFsTBPVdfzw|J<`t(~ps8=jMCG~coL z=Rup!0?LeE*9-DQc2B?4wL!gSQg`nyX`c9Uxp12a-xB4ZSv@mG4Jcad^|#_+x`Vb zwI&W;!z}AEeDfE6@#fMFg{)byc!HmS(Gb|VvYOJ4O{Fd1BcV4&n;hURJkc$fn2nkc zkv1`@TGOlvw$xxOEXL9fO$#^GsJgIU?XP;*;5IXQ{rHPFm4#x=1R&z<8KX)yels0% zVP0N!ml#yHxk`a?@DPmUNY)!hTo*j`NJv%5vW#3{b^hmY*5Z&D`Cv!x2lN{C3`31#js`KCrVw4^0$%% z$w-T5IHdlrUa-1m&kb|}T19p2_~=}d$uR$ku{7iJe}n6!Rp1OqZoTE#vk~4N1dKew z^?dEWXjl^nKYq6wzR`Agr48@y`3}VlqQ?_-OQxR(c8;P$F?ipETt&t~tIiiO4M%h^ z?oY%3o#i$`=)CON_u=Kk#m%bl-a(3a;fi0o;Y|ly&1h7^uBo~GI?o>u=LWf*1uF71lK#F+M9m%tSAfr&MUVTCg&#!ks~=QQ5fJW zVn4wi{^?ZW8HXt#mXL*&&_^`Pu8?3j(awA%P8%)qG*(4f`3d;r>6}?~y>or^z3eGb zs)+Y`YB~K~H4^@hJQ=H2qay@_&64JgZYVGXErx1B`g<{EDm-zj4snhCRq*tOcdig- zrs;=Nxh;!`8BS5H>_2brqk8+2j9b7qN-L${5zIZJ9=~_7QyY$Kj&B!cI%O0&Tj;q- zG{ocrSe);YJtXWc6mo_}L>>(VN1uKo@LUr3T18i8wy418ztL?}tWj@pYcd|!Yweo1 z1(HjkWp#4Sdlc-O@(4f*O$FZ`O1W=?Vemlh$&-Rl=S6I5kg5{Z@;+aV{QD#h85O02 z#d3NKonJ7JCe>gtPF3w7pTaN)Q1I-21%K#0+3+jCJgeq$aBe(k0t2Z?+5<`wZ|FAB zFxFj+%>wf4?GM2O59=R08zd+>KzOLVUM&#NwiK%$d6M*+{mGOWUXv)$m2~c za*&4lw-P$3UlhNcUpv0-JlrV-dEB_QG!uQ;;A8z$w=vlhVi0ES2+ImKM532x(G47g ztbFt3He%$UHJCSmhD)LFLAqviOew&bb2I88h>G4P0p1(#O@wY6!_t`$LjeYwpPn-* zmTf?6$RcW0Bk?hArvRMit<(kSoff?8e-%_?!|#h3k10on_PLB0Z6b;^rg)dXq!C`|3W40M2oicITi`qNoGI9}XH@f5dYQk${S~lW2OymC1SdYiNjWG6b&s*%E~x_3 ziPiP*FAK$5b;*jI7nZIssoh#=FlC_iY?OOc49dO8Jgw7M0yPmZU`rB{yDn2qNBeF1 z_g9TqmSqI$6B1c_mUz|eSo5LCqj~u)`tEb4F%sY7EDV_Daq$o>kNNRsAW-paCa|Si zX5};}N+prxh($PM$|)t`^fa3=0b-C=T1*1SMI=Bj<}KaR!^mv&b&VLMTKWb*G_mKY zdG;2PVWHM4pUpYlTWx7&c5Zvs-sWL7;xL8;zk}z^=N0vuSJYPpyIYt`9N@TK2j>hm zyH}F8@of8X6?2WzbJK|O-)ybjLtXks__Afo;GU`NcH_Dyo&Jy0~jHexR=ZsW3` zns##^N%zPbGv8k3!F$5W3N8n4CHLUOXo(hK%h1HhoD-&U1EApf?%Yz&hg^6OR}Kx@ zW7Oj0$yK-d2Y?pf=S?8>9YrT|t74c>m%_Wb%A1B1nS>~?i5P}ZFL~bE2cALumBZHf zuGBcDw$9|HMVV;v<*;*^Q=4n7)yWT_NW-Oq?X~l17bnGP4XkHfawqH0&d^IF1)Hd|2+jRMv4$RWy@x~1sjubLbYp=rK*Y0QXA!`7+_o8DMNTsS#ub4OpJ44jD!EWi5wAjh)`$b5t9-1##r2@#% zZyiHF=X@Wkxs1UbXbwgbEBmG3PTzBp{DhWulx)4f$AHlyg^4N%UW4m|t(EIbToXF0q?1#vLZ`12E zuR0{gv@GKHgV|^AzEvfaW^{kBx=z}9QlZX6q5Af>`b7*@z;fLmO{D9WBKnRM81wux z!b}01b%#u^SOx&_FhwDB&)?N2099s29bqLO45~n81kS-#Nan+v(7dz`;9^Ef*Vke2 zG%i=BUP_0|;#SFxM;5qovTL}eNz>@EU!3yY&-d=`2SRJJtgNfE@Gj-a@EBYo+zinp zftE z!#srz*wt2(_;(@mGuVhB#I^)GiuzEe-`?-6N2>DY|kfRK+zW>`v)ot9E@_k05&{o#LWA|n*3%Z>f4pwI-qF%T;Mt- zyWr-?`jG7(aeyXh8ja44`-UAtUk}P{)0r~8xp*ImVi8xgp8m+-YPZ+1*J1H77pcFA zQp9OTlF=j6>GF0WRpzxL_tmca)cKDkS}e%4 zAKw*JMm`>GglBStxvsY+3Zwx;gkHR!S97CO$MnPM_)%YjOm-j7T-U5(@zGjD*oAvi zhuV^E8F&5tJsn9~|ADbCcrFC5eob>b$pRk+%j%VrA{4i3K%BVMr#T$F&8QuV z6d(*vUI?bY&jopaOe1lQ!GzUdoR-~my5CC-#V#FXp^PMLz|ab7ZZU7Zx|hzZwc7>8 z)&WW&Muo3>mK|Psn?IlPi?M*!%w-*qd<;-zyXu6x#KXTUY?Dz zH7xucd7yZUnswBh>Ygb>rOEtZ=@sWPtOC!y^En<7{mu#iykYd^uia)@AQH#yF{hy4 zA2=2dz@`Jt93}cd&Xi@ja1VUALjHxuL@3Iyrtcb{DD((h(H{%|JPc`%`wG3SR9#=p5Q1Kx~jT=+8xM=qSeH-g_9pz zpqt00XP@8so25Q)%6>tk&$e@mN`9aoz68z1OLx2P1l5vJbU#3zd7G@@9UzV}f|6Yz z-7X>}LCN;&ZmAlN6NquSe5E8cD+Da^toA_soJ+$z)-3-9(;^69_~{DPTsX>t^YfPp z`dvPMx&j?sz^I`^_nF+BTdHeCbDz_ZS<~2hp;DTk!|@%3ga!-zCv=xG07Rqb(Djd6 z2dnR^dXa!omMNj%ZU=AQc=yfnnJ6<0C{j|G-F(<&#^CuT!}~vDN|Lfk>gz#i zrnXkCoxf}tF>>=fzt_EAqX3<~^7M>z%)>3X+%i-`|LW)RJ13DBNQqVq)9fnG0Q-lE zeEjCnyRa>!(oWQB`PDxhPRZ2u?|SuK_lJQ-Mb~FZo=>xV#C*u=pWM8{q%@&z!eoa) zuoDTZe*roP{8ft_;w#@3g0VGE-)$8bQd5Diobihrn7ffcoX=}<{ctC5x{@>=K$nJxwM+dxE}~RVyN`) z%SnZ+B^TT9*eN2`tvffrws3D7I%kmOGM1KfT4w(6&UFxvN`D)O^R@KTR=<<~*(jQv z=lE<;Y_#A$%EWiB7E-R|Jl8WSgbK~Gid;E=WYw@!Y?kqGy~7a_vD&LH$|dXjvLMGS z%K~Qq>mhe7&l*^#Yl})>{j>YG3brMV1`jB)UH~RNKwbJh{krtaEaecMdFA;4gFDn%X}IfJ_dO1kIC{r2^Pnbt zAV4JaO_QoU{7>Sv-927=wkz~idR*=1gozfrryUy}^KR}hQ*|6|eyE%gWicB)x-4k^ zEPRd#%vMKTX$J^^PtWN+;8c`KLn)#&2JgD+C%1j%iJ}1gs=q#=1s7IuiU@Y*$~Bnm zHJ^JNF=Ujr9*{mWI@qrhWNdaEA6uF@hj*Q9OjMuBs5N`ajEcwG z$wv%&^z#?dzH6w!pO9#seo;?*@oScay*SWJCtV?(-s^Rf1r(F8dI88klV!m(JwJ*T zK_>;h6k}(z5Amt+sR1gVMV~L0kK^3a)hKHP>QOxsLcSr}QR7_xWhOByA=ehu!I1@?wC}IT&J3&(^gxCP0fbFY91QO=2-P4X9_LiY*trk2&qxA5l? zI;R%BE^{_oC1U{^iBnO!$p@ZdnFKKPpY+Dx3&h0O(rE z2Zi!I4tH>mvd#sO+h*l@GiL1Xz^x}Bd&>Jtr7UKId_xxWwR$ZHKE{c2WHssoegPh; z$-Unrz*~9TVj1>Yw9rOcnAxzljr;j*Uu|p9}?jGfE~{%72$oJmD|Z4 zjf#b8PRIS`l>9G)ZQv7M+zK}5jyBGcOp3v#fqWwRI9`IJA5bSP3xlaB-s~|wXCM?`IYe{97(Np73c1i1<1qR>VW(>Yo3T>d;iIcBpsY8yy+gkvP3I z8+Ou~@ohW#x8XwZ9;)db{wCB-66)N12l!AYp;Tdf#Um%teX|gMp8X@RbGE`oySIwQWb zW|Gf#&SYV@rj3Tn(uJ|y#Wno#YmwVCkS_`(a?-3c!phRNply5-`Uk~|qu~7nltbNZ znz?D<+`GN8*(9QpywL!RcLs9v(-`bpc_BjWTt%E;a6HIwuchGecu{1n zB82u@AnTTag`B*HBw-|s*+Q-6w<4&O8nFvQnDY?iS5+1obxjnsRI*)`35w6zQoB=} zCq=ODiNIl8i!Sswl1mJBhGaop4yc@dmd)d`x7NZ zPiEpmKK)eSRipn(vcsc9&@#d0-g6-f0cDd`7%!}}p=Q5!)`&k}pciR25T5~iRY8v59YsL`glIE5 z3kfLD{~3Q_KZUru6Iep74ODt9$N3odZGu=zb-F_l)E|pzZrCLAO1Yo{xjAGS-8w5Q zK^%_CF9h}(d^%KWwPH3o`_VTM@=P{LR~53C)x)!QnyuZ1s~vf)Uul!K$Xy}TIw60g zni%R%^q=HYX8u4rA9r^z%$Ut&a_PIiMqzc^gX_{&E*8!A7xm{^s|gMDyNs@l7DQvj zSm2YoGyw}N5#l0I0qc4AM02DJjUINanJ*T_mOr0$+9O&F430O&uG}u*F|v4ji8vu2 zP{gGybEM6rWC_SQxolEa;bs04%%Rs0_y zHlLC#q~hxB$7ds6iF%+^hd*m{b{1;cP?O}kf<%;ARB!(m6AI$t(`Bq5p5Z=sj3r=V z8B^nJcv4V!B4r_DhbYMw4MpG(0w2a+>8%+Q8MJg1N#ir=a7|b{fFS1se&-1GIAM4W zff--uK_UwvOh136Ex6I^u83+-k=J8(y)G!XTOym0=04;usa%-u_`)R6xGwCldq%@9 zw2G&HG!w31Yu}0*sr?os)S{Oeu-4s$V$6FZOpg&`*y_4{di+i#;7v0%?41&h`9X0PKFr^9n%{*>01Zyo!c|v*LUPqDm-Sqb=RM-QOdE7 zl7dz2gaj#GjN@lP0qe>L`(!4n(WR=1a)RcAo-_F$zfLKe;*{PL(!E^v080$S&kJq$ zsNPrRNm5y%a4~&3qoS!-?p*AxhyGGv$#(g4B+QSswQWEy|dN z>3%({1e~g2MA3iZdM)c?!alR35c&+*AHdi7A?{=;S6dzyB?BIMcSe$xpiHVx?YSem zm<0(djv=V<8*(~_Xh_n`of6i`dUu|pAw@ylJ>r56?@J_NxJVu}7Xm$h9xd?l>iV96 z%4?JTavv3Oq9ym-;nO$vge8n_$b?*me{|Rwc>A?M&AR`?)wjnp+5i84?v6T22U4PP zmkv&mB4*uGiliuV$Q+WQXe5W3-5sQISjr*C-EOCJuq3A(mP3}~3YqgTEQUGF*vx+K zYuD!fK7Rk{A-mp(*WvkkzMijZ^yFaoK_F-2e0lb|V*Xf91nXB2D8x6Ln-G{5Lq2~1 zSv<#h{&m0BvQG`pQ$Rt?s5x^;fl{(D335*@`EQ+CF^b?c)XlUbxJ8=P-pM%o&0)XB#RWGZh73o{;2Pp0m=_J65>&+?- zkn_f$173Xp|7}3MW}F?I>$2$8p&*ItGeMCjnKL_IH@6eK-QtQ!^A2>fpf^yEKx+&r zPJuc(fI_AP^K>0+Y05b zTfsP>O^gAr_LQ85fM*f>Kk$}Ke%4B1 zS`wAKU71I~|Cq@1=m<3(>$-JiZ zPx1ys3~ODFdjATkxU8WT>5%B2Z2A{q_`0{EHw_*5(6uE8r6Y+X;vKsD^z|a9PqDVs zXbc2+kz&%a0eAfE!N6=2_UXW!ZXnNuFA&(qPWpBpZBxwR{C>diBO{JAku^!r!0Q`^ zj!(a}2hBq2SJK?e)xw1{>d2(jC)=AKl?=YK5eV~skA(r%vS*lDP|*Do5#;0bKvC<> zde7N19z=Vtk*)V6_H}1T#BexdOT;b4U&LK__sp%nY_^`PV3CU?vK{UGhw^sGgeyM2p6zpK=2C(i@4P10 zUah<^=cc@u{4aZa3eZh5r4RhaN`<@HN8XzZTtv-{)&M{9NPzJ$4Obmu&#WRL7F{3 zBe1g`E_%nx`88M6?`!V}dKtgXB*;F~PfPdOpckJR3_h^K1cKL$zEbdS0q;%$_&*8| z-JH{M193Q4p>Y;V!9nO|F-$gH6CMCv8obnoV@5(Usq3)jd_ZN|;{DA|&|U=0+og=^ z;8=;&dhj;Y=M=M>KqUIc3=GEq_ny-HgwDq5M~&O=$yfa)pPTe^_OJP0N^anlDHx@( zJcZW#Ev%#ga0*Nek(Jamz41yl(2yU*PRdiREqW8v7}-H`WLC0?kX4=U4loTGxCCCQ zvD8%pRwVa~nK0x{PN2A92DA0$Raz+5O1ur0LsROPn%D=ffnk*K2WwUcGx{w{cJuQ0 z%0rzCZO#5I$+Qj(^m3m?&HFdnv+0GKlZ+#JRc9Oi(H79sB3yRfRsUZp*DtR4qV8@R ze&ic-+|a3P94RGPLEC-xUc5_g&=vR? z&C6Qxd*>?i-v!Cc>el8ZPBy!h`5r0Fq%tNhv~_J|Wg)c%KhG|9_Ql(GXMS0Ka2nRxt{)6R_FWeyH}^DepeOFbmg9~E2(DMk0yo6F`pUnG)mX^wo@DXo0{>pn zo%1h#fxDp8mUHrL)5i}p@08};i}Y{)s9+o5YWb);sU@@ZMjP3@f0Z-*r+v`~qi&{WlfSxSlPkqEeBf&v4iOI{}q> zR3*XAe+3@1p^(&ezdzqq!Sda+UF*_5ss1v@vRAANU2LE;cZDv`YsG)z{7PR$DBheX zIQ_G@{B)s<6p0-dzwxXdCo|^EehrWCZ4vLgs@sn3{^FSElX@mLyxw2#+ZUgV+Dopq zkjREk61KjPL(MT;$Sf1A(`lr>8p6H8W?pldP{8-5;uizz7QWx1u&)hmG6g5Y>4Goj zFopKHmiqpsjHk;C^~mh^l(I~lakb)n+>viv-`0Q)V`t@QIbgKgn0ol${sOHRwegqN z?VAZ(hhO|zd93XC?txij4d;@c%wt6}5<#3Ii2}V5BUkuflw%uRy5x_`x$1b_R@}x{ zZ{$kR>yJwxOLoFK+lA+9kB}C><~6qI86BAJFl)1OTS4Nehu-Z}oNWu!mH+O7eLMKF zC@i6J)gxtUpR>EmNQjWdC02c%l9k~>zbYEBGcS4iNeLyetVg-!lcf1l&IO;GLC;hC@g&# z6-B1qQl=y2%Taf-HS<;aWn8;jPmUDT5Q4eCWqnuQiF;IYOyZ{`{k?+D_v`nra-2>( z+qvBs9`^LKUi|ff%XCHtW4@~y6;xEA>Q+amz zVfwy;6P514;k@HToJ&d@*~4G>NDuqj@l4lOhw%fvw`}%Qb7W_7hx?(QL;0({&k@{; z9uoir*oafjE$O+UB(l%rr|bpd`1yCF_@!%F7q&Z&mMSuL%8?p1~R?FH~Z#9UyWVfQ2#G zujd+ECD^R%UwfM@$cqQko*+{f67zXBz1Bw!>`f!nOF1cB;!i0Nm;k9Qti zyyb{Y`Kak}e7WKK_&;|XdATC@0m7s1F* z8<#!!loag9>X2-|J$Lf<>Z^sFB*dr(V4Q^zq9to8I5bm3IbYCdUfvy z7q6MgjSMQ>@ZOlW{j$#gh_1iPuX&j|UTyQ(8DnnKhDs-W*i>)hpY#ia)z-l)QgmQj z=^jv?Uu}A&F;??`M&DayCeq=;d_f( zF74pT%Eu7Uo6H4jr>h-@;$(vEmaYWB=3kXxQNvoH>L2sxfvO5bl*D+1I6hpZ3 zM&~`v; z^>2&W!*fi$eZ=W8#kn#7M|4=RF66|r9?Z+rh1eT=XX_#7zaoD>O&T)Y-lwTx`#G*R z?EIQ~0z0+pK58e~KQ`nmJEI)?qc=erJDO3+u=h8{m=>z=!;1M|S0;~4k49Q4fh^eb zS7sXv#i<(G6;Q1Ig?d{R@sLKGg>Z!5m6wpEfbY(+(}+c5y6z^XhwLJsLWboAwP@!~ zI`TuUj>^g;&l6GJz4rXkT@|m#rlYocy&-_Nv7WeZe|nhJBhRQ+oF5<3%BcqNQD-`= z=D+wjNmL5P>CDV?jwdb<)8>=iCcs@ku^gvXR_bpZP4YZeG?n(EnMRvNvP18JDBjgv z#SGdGZsaiHVZjL=Q!TfHQrIjRmOJvwe?VJvaq>5;zvCdn8+rr+kcW zx+7AM-cySh`|->Wo6S@Hx2Ggso336oHPbTUH`eXk@ei%&drnYKCU+<5)jq0|(=Cy) zk0+_V%6f1)-O=#iOjzewuSBS7-0AiE=;oTpCQo3%{Bzb&a;&cZ!A4G=jpq?-X9w;xoD@a zTw&V4a0_#we3EC+<(}Oeg~n7l{2l$IRC8aa<3d{_Wm9hXo-v&2|JKAvmy%16#w8L3 zc*p)!vdBo!M?+CYITt)g;SXS=7ZjR-b(V4u_>QMW-}V9)Hsjpue7JK@EV`J&F0|*? zefRfN*)Q}xl1DB60kCm>YIDFKF_mHu0jO9u%4FevvVoZ}z)KZ=n_PSx{Ylefwou;k zuzv!T9Jt}O$?jLGKi?meUcayHHX89hX1x1s50$b1xYnkC@e&jc;eNoi>y{S+yt6>I zzstl)Xy<}UXX2Lg!*sFPnd}OhAo!!CPUQe_9%}*b4MsAdY0GWf-81g<{mgO8r`R+F zUAjG{HR6`3ButTbmN4xSvkdNvojK@hq}aP{}Q%Kd@`XHPDkk8S!L& zxprpEXdG(MP671^{!Qp$keW644X7;iUQ+x>A^cZ$h24w*J2iglK>MeLJCZ{$7cn~z zo|*x1wJ5puus|8NW!PGXDsfR>W|i;62ZYS_)Je03?*qy4=VQ(6=Aq9$tQSw=Om`u{ zrDL?Q?wLPJ&lN(=C<((cKOo*{g)1Ch*5TnEI>Gugtbmz_JN;#cfEe<0& zoX=)Y`*}QL14<#&Is-LvmCG|UJrs-1qzF&s^{wl#U~BoTrnQ!<`Uft0m;e~HJ zvb6=E0&rm_*znXbRO45$z4pCq=F5dmwS`&bm$Re-SwFo`C~u`-NMPP7onl$MJ*qr< zb$7H6iu3l@j^AtYF?N)<(Z!kiCYnVb<~Qt1D)`aK|NhTQ&GDl`Gx$y|A@2v*YZA-k zdjHfL&;TW-Rlo{b44Q_u65k4;2!)Rl8OwmZ_ZcMp0)cspPbE~6F7_+8!_K4`Gxvo_ z1ZE`vogWZ1x1R39;VX%K-}x4mk!30@UvY~vHfqFTRuiSLlM!GkpqpvgH}CZt4`|I@ zoL&S_#FyryDttic6vHM{SlW$StS!9`@X^)XS8n}DK;WNetw=y*hx}@~W^HIlO z2FIZD|6-?Tm#}q6bR?|2OzM_VC^-q8J(bduQ3IgZr$wViu+?izZW*EHeMESBg0MdJ znB51ZwqX#E1mL|R>SyRbj-A|XoA}eY@~fuSw%2pf6870~*<_~lcdMX`3z#}0f3muW z_)K~HY7EW0UCAJ&#G`AEM$7z$z_`A1`6J3Zj)hXJjb8BW?(M*b>uYrw8=S~ns(5GwY^n+@U< zp*bbuB#qHRf1(+j_5KHdd!eavvS)pCs^CK@ZSZ=!ukEwLn~xG*?%9edN$6ZM`=d>b z(eo_pwwROqnSlc@%vb4_-w$P4=Xp`?l^VFg&O}HFx4hU`2+Z(`^aG>pzOA)|-2(x3 z0(K^D53BC!P4CV}MdU@M{*iW!Ho$+gMajPebIywiryqG!bCcPqf=_JpcNbAibt#lTo4B-f=QNh8yu+%S}V&bP_P`7Dv3(013$y}m|pL0xg8Em zRLX+J(*5QQkwR`9ys!MiICdm{E&YY@$2*X_m9VkhApsA^n7bOf4xYF46i)J6Y=>e7>x~QK&rN?)*Et(GORD8gms!iAs;nVwl*9N!=86q(MykAmon=C<@@)7Qqnojqb;?fa}G=^ zjo7smsfn`Fx$u_bbDw}MLqOkXqTN<`H5^V#r|@?X7Ov0-F&26HSI%MoCZG!_?Dvag z68=1!^@mpVHA+A$P9Vea*uBe3WWJfq$gD>qE1jz&ZF1Gfaei?5%VkCO-Lw1JMuiyR z^_0&ZcQ1?ODU3$%q@wjv;&5I!MBgoj3#G*$aFi<8@=-*YtCFJhG~k?ZADrX3HzGTB zvD7i0#%2frrmAf=OKA)siPn}Llm2S;KDkW>i-2*ck5Ggxe7QU+I-|hYi=gNT_lmEU=zJZMJ?>18|zaI-S@DDOJ zg@3$qH92FYA*HlnHfW=9&6;DnAit*Tvg4aRemwZ#Y?CjAUbflF$c>jpyu5=RWQ$Kf6cD&)%E;Pl7{kIfx!#>JH?|wp>2h zo5L)k=(^P)M>O*iY$e_DIA08mqn$f*N)Q1mO4KX5{P2{_M_Y*w5>qcCjOv6X&_EoYwN z;$>U|yR23V?;Rb40Vq^NE`0f{KL{96fctR#F_Z*$0bz0TE{IcU0_LSR0l)>oefe!= zQJ??kg8RRv%5CHH*ec5cp{Eul!FnM zAOOT^6S!}VvB&Ylcz}#pNeasL2cb`7Z5?@N8|VSovaJoF<-sXicfJ)^tq4==WH5`) zJQ9KnFcnt4Z7ITg?NW>rE=~|nWhMt32*DjljMPocr5Hhqy~}T}?gtoo*oz%GbubnU zcHE@s*I5xHc6vdXMyWpS1`M#1ox_0>L-nZ9gw&b$OAbxZAY!&j!%>-_U;m%eJJpE) z&jiZsL^RVy0*b&0j)EXq&j9?&gTS=r<8iF#P3*h-2D4oeOyu}Ok%yy#iw-fO0lGmOEFLOTw|ErjmLcp(frY+Sc}5`0C$M$^_k zxtI}g1fuPv7AD`!6LufEflq;xyzL=&KvT3Al;sH=)m%n^ zD9xYMpGsVcm8@IUOp_96VF78T@;Okv9tsiv9;6Bws1Oep5Xl}Jph(NcVMh)xEy?u_ zdud6U_y9z(J7m;pf{uU^rGP8qkj*<9I3NxRb3`M1??h2t=RN#91AYOLQ$_0h=#eFx zLB=o-=fOEq0l^X9=?aqk@;I@HPh|%1$xv*e@MCd%*e^g778V2BvuiFM5!V8oxGMIG zf4>PK!45~FbBJ9vzyZei-mHAp z=So`t^_GRn73zJ&RZw)n@xhbN;&nluS;zGp40y4QAGVI-s!zU${fK3e$B&-_3?|2( zp*dfvBS2IA*JFvio=ELf0E%1a%ZnIEr4 z_!oaOt@BKK88~^~yE@FH+FI>Sqd#d8+kb}T*0M%ArWwBi`IZ~`+Gz1jSf_mbK5Xr` z%>Yjwd9)|yUHN>hd8xW;LXqpUvb${NH{n@!abT@0B?VG#Rr&{(a&<64GGj5}`{?Z7u6BOH=+XoU}&+x8~ z170vKhS!Os?a3{ik|bB zZ@ynWCiUnK%N?`2&+bF5)VkK?c|8(Ha4)T_9bScIab|K%UeAVmcBF%`@?G){yi0sd z{Pxul+we*Mmsbr4eCSGaO!8{pE+GRU*}h>dqP${ip2zv-YQpjiN}e;r&dW@_??bq8 zXudjNUfAfhPf3A2Xlm)d>dSIoG1#=6yj6Qe%_V2)BeP+hJI=b8z72kv6W00Y$s=XN zD0wqq9m?P(8Vm3B6p(b};Y@AT)5+i+ePWLvGX5ioKdsK zBoP>~k%oMI?B9&ND%pAuW1|8B@fu$53Df+=oG;h^u?v{kygd7C3+0<$zpJQ^s1jQb z_YsF3NwL3$jf30Ri%k3k`07F@1Z`gy$yfF}x>&+T{@A*Q(JKqqwmrYhsaHHBT5Qo( zK++*@sDq}U1I4fi;vpP$4N_del4J?i0m% z5-Nw7{PJrK^G~mx|HRj2tM_Vo)KAOegwP)JPoLR|x?Z!G8X+re(z-ft5!`M?>Uc{x zaGEzH{XZ1YT1svCCx25b#+?r7((h}29Dch;amSIV6}hLc6!^7&u)fc{tg1|J@}@Yv za^hKa-Xv*`Nq~M*2ZiK0*rWORDllEmt=AU5Fs{)GCL*2rU9ncnc_|A_9kyiMJFcsI zjvbV9Mg39}3ixi(ZKElrCS7;J7PwPW$l5N-r9*^2 z>w2OJ(I&IaD~Dz>QwfwMt&^BLSB=)@<+i$;D_*5+Kd$m3OZhfa&?f8qrTh+~Q_=hB zCD(<|X-MAb{8QtLPrL_aV=OL5Z2R!U$N*E!b2yYR3m*=~g{Fi8nM}I69n8_LXt45RyHmN%|M^zKuQ$`vH6o)gA*^V$O>@$XrO@8;YcV|Qq|Uc3KWD$^+t%orq>isb!qlLXFdfjFuXm@ z(<_UqAzTr@H@Eu8UaqWFGDSOZM5a&OV^26UGK2s+mx#KV+_6i-?j6)YN~ZW}G?Gyt zKt$CR*pF~y(SzksXO&((i}XsAjg_B#;~=ZZ;b?=lQHR@H{bL;Nudl#h=iQOHpsDMH ztp5LG9D|PdRiWYzY2=kYVE1(f%r`STy{DDVywSG zV%GO5pK8*teUI%A9jg?vCm0Gx>A24UVEgJ7Z_f=$DMIIjB9K}?TUQh^(oUeSkq~=k z<8fsp7v_mZGh1#vW8vQ{&!?LF+(0*f)S%{_^7M@A;qw1ts#!xIM_G8|7*)}Ye=Z=P zNeXR>@ATu0M*TtBu+wxrZHbiWY<>oAe6Wag1IylmIY`G27=qq8_s@2Bo*?jWM}Nii z{PQvPCo??3b9th6D+-r_#p!a`^OoyO>iAfPOJx!vTps`8?jvY1gZ`wew74#iz z4K7fwAE2X5=c!CuXS+9Vmc7XPG#$Ix(n_%i8jLpsk{8wUIbIUU7OXMsnkRCIl&Fca zmd&w;!VXK?cYIBMp^b2o_lXy+{Hp38EKbt$80Ea=LlUFd_mW<0sep&kr|tZxl<5zk zMT{|Q)19TUdFSt}{PWP7VxxsfLe{VE{oP3dj?)`irO-DX3Av{o3sOm;ei-IH)=QPNx|ey*0BMq2#@FH?sf}!> zetU390NVem`bvJb73%Tq-0q^~22$lK^f9j62PgOCwwSWRI_0-_k?@wGcfDg3H$H)L zd;a7)D0lh&9c#KdTw8S$=;z)2toF_@AQMP7Vk%w7+K_Cm;EV^+rzd#Cc7PQW1y?V8 z1msrhpl?bV|NPkG!@g+xw+kmuD?u3K%8vUN_BsO*!bbW=vlHKqWWM8-l217-ygN6| z+G5~>+MUK#WBDxjtR4b;AKjoy3-sJF<{9F0cUVd1off>^_%>I8iNuFNN3Xt1CE@PAv$2@|e5LBwf@JWe zUrPcm&~vRq&E^19fvMiG{+3w z7eMW*a-7~va=bn6FFha&tGjs%Vz9<@D1<>SsOHIc;^;L(lv?}BDQWB%LzP85_aZ`W z#C?Z<3Hc6+_Sp`!;P?HqI({o+D!zZ@B+kv7IH`qgM%5>Nh_kakrR2-syWq%h9ns!x zVcm8hXw=p1{-?0T##Kiig0CR!G78zzgh}|zgVp@)%ju$--Y*i&>>X-DQmKt%SC6YJ zM0jX7HdRJA{;N z59iNoB{_cBZK9EdlB00TniYmoHD!gB3*(R~XTppvxW z52!cO6i$rv{Oju1U>r1X5k)Ne*xB$c=>$0QFh~wmkbeqxzvz$;NU^;RNH4-RtEx zUB{oAYL8T3OkKl!>`-RonL4y!e|g{{&9)@-V~3vot6AHtS6doB6$b+6=Xvpy-x&J} zflHs`@h#Di5(;?#?fU6m7aq3vlCnEmWp^T@%l2RYzj~p>rPHe2{BY~ey!ZhnwjTwJ0sDj?ha*spU1-Q8V^so!m`^~Kf z**rp%-lR!p`Z|AtJ12EM^LrAh@#h8E&S$GFa!h}43d~=d|cB^6ztC0FPNY6wm zri?HXlDlW;jt$Q&?+gd}6sc5PMr|aMeRS+szdm1Lx-@Iq;s;d~_Cn0)wO@<)n&|ye z+I8-X*8BLe(k*8;vat$pD>1G+IVsBLA?wWvp6OYmSb)f?ZV44qV6f@DC-8i&9~)x3 z-&qnSa^Y5C+Z!MV?QB@c{{Gfzuhd~>`t3`<)_#+I#=q!vY0cu**>oQ>Y>d@$@5ZQ} zg0n9KEmUmd#BtY!P<-jT@S0v^GV>CrXKS;v1;chg}w5 zleClHJhmReP%he<;YUu7A$(|yFI{tur zt*!9cJ4|)3(s(5VwUUTby6BwgBW7vT0gt8{$Xw=ZhPxj;oc zV&Rc4IT`{`^CH^cMNqF86AIU?Le^j^>ct4n`3!*zk|pD{bE5X5h^{0OuT_Btev{(( zkuC`4TlxNV8VUdIzT_E*mMure0BzoOv+DM_ckJgMB!Qtmk7A?A)?Lg3b{5T+NC(8Ji-M15iQYsUg3s8;Erc zPL3|^M&H}X3KT@lRFL;dot9XQ3O`>0?FjW*aq1R5h@?!yn9QYVCS)K<;Iu-MEgv&t7`WO3n1s6F&{Nuhyks zh=rQtcyvRf6Wp=0wjq(6|Ah(UWJ#jHptfibFh(K*KBCm+&qu|{?Dqn$+7mu*r8j&c zFFDv~A5m9KFlW*xv&Z}BmQLyO`?@pZflBdAIwS!fu}bytp=uG4^M?`T_wi6Km~8E~ z1J=$>etvD;Fo1%s^GeA^fFY}R2n&;v#qh1^jozSKATfKpr3$+Rd5J(G=W z(EEclM3z(1rf!FKPj>kh57pixBCiDvx{jQP8IB3eUkKnBxFl!&q6J(&T#A@wQYiZi zlu6IX$wXEV`%xUa`O|t%NQMUMmT6ubI^eaj#ME|yJFd&*MlyeV#sxVOIX z7q4A#o*yv%4Q{Yp!(S-?egd~c1Nh|ypcWBw*>iN#3;J(SS89w~$${H<0CS-vH?Ln3 z@~mS2Xq3^FKAUdhgD6u!67A6WFw0zVu24SXB%(ZGrFrz3i8$BlNIi?Bo1dG1hKODS~0P(#1Smto^b1~1( z4&Z(U901JO+a^(0e}m7A))Y1f+Ac5}G8{`4pT#`paNc=HE0bQQWqywSq7F`Lfi1Ef zfGvR0WE_+Km+F|fd+~FKZF(2(Dj{dldV}0|N^QByCaRNKhG+F2Yk05=lPyi=N9Vb1 z#WkiIGG6x3wca)SCGK2%Zpcy+o$xvwSBCpWD?x~Caj4iX3iFomkx(ba{l6xZ9B*bH z+-fDwY(<%+EnU1#bzy-KD6-&9WvdM@^~4EhXvHgG1rUen{Rxs`2s=F->q__841%~t zL(#mZ(0CN$UYi7Y4@+;MN1>;qr#1bDKtfTYKzIo z?m=*|Gb*Fkf{x|fD*xfl%ITIIbJr=)Sg|+#RPVjg{nD3!Ljs|rlpZ<0)=^H@w*$11 zqDd%<$0^a#)3<|e4BVGU50BRnD`s$2ubV`QB^9mwhvL<#e3KIQ!Uw#g%t7G}OUICO znvx471_E7l%!X882SU4Um z1`(K-_(WtzsoD2LUNZZQfV5hk|e{>T%9L6GD|8H_4j|dAw21+UV8^xdNtfB%nxnMb*ds%h{d}f3x{q1JJ zgrQcz3QCH?sO!i~VRGv_-njFbji$>7B3)$DrNeYBD*r|s?3q}+*8lXM{Xo5w@kzqo zTjAh?B!}W}AY2r=n)rCGk{0Tnr=?A9$qtHjA=TT(x)2m@UdD!2d=GYWPQKZOwL-Pk zVZG;g^C^C7%9N-}PB{4Fo;U*HMscW;0;r<;VwYRM>ox=&2!vMVCzzgJ_R(1KYsEZ-D!u`e#C{!N!GNQf@KA4&q!C_pccjoA~nofJec}L4J~JD@6w3Z`eFs{lt^x ztl_UfaZuP2M2b`Dc6B?n`{Ice*+o^45**%@vfo%f?q=a&a0 zEPnGzLT@%BXst_^hZiKL_(IG(lM9=JCm7ig8-p|bDiDDRwMBu|$xINZVQtZ!*2|$H z$%}s@)YF7UCIbC>jOu@Q@z|Q<0WrfedNIjdz#qerkVmtli*!8)DQ$ox6n>^&$VDbl zdqJAJ(kaTtk?mjI@2e1nd+xhzfx&BP z$oKV7z^7a*D0MGIQ7qi5p%&eX1A0>knQ^oIP!EeF{S32?Q&nOE`d9;ynDxkz`_yjO zLOmN0e|(x1nG)eh!GFr1=k)lEKjAdi@Pfsex(DYmMkP^K`c4mv3`#nP(kU-^7YtGy zyaC2N)5DH1_=qz2Lc?2#PH`YNoY!#`jGqbB3>04C@eSe}hdaj)sCwm0UY7NqXI_b@ z%xHq~J%C5yKmIaYF;IUwxR4TfT{W?5Mx zE1vI<^!E6@zwH)~ZN_qAc7 zv{z6p?s69J^s)zAm?EF-<<0c-n^FKO68dqn(>txD1V?7)y%#E??-kt$YKZ59V0^3m zqN9{{fsX!aQ%7jT>1~sQz474>smbWf1_(zm*p4+f;ZutDT1fN-?jX!^Q#w4x31hJ) z(X(_gQY1fCTNp#V@fo@W|BXGZnRh@ah9yY{ll2?QJbMlbw-bD3Qr0E_+iA)ag?FSq zErSUwK;1*ftv&(mB?Lvl72*=vi@Gm?!wSuGD8{J*G-rg0Z8K`Yig&Qo;kev3P+~#7 zs%PXt%IJGT+2dNT4{1GQv^tG|uVK0+lt*FDmS+4Z(l8&SK9Ud%qwVR+dq9SVQN!(& zv?aZ7Y!D*-79p%{8Rrw_Z^`@BcQ&LQ3h!0CR;=5iIsREFV`WeF z>zfKu7Z^R(u@uFmE6&f=r)N5gk^u?-(}>>LcRRAckLOPhzja)xC6 z`ioama(U5MITOBl7yIV(D^0j;C~(#teA9*AUr7jfFpoL>%Oi}>S2M}<0LPrebQkOk?% zUpuYY25KsyKuHk5&T$dpEHZDyCQ(9^(qm)az7(eyJ?d*o@xrOOwLZX3h2q=q(7=!(zOwuX5d8+|97kkg#WA2{A5(qXmZ&x2)-aALZpw?xBV@4 z=IOp+)OSR|0tgdq85vGEeDtRoR;cnF0IQHcDLpi&?P zdJ_7xdEE>N6>;tC8utOJ+J)Mjl5yvA#Uz(KGb@U(WxKL%Xim4Z(4*F1)`-bACf7?D ziUJacGJ4=d3>^0T-l}|Cs;zjpZ?*u@s8C$cyKnSY+ES%VGcSXJSOP~ zm=X{sRKK@bK^_;@iXA-hMj|9l6>Gk599PFT!$Q&iuKcF;DO-2#rkl@lj8m^Cv}NVE#R!;dJ%p+cxT#udawdbZ>FK zCBlXim#bf|0g?6&G>k+rcEdO-3sDGxsCeryamHX$l1jy3!Cygfc8Tq=anFJV(}cUX zy&yFvD$y{iSi(`+mU}1ri&*k!)K(v-XROqSK0S4b#rcUd7uB}-``Dq?;y-qk=a4g& z*6yruVT7M^YZ#7U^ZHb^X+W63(_rboSXl(_n@jp9_2)e^Nulmj2K#sonKGXM`E z0PvD>$yrBudSEC>t+cvhDV^qxH++I$*Fb7*b2Sq0HReps7V)YuZyf(gcIaG|(zJK- zDaR-&$Up=R@yv)*XT&B@BtSsf8#XW2WHjC_fydSTD6%S`yueD=m_j>6bQV0umoX&SQ6v@TwQz!o(HQbSX(gy)yD|B zc0`J~0*qP+YVte)RLxvGV!Yd|P*qnOki~xEm=-@=^SNSKAT2tm{G8Il@;(1qsOqUu zoU?rLa!c5sppcUdYA|}u!P*Lu3Glp0?6u}`UM4*5(RWF2@a4Gfo27q|)q!~lqh%JJ zmzd(Z4pa#)p+~uV|7V1Y)qrv{4)0BmZqr;EMA}@<+-5H3L3* zXoLs?sS?hQX~%R?nWb+`As&4AS?tiwuZx6Kl?$K3>`QwLTLL8{6YJ3KdVEmKhq;dj zFU4qiCXHJ5Ra|J_srzqe)6nde*lFk6Fad4$(A)>)1u9(@kKDvSmPJr~EULNUG4EH3 zjj5B}W-7L_sUpf_o;X4Kd18!^Vl)?cyUvllM+8+YzN`Ezt~y5d3>YfY?%!`nGA>af=gNwFJpZCafKVCoc;=#%72dr=axJxVX&G zpM6SwCQd(^`IY8LS;K#y>U(i-XrZX+&=%PO<<|#Q6zms+k1-fSBjiTW_~T+3dF2v) zQ=28Gm1`J@eM{nOM40=1RY)qekI(2CaYaapACqn``AN(%`K;fJZjrhRaOgC?S6((KN2aHXQL}Tsn z)~Aejkpr51yU9^U*R9%oTL&VJE=(?tytLeM+jzIR@t?_KxrE5b6}Fqhwr+mlZASN& z-VcVSc0f#wNt}zk2&I*~2bk6VD>e_?v!zP|0zBo(k6+AT+hXMfH{Ylbt#MQ{=f8$Q z7#5`}qM)B(??4QUFfh?8e43A>5F33mdKimhBp^sCQ<5~Hv*o!r`tuug{= zC%>Z#bbj?K@ZKAs0Rb;_@nG{qBw;pv0(_Ck^Le;k0Dh+b=8Jy5sqg*_CaQxF&kK?b z5W<}UK9Zx+fiR2^lY|0&Wt8Rx(Ohd9^Y9;H>n_8q=Kgm-H=zLzDD=!vPof zPDFbM__dI}@LQWYv}A;DatLAynjuXF&=z`QiB#dhr9-uAj_uoYaNjcO)yh-HVdlMG z7P(qmRx}bd$JIM;B>F|Ky_@!iJun9~5t)5(%|+OHBLfMZ_@$Y_%o57OTsWh<3eGQx z%sp9>fbo@Q^51?CuQemG;=i@JL@llLsY~M0T2DBQh>yTNTdi7r1m#RNwtwjlwsRO} zIPsqpSav{zWN^yF9*G8RarhtjHX6|tl>4v&S=(rf$CL=vKO5mmlxRi+W=Z1VT%PrxY!h}r4=^oI~t4r#%Q9%_v9FCmQxb;`3IJ;3Nhs|G%_aiVuh6OrRQ1l zFgEv>x<%f}8$|Tl1Eck;IdL{?zi(N4j@)ySf2lTtdYHxN#{7Euk?DJZkPC zK3QA*$HQGUpSqTj@4VfjDXJtW%;}AQ#e@+|RtTr$r+7?LFIJwrbf9Tnitn?b_cMWJ zpSwiS()bLIZQj0=!`@L%c8Cq7XPSNLsQA`d%c)`Foll_=Io{$>tl!C&xhuLTeLcZC z>xEz@5K9Pa?67%6da8&wJ*!W&MJ^TgS=VCC#m`Bu8 z>E5M=AYp1~X;8`2rEzH>hn4kfjZ(E}V@BT(ify}wCkIVc36Vu$t0i4@5c3mW*fBLr zvGY7>S9)In|8b4c;X;%K{0Dk@a(79>spvs4hkr+RJQf;32IAe=HVt_e{PRo7(Mdm7 zXk-u!(B0u3;);zSs8k2fxFlK;v3+hr?>W4^c^|(A(^nqB)^6k(GVKjjDBzVpxfzx7 zIt<987?n)YiyMIH2fBF;{zLMQz4jbvb`?NXg)BOMh3Jnhl4My*cVU1)it#FWfP=F{)gB zUmMApwpMT`1z-BuyRZIl$z|}S|5V89d-T6ma5In^vsvFk40i^PG>i8Zh)T5z{Q6jQ z_W8Y!OhkXcD*f75zE6DiEe|DynEPK@IqaaRzbco{iEYEW zVd9TK;W{WGc-)?dWoq{?LZp0bV5|C4&~e7^vfr*Dik)MndL`=D@4}hsg4Wm2o2x{I zxoKy~(;M(F{1w*NpUQ145SqA*xHe#FoUE#PR0EQuzp}FuMzr=$drDK!t zk|s*$Z}xw)9Jq*_emeXEsFWY^=~EGv>k3K#XL3TUDuhxI5*5J1_9cJ;zw@L4P3hOv zul?}twVnA}hPwf_P&3}mwQ4gEzXyr3E$Sx>NadnR&a91p7p}flOOF-~8s&g-?MUXfCk|l381NgC>5Gkd6~g}$>31rTNbZL%?h;Y3O2~?WJ-Vu{ z%yUE?oIfX|Y7)sBaW=8-0LN%6mMxjqk2+@^E-q86qB-mr7>bG*#bzPoD;mNd87D5y(sEQdF8N3 z-W9(C$gZY(uoY8p7gy3`8n!rE*ZV$g2yyC#QzgjNx!`47rv~`*YX*>POzfuF zRr5TZHMLOqdWq+wmM{pp!*B_NW+v_oT&xyph2;z%QfS-Z0!6>$F@<(jyu|E@`JIml zy!qR{ANg;`BJapJ>B80F$FY98YoaHKGY7p3ZA(eai(YRVks}neO&q?n$|{*7vx3Nt zBM~lv83wFp#Du@bqr;N3@Dxx{2?ROzVgHXpww$bwen82Qg^g6-;)&${YwyeBq5Rs1 zpGx*nDwLQKl4Ul7sX-DdNhDOV#294BSh7nhDon^yiBzJD?oCLVfh&lpixT*O#HTXDgA&YP65gF5$j)Wf}HbZceS zRBiz_&pA7PajII0ZF+iPq9U4qHO4ox5VU6Y1iJC&->|f;t69qF9uxJ1OIi0`F`+_~ zYzv&45aA2_7v2Og_8ZukU!UdU21~Ya1)l3#R@~HlY-lQT&QIKJbQsLeuG;teXR ztWLu4d$@}@c_f+1d8{fIqS{{X?@rtCE*m5Z5Y(JW0`4A-HTUJaGE~^6vzyMckxR2C z3|EqKUwRG%R#G+UPbZ)DZ(e+$?!xH zUda|_Ay=o?@9p%HAB0whdUfe6>07oJkG-cdxe-|iT4jfWmrUw9>+g3ekQ21cYBpM> zYT}C)_NKtqxZGgZ*0ssKqjEbt?{@2+D?Y39nbJMC>=3BvE|%)Rjj0Y{cvE&`TL-$5 z@PZqfpbC~}5xmHAg?UJ!P_HY$HVX~$3n4FQb(#ivar00B}I3c_PCu{cHC7A>paL)JV z==Axr!8pOZFs^xZ_bx6O5lOJWka~&fiVSAH8mwuIQ62>BJFIF}{Xr=+4~>W;;CMHwu#NwVyYN0}@=V4qKF zl1I`Pv&02Wi?3rNTv)K67pCq5P73TVoaX#QNcRA%O}}ph1>6rUH-}F8WVqzB^e^hk zgDT%XU1IiGVj@@6pR2;IjPqDjjrA)9OoLA(hwwDA_t$wZ6+sen%pvN;4{jFlN3C%) z*z-fR>cf^KzFxTpe3l`mM4h_H9zsV%sH+5R ziiIM#s3M~?PZ!A|lLmMCT`-sVx31g>8Y^hw#Ws{pE#GV$kgc|a=CZ&f_wcNNsr~*! zaGDpe%Niz^u1LfP>z=g;x4S2w@99f<-U#h4<;=68|6nhm;R(b9p z(iCshQBOvjB1(@7%*BZKV6Ly4<&3lbNnj0I%-{o(WQM#)USVU`Q$OCXDy*}ccsi)N zW`N%`?y-FVoDx-6BP%CUO>C#LN$-%(pK_u_wVJb5MHCgQiMa8V&gvMQ2W>J%lu6O* zI(@TZ3f{aZW!>0TmKM6R+!GtO*D|vf+D?oq&P>I;G|2B0K2)w;>wHA^OoC}@i>z!! z>*(nnqw-aKq(Nx`)>oHgBX3I%`yVqZjG<>>V%v{BN|#j5udZajncKh#mN=o;K5I~p zi@beQp3F{)Q#{|fOI_n8Z<~%M?osXhDGAx|6{!)fN#A8u{it#t_? zMp-k?RLV5S!d?ta4fmsE^;#p~_tGaWK&rE)YVYb3YK(Q+Rh4={qUyDKMAfKP=gw_(U z&A1%A4}g`>O;*oN`gCV+yar~%Q^doD4HJ+O7>QvU`zsNxB`+ccmDxt@z!18! zHm&8m+Di7y-I8vNU1YmWN5Gz?mhCR!O9{U5xZ&4eqD+)M!uN7#1*b-@V~3+R=e3C! z^iM&UIDJ#IqzpfeC=t02GW3%NMc-vcji(bHE^N${h=Mc4XZeYetaNUE#Z&w*n|aEX zH+Q4>^T#Udekg-B0OCto{r(bESf zguO-f&3-+{^{D#=-QnZqS$c&8Hb3B)A3Tr9pR(jE7$_0O z4GHVHT&rvx%gS)Ao>k1){OJ{C^j2pZr^?uZt7=4&WLuTQ<(wOG`YyE!JW&>~xU}}> z(yc>>soeQd zeC3wftv8XyX25B!L1fMX2!87eHf!EhNJ(a2T1oX7-nOQ`kvL|*8d+}O zJdv#4+=&x*3f#ndKBT|-DM_6CEOSgUIu+&Wbvmvr6MS!jPF;{g^EjRL5T|sw9b;%v zyY}VhzMtB-6^AbB9rM&?p^jt4B7!q*q$s?$nUpT0!3(W0^-<7oIWgK0NI5${(Kzb3`W^`1x zkc9;Z{KC_|jbKtZ$nQWxpVQrIw-mr;>g#=Z8d&S=ij-kJ*3GJKA-n<0z%fT#83?1n z4L;ia<+v;JOwaS&3Age>T3GanV%B$MSNZ#reOc3fFag-_)krTE)wk!m_?F_sx5m#0 z8#K;7s@YjRa=WK0#cZdoWz@r^hKIEk-2;%e%2cuCdOEv-%BsK#&$C$(gErgWCb>t8 zwb}qs43EFwIJv4BoWB&XpnWUnaQtzp6?VfK(Nr&z{jY7m}QR#79x$O9jM;gfwn8}Qqt4r z_dXyOK08^pMrvAB|4z-* zEEh3ZvUQkt@R3c7&jm286%7`OuRb7cuJ?gCLnAWPPSt&6(lS8^HU{>kXM@(rYM=G`^_uU z#UAI#ZEbhuTAz1Er0T9KjSaQx%{R-4dFFNB7N0#DbdKV(EL3z?krMRihUTVd6mGIp zD352S2|rKN*~ra4E#(1>$im4T3dg`%u{$cJ!@G~0FvhND6yDaG(VR7xyPmb@aPo&- za_qr9o#EBnI5dtmdp|$e7hd6`K0-2~?1|6#G~;x`_-b@I%lsQo2ceuGg42GlyPA8F zZBB|NnOVMWM^N|s+3sX z?XjPVh)-uf`2&j;oNHlt+S5sFbWr+TihBw&YS7zF|Lt76w=Fm{(PLu70zDygCv=>=$Xwnc%zH(s!}ihC`riM)3M&VhYD&sy!*-G~_D+R$5Xm zVY;OJM=PMuVo}BlbS$DNr!G32X5puHGoUid`T*ExXy+%b5#@iGJIdX4ekx9$Y|!2E z+@m}mBeba(C0D~x8Uj!iuz;2u89S&xoK)qBWUr!18lMlU?`q~Qc6vK&I@8ToH;_lR zhOn=W370mlqSd08eqNVflvR-Kd5&MRbzD_d|IC!#X5(DR7vQ zTPf5$Yva8Mn*kRRCQZk#cIg&294O<^8V!DKotM_vgu@hh{Ak_4C0GM6AkpX3s8)*C zb4k45bmC!VoA|i1TcCVvo7Boft@g<*^zyfE886$IQl?4Y1CVNL2NdzR;87ap(Dr=# zUarZQvV$qLu_DKI$jpaqYs)fmFoK-g<6E1%^etv_Nt2=t|BA+s&&)+s6fAfTZ6!E8 zxq3PCaF0dBIDQ>oNcZ^bW5{WburPD3+xFM#SYN$@6Z~(dyXVNABry95Z@qTFwc4uU z#J7F^sl096#zRCow%QmWC!xZ-hYx?X&t}p$Suda>By;a`pyIcy0 zc9&-CFh-uh0QIfse4;`kcj#{G;l@bYKt)Q#IV{6GB5`eqye@!-R9GL?bV+rKxYK{Y zGf>ghWql7KZYRhB zDXLyRum0`bdX12qk0_auhDPS~CZ1nsI(_1<_a#~JfRKP`N%yC+IY9l7iC zh!WJBa;d~uk@7s{=_bBau=(6SJQZJih-`IlHH$x5dRDHCFKB1aVG1abD5CFE3>J_Km~&GyQ#uo4OKj1>45(sHGv0@qPDIwtGRI2-~FF z)X)Sve}7wPyhw_FVyi+R4}^~!O1;|2b}VRUe>8C@)9&?>vP{~nP|NM_CPfyxjMo8t zvPG%=YQ_p*V$p5hR+XsXI8&hXOi6hmU(huj;@7yg`&PWx%6l_S7i`jSc@Npp>2ZT0 zUeEm7p+c`S*{Nj~Pv}-5H^%UUjkncH9C1f>IJ-82z<@16BukOau5QcdA zGun9L$eal9Jt>Y5{0kR{AtwC>R*MA5VclDnkdZ90lf`2AJy5=7LIHRXD-evDfUU}a zYhf7^X^|RK6L4=q{*CJ zDnLT)>T+$Bt4Q@9Pfg!6zBo>I#%aLP|{UWYQ$j;f!nrqXVdQr44hjrja$+=+*NaM`v7c-E#2UU`O?UI69Nt!pU<$JEaRM3Hs?kNT3o#BL!5XRGywzg~VRMoh50P1G6myE~UV(QrtI4ihQvEc@9>09X;`h z2Y~)4Z^l(X0ft3L;|*+Hy7#4T)Nr`{ru?O&C4;zE8v+RYk52R-!PtpLl} zCeq@M6?kz_P4fV%%BQJOxJ1*(@r%ITYB&pw>L=jiFblKnrPW*^>l80_@rGT<<*v?Z zcNG+c4RcS$?WD4uM&~q%Kk_DGt5nI#4uMm#Vg8nX;!BmH(b$NNmz1 zGCtC8av|Qfq;$hU{fl+LxK6e{MK~j!p}W-qeC%jgG+oum+4Xq*yA+lIAmv)+h2)%1 z?!I}TpXz3o+d(>-M!@p6CtbzeRrNJ<^`|u*W@OnYk&UBzlEARQ%vB0(ufL~CdM}K> zRMlbt1byZgDb@)9KEe}N1HZ5#n9!T&z2llCvgMA4V{XF-nq5ye(v#j5W{XM;Sa_SI z>0ms06&M**5Tw|_N~sFYCtu`U>uRnL65)10l)#(9o{fl>HfIh$SY;Hs`w@UqfDB&D z*vvNaN?MS0K>Y`Y&h3e^dH_cC(0X!0frVa*M+#Yx0%nAKea@CSH3R)tIA};u_NSWO z?5@qiz+|8Bnmh_oaoI0*`K3>Eg28ZfEHIigV+9Fr=Eu@7hB?N=@;T{cy8zo#Oq&=; z&yS1^=(!v}-?5N3xqPuIH9jgnQE*ajA?V^Q*4u2Kw^MeO@sVwXV=aCV%k)Nen zAOiIRi}oI@oO`9A*p`;s`Y4u-Xl8REgNdGJ@Ev-`J%n##oJnLVD_B$67KWey+_)>G zTj|5&(!-M*>o-xOr}e!~3-wSy!i03}z&Ucg^Jb?yLR(NxM@{Q|-Iaa`I|=b?lyEhy zE6@iFW0Ri`zXK!v1|1wXarhnX$pj?re+ei!<{puwX8JQ=JWN1vT18Aob7D}!O@M8r z4K>o(Iv$?1~*K_C_ zdnK+{^jSgf)=O%!Dtdc?#hV-VR_Sx%&dJXcoVZLwt)Tu6(HLPT4Rl<}OP+(;dv-$b zR+e7daS)QZ&n&H+N#k|_%oKP|Ka}@eDf6V1@h{I6kqoRnDLwr19?Jvr@&)sA1I9HA0+~BGxE5@3^qEwT z*qw~-vTw_mZd9*mSz*Oy9?r`>gHi0-Hfv>zSInOlMxoK-EYw`SP8 zpu430Dt(Ek&N08>zCiHy>(7VvtbB^ZZ>D9VFjt=IbO*IgPs+YctPL9Pj`^ToDqi}W zC*%vON7eS%ZCgIpcE)P&%;7dNl}t{oZ7k4hC6RZXNAcy(Z1Xwm$B90$t)@GAX+jK-PmUymAOty_R`exIc zx{Od*4(cpq64VjAqVA*qW45gYX(?s%o)27-+>BjD&d*<%&oA85)ogvbE^L5ecOpk8 zACrIW#FZ7-K&$j5lYGgxDC7J*6>s*WXA`pTi8x7(xw?BRq=8n^ercZAb_2a!i9OF* zPe<0I6T00~o}PTP;o0gqh{BiB$o=X%I`CQ)}T z>FN&MY25dI+*7ZF@5uZB*>j!I{MKvCcxw|odm`S*3c9noXu*s`!4NRo4GM*o`JRnf z%{~vi@I6m@H4le_!B60=3HD|%ECvQwHn+6L6T#Ke$R2+LZ){_Nhsnt?ueRe9A?v5W z_7=uSH#iTn@X zBq7;~5sY-M`YHT})>~RGMn*glbz8AvFFVFuY^IRYT?8|XKU??l+1pEHD&-beFMJaS zrq|{)%e=1r*g+&(#_UUi0EgB2h8+H>Hz#`oRZD_i$~G)K_w6686;;kOUq_0>w&Was z=v|57*?3<@ME$JK$-1c)6TVY-_J-MBs!^O=BGiRd%X6=jQ2R@-FhBK5%lR@M^vA~9 z9tJ;bWQV8SsVM5`9?=#(g10czb~tThZ6~gN(bC-30V--vw6j+iP|xARHcqhfFmWUT zDFqWpV~{YUloSGnL`ca1HljAAW@Jw^hYBGi5C|k_3;ch-y8wejK%OGn7~6qYAxN0v zO4fj*%&iG9i0x=S|DFXuVs2`RC*rM*@phn2Bnkn8JHg=2unT|#VQ?LD6MHjI6Pj8R z;K?We8R!@W0S&daZbAKo zx^*5Vg+TmwB&@p!k_`)As__ENP+|^!pgv;rNJ{A1;c>GrJ;mD!BAKX zGe|Hgj1&xm0hLIhVbYSItPB7E0q&tI^g9|PBoZbK-iPYM%3#5jmIqy_ok2@8Lstk0 zs8djq0*nW}ivb;{)d9+acB%JhNq`6$YQjiksaLEtfEVOTAyJ@%w00#yyBHKe3>JD% z5{3a+8GtP4N=+!JoD>xa&=qQ*N;C+800w|qW~faJc!!FVHQ=Btm4Bd?B%uccgdzxR zsB6#_Br08?=4go-1G-3k6Tqg#`nWmLNu;@c_gJza}cK0bf8o@l&Gm z1H=<+iOMUhJOS~;&k2Hy`V8uTcw;R=J(ohr02%^VAs+Zk!h$xae1U{8^&_qE#M%|` z0)S7FnR5vT6C*$C zdC7mTKb8CoH$!@UMN5H+nYmS6DA;Fa#h(M^W;n<;dVM2HhO;vN#tZMqD{joVL= z4(0U_#mn0_vR@YVY^~Lb2(7XN>X)vKao51|=3jeGAp3pQ~GT4xD&$m;E4x-VjlE>fhAWEH!4!PaXk6v3jWaw_1_@KdA4 z{I7KW)6X?0$Jp;h4kz^999p;j@D9_zfc7(6tb&G?1WM-Lp#r0cwWdR|4lOae!>(Gl zjkUmz1}+wCdeO3VgRQ;hy@Thp94mcpXr&L^&!>g7ZjtW0g1=GBR35)&MDym+xLobs zjbrywNtqY|-FwZLcYV+LY|F377sbS~l+92B2A*&#D>dp6ox{58FA-u=+q%)7L2ZTCjqBugj@&C1Lw#}4owA?&ROZbhIre06u#t6(B;G%$l;Kq?_U4oO8rn{oiou&c zAj@`7vPBm0FdbjOZ7m=Pa_+kKzKd;Bw5I{zQ@;qQ&h-ON1TUwJI-|} zXm;I;6Q8}ltR#)6=QlO+?;5#U`WNE-#o|T*tLonpM_l6=af1S5PL1f)b<@}`<1kU5 zzLh4%3I_U3cMjQ~>wWAO1ryWB?GKDME9yccuXSzo@epmY((OB>1v_SZ3KQ)(?lQ&K zY#Yv075pig)ii;9(NCoPb4d@9hmhHXZ{QfdkR*Fwp*%saSdf$JM5B=afldBCN+Qip zRvI>_tQ%%@*IIiAdP{)hjibA7ynOhqnoePhU!txKKJiY= zu;gKr^&zRo-mY9*DpU@1B+ueU!&gH&D#GCe}DhtWM&@^$ot63Sj@K-@^ zZ<+df7n+A>t$To5r`Yr{PD7E4ueKrP^uFYFI=S1K*6ba|>0V(Oy9aN290?TU;{KmG51y?mUp+>Z5-Gu^UHVzazIXwF~rq_NTfslVpQARwdS zw>%`Irhd-@j?5oXJn(=*0Op1M*4~B6 zA^w0FEd_!+zm-EvO8wCW8VQ0Hzm=1O0t>(8fgsv%uz+^4kXH}={eVRZ5`DktN&VS| z6bb|jek&&}gZ&FEAV~FFIZ5oFc*Y<>VB)uO7?ji>@L{AtMDVwAK-B-yh73UJk8<`z zBXdhUks7}}ZSH~xyat17+Sot?geobHS)1B`7!LIT3{N|IBceT(EdiHFqR`BOf=cSj G%>N6nKJ!BW diff --git a/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf b/dev/_downloads/2f44ee19ebd4c314ad1c408629357c53/plotting-1.pdf index e610762404ba4167ef38ff0aace6e91015673c2c..bee86a71dbeeaa046dda53dc2ccea0e82b48cc1f 100644 GIT binary patch delta 16 XcmbOhI4y8Pnkuugnd#PMP^Bs& zCI~19h?E&D;7Az+LvPAR@0|f={{5m}UHNWqS>O8Czy7ttx;Lo6Ip=-fy`TL&&)$b$ zj0|*EF5kEu!?2aagFha@Fah`@KjSMw_;jY_jURkc_u6mjW$f#j4>Kb0239B>6bn2%Cc!(bE}&p~-YeVy6H-|!79QAdkz$NJP^iF` zz*Wh=ZpU!&Iq761#xHavU@+o-uDRm*-%}WvcDq_nQXNZllj~9SW!Q?e*DfltDf_So zBN_Qpe%*WZQZd1h41BgBw?5`hk?lI$2Q$Mw1MkKZujSaf%aRPZ=)c|khq*O4%yhSy z7<05NuXMdloW`_eqXx$4Q1y24VBbhTr&HEK5wPuW-W^-%(7PI&2>au>o_O$MujRHK zeY%QssV@7OO?wS!y=1_C`h!aY|UY!)_6?KcC5!0_T?yB&qh~{uF>dDuOY$@i)@3y|8+ zrMWyh+>6I1E+5ElbctMr({AtS(^Xg3h20K=-ERLzo%U#b1)mT;KAu>Rw}gDgj86#N z^xws`vy2!?20^mx5LeRO^C^_CzX=5CCkoz>>gB+Tz~)^M|A!hLi8ao=XwJT{%1 z=CwTOeg_GrZ^q8c@q_QJ4yJRg~Bw@d-8 z`M=HSCf%i25^3;>vq!Cd`e@i*DJ6&SN`7pj=*4=&jDiehYv=SVGpvUc>X6+iE5=7w zJP@jT*AVX5L$D&MJB03C-1>=B$;gA&fe&E^bpOL(gFp~@8a$QFZgQp-P0PhE!FpB% z47YOb^BP&Y(zv8MC=a$dhKQNhn^+!JS&CJw9=BF&bV`K?+*bLYMU`oCql=1O2$po8 zFu!HCHjz3vY^cQ@t#Kk3*GAkqRrgql7*HasZS$n#qFs6p_1JM@oekY#_%4-_j4GVsAU?GZd!Vq^+H@*sIjlJ-MLa5R5QH3#sqgj74V!G^2y7PAX!3^^EW!g zN)D4qz29I$c97x_O&?0ai}>(6qfg4^uinLBNpf&+^6jC69&P|WAHvP3q5`iY)oYMt z`BoOg-sr-$j4IaCTBvrdc!}+C0vOr6Q9y*8-*mp-Zj8-NiK3ng+a51?W-Jw-TCve4 zn%xAkT+$&$gvR4d9;h$1g;2y)0LMQYR(DuZ55vl_-pnOSEAv)$VQwJ&5Ln zi&oKhUYAqacMb0Yyz`L731U6#m8haIcVgI&@teX!`7y@z6M~zuar@^#vt?|YLg}18 z*m?Awu}cLLNqQcJ)MM1RCLPvmHOgG7WK4q&Yvn|UzN&uMp4-aeyKcLz!vuxlNXG3S zzMv*k+(I++58%F9(UpKtj8`t+%`0uAf z4jS6zG|1hXSKhBGm_KzsFSCxKhQsdN_*fgdM9G-!1L2@;5G3rO0@_u1xp+aW&xd`3 z>EAEuoM{E6;u3r_Ss=GeJiR}00db3k6Ny1oA9?|bU70UpmyA1c#JYLrRO)Rg9rvz& zyv3iR*c&HkdrLq1df-%c`sfBnJd0qXB8nRqv7Ti3XCwYE9s$<iG9}9$a7osm;Qq< z%<2qd%9G6C#yQ!4abp!6E{T=? z@fY#_rv)yuv3kb4h49MSK8PO#56goM1bl4{}RWOdvk9SWf7p0xC-rtU_;P2q6Q zohTu+sn<5pT#Egi3!i^&pN%n|nxFioUW?(uORy3YHqvq;5oRp0Ej2B%%;A5PY#(4g*p;>rrDz%3Pn1EH8)`kY4>)HP=9 zvMLlI2pBE@MG#0V}#!```q#$vLm|RB1S5);}Z<4`b)NSY7e3&l*5s_4zMA;gC;z{QUwqAVSpz{{;+TMXs~&X)EMThqBb9 z;n+@#VuFw1*un_K%GSZNw+~}UhX1&=OtTBE#mg9OZS*A`i9#gLvv}cfazSN(adM4I zmXLpU&9llH$U=MP(`Kf=660rH*(8;gaT7f^LL3)9KF0O4OiAV%9k^Hu{EYQ*nvMP{ z0+J~`0blaFFGOjD)MiX*8DQep1Nce@#Zw0W+rl5sydx&R=D1+wTMYE|?MjZE%amL2 zz1Q)X#W#hr*DWV+d0r-t4&YzukA1qyH!OXu`m^SSKLo}C#Len_Ey2ee{jP_-SCb>=dF4mI18 zG8+Vp-!ie!#j4Lf;`l-@Kau{P1DzzB@4V&+9f|U1>ddE#~K`4nl{;Le} z1X^S%n{(8oHzj?vn~*p^%!{n#*Dl}Nb|dcW56*>ej-WcC?Fe-t+K@Dt2TBF>mF)5Y z%$P!-jb#&f+35PBe|3G}54Ku^g`NQ2C=FEGOx0I1svos_Gr{@z;Lr$(0}UYyc)j?R z89WDQxZ;`AW})ErIqR(9Vg&acC;tfsPsCc#;u7rg9!0i?9aNNJ{)7*aJm&#S)jtv4 z5*I3Rqj1nQeU!Ig(wHKd%VpSgNphx@ta#gA*m7PXhH=JjuAW{+BE(WxI6(({G zk`cRV%ao*bC&43%io7;j-9YiQpdc&rY{38;-}MsY(_AfG)G{v& zsRM~>Q6yrPi+MKYSa6%Q7KbV9-m`QwCVMfvO4p&{U`C;0K9^JDBr@+E+&XjN-wC&44%3v4cW`@TN3{mk9XLSnHl)WCOZ7kAGQc8@_m z*VS$7!+E|99}EBL zRWS$5;fg2(>cqv#dc&!Pt+3=px_x3KUyezr+9)5zmJ!I-_G@-el+Cy6FZvcU_4>$7 zu`}nolVHsdopy@ivB8Ca-@4HH)^jdN|?W zSO#9Wio>~x4+*~tZ0HY&O0xBv)A*}9>o(HIbRiOsvhaAamZGp(LI^WBFD?*+wVVs}s1$s@vs{^cg53``A$*wa zS4M!76Iaua2xMLv-xK@?-gr)SC5G(_`6No9ZYEJIy$+AHcrt~9ug8&sdv}M|%Zg!w zcTQ3Cr`q;z*qaOPz`ZD7shpPsR%G5t2-IG|EGVe)-a7!d`W*gA(jagK;(~D+?#4>- zCJc!_J|0tz0P{jZiJYS~b#?xfB^c*85SJ$EDvVR2Coicd3(94m#b;fi@J2r|;hHFt z6+$cjNr9T6t=URlZ++TosyWkZBbl4m9-LVu942xY%Ab%J%Jkrx)A-~AIi;>z7cOkM zmp+&?{XLe%i-seFk3ZXi|3JWfmFam>R#wd6;HX14kE*ZSr}M=#g&(>Z4#-&3mH^}z zPDWv3kANEX&4byl^z!IkKrbhXT=Vq3TXPUrJ^6%HF>p(PQ1SS}g~9Yu30}09PgEs; zwMA1C^?aREs18LA+|euQ-PjT`?qtL8 zvxOT`+z&s?mIjl`)HiV+Qe+^~0*V3VfIKYhv{~?M-DJZ&qR{02pb-^&R6Erd3p{N+hUh?WbQ2X9m~zjDSZ|a1=O-o86L`( zZ0`5|PFmXe#^AXcC#=n7ZqOzm@#cc?I*h?chSbHrP=ru{u}h4HWm0oPu`Pj~ihdrw zyBS744JVk-e~Db+W7q=wCVy|s(zK}8llu)@@~ZiKJ)2(wRrP3_e-dAC@uL+0pth@> z+zqE1QRs)1tOtIqjwvO}m9QH(xz~!`2xkH%_GSV?qbE>PX4cE!71s>3xhC zbJ4E$pVu(;mpHox!z<) ztD9_YJFc?SC@-&QXQNjwQ~~mSeK! zGm#fJnf=134<{H;R;(iW}}Kxlw#Y1;s3XvGp z=K}pn%4xSpt7V^ua$z?=Q{%KP^RomI`6?k$(aeKs*YKcD0J}#68lwHefp?_6Ypq1| zrCgO^VbJ{WFFDW zY2ybro$}G-#1@7LJf+4{l$z~5HlKCe52ON4AKRUm3viIMP|qIZDkP61qX&y#v=<&hG2|W&&8Y^P`0+CVEobpPX$ZB^;OGu&%y4H0nNKeYe70F&bb? z*ycW4rI*_*2j~fck$k}bR$uXlc)+8Kkd?;RQ|+v0tI|EhF%bXhoVqZza3;W3O4lidca-~j`=K6R6CL!@oy%o}ADz8T2U^I%E>xxp?) z0D!>9XTX8KlP^!b+{!dIl+0^SfbLT7?uuA_ZNb=bIX#s|yqSNm-TMdt3@~URUa@se zuVnJ%SXyxCZ=67>tW-g0DKhZoI%Tu$BZ*T@Y0BIe@=%Te$_2AuC)2EaTtlPG?t&+q zv=;HQS?=x-n6qIy33~?gVt4H~&e-XlFio_bVH4h!S+)>uV89t*M7~ z&fUMtAY43i3ItJ-i7Uu64ul}=^36)W=b!qt{`Xg};uU{ZpQ0$EWw`sIQa?!G>4WxH)0dhVQ9 zz>OYN!u$z1;IV~aNEQ1)-duV;LzrZW(ki?GJ+4o=TQxPOq-%!pmV zpn0c#6iQ=}n@B%=lLI=(*f7Fi*U^S0cYaEVGT@Fyp+()Q_>>(VjYZ^vXdgDQitzH0 zUT+m{d2T=Gx`3%xRkgl*cPb5AFzpk;qB!i=Ca2W8NmlUj-GUQOj+uPqFc@kI@c-!J zgC04AfRA-KqOPCr!dD~VM%OeWE!Z_EWb;sCmx2fGuTZefEO0bS&Gzul;>YwdDAFh4 ztl;BbG*Dg!8O*k^-wbm~+vgp|8cx}dGv-ZCTxMUAa0xA=$ivb)GSxtoDA>B@92<*m z4>vfxwi_Fev2crlYJnoUB4+V2ld~*oLqcoQmYH^5k=I7wY)bHMKd2JtI#GQ1Is^LH zGMd~9>L!yZk(D@i`)4a@(}k&ko8~$LI`^$QjMdPk3<3v-B_OqLLkJ0`P=aJ< z3+Q^mygAe?aJtuchsbPhPq?3@3zZOCp#ym%q`Ou+S8fq^bDGbU*`>zorh*UV`wTj@ z=z|l6wj@dA%u#30D|m1g>I_OA+yiE*T<;R96S@O-)%NfwYna^j0O}36;s(2}e|EUa z8M&N3<|Sbm4#2ASB1QE3D0f;KvSxlNkLj8hVeriM5p<#N#;WJxKWGu7P*CV~lhFL; zyM8%)x{aAiu!7Ln9tLrW{n6;0X_xZ{H8nw3YxEZol|sccFYJ0#z`@)BRz%V?I%K1C z9SMD4fL^~|c&>)EzuHQ{%cP_9(QX$(g9q9+W^VcHw;>i$$auMO!68J0b4|RJvv=3r@KQ{>5+T)<@Zn%pwGML4 zcIZa$A)+w_5)V=Z<51AvUC-+Kow=0Iu#q&^yqIwNc<9g=OU*lvnV^JAq9gt;WCp%R z@t}I?+GDThzOnIMTnx&_H@9v4q&>32#@!-7HK}g6~lpo+O z=X-9Y_wOA(iq-WEx*L8l-pE;t&sSI`VVDrCoE01 z<_1%YCvu-SVs2T)vF3Jk#0n#*dMhj)_BY9@GiL@(OZv2cX7bD)Ed^^=IxW*0u!zC1 zL)Wkj?A2qI5vof^}n_525m1bSk~Zp6S#}eLGpDCJp&t z$J>fwZ8y<3jK6)cp7uIfFV*zu`ARJC?Pa?+_t4G@7N3A70wyE~lo{0c2M1=7@VCFUFBWs5Kg?=f#_t_vY|~0Tm<=8S?)= zAYkm}))eE4@(y#p!m(FG6BG2LmlDx~6m?h)>jD#mn!_%h(@ovbQfIx_%%>IcMeuU^ zIshcGB3tN3>kxF?c-$JIAbpxnpKSLSV=sOK>f&h2Hw8`GF(uo5n=h}I64o%1Vrl1f z-DJMjp^xT5%Y_E9avT-A>N4*}$^5A%dhz62yv-qx^XA>1n{L=u;^(AiPg4&EUAOCq z=ReyWPjk*dQYpy|pn|OBJ&oErl7s~(MW-Xw`8~`MVnWc>;ppqfcRfBXFTG)pKnLJM z`@B9hz@d-!;v{U~G9+9k9ySWpFHB2c-RT`*?f0IHuccihCXX6AsrV#JPKM)c^gZ0E zn$(t?b}lz6ikuoA0IIe5Hp5}Bm5yY>aKM`ng{M2-$NEV@fnHgUkHn02)*r{qq+$|s zb92Fgp4ZS3_w%5p(*~&QcX-E2bxs?;`y1V+g0MZ``Sqr#T5FA5sQC>X3FKmugH>G` z9^5aQYJx^bc2>Q0Ktx!ryIb*WmrMTpNFp^kOnt|CYu^)91VTQiuRhF4#j%Ud3%Im9 z)<=3n6nhkZwes!jbqCtzapIcl&|y|>gDx`jVc8VN7{WIZy4BirXJ_Z~iWsHZ)4QSj zxVNitysG>Fa`}!Y?ww`R#v56|D#WpV8{U&tp?T+Wd6I)TX+F^*Xp%=AsMA}1(x>%2G@mNRZb6&dG49-f<4~(=MmZIs zs%_Eu4VwO5D$Oq0c^X62`+O?QvXAo(KdQ|ftMVy6js?#(r|a+6HFqz{vwk|4n>XnW z(*|8=N+l^;f;Us9_V%Z>9_>NXDX&l4P4v8mjxWt)ezeSy{qjai=j4;TqCr<^nn-88 zKCtP1*xn)E^3DYRzTafCD-?;;g{fxw_JtvzfT4il02<6^oLDZ}6>@l3gb0ji#Skyl2UVYI@Q+Ehc96nK0R3q3lTdAv~yaE{8^fP_GgCQFI& z-%`18Bu=U(4G+iZSxT`vhvP2EL@YA?{JK619CoGf+vBENTwNCmw&k_2U}R)uczJ=( zr;WkKy+e+Uj!n%0Jj)7CrTaFC;7egJjuDB~O5fFwjr;{>&WI>x?mvF_bmuO!hnV{XO*np-oe8Dk1BUV)i|60V zvnFTY%=Q>+&DzzOImXYwTThS9?2cA(9nvF{cysOD4}jj+sPo%20D4O<|D==y5bCa!{>w5V70_p?u7NQ`Evr6y0G_mC?bd1~qR zK0<9_qSo{I8l5|@Plt!8wMSZcHztfipmxui`}e}E3m*1%B9K0`jy;(_KUN-~xlb}s zYoBIeLaz);Wq$DCE3AB4BbYSl?qrFD)46T_{ehg?L<5*@+!%TQT2&CpqoSS_yBh6i z`W~I3s*zzD?FYg{V@5m6q@Ci|`njQCfu~tPeAmK+xsI&hM1=RvLDQ{K7VbsLc`Y7# zZjgs9=gP$VMqjKC7$Pmi=)$$@;H$Fm)%>9+{T_e?4rO9K6|Z$9;yqcKs#_0S+cv6W zy174-9_;q`?Ufc1Z=rW+D7ZXDV!FlCkmXx6S=XQG3yuUD_?akxH7L^;2HhdvSQ9N% z^{JB94l(vw?;|Z7($aHZ9S6a`Gp|KaPcGk%3Pj(H`HOTybbm&H90CS6`oh$FJ!!$@ z07bktlN2V9)9T&){>mn|mn-B8uQ!8VVgV}DRyx7=I}@9r^9E|~!wdVZhWobjsCHL( z=Dy6Sw~oCkU%bcF)pfSgJ($KKamNLCKaM*N7flasFigM?bPS0)H5$j&;2M3eSpm@%_4e7q2BhGY6jgKssr)#7p z_@9xuGpM;%+Mr?z-0V$mkGI&&HPtVI4IIPdrZBbcI8Tr1Rv&3%nC4W2Y;MCz$=fiu zx&|~~^>A0tveJtU&Y49Xz}oHm-uzZH6&=(&Kh9$1HoL|4)}}h7wBvvw*=I zC3uu;qH2nRgM*C$!$nH=ufn~2e4@gZ?Q44`Oo)RpD(dcEsnW37!sX%qDy_MJ!kKqh z1!%bOPRN$Z-qgedh|Hbv(;If3{IL{fB9^U{VgsI(1LByfe^b${xxeYhV z3%}zvn!~QyvYBY@`}Q)}!R{=$O^avqZ>b5tFZl^K5N>S1+~62@!!Ib@<>8BU`R{&} z$$GUTZNgZwV={QYQ=+@$l5kZvOKWf0oHQI{T4u4jb9&Bkf;4|u*(xwOAdpTZl!{qV9>==9AhZ~QLJQH>V zOpp;1h&HUftFH$r)bl#obEIUc;~1NnKU%uUvp+qrD;AU+MB-IE6OxyTa-2or1-^Z* zFwqh`HwYY?e{3L|S49liOj~PPTL*nka(?2w zj(ZDnUcR0_^8%FsRGoYGFakFcf&;at^I7&ykDO+^ROvDMgf({~bU>9_G;pLOzxQrz z7LPk8O&ls1E{=l&ae3{tYR`d(We%K)UMHXwd4O37&5%6JmVu)$5PhLO(q(v7simR^ zuY(m^LY~0zC^uX_@a+n}_PMsGow*I)S%74PJ${TpHAdmY4^;Nv_F01rI+yeGmkR=u zFXV%FA>2h52xM=S*e({bd^@&%=noT{$~8KoHvo&2r4s|Q-s>p*9602eSdP#T(z0rl z3;5Ly!Q;U?az`fP@ohq9$#tLcO4VuEP4h2xw5XLT%>(*nqEHje05+(2ly|@ZBZ4cx zs%SP09-|G=dE5kHO%g{pEKnVH)cMuwAKGq0& z4?*FVj`up!yGL7o6YQx<%h_jmCO;6~Ju8KF5@t$-{Yyi{ycW81d-na7Dn%?Fi^#Nl{_~p4 zYjHtu-$&UPQ1jyQv5C;ef{S6|n*L$gJcob<`Asl8naR;uUp?nQs*}=kKcO%?b|wJEx?l5ALK`0MBcm&}4MLU|ap{+91j2)>! z!7)GJNGN}NuG2*b`*!c#KsLlATy@h$END0-%KFt>P|bKJclX5phloT${ffu;4h#&8 zyJ!#JRP%JG0s@whiEeTh7+%-IGVyYVWamy{P8{F$@4&*Lvw?)_QDMq4F{e`PXrC&5 zR=;@UvOM1D+tp>Fo`)K>6@JoyEYa-Tb*i*te5O&LW1K~3cZ?wypKJ5$e%}@AZa^&r zc#H3+l5B0EQf~q~FbammcB0A(Wxn^|Q3Kq;HPX;^M^pk)a+F+pWjGEakvHEx0I30$ z-5~k(OIXp(!^sCC!UXn}!gAgyB_y^kaZC*HfoutiT-Fm*Z{=gfg^t!PBB<2z_cAuK zx^I7E6jns<+6sEX4%iAx3YP~Zf+<^fE!l?o>4hFRbwj>=rc||U;xQe_nUdcaTS!7n z13lc8mE-lRIp#J+3GJ_db3{Si+iC^V&r~IrMy;RLt;A4KwJb+O^!&sL0sI#vBTa9! z6mdoU({vtGD#t{CZbYJI+op>h?N@$-;eU z+4cHO1z5)8cfY#NaDGqAc!g-li***Vh)~@<6f<^rc=nkDw_2$fNRWS6qeuD9Y^b;L z9#SH|a^6j9z|3DO*cJ<(gE{q5#8rg(kvLfL)%h02#Z77+cBK@FL8KEw4=D>x18x}DAW9sV^B&zlfFCLcj{f7sv5#VtR0^v+2 zuVuodtHxBrDI!&Ky2bd!%O8xfu}Fko)})HY@~a48M9)26Gp@mXC6ieZVPYMF2Z@oz zw|dV7m&xsFO0o(WiyHD0xMT4%Q{t_a8j^mR1B ziQ$4g1zF8P;%|8>-?}%d#iOBqT!VQ|==T|*oD-T&pr&|~Y?uHpBugdIq~3$Z)uVzU zRhfMY1AS|@9{9#U01wU0wb?+dq>05-IhmE`)^z}Jto2N&Mx_-Ptts7MNtY`y6QuOU z(rgxX5c_jDnLJMBWn-K|baVoa@k2q!#TAH1N)nI5!N#4hGxO`Y71G7ggz^`55yyEw z+ntyQ;jV&+udr?p|aefzr!hf1@qFTr?XXiiB!OeJKce&JjY?n&5E&w)6gJeLLo@F zB&@ZEr8Vcm8bsm4^8Ls_mAnTUzFu>|?{VMnY5t}4;J2ajlrK()zdHaE4vJe&E_n_f zIQi8exIOu>_lSN^x8$;^dJa%IS>3=95M6%k~2PX(VLRJrb@OlF~CS?68D#01ye zMyb#PTes?jRZP~~w6lmftOwcVRy~cjC1NAcWq5y#g(u!Mh`%`ugJqi2R$j07=R+t`@u)T-)$`p3c&>m?6F%hP z(Y~}yhlR;{76MNI9W{!^*vm~rgb@b+xCC!h0-TM@U&B4>k%@h;VdU*IPfl;DG&A-U z9qAxccEU+;cO=!4JSrWOV%?rNA=f9N8DSfA8R%6<^mZPT6Tz^Br{LF+Uny@4ML_5N zco2wyF&BCRYtTNu0yYtZaH0Kd^UrIxE>FRMO^jxmc1+E5Qo37*gMAWw-~DoJlWIoy zlzdRH-uoZGT+duw`{J>bi3hL|nnmwAH5NY{nA%-j4tSv-dl3Rk8Z@5vWpLuM+k@xc zgV4~ou&_X-0~J!uX*wLKW&uCEm7u!#jbU1xp81JXf10U|$x* zR>FHPNE6+wxI?6kk( zgb)YNQ#tw=)ncL|$Rn8B1O?EGRQAO-4*ij0mGHRgd!W)*CFrv`PQrToVEvAR(0=ivZ4q3B?L6Gi>knKscCJsQkMe6`Sj{0 zma`Y+wnym(M>}hRzw4J0-~Y-#HAK)5fHnc#N^@Y-NKc@;NRu|KLOwL|^V;XTRI`Ce z;)%%B8+g*6;m4irULh@rC9Ok)(i4|x2I|{8%P6c}Wui1-v&Fq!q&FpI7)!?hs8orl z_P#O8;6%l0BqaH_9U22k#b6l%E${tTX@MmVF~L!%P=el%^?b{rVzNkL&bALcz8!F-DD5=y*a1R zR2n%F85+QE!QGy2CtaY^)6$$XrVV3NTyJ@R;r|$Q@oljgKKDoQQNOD+=69hZ_e&%d&Oqb zJb~v_)jwouPFn)mr6jyB09NP#IyvgHe;Z&^ejCBH>CvIMJ?CzTZ-N&9^-!&Q2~sE= zD4GmVNee3br?mzzL9RcprZ^Jip(ln~yT0*_1tW65ehc14LK#vez;#*3Tg0o)k391P zts+0>2`>oRpm*&HtKiIi0d5I{XPx)ls|&1wp3P8fl; zo1=9|0NyqH^hyirwUdKK7A>$P&?DORY2FaZ4Sf8&cTxTZA=tDp1|9$2H54^q_WZpq z{~LGwe^j);H}&)H`uNXtEa^cacOn&(hh`LDYeX0@+5L#-3lu>MPOU5Yly2F_QzBnP zj;jU~02pm~ud4%+;Rqt!KLB>-2992}sQ@K`s6lubyi$;|c#%TzfYjdoymbtePZyhJ zSOtBQW9nZ6qd+zKo3qIBg9Z}or)6tBYKYPi=qDF{am#`WXkjE!Xn331S0;)lpa1;y z7r@#WXrd$~ib4Mn_5M7ozh7z(Dt)`yQqVMuZ}cdHLub6biUq%n0o02exLIzQTHYom z^_IhlKteLLBw(iE(&AOXz9TWg@Q%XIf-4#ey}b+*33_sJvWWz|Ew7Ho;HnJ`_PqT` zgFDlS94$}w4V_4MM8@jH36*}ZqxJ`1L#<8_|3S}O|ED3?zd#BZ92kh}Ux2PeId~lb z3w}`M8_?zi4S-Ehby!C%0uQe|Y25%q^w=;VwWz4bP#j8Ti9QtT5p~dM)87$Ff0fCY zxssU)zZRzj`aEXPT*=~c`W>N|x^of;^KXSUJHaGN>yAcUNocEZzH@{(D0 zl-Wg6^G~d=J2`Qta4*K~2Oo#akR+}yTLm^DOnT;9FZwy1hMJRaz&P<&S_AW2M*k+j z(ED%L^?^sV22SuhWljOH+VXeN1c3UREc{$v3`~qSH8m}l zhCw9)_;zpzi@ysAKL7vpJEH#lq69*aFU-3E9>3KFul?IhYBr&NC+;`+G2;i@i~k3q CDS8(G literal 19481 zcmeIa2UwHY_CER{0v42URKx=47{G!MrAcRW6hn6y6{JN$5J6CSPaH=bM*&Hsm!OC^ zgA_qPN+61Y5ik@5BPA#$ASKc}`LE6B8Sk9q@BGev?(^K|-sj|*F+h@U@4fa~?|Rp} z_Lr+>Ci*LuZCHk3*b2g-AAZCzA^1^{u|yc2&a}MphbIlM0~TK9?v7r*Cp=DJ#wWba zxw?C~I-lI^bIQZh+1*V^VK-g@FTeS;m)AK@4MoMX|9FRjyN8qFO%DqXxXRLVhb%oY zOzH{xU%;)_TL;4oFA;wD{wKeLfmY|3gd-PJ+tVnQf01{6ob8>v zd0_FXo8HzEzg$><5Qi`Sb@S%;+ct0bUjO2v%zGVsH($G$vt-Yb=NtMjZx+m1{cYT< zi4=-3&S7A%A$YnpD?L-gX3XdH>O)7ob=A4rp^mw1QJ4*8mU<#p5dDA!>kBMF&uh)G zMewBeYz-OxYPMTwGkX5X=>Iz}zcmoSuw;^#uP=9~QreVqKl{ltXP1$b%^1UsC=CC8 zGc?%|o|clbRZ>z?`v9zOY=l*cU3~ReM2qy`S-E@HWkNpMDntMykj|U&oJ%gDVuz)dzCSU zo^P8!Oha~~n}x4ub3ojYO+!*+iO|!^-P>(ZpEMeWia*9mm(IF44X1dg-wCS ze;UjS?lzy-m&r6%%d5~FjH!+}tSW}pPKeuS6%H0P`qijZISM56RpP+cy_R4vBvf|9 zs%F4M_+B!-F)D)#-d0PCviQ!wHx(?f?b)|PG?A}**AuHbmaBZ+xUg2z)HBXIIqzvqOyv^~g~|qg9sI2Fzf=D#P%L z_f#v-Ku!P)C|7O9#k>9pFd=y9e`)DrOt7|Nz}>WzKi4?B|!cA=2 zP&PMkAO*uSls{QkI4M-sAcQ{y&eit%i`lt1pDXVS(?l4uIcKp1vh9w46HSdrH6XP$ z#5&2cw5YTFPM@5sBy#^s!hE+oB{f9?I>U#|f=Cg0PfBv=9R{h3SFC@C=`2u0NEiU~p(`8dLp-=

1Z!3vpGE*A`)n z8||CO7&iCeDK1=&tx7K&(r?llq`j?TiC_$3GGJtnni{SUmm&RF!Kl8ctCANpu?53K z)lsC6URzHHGpaZ8u%?Vv!R`{D1K^RT_MH4-I5O*Dh27kl;bKl?jo?LAnM|P?a|gj> zAcfnLP&sE#b*-k!GkbIblE!rctcl4M_MuHW;R3`EWa;S^f9G8SA%T==icwPeZeO}vkn!=2mvGFa z-r^_UVB}kRkk)ItcUeUt+n5(d&d-*WxXqqJsb79sJpB6^D1!$#IuFci7F6}A2^Wrg z7i2Yts|#TFB0eRNb;&pacy$rpOcu(o zl*;I%@vULlxf8Tt%0x*T0F>~~FR~C>;KWJW=1Kds+k{UZ1=IK^ul5lTCf+iRxe+v; zn=!QB38z?M2GI1%p*p6M#xGP!!rwwBEBKTN8SMr22FzE#LvHtM`YV1ICHEhl9DZXD ze>M~RVhS+eS0M@|LbEF!;igF>ox<+8&dVDO(getlU1kQTHa>)kuw4*6$G2euJ!>na zIYonmMXRH(Dn!*mSsBm~nm_d|n z(U|2jjQ;y4{5PXrkuqqsNby?M9{NS%nRF4;i7A;IKx^CjpR6rSCfX=WJ71;r{coLh z`c>Tm}BB{X>XG5c{bHJ(}UVjR|d(9@AGEFweG=y$^f%i9XkSS(A976+ZetqC% z7LX8>On=)6R06~BqsVBU(YA3d!M+~du|T3AkhK5g9il3l12^x}efFH#*NekMg;1U# zhxoiX!Q65M#k1K7i06N0&IE|K5G6;Woaql4L*-)8HH$Er>iJEZl17M6Ua-#Dl!G!= z@>DNhIhL-S#tLjS>47~pKflpQ61(~8(igTZAW`rF(n4 z*q*WCdma81T(!N%WbduKp~^<9XmC9Dj8AdIXqoL&WIj5dYOc59i#Yo5@s;@k-4(z* zoxb8_2r$2(SNAi#Ff1lIVk?z2d8Kjkk93NNw0yh>`PSJ`70LuXOGQc@#Zinj%u=}I za0(^&<(W`kv8likJS~+BXwi9)`IlvEb8|;k3@2SUW z2QYlhXVPF{raOH&r^zg&KVD&S=FbBC&u;&k;r`|gd1#ZD+gHap4CGmL z%Hr+uMR_;m|aT=I}@DWa$X-jS=0+W!t);F|-Ill*3ouP#yQ&&q!N_f1 zJUZmBC=&s}!+(VigW<)}W@_{S>|pe&{~e!Qh}PQXC_A0P_MaOk6FmRqdqlDo)Mt|& zRvlf@iW`Km=^s81U7Ay)3Zy#{hCcA+&=1BMnfzH(*tuHYukD<%9(M1oPqR$bu4rUC zZenT!hQHyO{e8}dKNjY_2n()~-HeGYjkcz2I{!oO8nZZKz4o!v>DQef%MH^oa_QIn z+;!0+#tnRsA5fTjS6L;;n_d2i2QFQr*P>6^>9j=n=sFahG9MKWSE`JMUPrG+!sYc<* z%T6l9*kZEK7}GSrtvsu=2r4KEi@%}N-xZzDg{-KuVo7b0*3b_*pky@Yx%V3E2@HJo zXWHOR&GD>?`C;oDiZIOm71|ZiA40A!me8sQH$7@`3%H!bqpvw8U@^m5KJO=w-qegC zt}bns#|LxiRcUf!6VB~(DS7qdsaz>ZB&`i<{zT# zZ~EHx!SRVY10|k0{W;97;W)K63yl?w+J~(^%sPnk{k*iMsdOp?U7~vg1aJf-UECkfQE(?2$hH^8919U z#GkWc%Ztit;tEf!EMOh-;NP!OqimvdrW3?@1rB(L>JW}3F!`03#B~S`>>80NL*>#G z6Mueuq6Q}>Yq^~nLdZAGF`yiyw%qJYz=glm7-!%(gBL|r1x}pXpsDIVScu%@Bd9Kn z@6510{I>YU{?ZA#^*UE(Xhu0_DKn12!8XTpg#)RJZagLc$G%np=>nU6W=iR&sYjCt zIo8K>F{k3&tknV-UU{#`W=#I)+?NK9)rT@m_7u)f*E>th`h>JjK0djfm<*(~bB<>! z?rUI#S>Pa7SuECJw*&?)=eqy?>!d=Duo6BLLY9=~U%!P^Ng8vd3j|ROvysxD~ z39jG>C6(wBC2GP{QPzarua!M$8HlIQBc#FRi z@>z5IquDLYaYB;Go;^&GEc?V3X_t^F%pC>Xo!~7rk?BSri3WfOFlr`-)Pmpq_cGm_ zBT3~{qnA&jNmuuYVPy3O%b`SE6)wZ}ZuH*DY@+rbQC@{%-bnHqEtaE}XfpTbmO|;Z zrRzQ9eidN4$?H@$Fi&2~tH>((QFXcC>s*45smH|qESAym1CR4WEOu_5efnmN0G5XU zC7=!*zdEL_$hFA1S6Ng`QHH&h$#V>zV-ZYttP>HwVXPKBFgKFOlSj4GZ47G7bxM?e zYG+e!sg5eMEb5vd)TfB}>Xq%qGZh^}eF?*LINzGC$!Aofo<1{(O##?7a>)7DeHBeO zHc_fFE6%}ymI|e4&u6G{1neA*xTatL<;>J$G0F%_G4b+nT&f_0?A8B(*%l~gUy1nn z7_3`QI+nitW2zYE2Kkj z-yY{h0I;4>jyJZd7tqu7o9c47Dr1mFJl*#vGTxyR#V;2*H&7zBqLg&&@jqu;atJD= z-(Sn9La{7Z%O7v%T1KZ6Fog&%!zV!HFbrW(c5Nfjp|O=nafgXn?=ZrRGaU6uUES3 z^)0!yU?88FSq!uR+aLXz0$#p4I-;xxS`3`C7;9!nF7GP*)l{5Y}W2mPNA)gr+ z42IXcpJPzZw$u>v_FSnqZK|(7oTdv%h2cIC!q;DiaRzq2Y8NvlT$VQd6Xd$(JagI^ zdUUIYA^gH{U8tmXRVi|cq%`wgSCS9x_HoUrHvrhfvYfuipn}yE8|AJ@M)eoi!RIi& z6@a&70mm%*@o3$-?V#R*c|p_F1T_N7eh!q{q2-Z7N+?po<`;?x3x}D3XjldK1|tDs z3_O0ShB`nZ`LdYlQQJb5`7*wtWA(Opk@l=zrGCTt1$hVrs`Xb#s1Q#jH|{hHaA< z{TI<8{Cm8cfm`t|wlAliK#m(IcJHHi-;GBm6punV<;GjTj>fU(wxg;dW(5WGU2F#` z04({yi7)mE%f8Xlg3Y&?N(!w=Fung3T6hGN3CS4 z6zzax)vg1tHoIjX=4?ZHw|to%v8`<+sguVqg>6dC`g?ce^HOTn9ACQHBn2w0SIhL; z@Zt;P5dJwW$so#l&wADS-U8T%P6#Zs2kf#}1yfH&x|1_%W}s;zG@mGjCc2}WGlLPA zSOg7q-k~1v;E{9-d8Il2WDi-RL*wi;72BX8pmF5+Ti9aq7Gme~&T1vA4iPCc?1|Yp zT6GBE>_05_x8Ow88u3@l;4z1eP^uHnSSsM2*M{UWkY$)Z8s@bL0PsN&*+d=RF*V&})nTl< zJzfagRta+;-_PDR%+-xH`JUssl5xv%s*74Ftq6O)t>!bX0#fP0ilb~){oh~h{5=h# zT>SN;^UTR1rbksIWB}2{D4PRG=o~DjZVd;5*|P$gP65Vtq+kRvdPoladuWcnA@LpN z#;l4jOOb+L+ke*JCNyTY^<^A`UB}<}T&fa@K!F`H@(j|FC%pe^9R$CdpP{NWp?Xo` z^k>?Kg0_SJ$cZE!`*4|tH0Xhq@q;N5)d_(982(KR1d@EV;L6i$$!eSgt=V(E%4TJ+ zkD2DbxqSr2l-~x!WHU-f5*x?fU6He!InI{Huj$V*^kB*$P`~&(yB-x?P|tk^P4?o& zn8oREoj9#IFOQjl1@WxBguU1yyRbh8x#+1V0^lt!8x zO6&|L$tV7-4lekZIFLsTX54jb}OiflA%3XNe)gkRp_sM*88?}N| zfx}|~uc!M8GPBBbEKgp&!#1)FDRh;Ucz!U<2r~ZI>rc7)UIc(CS!b-1$^RM19-q<`g@EqfmyHZC)K4f}$vP@$e)6bTpD}bQT81=h&(^|!1Ii=x-ZF;n9fmxO zjX`3@k~y;j99iA@^Sx{K$9iHb*8~p6&i3dd!|(sH2~_L8A+%BG@}4X~EV&FMd2+}| zxwNd3lPrfH(u*^zm?+}}tN=j<$({SJqUnYdw0JPXH1jLe+G0SHWNXz%L)y%5&Q!5= zD?~_iiwV?5?{JkuJZvKjf5}+Sz``-MQ<1bC1FlAp( zBC4X5^KzCRB0ZWLcc70^PLx;A3u3~;x)j9b`)@l8J*(;_AIO`0KQASS30{L0!6W%3 z!VbX~fG4`M`(0*h+-1XcZB@mp!`B`?q%(S}(XZtZEDZ<*AQ~pv2#KL=4g@Nd^D7yp zIbBgq_YiZ42}VLJtVPs<#t#~yyxE7 zpYmi_v56Nu=?l(A97LrTJk}~f%9Qw65o)N~f_GM>Y9g9_T#3J7#YO=1ix<&Oe4kRR zY3cf)e!H+zJb5(gm@VP$thok;KQ#G32$N9W5Zbw#b~=;(#rrv)%Z z{DOJTfFg5UnzKPn+E#V>*l8C-Xbz}Isr&(wBl$ooj7u)7uZw62bO(Zl(NVhosY6iu zP*TtyXlPQJ-F7Bketf#Ym};zg-i-i79MllW8~Eey8GWR=V?vvkJMrjLQxYi3Ad#WV z{gM0UF$h!L#Gqj+)M^qzL)Vyls&Id{=Jj|kp9Byr_}zm_O5`zx#FLvp2_Qi8qb_vS z=~E+*qGct!i=t&EXI+=3fq2!IQ@#?eSKFUm?n2UaTzhA#0EB|ONQRmYKIyC8Wcmn~S-(!Szh)M7Eo{l3EOJ$20G zib(u3yS#9Tu~bEw)>fu(Db?E3xL0}f5_Ex}8}F@i2qN`G_&ylLyXRI$pC<1otnq^+ z@6bx!5@foZh541pB^^rgmo4NbIq>L)X}yN~otAzS3%PN>*ez$Y9+EGJci7ESK>P5W zq0mpNj){;j3+l_4qdoloIZ-LdFQ>&LV`zg5Znf-9I0=F`LrDWK67NcB2?^|7L(dpo zPu}RBFgxgrkV#Yvg<a0E_2>3k~Vpi$`%LNLKX2Y=V&)%O-jN83ceSWgu*^ln|k|1tZGR9wmkqb~w z$q4f6O?4RUsoySs#6}6T3);P21>|6ie8JtK7vk^YV`%5{NSvbn(!gHj{Y`_#W#jx4 zozH>rW5Obc=X956pI{1ad|0tFTc#Em=}Fu)hYu#rm0L}c6A zwj{0T)4gj(_B@KhvPwMaU!yZSjCNGk=qdV56jOl?4${>M`SbP8!UcJa291_-h%|nS zku^|-qNf<6ynU)JeBr-p9Ee8zUS-aWisL7L>!mH_o&t3ZCO8 zQe83;Rwuim`dkMe956h?DI3bC&B@2^-AxEd=xoQa=+Asj52Z_3=SG{aNLY04{nJkO zdD-=vs+PX3CwF7mthm1 z<2p-mfw)2y=9`e3)^(Rx7{WV43o`N=tb@l~DwX4vMmT(W zNL)=IMLx0fD(+g%yE^fM97O>s;1Q1TYHiRpW=v&j?y%zI;kUUODjQsw^~{6c0vBz;VN3JT+(EkrQMtpr8Qvt_ndWP zo}a!)lMQ`78#>*KpxnczTP2~{U>f|ve5y;46x)|stPt;3E-ifJMWum z*wTO5^*Egx>c$L^rlEgZrz#r=;Zv6G=KL@f39h-AHBOP z+U_OnSR{@O!+=5?{c>z_>1tVM$2qh8IzmTMr04E&$93m-`%m|(lUU}a#)*CQI&-76 z5mWv{Cram&3f3|i`_lkj^b^~ptdgqNzUbWv(J%Mv!R8t-GhBQ;w zrFFJ3JF`mmpxK4(eg7-Wu6{SS*`sP#lTwnpXSbG}p<>yr2gM=wR8%alsrBa)ooKrd z|176_zp$L{U1?GZMu($_3=p9T!Ta_&*WU^1x0kMJv~o{0B~3T<4i1{6)E&xYSFbkJ zim(q;m)+=Ia^9_EsG>fC+x$FYtCCyGBV2~(cdQ!ZEb9Pq2??6(A>}vnkl^K5%%7j} z?8_+Vj;A-Q|tL3_-Cw#ly+(#ex<#RK`Sgx|EVPmH&La*`0>gW;gS;Y4{zSqOo$Pk8KQ7=O%c1u(T&|gfQ*#H}d&! zPRiU~gqf{cFmHF>(u$wo0JM6%bxu3=;^ubxcua8b>!xK*SM;aN%b6hwoZ;9YZP;%BV4!i+;KSDjB0k_ya#Z8lyKLSX1kX;i=y2VO|ku= z*h^2Ab~HHnlyRj|41UWoyI^k?Z3R%<11VEYPA$;#`{Ax}e3W}|pVh*a0df|4B}|P! z-x}VD=JNWOU1DZtraTzb(z8Y-7hxCRpWngI4X^uH>_5=}2S+oV-ZnP}&Z%RVgdb8+ z_9N;{Je>myJUsrXuZQ09MZ5j)jjX?37JR`98PA1COsaYcO0NE*?h{}t=)o=@o}Vbw zb;-y(3R8)U*s6b*PS*xE_LVhFN*Ej*tlxd&c_5se^_cEWn+T%MPxm>E)TpsQ4@``< z4fvh7hZxcl(3hb;H`{gr#pWb@#`tz9G_Ipk|`DGIvOhJjlP=9g2V}e}b=w;4T z(pb7(WY`ZfpNfAR^O|C5jBiPYq(2N3;HC+n6-maE6XBqOddGF8Jz3!k{&>v#{DGsE zry@fPgiG4ONwXcB0QjH}#O?Ou|FU$o$Jpy*PBkh`{agpeEc9z6LGMtj9(lBXr8>@T z?!&R%$@kYL_U}k8XoWNaqF)W?V>lQ2xDU9E$E|xnVMQg<5et@bxXb05Os_b zHB@RGl~9s>AC}@jw4;hI^m!aaINHs(;Uh?tD@=L4BYdvQM3bc?&MlA5PqlD$qJK9}>yGElIb` z@)@ArE=#z;a9w!FL$6Ic?qGKwK}4zOLl52-uqXjADN6eB=HWtCumVEEiZDsd%9$&G zUy7uuDs97v%t!Bko4+oyzYUP8CD-*M|E|bm(<)o> z?z&S<(;Qf-)8xl@o+Tu}%)tE@cq8J%pyc=Td-_fv2Pa5L%SZ|8p% z9?gLZ6*~2!al(W9?fu_fTDO2}kZ|mK_x@xcaOkl4T_fi2X-RRosTapeDXX>~Tw}6$ z^ipp_njF*Wr8PEP(Qos;ez=r&C7YB>pN|f;<4-pQCoS&@&ee5UO)J311WgokYD`0h zsq)4BIa9M-IRCT~1tCrmpDkEB%Qjf$B&tN zYXxxB(AYR0Rhg0dQp0^(ig*rAH1`Em=(wLa=hq$UzsJp35>Qg;n%qB*!J#b z&b&{^{0Pkn=u!S|?5F6&Jt%)s?&Rj? zvT_CJF5T6!>Lb-kfu-aA%P*E+l}n1LlqP9`CufA}_INJS`)#rc&bI@fRUizrSs{(8 zT(jSiLoV=)J4f_3c~y_8nE3rD9){zxUKJKHPS~OkZ&rOVucP~{Z z43|#O-7^j6FI<33?e<&-4tnJ0=cCN(th^z0>tS`F%?A?BJy{A$uNL!H&)VkViDcMb{(p!tx98S)C9p)dtZrW+|IIVdLBCJyl7Xt;9j8 z+A$KD6_k4JJEE;4l&MfK>;V*kc(87?1Klt}V$m9MN$SCr2hXG3gE}_42ecrBidA<0 z5v6EU5R_k@a#<3bk!8zr?*gvMl7a>>qz@c3)+wo1i&o1z7`BP6l(gHvLMxm`zrgs` zP`=J7mfSXWMR#@!BCi`Te+BSLaR^nE>qn(FEn{3RnF;(q|Y|VT4&`kkn_b=K#;XKmk` zoJAk=IVb8*f3Up$x1E`jm$R~pKK#+*%LxW;=~+%&K;Nn1PNw^GQZcWz*eR&V#&>K} zE^LY;V7pzX5q{0svp#kKiCFN#sxAH z*TH)VJ9>;Y8RwG81d@=1V*{SAy)3URwAtM`(YvvCtTKUK(i3^imbprQ({5Hr78IP; z05}8+Y6XVxm*{y&b@^|EDL3?;16U8I7`^99OYc^{Dyevyw)ZNt2xhfsdb8C}d`-Ks$ zdAs>8yMPKY-P!C#H!i`=I2ir?y_B#IQ|qdMtSWJ)8w(OTRxg9t8lXIkns{j&r7H(R z*s%PX&lU`fSTmmZkF%X}Au~@*q6;{<$5PuwYqiT^33lAX*jLIx0#UQOr%X z^SI;t#k3z0`08i8I05jAK#h{FpQ>9=? zk*AN=vmr2Nwr-3nF}ocu#q!ap+%AlnXA~05;SWd zJtO~kVY_GmNCe_cpf8?n{#+SCJ`}_t7wcC4x@s$!h2rp;LE@&~HkGPYT9Sb_ny~!$ z!M-n$#<{pvF$L?D935!E=Kbq?7t4po)9DOt?p%OCyEkgTouetL~Bp{10^F)A&=g*$EQg7qMj=6LAs9 zLD9c0t$ubvL@EZQW&*{=hb<#L*Q3wLCNS)*;D#lXS>}HeVQdE8NxW6lc1MmN6+Bv( zG!j}<13~3FwP-XYRIP0z0+W8?p>*bpV_J%(!?tb@2 zdgh1qc7Wq3J#`1n!tZh0&F_w$hfQ3K1f(4W+@!$nmzun4SWTN}GwfMxjcT(zZKj0_ z-H!r9oaAHR6nyFDv$9xEppA`9Z%@x5ikFWMa6@q%u@mWR#_aJ;bjPTgsT&gT(`qs*v-BpPfC`h?l7x)gnG zC)L!1qBZ-myl}MMkmFSiN( zmkb55G50v3NpOydDWKUjoI30x$|~c52f><2!0nTNM0D9nXCxNKyt&jpF>xrwTyb;zEpF9u~urJ&+9gQzqNh5kzj#KwIiOn>G6G zQ#sI|hQoWQFNC0;vqQR{Ss~bNE7bEV3c#69z0k$TTlOvdeTG-2o0b&tVWZo|-6wyz zr3~j2)u1%fdzR$){%Q$Vo5zI0DHcGrh&!$r+-umiPXMdULbXX`08q=^N~yrkTUVrB zK+Q0m$O}s2mO^pbZyf(KR5o(xLYENaqlyU>0ArBh5c|7dHb1RBVM^1XJNXhZ>;pPY zeXkabkcd(a0d5m0+6HN4CO&Kd=S8H0vddCnT-L(4v3t*-EFI6wk|CIYND|b!RXVog zJSatQ4pyguR)=BR(Cr{*5m~_lE~rwa;E=Ym=luJp>QV(TUmO9IN6>TO4`lga*cwzk z-g}C~iA@m11WKzfM|+)(SDlqqAjnpyfE&iDdpha>)tor?1BNa8d=L^Fr9)cx^76tF zG&D6E+S+XQu7aCv9{(?oii7{a<7+45Ki{DFwS(sW{WKWwpAX9a*DU{`S>W^;=q}dh z9t-*NXE?OH#^XCv4u-w}y$2jR38;W3Rn8Pu2fZ z?BxO{e7*ykS$*q^ii+y%>LPG|>Y{;Jx+2h1MU5(Kj`-o#@6M|6sGdN1(I`%NyIPx{ zy&HY3F=!;7Q{5f!o`i!^#VQB1!*0+bwYL33IMysC4)>_)?LtT+_#8Mk6<2;mOfdo4jp%kLO!!x*X}^O^ zU`lZSI=U-C7+zSocSNrW=_;VQ;FwUGmoYe;*RNHYX3|U&i_8i^5^6#12|PACUQkwp zbU=9L!-4`Xs3G=HoaE_+*PT}Gp0PmptBFdYqf2YXxw?FH;CAi+q0k~ga<;;`DX^wH z(pcdr^$kle_fz$E2IS#f{L+>elYa!qKum5^pfZixkN)14m*r{Y95ozqh&>bb2$vW0Gs zELz@ZZc3QO4&+yqe&{hwH5Qaco+zKS5Qd|aAE~mKp6>LkG@VF8g+d%*IMbKDlQYvc zQQzoz7}^30H~80@%9q)gWzGd8|lx}kF!F?((3`}C2m)P z3t|5Sp?`PJJurWGeDzMm|GtdO^IskS!G%uP{MQ}+UvUTW6KFBeQtM8SS_8IPXuua< ztVKrx*Nncurq~^0AGTc*j(IM8kH#_$P+W&WYjc=|gB>Y=jHp+pw*^`?R&Yj0(edf8 ztC09_P$>Wv66_~=5h{3)i0%(!kmoQ{ZlPwCTnfD|RCO)e%PSdKC}lx%hC79+3!g-u zKn_s_c9IbA;dcThE2wMddZ9LUqIq`_Wj7x2d%K~cy~Ml9)nXkjhv#AY_|vU<1|u@b_2 zA1Ya~|M3pG|GxYmf5QoKqyHN9AKwde|8td6I|0mj1imFnj&RiC#3ks4uQgeW>5<@@ lKo;zULi_($1nv!Aq}b%xgX32lPQb!2!U2;XGWQXG{y*UBlQjSU diff --git a/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf b/dev/_downloads/3319e145d33fb7c15b85dd93189e26e2/control_plots-2.pdf index ad5f4606913b9fa6cd8c485ac723e14dd468aaae..977f8893ec6ac5c1603335b45184e8e313767952 100644 GIT binary patch delta 19 bcmdlrgK^gk#tk>!Sd7h#EjHhEi)94>QZfgI delta 19 bcmdlrgK^gk#tk>!Sd5H~EH~eEi)94>QV<7% diff --git a/dev/_downloads/33391c644ccb248b4c17deb758dc2301/control_plots-1.pdf b/dev/_downloads/33391c644ccb248b4c17deb758dc2301/control_plots-1.pdf index 40e1c1e743a8f37dd690b0df0256d15b43482f7c..9d4c53e088300f870380a1da2fc6a6c610fc17a1 100644 GIT binary patch delta 16 YcmZ2ixvp}FEi6ZqSd2}KO}C#+Vv%A70ImTFMgRZ+ delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd0vf4Y!|6Vv%A70Ik3ZJ^%m! diff --git a/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf b/dev/_downloads/3af3ee18448b7a687ef6594665f932f9/plotting-19.pdf index 8a2524bb30aa275b2f79677b9bdf11f842765218..d1b74a971d69812b5b5aa2ad01d7a9863245ea36 100644 GIT binary patch delta 17 YcmZ4MwbpCHTqPD`b7PCm3zd4906qc+I{*Lx delta 17 YcmZ4MwbpCHTqPDG6C=~j3zd4906oYCGXMYp diff --git a/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf b/dev/_downloads/3cd14c510b41514f1496a3155ea8cf2d/matrices-17.pdf index c0a6ca5e59d42a3652cf7d4fd46565af3a977860..e03e5af1665b659249b3bfaa0d707d92c0bcc50d 100644 GIT binary patch delta 26 icmezNkMG+*zJ?aY7N#xC276eHO^r;po9tnBVg>-B(Fybb delta 26 icmezNkMG+*zJ?aY7N#xC276eHj0`Qdo9tnBVg>-BzzOpJ diff --git a/dev/_downloads/464f047ba3ef7f04429a4eb163a6a2de/matrices-18.pdf b/dev/_downloads/464f047ba3ef7f04429a4eb163a6a2de/matrices-18.pdf index e86f5249ecdc597812c1e594c09d71dc4773dcfc..ee5b0d868a719980a380d451c2e89a4d7b1f7305 100644 GIT binary patch delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd2}LEVrLbVv%A70InViN&o-= delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd5H}jJKamVv%A70IkmoKmY&$ diff --git a/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf b/dev/_downloads/4c9cbd846f69df68795ea4e2cdf667e9/plotting-33.pdf index 3d2a953db214ffde8865eb12a2f7fbb94ad9d9ec..6e177c9f5b2b0415e4d11079283e86a5791cddaf 100644 GIT binary patch delta 17 YcmZ1-wmNKsk_L;hg@MUtH4Ro~05+Ti*#H0l delta 17 YcmZ1-wmNKsk_L;BiK)?MH4Ro~05*yQ*8l(j diff --git a/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf b/dev/_downloads/4d0c9c96647fc2441757598f44d4936b/beam-20.pdf index 6de3cc6f12b51469ec7f7cfd530aa97d38458f8d..5f7cdc57fe62a18052e3d1b78eff698982a9e859 100644 GIT binary patch delta 17 Ycmcasf31E)pf!uJnUUG%Q0qn(07b_Jga7~l delta 17 Ycmcasf31E)pf!t;v7!0qQ0qn(07az+fB*mh diff --git a/dev/_downloads/4f691d69f2e82384c2ceae9f2ca04cdc/generate_plots_q3_4.pdf b/dev/_downloads/4f691d69f2e82384c2ceae9f2ca04cdc/generate_plots_q3_4.pdf index d7e372f546c5793ce247abe07cedd6e380c00d0f..cfb2ab37d52c22421ef40b9fe928bd72ec782a85 100644 GIT binary patch delta 17 ZcmX?5cc5;=aw`^NO9O+=tF5N8002ly2M+)M delta 17 ZcmX?5cc5;=aw`@iQxnt8tF5N8002l@2NM7Q diff --git a/dev/_downloads/4f8a4d280007c46440ecb7e279e1d3cb/plotting-25.hires.png b/dev/_downloads/4f8a4d280007c46440ecb7e279e1d3cb/plotting-25.hires.png index ed222ee1e4d3ff0dbabd3cf3b1e38630ddddcd95..6791bf2e520a4aba59c776967f536641c5724a0e 100644 GIT binary patch literal 32744 zcmeFZXH-?$)-AdaLz$1If+&bpWF-g^L}Ha?K%$}&1W_bMC5ohNS*4{2=-%XP0ucep zQ9v!kO%@a+BT*#h47X3}obP?D-TQvL*WRD|+NCuMt-bbIbIm#C7=4V<`@E~Aaboj^ z-5V&1+N^T&w=)#A27hHO`e7}8Sv7xh!>=Pw$8?>v?aiEAFFTl0>X)6a+SohUSQ_th zF?DdXw6{AXDt=J(pzuBmC#S29N5sTz|LY1-dk1r|00&(M+-3dMlX{L6wf8Og!(vzM ztVmJbXH|atNmhrDjBlQ*ge)#=glHxp5g2nfTA)7XgA+$Bg->_|1NNc=C^3>wlh}F6lk+Jn-u9V#It-Rd46Dz0;1Bvt2!bB|Otn zju)e+pC=?ICvU|7C@q!5(k1IR8+8Vpi+c zsQQ#EB?exz-3^y+Z4TSFlcLTUuii%~GjpB#=oxkT2M)Y^^(*@j}*8tD{~1=zE*Y z1~V0Ug>;j!O!L*F+P|?g7eV0#wg^I~JjTQWqO)l1yAN`GP%)5`G)HY(>lsC`Kbo!5vm5KFE)M{3RSto_6 zF!=dYw#bhZIox8Qst3NT*+s=1pBQYC!868P6}`V)zSAvJI9nm<-S+j}9q-|B2ETeK zK4XygbgWWvZA>3!+eXEl%Fkn^o?j~y$ubblA9?FE+`4#TaaPnYS8X!q-R;e)y_J#P zpW0X{W!uz^2PtLW>%*_7WAE36AH4kQMYrxi1NXs<+4{nzz(3h99yX71Gm~z;-f6j1 z;Oy+I?U@8ijk!UlL28J5dFF&m^R<#spFekZ_=r_%$PG%WdoSIIrTjT%B@QH}pZSrz z=uTq2VK;3v8~E!ly4#wCS;pqi_JoIePBrWqaNo+U=us+pnOr!z^2QuroNCn>yxg7> zr|t3vGwHPyRUIL?atqns2*=XVJ@)yhjeo?9?;&40bkO+kzl2H#o3g~j*JE*f$pAUB zhjRO4ImKR2)bR2DXBh&X+qV^j9=_Ir4f&qKysPely*gbuyZ!gRk55kgv%CYVHo*+m zu<7pO_89pk^NX?1%ar%K^{#*Yv$nu<-ecs=I=8vLILG3hI$cZi!*=x zuaf_s4OdsD@bkZ^SNPxBrTw45{~xRS|27UQGf7PB^pg|qPcHN#ZlfhjFU*S?x( zs&tbtuP*mB=Q!S4=Ax*8IQ0hL2>sNo)*A;@BoI{05)v~{`R`SbX!98F96*>#++Nb7KQJcfw{GbeXn6`EwrF_>er#r~z^<-U}{t}-`i656^qh*|W zjyHm`%sEK_pI=G*?X1(cP82Fh&L2B$hCm`|i%x<<{O4ew?xuZQChY&r$M_ca?`b z@5_&U;6Z4YX_E(3cq{4cFXl3{hKezL@t>)s+9WR((O%{a<%UXHp6Nk!mS3ExC4M<} zb{_Fg{l6k<-0U!XunPyd_pK6hE4=}tDOGs8U2vwgxRye^K+-$ z_E5COI3T>|;>oY4^y`eg7w_+p5e4w5{H$XX8KvO9^ljMuH*QL~%#1{o-D3y=rY+9( z6&LJZ2j=GH8aOcd8W1GQ{MI1;5v=%p+m-kCnE+S8I!2ySDh`#hy-!_-TlwNv0fLZ# z^ocgz=B>2H=G8Az?n61eOcjC10E{)R>nzacO%gIqxV;yy-I)9yShCk$SY@n4X-WLf z-WwLoc;L(pB+%Yf#0-#^%UNEUXYj7$ysGS{v@}E4W}&qBTv*mpf*)O)Y=h;7vUyZe zry8x}G@}&(Ow0?$7y4quMO$*6tzTTn)0F=kq{GWt9`Rn9?X7~8L&kQ8xjJ^|NH-iD{c(H_N2v6H<&X|a7ztL zdn_*|b7$GNU2V%t5)E~(yFKp(*eFMqVZGwaKDVV=%Vo!{@((y2P68)v4(_hiER=8c znm5Vq+ubwo#~potZ)CGeQ~Gj4Uz}!;VdiCIKIu-*llU>cg9W{pH>`m@a;M7u>z`c# z+VsTCu&Kf;ezNqm%CIS=X~X|%9X?EZ4&`)Jc`u2(-BWU(>(h4i^54r`7}uN!j;uaI zc4h1vJ#)S*C0^6xIu}EQ)3s9H?^arPZ5Hy=>^tt=qD}svb=S1}Pu8e1KkI0=&V*q#~rS^SK9IL4S_IbixfZkRKW)Y6$#1wO*V{y zloFZf3l@)_9=&tix9(|}Bg@QD0NwuZ2#-fP$tLeP3f*tf3l~N7+`8Xatfi{Y+N=V+ zD(#IHcyioxF~vtrqf$OiS8h0gUqfwfLS@U5Z%u{uPPJ0aw|50x`TA$!;^?EJjN#l( z1@Ct=U7Gl83&u2NeU^2$Dg=}(&IkKzDlN(^8?jKIcJojyG_%3cl0wC|{gJNp#4L^T zMvMJxD)%Sw3PgUIm<_wN-=DG(9DW_VFjsHnZ8I}sy!xwUoaf@`F?RKy(71Ry3$;L! zzG@r!X#)w1>UwUu?trJ-arQ~0E_Hgv{Cn_eyT4<-AycZ}V=-lqy_$66bHSKGt6;-| zizktu@Yx@wXkn6d8*$?q9-cjOJxFKmMO~rH*IQ;B-PpCM$q5JSv`o3=*s_vuj24Ue+rO5Q9VvQxA**9) zkNu83-Q=u`*SzQY7|Z?EFx`9PWp3RVNa-5P^69L^<~G`jdDXFHfidz4Kpss zsk+P-7uDnU1^rIkKdHEI5V?q0w9&OE zC+wKMka0>w>2-vS8rPajo;ajsi_~7c}rjF2uX3rKySv z-TRA|Lq;@b?t53WqfcL+`@ln|;fu|*+Zi4AiU&6yc=-Ui$+d;{TTCuj-szU)Yix;Kp7v^rWp2avtO0usNS52_r-l{46WuNTA$W!%jle>JSWtdG;7)jTfZf4x) zy1=P4`kQ!7vQBcx(p>?5AK^3ll3^jMUUlb=yftnq`uKzq7j z>&6DXT~ruxvS$qny_hYo>?PazdFwA;Q0ud8Q`B?*Z1V9~S;dLj9khkyrA3BotBPHo z2*=@rdiJlyqUGi+cvx9h@_prFw)xk_hVq#3J_(6IoE{^=RnEh9AH55nQeAoXcRfUH zA$Yp}qFi5HVm9s7yDiLC_u$~oRLBjO&~uu<;(nJYP6^%yxbw`0dy|WEQzFM_Gpuzy zF5R(zLYY|ka%g)fbUo;rYVz5*-m(1Q!gOJAXIl9g8-B!jHVj|#ioZgT$DE}@PiV1Z z+n;Rv6=`kPPBbtrG%$2s)^+^eGe@s2jJzwRvtl*}c$d7Fp8;mXP^)QXX5}GBjD0#; zw+c&-&NNifrRw4Hgrs&?1gv^+`_*_Q6K-+3C0IDmCbgKYxaZe!JAD@kN*RVz@%LaB z`x9Fr$E56^Wxqe~7#+-1WxJT&Y$IvEL3wx0W*Ocpg<$z{HHY3vW|TXd|8SwVM7=?` z87nR56uvKISGY(&{e&(Mt=1DI2jpq&n^++uCdYB^5%pAj)1DytnM-GkqHXeQQ{SvD z{&7u{jrRR5tEn(Q7@AeJj~E*_ong#dAr!Ym+rvCsA=JLWA?>sRo~-TZd5wh!ep}FO zs-eU9{bL{gdIN1cY05%q;Nu!fs(mnvp~9dasuXk?inPr%7D+UZ7Kw_sJ0fSjszTe) z5FxgBG%<^^38sGVq9O&+h7^j zadgFs8{yp6O;!EozN#nOcFU^~Yb`Iy7rMpnXF)EVt4&&)5A3k*#BJ2 zV|zdz&fM;ncWdC{Fu!JTbmdvdmMPDA^~4a!y@pQ^y2?<_gN6{r>wLc;k>NAdfU zRMDrjh{Kd5J#T3L@ud9G<74HARGKo6jhf$dr*YTCs;7>=FCKL$nPfb>$BZm&w}Yj%eh~QU6Wtm;}Y%fXCScTI%_YnEbNMuV=p|q zJQ0Ti3uC%XY$(ev(!fP;G|%>YU6hwHk8k-zsTHlC;+?C>MqPH_9Ih3Ah{q+e%3_7%OkbT zi`lkx{^fLirfowXr5`1dd6Lagl0)+O%xjNtkC@t;e1naAP4>|f-%h*yN(lxF6;TH_ zBZ}>s%xbbzNxsM&NMrY@J?dz-;o!NkzPMxCLU`wgqdlhdMxCQQODon;re~;CMbk3_ zX^%&mEaQMs7~6R02}!5w^aMgJV^eE?d56_K_v8e->LCCjiShE{wd&I?I%=Df5)R05 zQIcHRG?w-Yo4CR}W-gzeTAWN~0%Ewf>bdNvVvAvyp7U%aTNQPMKOd}BEB@h4sM)EW z@Z??0&D1$_6jB%b!|hIOQOehqdtqH~690_;#BaacPRYGIl%>%7`?C&=2Xez|nJv-{ zSNu&HOv^A{-wNbgdE8VE6Px4q`EG|P1B-5LI; zP4;C(l2LbV>ct0qPd^`MbZIOYEAF%PmP+c<9JARmIDBImqH_A#>9%O(gJUzD%wz03 z*}X*zzW5DMBz#cmx|lRnaV4zIN|Xr`LpzY9i#H4_{hq*{r7o>fr_0meP}cP)JN*Rfa|+-DvT}%s$ut#Nu^%4dyyaEa^^( z7ub{6rBy|3;?%wWV_|QU@gMD}W&A+vy7KF3J*B&8)Y;bdH^s)o%S*1rhl-EzSyOLa z_ek){e*L5C{T`o57MZ4U3uP*d8_W3orM8C3dtcR|+=P%N_fjFIhFoCe23n6v@lK!3 zzvjAX0+H_ZI2h_!X%gvtZx1E84w;dbY_ymD%ND2pL?+8RULb~YCGXL%n`iiWsLS6C zygf%J(`)ZZnYuP5>YiFfSw*h;7p*kAJE-d~9y*i30NR_I7ISej+Of3%otbrS%vGMOJ_xb=$ES%)3`sp0C;Zf z!N#3W#l&aWMK-&ckA^w*J!4++=i6hWWy6;G`MhZyD`icssxFsbx}GvKw^N7LJmR!` z=IDEs`lRlj-+Rh;)2gp7Ee>~m)?vK4#aLdFX}DHme0Codz=VN@`5s6*Nqj6E$1Q)O zrPP7ns1fJFxpSk=fB$7%-`=*E^d;o`iaC^4tW_>Eb>^k48oQXqw#$n?P5I;etn2nK zQ_pPyf#BMi3{AHF+NAU|4%0101xYN*+Su$`48>Vqx37N^2=wSry4=u7KZVR)vodWS z7&;tll40sZ&9Sfb8P=)OtxQhG9sR2cmTtiLSg630e~Ng>!$6wCW+dPD`9RKe>*Gz$ zu5GCdmLif16k9jM$MGM%!xsJroJB)C!XEifz@5F=BdWPTA!O>0P=>T;;oO zwE{UKZ%zK(i2{k(hBsT4gynX^F>FVaeP7Hj&>Q`arwX?%)mV*X?hf>c9MI8^|H9if zTEgJ*7d~FVs(c05UMqL9UQ=;V64|Ori?h!*nySb-Y)=dM$Rj&dF9>HD!1$Sms(8~X z&cpG}w*^OTp}jyT)VhaY9BiZkXUCzWnDh1a;|c3F#Zc3r)LIthPU~9!*-bpGzlL<{VYi8o#)ePOvBDN7>ofl9^Z8z9K_l z_X+Xe8;Pb_y7&+$td794XPWttf#Nt>2tx?ZNyTVFFa z%Lq%)>$i8tU_OUfWKi`U_&R^8?1SzIV7aDwPVG4X95fc~EMUs^`7K6_h`HacrWN zY3!rdyOj!S+;D(5F7mt@iy~ZBb&Sb}2Tu+2FaWIsNcoE--RB2Qf(_{kQ-ZN`e!I`T zRCv0;N^@`;&{bpc`ueA_rJtUeie1jL!)qx#p%!Lm^2C=8Cx)tR&QLCjFQph(y45+G zAI9eTnRERDsD~{SE(hl?IKTh|!!hBOsVy!{kMW)T8wU%$8!RcBy_D1L0Tfc-I4`Ox z2G=hGrwE*t*7sEL{u8OZ33DmjQS13J? zip%8&Q^ujnljjYkWZP+7LwPn9J+3wGQ)&oAZ2Bi> z*HIM}HfenB1E+U*4>s=13b)%IG>Q5tcKyg^4ACZ2PXej#!YK2cPGIB@)J!~^!9nDl z9a06Z!^U^o*)IxWYpMUj@0*n*@k)|;V+SZ7&HZ}2E9442++I|A zDz`5-bvsM-7q~56m5bgA4YpavB}GTKiqviV-jGHvzcRBp?6cAHQ27JS>z5opoyI)G zi0d)e)0(~99ll&HPLE+>r3aqhU$<@*^};&RnVw|GP!$s~qncff9EM+;#^G`#ztz8c zE?je%_{f}UV&|b+uRqx}83z*xy1X>&^KdzMBf!F{;v=DK?_izwSlyxUZ~rs!HHy)u#!sG|XsA)A_a%|7Lg&f^u#k*~%4+$CH( zSeh7{#0vsPZ}V;x)>2#NHPt{~Qwy&tQjYLZ>5ck>aOz1^(#X16F@af^XEjromx}$~ zP?Fx{>0K2vjJ5@S*{LsGA9xtrn(8+u$kb}7PBn?ai$C?8H_mG3@e`EWMkxgv(pdEW zYO>e#n$GJgW+##ESx{=jI%;I_#*`YHzFoFMdf-c-pI_16Om^zrr zjBsSz=#iZLcx)>*;}t07v8KRPVq`f5HO78GivqoSN+MFUh_>|@o{L~@0Z(5RU06PPxLVc za;;N>Mzl3yKQzlnxbiuC%G4JgJ$SPS$9q>O8ut_1rmkUcP4p{rI{jc)*2yAxcWqUc zAGE~Z-4Q5Ua&`b<`glSB?l^VsJ64%`aminSt}3Q}#OdS~#q8|%ACw2vHXc+i22ggW zRVU$SqnJ(FRx0LlVy>0Ln>9e4d|AzBuvD?PfjM`I+Zi|j$0EboC>kQ1^2gZLFdwv! zdxI|6F;62|@|A8B1T8?#(9rPv_wT9br37+qZQlbAN-_j#VH9%-$WURxRTR03uliTa zswj_CT}JOz6NAe|uBkkw7k%OJTMd=TbkNfe+Z3wgngpckcU=0vEg>245eR zgM7fHfe+EO>yPaL-qp=$XL#tLrBdd{a_}6RQGUqUd?YGBuNW4%2MGK#Mp#fuM}g=F z;WV|;Sogqlr5daYyH0R9pUrh0jv8voi_?zNa6?xnt^N0nL0lUzy-2qXMhRtXJeob+ zUnJKeg?Bxbfj&z0eRK+tUo3pxTB>AG>8CLDC6$L-Fp(QJC|5f?od2{y5vUN>JhBED zHtZ1)B%128!`=+*Bo(j81bjm6=%=Q>J>+y$OF6!e%0RaW)rWkP5khfvaIk%+zeJKz}0kY>X`FtTk+-v01!X<70R;*iagt z69{J~jWQK?+Z4m`#Wo8y6ozTg=_MAb;zXVcQ#6kku4y34NStdIEfzVJvhRhfZ@OMj z)3|6eX(^<2*j~PK zU5qZK00V^*_hEGp>2+Q&(I^S#VzKzz6LARpz-0I}L+7H(#p^%m*`#2y(m4TDKE-6U z?ysA>;MProGhx?kqlz@^U%QWePhj?h3)CAKx$LF|VP(<8@;WkG8%@9BuMVR_5C__& zlv*m~1bQQNcHEpF#2ox{ zr*G9l(`>Qi5yWIGR{j79q% z|L+E%vZ~DdKyi56t*sh2riA4-SATLr$I`&1!BpGR>u90p9z~Dqgki+XA#J0JZf$c+ z8+ZGi2&Xd+ea}dO-xn7gxi;noiqwK1Q3HL}R>CcChx73QE2STcT<6BbN#sJJxz7hA zsn1WS)q074{O&Yhlzhj^#NUe8s7e`a(AAW~ae0;mi>D z?|njb$1Xa3?8rWMK#rAFatF+6yL(S)N9I^5^W9dAoQlbu7zjmdM7<3W6!jF`++qm} zr2cKLpP?|VHdI)sySx?fCCsg-i^fWN89+e@@mOw2d!TTOUwb2i7Y59k(aSa^M!+u; z^8;jysR}=gxcX~~?1vv!10pxX%u2vC?%HIWLxz8B6v397xs1|Rxs=XWa3QbvvOAzo z7%-qRPeQULzlLyKsw}*V>+p)Ham%ztpzuBRb|b7R2ovrG7%%zQU-8u1&8N&l9)*;q zR{vTYCXL=%WKORJ+XdmAg)x)YllOiG5W}=v{H7`Y@a1cll&>YMTX)DUuc8jxY8?J) zwyBL?rKl?1nvLbD@W%ijB5$loHWKd`#@jcT9l-8U9?xhnV_v?)H(YSR<~h6rnIT2Y zkS|bWS5h9`u}Va4J*6y#L84n7mf0IT6nDC#o`7BwkXQgRw^@8Oqe)^hoIrRi*;yu4s8Vf>pz`%UJy69HtY zbB79*^h_Rh70lnOsHbM^04vr` zmgfq%4|iYC1^R(xH2_lC{+Fp>m!;d3i5VG$sMFh)6*;6{d^$`?9b@@ngl98n2ugAe zbA9+KwNEA2NrjYuJMVY3xMC@^tfEM;uQPQI+;)GbpWS}u0w+S2LlzC^L2+o)mx?)w!n#GKj~w^hOZ4~6o-kER0gC!uY0Ju0SJOjh_%ARspEY|Sc43u z8&L7k#;j?VAJTLfNHLA01nQrJk;@*$;3CZu+?8s>k?#T zd4WY8Q9@;ngxf$JQMe1rxBJyQ`afyr059dMi7UJ>y7B3mg?3!OwHXOTSp|rjoqC>= zCMm^q?`63LyFARPWRf(B>(6&adz=|qkh}b=M2i!#vX~SuZ;zS`Ylp9Y!iX&l0RMP7 zr1qn^-jQvX_cXB0kD>xm#lH4+dU2ZJK14!G=jb-}eaxbp%s1-<+y~E*Ne`=e?88=8 zWRt3beY+bD(PGrDPyxBPNt7FXyb^{&QR`sqxDPm}yOuYx16UQSO9|Gh9pV$qZ-0AG z3%(}Rg;Gw;S(<}~hN+MyVYP9j*NxPUd(337l{d92hKm9R3bk98A8EJY zQ1sKC>x51zQ`E_OQjhbTgyhyJzeAJ}sqq-+OMV@cZmCUX$Vwe3Z?r^U9k&7b-q$B$ z)j#`k>b>m8Mj-AZrmp$=l`%Ng;X)&F!R6Kasvo0`OQxcW`Og)v$4;R$21A|c+d)(I z8JlV%YyzZNPT$WGyR-U?io&7F5Kd1gEQ8k(jQ(dXM>XW5E5?1^HvM#JUo8G^v5UNO z_HcoTk4PzbXUDNF2J=Witg$^VW&ID;#-u9p^$s)pnhP9!`<=-l6n@SK|HN7yfi_n9 z5ASaCp;MP`7m0Nsm4F{8n!e291hf2*04U10*7BjcjCjI*f?TX)@DRl|LeV*B+Y@$R z_H#0QuL9k*O+;>Ukw2Nh`_XVleNV~etd1bdKa@jW(h@J(9qD|2%-2QXD)8C$uu0?Oe$^?f!(K8deSBN4{t6LnleJ%D*`VWqkp{Q(=6}Rxy&(a9e z-*4HJiG8Dlp5XIz6gXRNBn<2T>8SX@Pt0)ppvYC18U?AFr<&{wJNjQF1ckHWx%R!0 zK9kRu7l&b1YJ1k~({g+5E9`4bA{a+2U3|NgyHV-=-* zF5N1S)7@sJ?!Xdq!xr@ZYF)roj)VL9T3=&47(k>e|NKxm+SyqCc+zFT58?ekkC<-L z)KHY2ov2+g>vQPc8aSWBJH?Whh?s6w-J&2VJ6>*bbIqwO*!$h2C-M76euN!zE6nhI z>$pg|Y_G7~8ZhD08m*Y$6X1j{eHX%;hDr*}w%=Nr`ya0lua{(pX`BHS!(_IbvGe>% z{n^dyC}kefJ^1wesdYVuu<(kw5(|s*a>gc(Gh`B8*z_m*{CKs=woGHy$h-UgM2oPZ zO$fY(27}Sk%0>Egbn9H!WU}qkD#OZ}=8yb}))wd*E89Nk63WTwDkbHf4+CFIJjz+7zY%dmI6X_V%et@#dHyn4nprb{xV1I{YgZq?*$!dae-d zK}T5wmIUI#>ab_0pWKV|2BqJ!t$?60E!|5u0U1_&#HtZKs23_44PAF4H={oNjzq&O zLVUK$8>1WH`@er6na2OFUXhgJInIlrk}cVu2NIvbwPX1E2CP^E+8d-=PxxjWW`ZPU zco>32_B{cmr1LQ4-w{`W8nZOFC?2+~Pa?Z!#2KwCn;g@BzXG21|3(rcdEm->-sFOn z{XBCy+ABn!@jhrYyabNG83vNqy|X~T8#+Np0hkmdn;*hu%E!5LLlN|dc6 zBP*{3T?HybSPDUeb`0u&wG#g|F)_zM_t*n4b}JQf0@K(~v(f=H2T^P34bawLmSjFy zO|_q}(ssc&Q0**`l^b|<^u0f~Qg@2K($e9hw>L2#{B(3|8YRZX`DxAiBtum-q!o@P za3RXfz1|C>Hfa^o97qa;f}vv=6-*n2OWsx*FV{NkY{L| z382MAy67`4SttuTY*A3Z$SZZxReNGl{gpe#xY70Sgv8bMB3_kfMbFglFA}^uBW{6n z;UiXXosOD+WvO|zXWdf{+@N*k1{R-RoVy4Wk4?dB4|&!&o)g3suhI;Hv9_OUt6Q(V zLfpB8^L?N;(@`sFEmN3ouHEqw8~2BmcZj;)ahFhZ1}y_5^f7Zc+Hr5u8;nIDr^`;fzmbP&AQ4@lWQNb$wDOFvr}~ zV7OgNZucMCH9q`(cYB%N7r`iyRC&=XG^~wP4@i*;qsd$?5?a4$_uC8hdB;*rg&`u zr9C4``DP?{n;uqWh-AMflNb%po7dxHHH z=LA(=dT*kNB;zaee*}Y-?2Jtu61=z8ZLMs7b8GzX?V4Sk{z_3}3p&$c2?+^hP+Udj z0C2Ic-Sk0QQz1~Q-rx|p-R2rfixX=2W4f?CmiZ&fEjL-$nV|v(PI`^&MJY70*#F_q ztM5epW&5z|OWeEkijl}X-304W1?qpqx$}B_2`^Jmod;#M97GEh`kPzp zdLJC!!o;3inc2}2?kex)`L=S&S~c~#;gIvzFH?@M-NG3{-U@##$XD$Z?2BkD+I}FY zPsZK@=vWg1zT>Aq@`elKkkVenM55RgU6**le6~Bdsug`xuf@6UXTcXsA=#@b^j==* z)ATL{vr*>Rf-0T(Pf*#J(5Qt-+cu&yz+D+17p31(Xz?B7*}^CX4{SQGep%@MG@xXl z^Ku<=`T%{w=YJdsLK-dXAhw|fM?+TW{shn|bky=(20`y1fbZlGH~x(jwGA9Aq-5v5 zJ=ybKi*9X~n{*1NBY#^<1aHMyU(vLrh`Emm_5Oj=5Gr;n;R#6WOUVE?&~@;bHHpjv0C;3ap;F z2fl}0zIaZ55vUgC(?g(2HEmAH+7gYrr*Xa|1NGhpE3Ljdf|WwbQW@&Jw?v|;$ZQ$!R&K|XNKYs1y$rNu+nN7^^- zl|P(ZFlU9p6PXW<18|Zjo4&=Pg%0+@4@0PM9b-o#@VwfDtYI@87Kj$^KKSO+2z@0!uugNoHg1uBE{`Bb9t}(KnhWvxREG{hvhHL^{dcld!xNe z#m_P!X?%##eYte;8FCmOBuSZ|=L07whJJi|F8yDyx~0b9Wo$h2fiEd4bS~FsanJcF z5t)4f$Yp=ZnXJ2T$f7z%e!AHagLfqsNLCnCg3qi8G~@44D&hqvnmy6$*QKo=ARDTgAwxzTpM@Efiz zfq*j-4kisM&%=m$W6FlJ6yvC;_v{e%2f%&>bXmw!Y=fmw47Vv6=DFB*m{d<7suYaN zuGy#belSZQZzycjp7Snr?qmpyI1XQJhXfc;GI08MEYvQy4-(*j{z|#wayW`4Dh#xXWM-oeI|Ads~eK%^ei7VRs4f;6w;ZcKLne@&w|k zpa`JT3#Cvg3@qS3cnzQryuL%h5xc@FVQay~s9qCv)^IxJto`fB^K=u~X~p>qwt;&U zZkS*$%V0}UKzRoVPCE{oF>#+5URj{dMLh>&i`|B~PE0t!z@6uHegGh|}0>?2xV zyPNxnWX{x8F^Nu!xLq>MDiY9mO$;=o#b5cAG507+2+r$&mVM7(3>2f{-XqwAZWPVl zrvk=nl?fB%QrT?**4T}xN4bsn#YLMT-c%wGpL2Pde445W*g-q{k;h*ig}sZiD&T#& zqe1Vl7A$H=_t2v>qU2>&MKaD3T!}{2PuSp5FP@!?*$;;H*>i$;o=8?RU0u3?R|Ra- z`EIxZQQ2*uZWAkj?#-CE8ay{{;IIpe##qK_t?dFD!s6>c-NwA|l)=@}yYO5g*@~?B zk#}96w6`mzQnf>5E*$b9CiL!?P1MggH4GXKFA2UwIlWP_f34M8@2?mJdSHW4*n3!t zRCo4yB{^k|f^T6~&&;hx*R(^cPk=I?Q0q6B{<_4j-?a9SNW>e@6dHvl9ubdQL_~J3QCWyn8nOlOta}vLmCtSB3~BcEcBoM?6|nR$@~}H;HJ-*A z@U@uTsC+xxGEaA{*WIXZ!ZJf7h-ht>lc4zd`~?xQ!UYF9XgV$_MN(j6-EdmL=IEJ; zU33Vup95vRZ7CB`qoSU@uoDqIOxm`q=qR6W6_)w39KRr1WHj@A_ue+MTbrdnpoduZ$K4p0NRSJ(z4UA$ zYvhY#iTO!A;;=Z(ONH(<)I9561txie1l&gV6Mx0hS1-hj*Az*vNEGKv51xqTvam#& zF&|kL&xeScL#5V0ZxbF^^i!L21 znV!L<{C-(7lVwnm*!(>gMz3 z#jXp8#D&wt7KlGV`d0BIXVZhCv?f6(IRZWieS|w_baaAw{0{$|H;}4YyKw9Be#v6w z44zQz_kB*#A^8w5YLE;fOq8i9+~SoVyVO8?fjUD=KqmxR6YHv$jjv5}plSF~f~7iN zetsaW0g1JQWzExc>w3|8Lsvth0!_X03!}gK(Yt`8c=zd{1_&OB+l1uD%MDIE4MNAd za&!MML8>erSh)-6N|SDIqwg6>F;8i%R=3B&5Jb8;4!6axvPE&GofDh{=rm)*J)GaA z#fR3-e>}m>7nG+tf-HGH7m^y+wDhyn-~lyXi3FlziFYFvLlj}ymIjpP7XPjfq>I(ZKm-3+8c@> z)Ra6XPcs{?@&@xxDZb-&HVI7REQEXj669EA5QNcT6X^rGS`6tHr`naHCGhGFO}1Hq z1so^UchKOMb>qF4$vSq=_{y{jim&&G7xEG%??ntI2S-IPc$*-@62(ys$Cusr{2Hf$ z$~DA?0(H;q^-8@eX!~`I@A8q_!zO_I(xl1T`bOZdC;#?9V2g0X6bs#YSD1%o;6q0Lut~J+*dRxzNoW{E4B=%&uBoEa+kE_!f z%)-0L!5C-q_j;t<~igxexdlo>79_2`8ycTUXg;f4vYSujKPIwBZwy z3vTeMg^Xkzi|4-HezO@+4#c^Q3|=Uf%YIqMb@sfPg#_~UQlP@PW@z2Z13GbUuTH5; zKw4IhO|+s0Gn+&SHlv#W9ciHaMKFR#?=1YGVXkw3-PzHY9VH+-K{*;jWb@#iNTuQ# zahM)d=eL5Ps@Z$*KvKw=Fiq(9$>VGBJ-W8Qf5C6L!E|j=I5%#2``a95ACPiKw=FMC zt3TLKI_YDy&|z(TMBNw1tB7nAex=;GdhV`Scw%;>!zpmAP2(Qr^fzVMy8tl8D=w3) znLy$98&~@dAU0HPksEk0+F9b=KaMw6MKV;IVO`I!u~yyQN=eS+(Od2(GwTUM4}Ehk zS2ajs2PBn1Z)=f^R01sQg@dw>IH<+LhI(>*`Ol<#lg-tdrj*6G0%<+yn_9b zeg>3Q%4x21eb{Sgs;+eUp5dH^u9#bNU+Mk-ZX=l4qj|b~As4yosZLKJ(jOuB{qF}o zX>r_I2bZ8j@>zX4C@$z3g&ur_GI<-a-Lr4~Mn@64Wt+=1Th(e@1lI}^|(e&ytags1>Vbx z^veRIZRw%rXcJ->H>abN9l;IVpJ3nCQ7ViBa-M>Y4Q>+NOdGxPvl@4{pg~0kDHx1w zzB_2dIwa*wxD9524uMe~bS6zmG@=lMnNGE&m_U1>?=@?ZH;A<(pORs(^rBLcqUbqR zba5{Wk{LLc0$nXA=8om3Nf)j@c7XKm8_XGCD$dQ3o|M*3hJe5c?#O{Wdkj4`3hYrz zeii&YesKObF7wCWn{3o*%`{7^6KMKMB^et(yEhjmpV;vuMh z_9!2eBA;=5@2?qj@d$+dCY7?Vr-Osvk<9m(Z2_5Fv$&!K zqOKd4ULl}l?~QMd%8~AOuVH;I-ua#nO`H3iq2&s$V5G%HZbOHD6r!}tcLKrjaKVuv zrdcg6^Nm*)=O&?J^e8S96PO>mfK`h=PCC_40}iBVj#YUFMXru<$zK>NBW1Vd*@tK!MVbRu~}MFiZ7g~M3zVq}(}Iijp>QuCBBZ+el7oIoYkP z!3UDAgjjh%i9&mu4XdipO!fz(-3CDw{M1T=-sfXl9Mp^CpfOTv`040vD3qj0xghP+ z8C7++C2}}Rs@y?}^vhgZ&i&_oPXbKjFA^?BSS!h#(Fjpep_BX>XOO&+S&0y!jweex zOVYx|qL+F9vGCj2%lZMJ>Lumw2V6%_ns8eZ(G=k)6<2x}uwx~{;8I&u|4T-H9$ z`dk*00}l}Q!TQ0tSJ)G%oiH<-_!AeVSoK3lE>p797WV~*Nbn&LmuE%QBX{7%Q4~gz zanWA6@f|Fmp8mM1&!H6QU!?3KStYN6_M~$?yh6-q3&3&%=9|Gw4pAXcbXb1c z6}mwE468s?QF@Ww+r0RTlIpH66qTkx^Cki0K53;3z6-Z!+jyjD^Dc|^UbAIJJt)eA zzi?zXbovNMWUp_;4>6hQ5g`x?gCIg4b{VwgbPJTu{@s7KLTwrmh#1;s_+qyH=|Ztm zly~z;kMz^McUv{j8)oQ=t|iq2WuJ^rzZC*0C>8o?-9ex!!3D>BMbDXSIN4i$s*N~D zDxmL)KfRbul@KI&sm)dV`;>iLigz-vmGD)`uP`o3&l*MN&lrz2S_5hmHtS`=4Y5en z-&Fyl#}OfVC#Yq)x!{mV9>)IeNX&PD!ZWouY9-!n0(}aqZQ@2y(88T? zw8Kp{d(fF8T}6+x480~>in2I`12Y!7#hAz*&7(r02m-NcH@5sfvJ6nLdCy;fBgJ)M z1tDnRI*eD~?iTW(i19`qfxbYWQ!|2aEbaD!qXnQ1mP#1m7}V*55wLRI@*$8|&ZzPo zD%Ubt59VW|pS*-@*Mom}50av5_7yFIduKd%;>^G*8IS8AVM47&1gPLLBpC7O7@k92 z<2_UhGu(H$qlmIceu4DsDGOnor*oe>8q7cZb2sSD?FYVprz5u=7SAZ z350f}i08PX$BLfO3M1)glU0IAbqx843m;_xgql1&hQ{qF#f4X-Q!n|)+#E=UAj*MM zsy@|}4C0?UA<>Bd5+i(m4kJvr4M)Rn zWxyxvjiQ~vdEP*ay|Q{=(bnr@Oyhe9(iQa|9zrnz5XA;)`2;+()-4H&Im!y z3E+VW3Ale`Z;D{V)4DhMOb`^vFW>>@gq3Td#Ci`TT0XuVCj7ObfS8hFA( z1$iMG4{-vKS1*pJ}y3^uX*sDO_f4j%W?ObJN$fD>9|X(jcqzQH*o5YhlHgE~%8%Lz%M zvooC?3Qe4jVBE%dtPq4a4X^$pz7wqgti6e^6qvkJ5vbxk%k-|yCVDZun9Nq?#DlP; z6W>4bfYzkT4$kWsC>2OX36m_X>LLcz2#-1Q5Hi8p3VS*^9N=&aSpX57=K@cs%^B@= z1Mn&S8fA44w-V6xUhMGgDP||6oETI0$6G2Mq3M!KTh>F0Dnk5(Qegl(G3Al*7y{fLWNQhutgHwb|5oxlD` zv^WrVa5`zhI}oyP3`^v-<6~fjv2G0@!=GE4tH;Cyf8+dLD<629|nK)?_4Q9e@j{{dG2r%RQeW4(OoI&X)%PZQ* zn43891e}dx$@Yt{2}4y&1o=g|tT~|zf~$zQ{U1*C>UEqCKr@99Jw*t6NU0^6jSC)V6StX3Q@Shaep59dpp6V$XIGh*}@Z94%(7o zzDyFetQYNTI0Q)>DqCL(Muc)1y&PfSaSikJ0)%p{$D!sLP?5tccXcs*r0i)y-Kf@ruC}+~S0F+$G4v@z;j8b8LL*s-aTW~xql*8m!D~I@idx(<1pN zDP89P%#pKfNqdqoUJe0e1#oSQIql0GP0pur5JU@0_!W)In`JixfKrO66}y8q$*~W? zg=)7qLsC)w#ih-28Zt7;94HgjWz^9po1Jgl&Kk|KI~duMR1dC1i5Dj~bY*waH5G-3 z4C5VY+^|v*>HbH1XZ}z1y7uueD(!4(KMh2v6CotC%Q6#pL5Wc?Y zB~dB^c#?DZrtXX0?G-AzC=MBL15gRm6}+?{(T{8n1w!FAA;Pvf7*T|!*cb@iqb>dx z6EbVx5yJqj%zrFHXS3Stg~h4ZQEo|xO({25I6)u&M2*z9u_`S1JgH3 zjq_(WOaTb^q3ZX1uRNcuqwPT6I~9l~h{L^oh=5cL

`B~JLYml!iK6O@ zgFiMJ=$58uIAklZipB8Gj4QFjiH)Hn7EiAwWPW(j)`wFcSp@d`V^WEKTNWGj|20Oe zlJv(;gg*`^nW35q6?*cKqaqx zs&aCQ8gl z|4~40j&hE{GB{SBWv0=jX6gKhI68hI}dv+xXpWp~5h*>eaQciyAUcrY8g5&Sf} zY!%9aprMrErDC7JYvt3V4v8d$FpTu_-I;8HSTIqHqfz@Yjw>Bn{=9&r8cq%mf70OL z35F;Sa2_et+mf=5s1&UsZ*7G$leq`fPVi}9qT<07PYlk#eYlx{V$F2iw>fs;AUv6B zI}x{6wVYocRv7|%cke1)`}5*wcxW8t{OCuLd{;op+IqY7JP>2R4xifUyr9M|;J%Q; z-whaV%NY*S97AH)!WccTOOu9hm(VaX3Go@N~I71h&JhZ}nwlg7bf;xKcDCM-8 zeR@5Pt#m<6lW1GkbCKtbo49_%U0ixJ|U{6Yd!b>OO;0ID+ zyxI1o2rn`b%>R+@tH@tcM~bXmq|?i+2r=Uf_LRUU+)gu4JYe}_HLf1`yEA(cWfJc3 zC9I2up7O~Nb&q4p-DX_=3QtUgiQT~ah@AywCRMfNwSaKd*`f$Joz>K4^_zhz+$Ij) zU`7sSiq>On>=jtd7$rH3(!^G%^%?`cQunp=XUmxBlJm?_XV5FrDIoZ~Z$?MiZ~}h- zCa<{exNy}UFuOovL}Gq(r&5TKgx_6@2H&hEWOassf>9<6IKbI~swhj`UbcX8E`K8? zgSG(N(BK7QUL>A`!u39RD&#N*TL9{GsNnz%2P-%YoFBM^QPf0hvh{XT!t52Oj{ZTZ z&;aB>`q~PeB}-S+VLwSyvd2u2ExN7@@Kv-zrUhKq0AVRFc@{K9@EHR5IMYr*Z8mxu zD~q1$y2mI{%G$OWlWnJ@DKx;`kU6EUst3xV%aUvnN({;abYnx&11m%FGN98Cf1c>rp-ZMo%&1 zCTAzh&Owf1p<)-~K-bV`@(e5o&eD+4Q!NMm2Jx$BHSfj&59Ume>Y!94ET1a>slHbA zQz)u6`I<#r+_o5Y=e8rrsR1KF-E*qifb_eSuN?Mp9kJQzPJ%KZwJB}NDG)ZKadsR+ zT^dY-0!mULllzoMvoIN}c+90S7(e?Ki5K!GVp#pU?vVj@NtQ#HQ@aThgm_S`m3-Z) zf@3El;GoBepUmK&7G2>pS0#+Rtv5n~l?9y#T9BbJ4sJTcW4;c1`wj1do&|!%fD5Mh z?U?4NxQ-cLedWMGqmBdv2t$v>=L_2^_$)bsEd$skGhev4>yFDTmsz#2MJdD*kHU%< zUrHUy<*-VcONx!c@3SLSg_~ZXM%)N#r{(c@d$6RsIrT0w58^voS5c-#cQ;bb9}q>t z6%Q(0nuSjv_Am4k5Xo}5j#wcr=S*){SpVt#apP)jH7LsMdq1_k?74#RLs5oOe|q3a ztIt?nVc*j%V#qq|u80{Qm<5oWz$V;$k@>0Z%jKP6mqToGlEI(?R*&Xr2dbdlD*$pL z7U+J7XdR5yB;6xTF-od9Z_XydT2fbwARNvv-Ka4Mm)^&ZwY9a^#6g@Xgl!TFxd>HX zKnqEsZ->}bQGwW}|C+K$%be-x!Vbp@3f~hVcJdNAP7^#AFNKd>+Q=s)1vVvdz9naG zI46lI>=e9$Hc$o7=$;9^0Yez6jW}$?2^>f$mi_2=fQX@EhXe#NbAm4Mj)q6vjUhA7 zlA7#IZ)J8|kO>pigCBf$IHC3Sl_4RT6;kWOx;U@0w)d(G`D9s*?<|3F4P8xda5H`r zr38N7fnl66f!+bA>duU|kHWirP%s^F1p^_M!RclWyc$8n74Ck8lRqvSQJI?t%h5sR zY&|kBllYz#CDu(JE0STkWfOSZix@0v>>huGxjkmi&3=QqIm1!OYDR4RLwE!F_8^_z z@Y>Lmv=0+wixV-1I4NLM2E8#Qr-#F*g!J~W;mfZUndikF%dG?W3wM;D$d3q>pFsdx zeofiJa9tnSf=U1m4`D^+T6a!=PtDfiFo#lkgm@e(0T5rorD0@agE(}wo~+jJ!Mfvx zv8F~4Iji{p>e+U=7)?djdMU6)-SlO{b4r%rlQe)Y{Ww#w4z7NT{O zZpx=JL|hwI>8L}QhMgAN3Nj<&e#eo(WSBRx9kq<>tvW?(ibKU#2}hvNbA7TQ^$s3K zM>&M_R!I=JvDiVr#Ptv2ktf@)&<>k9+ASw4DJR~)QUFN|OD%(07n>_B)M3eHO3H7z z6lcKJi9eS!U?Ui7sule$<9om$|0g~q*rW1zv}M?y5OM7ldE-2ZVOY2W2Ed&W;4D0_ z|3o-kxK^~5{Iz&)X1k75AiPs*Nf&HWs? zIR6lKb>-JeMyT$8s)Tcr5i};JDGYoa#`gLS0AF$@ok>LkOlA5rD;n;t|-6^!R_Z$6aa z@!8=%Ri1RmXoO6!2UZu;7JN>OuIO7d%|=HHW%B`R+R|x)(28(VvU^c83K+2rq!O78 z$y&kfS0OJ5``}(<3H~C0d*8Nkr?p_&2IdaFY3+fFt%tYfNC;i)`5cV!{2z- zj0?^Q-+7wy;=YCFFUU|{oh1;l(sRfHD?mcs1qz6k#O6c`#^dAVw-;M`6ndt=5(c() z6`UN6K8HO5tM?S+;PIn?G*UTaZZGP-N%9SsZyBv_Ly$%PRe$npi8?R55PR)@lr{Sq6GpJ2Q#`~udRLe41wbKx#iyDR18_jcTg*-L#`2Ew^TGvsu1hid>Ym!g9NSG5cug>PCB z0d*CzwE|=U3ly-p%7y(Gb>8jX;dPs8D-zY(jDv947gQk$I>++vbJ@XfY~`Z{TPdeE zI6h5)Mqbz-3*;9%!Z@p<;M6Od)BU(`cU)h?HPMw1Y07qCDd*PgRWPo|bj9JeIArdy zu6~Jvj{-lBxWJrL&*sSFnO$4EZO# z^z-1Eu&!4|D!=^b*~cv2(z!yi1&$@Csyv7HpnEa*BxDY^a$zf!zt2t1VqYs45BfE& z2+w~`Mt1(Xyt1Q8J7 zMgiMPNx~Ltj6YUJjPTJOqZvYo;wWbvT$7UHnR>P}LUq-6t#$f!6%+5(JfA!x#12iH zgy8ZMd-N6ygp@Qm5C#sV@lcUPNc7iY>Z4feq3hOoE$SQJyjU?yYW-YDz__G~w@s19 zv^V#&;D@91_LZ{tB+on5Eb$I?_>uX>+D+t&@pAffWt4h}?O|>2I%|`X%U+qkU#)T5 zd%;fYv1Qqd_rJ{;-rvuc5ul{GR(*wx!KTJpt%3&A&#&9rQ@Nd9l2MV|nc(s*&BL?9 z{au{_`hCUqOw{tLj|7w)rl;ER2kviK%VbIij8$KZi(?#iGh&Zr)?fS_WpJb+SJNm| zC`)b`b)^iGH*sg2hBOpz-m}&Fir>c+=lI#wI=>kMl`IFw9 zT;|RRM*U+Jm>@BF**&8v!Rj$8_hRw?ZUo>8U1TdNdAbQk2ma(#8Cp2L-9&bc+SgY0e!1w9;Vz`Yk!>*3XzaqKL+d+%Nk zgcA&8^$<_oO;AJJ+TNUF5)-9_Gh%BZw}U&HYmoMJ}C@ zk<8{XK1$1iTvRe?YG*gp@9P^sHpK=( zebHe0Gmm77(?M!10cUJbMW>kej9rwcGpb(N=5;@Y8Fmo@@X@c!$Xj%w=+KkG3GTxY zU*ja$>9?mwV^kUAc_E1#89mK5GA;3F|1sCatc!wdYtTs_3o_FUzvrOgr8`DttXBxCxNl!xt9j4nm*N8DBeN z<>I2^Xaeo7O)Z2RXr7*M7Jb`AQA^|D(R!lTU2D^H_E} zhYFQ8G*7${Yo0p4-g!>8Tt21R=XUV=ss}Pkxz&1WIdzPa>>J>&F>R8@Pn_(X6}w7N zXD{!h@zB=w9B%#@LYzq3hG*+ybTok+sm;?ku~)_CWZp%M#Giu~oSvENm)|}fqb?6H zYvvhFB$$M#s?F$#QTc{Hz@E*{$1Mqv_fPi7ACwYUl@rWgJLlc~sQ8N9jOJn6C!N$p z#Wvs&5D0{^YKS}+pZL90(4SeR#lvzb3*RS*x7(NkWn~+owq`SsC@Hv_yqe~ z+OIK=-`p}%KJ!@!Wzg}yJ5REGm>nr0PZ#FzGjl~488M~ccC;^vwr_v8ZSJI|0gij6ZxY#=- zem={cqb;F&KS}%|549`wfF4C&6(Lx^c*$PJd*Zcl`8VhLQQo!We^-zhKvA?ajM+5XNnP0RlEHEF&xHL3+BXd+>1FFo+8J#?cCBqUc4#m(U3}Tq%6_bSWtJ-o1}e zO-BzdOa^Uo2}?*O%`d~Vz5(k0lJ;x1H{qY^_DN`Ii5TdC3 zSw-vTo5jV&jp$pvI!3xBo<4obADD~Rp>g$(w?}bk5bh}HDtE($6S@n-fsC({VN3QS+zOjU&eK@^91Z$OA;)r8` z;ZMXm^mr#l9bHT&7Wwmk%e72ViT{Zq=)WHuGwMHMxA+fwRG-d2=BFr;cL$R!E`yum z0KQ7yvtPDlx;4eRHe|L#q5A%=5yKN;hfZVL$-Qt`S&u$MG=CIYhS%eB__tx$_f%l% zm1x$)f9Fl^P?}FUT&$_7F@e9)=);E(bZnC&CF9uU1(5?&8`a>cx&aNzmYI<%Rrux9 z)YTmb^8)sF5=9h_VpR03ZO!GCn5m27(AZ;u@(0>E5qWqtZ_GuZQ3&9$0tjn{>O z2hREp77D{jT!f@|hQ{H{|B`o(xPE}PWOT*wZmrM1W22NYN`tW`>2Q|Y+Bdl5aP9oY z=L;!%u1}6#(ZwZy*}h=#i6wD!UPY8Mp38Z98e+ok$oUPgmz}Fa#K~2SjW?iFP@S77 zGN4Nhcb0Q9MG^Owh5|8*AP(D>hRlsquY+yp+GGr3AO(1OXxz=!Rj;L|udgrnr4mJr zZYA5ypX|w+tPWyEhp#vwcZ$Oj59XmnVvzySwjM=o((d z>a+0ZrhecUz=nN9Cm8W6!{V_A9e@~9$EsO%)J5RAv`fDjM0d4+3Tnza1Eq_>dD$HEBZINVW+&uC0;q{JU- z1CU*cyWbe$(B@#M4nzr1hVlRN_iUKtGSq(q8%Y<&Y!4)6E`GX*C`c*F=%?M=lYcyV G=6?ZeObP=4 literal 32697 zcmeFZcTkmCyFK^Be>GHfgUWfs-cMN1^Q^UR>S&$dT)S;8 zMNyopCy$<@D0ckF_Vx!3e7o3ON;AvdYpH*q%_aFUbb^|wX-$f!&1MejPFamH2FTs~>&LQy;aCjYTGRJkcp zls}*9(ZhOIVg_0~?w;)u&oO5|`qP1Ze*~6Kmjpk4MafCdm&f%R^*?{Deg2JMP^4_H(y(8A z_8h)&cZv$Fc{;H2gG%S`6f1sGxxSxb!S{r}H_^yH=$v1xLcTv1W8X!->qW5sM7|4Z zu>3&2Z%(9E;TvtO?*D|3pXpC!qo_2C3&npi?K4}#uClGRs!BM_C2e=6)q6PaukA7- z+;XlTI)X&wIHl`%(`j_dR&Ir+snWz8uTN{3G$D{=R^OYcX+3%3rYE{v5W;pa&2p)5(Kj`!=h<)macU$zWjDSsHZ#JOsgcAdmJwj%DtMRS-szM4*yT^ou5*rk9L-X z$E>1gJ;$+SI-O_zX1f(8YjjluLunKxc987z!Ee>t$`#L2@}ndx6(sT9i(ez+Hm~fr zglnao9F)rI3v0zFm0RDcleFDiJ$re47XI8D{K37+UZ&Q}<6G4|<++)Et=Tw++glE0 z^?o#QsR;d&oOg5;_4t>RA>uNrWg^i*BH8;|ay*t*{qwOPx(m&_j|4o_P0~{C8)l&r zq$63^Q965-7DftHpG_9u+8$na)?2vF%-?ruGR5EW-t{e|4c76ox1<|wo)$Qmnzn3G zHX!e#2>YaMo1QLMR+JxlbK(2<@6LUX!mW~G-J_l=D`)A_ZfxL*+pK?P_e~gXLLhnD zinm{k9b@}b3X~*29=g!#H$PY|*Z-VzD*eWKZn-|G^JHBoBk(v?>+DjQ{HpX<7fO1j znjA%CIq~6@>u^Q*PBjQ{7hu=<`0?~v#CxRJ3IjN!U7KH+=KR8-sH*0DaHXiL+a2DV z|2%q1UHG*5FBBEEom~Fr+(aJ(8?*e)1!nZT8B3{3XWw#Wm!j8%O`r|@>|gueQWRg5 z|I+OEXbF$?c!f;m#b?Q3*S8q$8*EH3E8+2vv5xnZHZXNNz0+sp9WOJjS}WRban5ou zz0RR(T_VLs=|z)QK002hyu68X@>|UlU6GuD)aNi<&bY&5?d+4w*5f(pElwreeRU~j zoBUtLJ^;%~ z{cj#T{zpf?|Nr6tho-Fm?>CM{=iDZ>Pax*__r3ZA`xuj=*Ns8|(3r z#==$_`~#AYzJVFO+<%~GVNb0q<2>81uI8W5J)7s%jTHJ35vi%2D_}i$)W=wP0o8zY zTy(8ixq~xpER>3;Q8+hH2A?;sN9P?cm(LBqi+X zUrr1*$(Z?!9($2L_np3x4Wac62|M>mP|EX~EbWPQj3dcXJ|tw@LBVG)vM-+X><;Bs zU0zzOer;XJQE`q0-Sh@F5)U(5y)I=mUVJtzyi9+1p(L2xguf+!w0L{8;5Hzdd&s|! zoi06pRs66MIVkx(FGWe6_$SRE1!>AH-3$GLqDGFaWX>1<%S(*lt;Tk*R$~5+l{8k! zuN4!at0imsc`zBbdRkCib?=D(#OT+;8`_g~tEhxo9psCemk7l|A&OIH=oYUlq|3(2 zM3rmJI-jj607lVpo5Yvp4T@^dnVTMtPp>;GzmZ?#!w#47J0$SCl#7?>`Nw8wXYcnL zy1o0z=O?;JPnP6?3rqgvRx=}C4bNZS z?Dx5jgG!hpi0@+gcE{X1Zgr+IJU%0b6CJ#Aazhz^wB0H91ITUSWSMXMdhnv&7enjV+@-mGRk};1q73#(PkXc>&Vm&6^tY9rM@~~9Z}(5`ySjR3#71p}S6zC@oHti8XCqRo3yh0j^$Xz0 zKz9ENPe2pDk=bf3dHZbl!A8ANtQBnq3a1{yg6p}tx#>U9wgLlhRm^c=6&zKE4KiqNvkO!+A{kVT~nE(Y(7c zUKdkq^>vp$%B78+Kg#MZ_xgQ+?^I{G^zt(QZRQ-a*`m3(7y7i7`Lsu^D-~Qy6bI??b?&2Ld^6! ztp;MAhQ5;)qecERvX@d~Ck7hC8eqzMVaji(5B0`$xHc`8vYEsVsQT18sC zD%vJ$eB@a=>*b5h?#50}M>oh0rkS_B9~Sx{$EWca2}N?>AKzD*Q%Wg_ zv&(Z!?Tu^mwR^|TSkJxfpb_KZNA~uv+^NRQ8!|?QhKG~X8e1P`^@L7i)wyU%BhzhjxG+-c5gW-+jV<**$6@QGMo6mlHY#xU0%Gl zT0nV1eCFaaz9xt0w54L9?vy1n#j%qT{m;$Xlv`Ze7X8^NolB&|h)NfTUzl2(GTkb~ zap`&X_skz-LiN?OWFPg7A6$LYr8gTmNxgD zIr7zP13#By_8HH)g>ltrX)|TVn|$q3?ozJB6t2mG!TR)ZRH}e+}q*k&`d4ItNXZ zqbeJv`RDtl@>8ciVRt%dntYRQ<6l}nl_pEWQrNhpO2gO?dkz{~iBO}A;!O)bt%b%$@Q z_AoGd@}}kKY3H8EZi@@0`>5!U!`J9SDGPH`mf@SP&;6plDYG|9sKF}QIhBPGQ+ObEAt> z>RZfmZ6#T$^b)+qxm2WyzS{o&rb@-|=jr;X;~&l1GQSv24PSckoO&MM(W-j(%Gds; zCOh4M%`>%|2KmAdO#QNoGQwuD&>Xpxm-;&qS3Vwkux~10gJ@uZZIbZLXxqexM{b#_o#z~#FhH2amQ5NBF=PhdW z9WQ5;iyd*wv99dO9WO0A-uasKW%tZTVTbpeP+`F4>g(RqT1J`f*msFYi&9ECe21loc&yx+h|cy{?)xF_$w6{CeF;d5a9x!)VHkN zmTc6vVDkCfuP!iLKJE_|&3$=haJ_!Ay>;XD0_UR52r8Qj zeYTiXS)8YAhLHVqocx!)ohucKM&TWkbz3)jH>IoVpOrPVxZ^zjyAu1Z+(|r!*xm8uS!$w zo6L)Ne0bP*>0YdP+%fmEFffm;DNWTX_F&fhP{&fFm0-Y4ib_9*)Lc=&QJXj3KQ6}C z-FY~#$kr2g@n|{iE)lhneV1}A+Xi0$nIldM-yW#84sHuWuE}IQXXjMMvQ+thflJQkV)uQfZR|O0|5+4rbIP z{uA7%FG?BxDn#us+iJEci9?`BdUdqD{=lWieBaM`-dPP)f*MS%>OBXiph)2j0fCs? z16kHi%R9Y!%Y+Raq>cF5ccr(d_-n@bX4JEOovdT*4LLB><~M);CxjO{yt34tYHjUS z&!qZI{sZ;qwPy5%rRhh-tn9lEcF*<(J?V}24VxH>9mu})>NhWjW?-HU3++h~EbO?H zU45ORO7QNZ1Qy`s+kVmR@YMYQBRI-rWxJ(*I$kuITE-vmXQaWY)c3F}e?BmI z6Fyc=nwvVC(bmcxQyXh)+oJ0;-I^0|+0ZQhz^kL5)1QrPXiq|4WQNOY;uG`Q2L21h zn=+Fk`Lj9#JFJKQ{Mj;T6|J!wt+bg)rA4W%=~j#Jil8T<+;Y6ecB7L!{dM|dST$VI z3)eGm@N9YZJp9c4h=lyHQp+S(T4N{q*i8;jwV?uK&*jCAyJ-lK>*Wv3I)<>S?9CY~ z?U>_P-k12p@{k8pX@1l6V4jD>;snA6&FDVX>51$2C(Qm70c~Z|n1GDsC1%@_{=jry zqGm%MWfWH-qrJtDmrE>RCd+5$D^s$P*S?7#5NqPw@9w`*`@(f;EawF6a-GC0JdiCo zWi+f})9Yh)MoA`7x_t5eXE$9{b%y=JHtObwj2%R%eGFKV-+TPU^)@YeKFRXi>$ZoP zxM-$+F=GBD85X;KTLA0rr`u#x>!ZGAG|{I9gIF}D+stCNnHU(j%TYFRS}Yv2Veu=M z$Cv`g8m8+C_=S@1Hv4)sJfR}Cp<$--;mH}6lj@W0*O-@5__UQGO?;e2zg9j9 zkNUP=WfJA4N>Dns;q6uCpFcA-B>9$SwLd2tRi_KD4edJOz#X9 z(&u1R*^HQGBMuxr`|Ux;n-d}Ca$Ucl;FBMUNOLf~OQX^hUYDb%Yb)X9>g3JPqz`7O zPqoU+&a_)Z*#`DfDlWCeeycViEQu5-M7n(Jk}25V`eAXtt!R6Wq4nt{mNeID4c!H$ z2)8d?S69>7)}I{8Njbyyrd*p z8=Twj#<-qxuGR!v;wxB8uBA~@%Gkz)R4sYo+4gH)ao+Sb8v~o<2ld{#rRHHB&P@dNJ*_mwW%Wun;K|wZL(*g0Z=9yU#?uh!ZUK@IrXpoE}gfE zCb_IPd6y35d%p@@Mb(h-5$e>RtUBDve1DTUUMa9R$M-DR%3nER2m3CK*vwWnEhX8k zo+yj_*}z4%c%Re(J!+(I9SciB1Df>akJ_f11jfsC2kN98Oj4KTN|mW?tv=&?y>Z6t zBEC1tAcxpCNoOrDbyaJZX|1N(9%0iBy}#WvKQd+Ps2O}{PuAj8hvu243{|0mZp0P) z#!Us6!c3(-$1BW>X1)41&sXG+9*3i~H?7>1OHnRsD7$0kO((rOOg&gB`^@NSO4B~d zmYy@L6|5+owJ_FoQy@^{@>ByuIP-u!H&u^ix9VXE1Xa|fWDCmnKkvxDC9Rh2x?g6i zl=T$#uYhs?HMYls%@6=gh(P{D< z4YH_IWF*ClOeL9~zmAxgzm&&8X{y4KHRlFi6HEP)%wXSoK@b47$aEswQMuU~m6uZxOMQSxm6&?2cSQhyr{A|>Lj5DcU1DO6xx_7Svrn*Z| zGqyunNi(MIc=+~rMYnG^IS9#bri8Dv{zQu!`>>aJ=LEn1!Ug9KyP0tJ@k%pTmCdg? zLs2HKzhg>5T=;ssKs-F3_Ed7!Dq56N-y?K$wO80aG``4(1pww0PGoVb($G1(zE`{qOj>y28)g~`IKdoJ;SqCcxtO$J1w=EqS|`D z7?WkhV9h+_EM>IvO9+-he-A$hp#ul|O+HKA$U-Uij1)39>z~AKz$EZV9l%10G5Pn8 z%;N0=y>ZdRa|co_1z4%X_dH8F1J&~-%KSM)M(*3FQu7>l%C8Eoi#oIT9bPuCSVz+9 z0;~Nw=P`&pA8AQ{{ZUQ-Y*xfiK5f2m+AZ_bUur{R*V7Wsaf`P8c3p5)?}Q`3taO~H2)0AV}HOfRFRTpCu=PFlY?sgdgJ21ta~VD>qfQ>%DMHTkF6_V3)HQz(*@c~b9KaYudP=LmQ6&U zmg1L}Ww|XsbTatR{X@c!{g*8esur(OwC_fjk{_yvca4<=Nm6suq9T+Y&GuhA1Fh z`QdAUw(q9f;uWS%5I$`7tyQ6IvFdnlKGudN!;hjd&ohkh_cWu_Ha{lJf5&B&u@L{e zu^hAj)Q2{QTm9r49CEs5I*I*gDJ%AUdH_#U5pIBC-VY+U(Dq%PHzM30P21tn)2d)^dT&eM>i;) z%y!dVf)T#ZP3rn{FWq}c74u+>#Jg_ElxnfR)kd-V_|4X{C(nBFp_ly7f4QSbo_c%N zrkdZ-v%4!flOCe1wbNG$jUzmvhAxYnsMw#sI^JLlOT36AZt9`w-j-Ld zJ`-tOsvd+)R`iul!Fv+_1?$*63d=_V#PIdNOO@1_j#6bCk>kNTB8?sM z4wme2(LhhlEC~aQC(oX#o0^)sH`*qpcCz@C#JKPW9XJ)^DK=hCN{Eg8B&YJgu~gU< z7F|g^;`ZQ`AJ7^2#3se#@=?~h;b$tbG0d1>T{sl3;PmBiTRtryH*W2?77$qt6Xq#l-M#td0P z$|Wf->Oh|B=zZ@;p`}`E3!BKJXL}6C4YlN0f0XSlk9N$D#OOO=;0&ev(7vfl)L+$a zw#+cHk4m+oK43dPdM3Ivcm1n;xcwJKEl*H04eqU3ha|rue$UNyfvSMr zGl*ebSG6v0QeR?ufobZ&S7#b-m#PYrrUHE_?}?Ma@-OQ5{zPj$ht-gjw9>!`;@Fx) zem)W{t|X4_LkfSz<1{_QyuNjd_a@PdGkA}etUo1iVV=}=SC=lFaZCp2yZ)8FZWK;u@E+s|KXHQ3U69)c}_w>3&& z-?A@}RrIxnbNf|h<0UvuX-Ahh&FWl;BE88$J?yN}>}pDi2bCZ;N<-Nf+fmf_mXcD$ zZ(eL>{gIc)FCxarIkj-TWfDu&1F$a^zI7Jf*igAv=y}yqTUyw+*%Y z+kI5OHnP|Sool2$(C=8ZnQ==-%PKk<0g_TS!_vYgqwT|*uUvo&8j(oF={42R_3Z(p zGX!l*O~7Qh%G=7!@sG^e-mS;lm*&G`ITE_zmo*W1(WQwb0uwF-t0qRjAQ$DdzP_1$ zHjj>&k6y^ zdSe|yOwe$ey&Y3)P7yP(*&$hR7t23}@dkhm4D>H>n{^X!R4GlL=d@uWx=uc6&5ESY5==sn;2`;%r^b&kyshJ%pwImaWl z{{^}77H^96uEoT+uF;a9cRWZG8j_mCt4d!Fq%!-G1cXvzu-Mqpr$t!QUlt})igwDF zX7dJ#JY8U;PSOpnHMbZ(JmgSYYH^MhfDVU^d8IPRLYQ?hAB2R(Vi1`zF%a48?|;fH zzS-%-*w-7_37aK6tme1k?F_|f4HWG4%NvkDF19Jjj=Z&amQ3HMb@J?$doY5EXhn)8 zs%o|ul_3M8A^s&+YT-8S`cX;V&}X#kAtP{+Wvf{(azO-L?SzY{BQan{Ei^_AVj6cMy z9KBG&&&I)9t!)-lN-|rVG(~AdX7#9TF+PwrR%#LJ7P#jp+7qBeo1@x_q0h6d#78>s z-3Vl2(5n%P-u2Q{W>=6X{g$*Kxg_~LUeq@egT~Kiaz=|$v>>$M-uBtH&hLL-DGh7U zDI~9b17>~)sIu8b8&StnfQ5P-fNE#GvI0TuH#e4Pu~qq?Y}@uuwwE_4hK{;1wZ$Df zir)h!%+Ob*?^L84mP*Z(^sFS1PDl;J5N?VeDH@wtA-=YBHZ0>3Us> zC()V5rf}L}0a4;5*1CPuLCT_C#LO7ubn`cj=(j8{Si?Fl5+`I??Brp-JkLD5nvWm@ z>~r=`A2Gu#U%Qs(85sQFjqO1mlu7_jK-}+`Fr%n#b@}sH(KGBnh{?j7IKZFHD2-sBq&K15#8visTW=bv$tj zb2gu!o|bU6`5l9}sG{I^`VMD2q&wy!2@-e8G8QVI9$UmY8J%Z8tAOP-^u%Hhp!L;H06EX9r2kg2H?$nzH1dt$|!irwc2k8%B=RQO=!Fu6mFwX#1NH4v4s7?sV9kl7jF-bU6nAp zkGi^L7{x@HsCG}BJiL$;vQ>BWjrL=tW-cFr8cb=1G|M=(S$;^n5~394Gjrbg9sA0) z)&XwSosEY3A)#aMZLX|UNjOHjX4tyVudRtw?n8!UqW4#_QGkDP@=-C1&1LdSO{jL7 zT^OD{`-w4FK7A%M#WwKyQT-kcGC@%Z${fx|JK&T%xZNE{TEum*JRPEJ)Ase z2l`XXC01ViOS7x4^T<1xS11Bu@wS(6GRN)UX~1oyPrsk?!)USUe(tR<*F7UA;IkXY!&+U$OQ%ma3K+u;K%zqE(j!-RMxv2gvxxjH5p!m%ctCwtV1pk5&( zDi6YZ1+!WkR3TIMwY2z>pMFXx!mzaq9hnVEVvAcT8neGv2q6yTBx28k0!jtpzi;m* zBeZG_hU>T6HRuQYfJ#)R#Z`5F3bP7cq*(Ns-S^Pq!DLSR!N4>WFasTHkWtFTPmD#k z@hW=p4i}gq8La%quLTR1&ZYZTo>P`2oMx9YEtZjSJZGtVZ%o&)|3A;!B9g;fsbq}j zBqJ)p;n5OCsQwsJ7|vgzA-TDz?Li1Xq7g1j{@v(b4c6K{(J5qmq)sFo3#f}krrBaI zS8l4;xHp7%I9Hb##8dOCgs#C%+*8aA8~6&X?G9SZMF$bF#kSd2iVoy8sO~E zx@QI;8?QWUmOS#-onx>Vu}Opjd=VOcLTcEVJ)U2$KYa0GfEPTcW6$)NP9=O8{^H*I z>#{K`xYdm&5XPg~ZY#0tw9|A86PfhE3HZ>tQbN_m7oqG6_M+3HtF5WDoV#+ZS`2OL zOz_mS{Xidry@eYXg&VYiogy9ciKpotY_bnW73%!y7z`^yf;^3T zj-XepE{fq+91t2YZJRYDvCQ^#MO_N4yGNy~k>@Cv6i^q1MdIQ9KxYkfC2S)DyNVmE zXc$6A-m)?GhQOWy3%(EgYq$Dl;#b-bRrLPeY_Li6jeEl*vSewzgN>W7eZw??OW_S- z*vfAduNC4ob}(GIKAp>21M|K}zd2&x|BZY?$~#1XzK&}pb{NT}s9!Y#f{DrlD2NnW z3FHh!xKn^Rq+%~vhR4%}5d%VB!aozE!~S_fl%&_U2+Fg+o&HY&##O7q@yZqK2PMaK z%y52G5r&0TH12TW1z`bmeG)v3vH|RtW=guMjv!EvtZ>0cTuePJQ%eO`tnktNd|S}@ zT~vB88p-(j@7Qfp>Ij#pD{JatVF-1DuPeby*^lR`gT=p=GCzvkaPK-w9|BgW>$APu zbCc>ALtzQcB-wwp`7)Fz(^qwmIFrt|7Wv5Y0bOm&Kx=R72uJDPn}YBEPr8(<0Sqe_ z7Kh1G(|DvUPCD0~#?SlU=T^Ny>dVv1baZDLGlWSh^)U|F$$a{Z|HO{pv7%@P+JrTx ztFKqogLkM58v4yz1PR0QMh>#?!hQeW2woBlF@o}3oFuOCw##?P6I38(xEb=WO&?hm z=Zb@5_7$+5WM;~*9smO~Gn89neM!hpMi`J)4WMO$e$zj%lz|%S`c~|C0-^W(FBXNi z4KxME?%PM!Gw-7>!(|;K4w~sD(s2RxQ8<3v?lov<)sS#O@n*tV-0RQZ_=`)@>a%aW z-<&N6=7NW>adgwwMNk1Oetx7L{);Za?~WCsf2u&dj|BQpZpD9bF+ig1e#p=&J+eXZ zF61o&;Bb1=yC8qYT47JD$rQ|w)0a4S$_0uu5W_1~x_}cO4zdIWN&k@Ol&c^lNyB&D-{ulUkbXoA{ zhdaFoUMav`Rnfs~Ifx64dBnMV*nI=+ye;bV7&NwK!9tFb+KW^~ln{^CBpaod5|K-V zbkl)LFS4xS{O0;n_a3}Sh@_uKKgtg;f`zdLaAwDca)!gWlYi&@Rcx241n9(8v)$p#?|PF#S7ro* zQ2Xw9B|D|!24GH$df7!+@4>ywD`eVYL`<_SI^N$Tl{Yx4Q4B4){hcKtqVnbsu8bCK zWgtMhs`h_L_8;+tdghzQ(mG(~n>>D@4H_B|V)w>`*k~!fBZtA3K#kI%N-GA(Y)Qfc z<+BJLZDk3*JqU3I-L`jOyt4A=6Fcr`%Cw{n{K;vxFf+;po-W-Yqrs}Iin(w(8jB(6 z(EJ7hkSnQ`i;3VWFMsQV6eOafmlbT#xjS-pXFk6$%`&7Vir1OAEPlI@ZTaL`N=k~T z{QF9A*Kbv>L(N$OE9BU;%l~dulm?G-S1fHh7k`SxaGf77rYAkkJ9tyqb_z^t*M<5E zAw)1FBFp9osIF8a6ZppEuLX>JlqW+P%m`w2X}*qcJ$%RKJE9d&3)@byx64#Mi-Ub% za*pJ?o2=Hh9aH->`)Iwc_#-!;PWXPJPkgTxY64I4qtg5UvE_JF9wKkr|5)hcS^lsF z+?p1THbt+R^0B*mj7(a^s>6(WsnVZ>_H1BRAy(`m^JLPq7=QC2f=cJV27W?%D^@y zox45^|~RAUXhvDZDfOI2&A(jnCAd0Dt#9fW?DckElc zm;&+T@cK}Mh*zr1+`5<2YxT?6P(cu>7W7h;xXesmWq(`2^25&42BzsxIv~wsAz<<1 z-&mRG4ay5*SjZY}4&QkH)6O>J6oM7B^cExS=bOQS8{m%&T4gxfAX|MZVs4{cal zlvt(0xQ0VDY!OHwi;KR)!~!?|+da0zshN-iP*wgr2|r4R(EJ z_0B81!q0lyx;HzOJkK2~ZS(qwH@~yh%tu@m-Qd-Un$gmhN7<=_NB{(^t@9DF#A2}W z>760UN-J!3--=>aG}|p|Pa9Ocaq3JR%I;6}7;YsJMF}`PA^T@RNl524&2g{TePhR| z{|vmcgH4&*bRT#upFpHU!9usFON(2b|cjR!F*3_W}yCwuk=P5uu(~ znNjZFYx?B3|BEeOrhR@U-$u44(mKxM%Gc|jU|zL={dSGxbdtSTz&iQmN^Xy&wGp zfGoX||0`3Rjz(}HiV9Rs7m9heTxPRG0~dklztsX&d<2gwXHcJ@x0&?BWs$Gu#=L~!2a&b~v0cD`11x*qa&Mm3;+~)%K18Y3GP-5|p9dMtb7&3!tXfTDx zvc3hM7GFBH{{~SnOXFFa$@}g&B*wOSeK}-^afofAJiZgZ6O9e~Rui#;x!ROe*Z^vP zE&JsKr6Oh8d?ZP##7ji0eSTIFe|Ybdw!JIHP_~va!L^iB&#j$kKFy zxGQ^zwuGcfax-EEbWmz~qFvXW9wQI|xjV|$o5>em4jo1egeroNwK`h8blNQZ{==QU z1(W0cBorumxzf@8^w2;@yOi?>J}xO69fzF3jCII%qTqiM)}qF#g9;MqcdCd`W?r1i#k(}3cJ@8`tHrD z-x0w2%hrE7Lxd~R_Knck+Bc>#NgUmax$2rzhqHo}=Dx+aepZca&h#T**?CLG3VIa# z`xd%GU@dXGp9E)Ee$DCE#oI1*DPuY_t&~VT40J%iA3ziV)+wJ>YE8dXH_=}wiWF!<*45X1T4x$n2zNPh7n{=kALys%bHd_Nigwf^YtJy7p77QhH&Wf3cYUi>OXk+ zDf8LFSR8gqc4Z$s0)?y)vdWuXDr32XcY1xh2UeT_U*aFdqbRwpFi-youa_uXCy6<~vL=1S-{DuzxM1&pAU4GQ zM^Fs&2?Qic;wh~@9ot%gDW9SHrhT>Y!?_Gzypv}tLS^EKke!hb0*ym=+yi0GN-#QK z81TrkEuUa6=Shso$XXHCfSsR=jWz1gsOLK*w*03#AqN-f{=3)(cO!=YCzqsVx z?E>_CHws~>|NiDimr|K9S+8Lgb<`N~Jk45ss=P$mGI?vZtsveDte;Qe7I>ORe>S)!e%Be*EprfE=8 z+JH&=B-QYO$Y($Gph-BLVz^ED1p4oE3nE)@!&nXGQawND=pXISlFhgOtWe%mGxUui(Ed^h8_;PQ7rL(O-41@ZpOm-qSS*4lDO@>$HoiQWF-NDI4?j! z)%n}K8w5rRL5q3oYcyMBVpm!#sRJTYtFN;>&L@Eu@Y8_=S`EnxsVpoO(a+*3G-q3e z{lW<_1G+88kqP0`ZT)7-R3!;uk$+LJ!ty%uT3#kKzXId8Nu7t|)JFDpz;~nXZOR1g%lRQOs%fyAT?!lyy17xH$D?50l%ND&CPHEC zkC5(sT5b&x>y2Tq=HVT$2(J&%x7(X6+Y~I1oq>5 z-YQqW<@vT=((a)@Pyb?+1=;QAY&XpVYdI3`EFv4mx{_4vKkPy@&H29b{QITfoJHAy z*i9YmA?JpWZVy45svxs0iQnMyyTW{uFjZ?*r`N|iLeksF*FygZSs0AJ)}gQe;w2r8 z*8qjm$E5bvLbVf4WYDT;J3a#~%JCzqB%$<;Dg`g)_D;0)RYme9J`bC+UnxdQwb5n# zE!zf-XlZ-W+3B7qS+FlLy64?$9*t8AN;4P#J9Sq$(>KkSV8O*Alelggb0AV|@LNt7Tbw(w&3xr1>G?1iqHsyEQv zHSa(aRHd6?hD7;MlJUS1yAMGLk%>A4Q)-PP4Dvdp$Z_au2l2i7+hlKR5&*5ROp)m zO5*3nPc!lbY=r2=ug1~c@V}NgCu{<6HzAiJV1%G@uw;LHgdz_E&yaEC(VnLm=ITXh z!y8EfC{ZC*eK$t#-+i5 zw@0F>vR$C6vgY0qh)s+5%c336x^IihQSzO$K=zO8=mo*mceXagulCB-ggY%*;fC`! zxFt{_4EyH(Q$CtyyY_v4&rImk?DM{nqBmo|Nx2YFhfvEpgP9H1;julv&!S5?Gkd`q z%S9z~Ya_?S_pkuvV@DLB(7uZ(eE?@2X>EKMm8+IQkz;ON&wYQ^yEH#s2{aV`^WNhY zT_5g{9-kG;deTiabg4L44X{>@jkPRc_xl4B<2c2jn{UC)Ae|&quamb{o&WnIIt65R z$VmkQnQeX~7pZBjsq)DkJq}hJbEh|^88!z<`)zKrKO9XKF@%SYfBw8z0+>xhd2xbt zPe@j@dT>j+RNvVCv~J1+!928}xqvg!tg^^#DaFuKffL1Wth|TTe*jTI*`HO$(;6?T zrkus(WlGQMhaX5$ndXW={qiDQkvTbGSbQf`xi8o33YHk#ZTrf#rK2wai|S+O#jStcKRzIv|BXU2a$QsQ?~{d zYFjDdY_bs_DV@knBQVlh>qUMx(3tYa|D0Or5X}Pee`hhqpcL(C_R<_ESY$3|N#=5d z==FYMk>7!h0)&S|d+Ifu2Qf3_-8BqG#60nur;IYS8Z%d>g~C_s;#Qb4g3q+$I~ax- zG@aa_bmrgFFIi~A{Fht+uY8 ze$Ux%?4^bxMuE1_DwrrQT+WiEE;12TLm@wvQH7@n_*!pnKfIdzu0I&8s&sPZ6oGjR z>s61BfzJjdL+WTTnKObkk?_#Af%QMR8)7vL|=?EIJ+-rab0GoYN((c3#HX0$$nC_Zu0!1O{p; zPS%`CWvPi;vyl#BuHU&PJz5koUdP#P#)+M(Q*8wpS*2e9I$mi-@Z!v{`pliiNQ9q( zt8o%W=+B%9Juu({>3W3IM&uJ5=f3~PpKCDG{g2>Jb?;7%-A7|geb<4 zF{U2lANGcT*Jv#w`m4$LVLP`YTO0&t6zUU*6+nb@SAMAK6D(Q zuikkQxm2Z(x$$4mPF;jq|x~p)*#%LZ&xCKq1*T{mT$iR%Q@Zo$V+5ls}vD8F> z6RNay2u&ZPlojH~s*!3k{(o@f22syIWuxjq3D?5Z%#f2$Y~{o#93#Q& z(Y8V@H~}ueN!UG@3kV!ht;Ep$0clj}#4-TzS}_(vZ0$xpcj>zgb+Ef_S?eDI=LDlZ zZ66LRgVGUoA(VZD9AZRLCV?EhOcXECrtS^h-tjWPuQ+-|T$2mC-0W$MQ5|!%1VhjE zUJPD^)xc1YZsJW|m|!!CAf-&n^0esyj@yD1P=3fe9{Ta^{HiZdeJB8Uq79zFFPx^6 zI@Ji9oSDsK=P-Jh)vM(-and3873}QRa7L3u8F>?4a!v}k;aiv5T{ZxhlMDhx2AoUj^Pwgvga@@LIE}COq+N$k#FAo!!-|scF2f|~~f`!yO z8(C^HMpyXz>y_T%UYvz+vSVnnT2v*FD6As{wGEfVLj(X$b*#@BsHLD&8}nZ_SmB%$ zLB}POVq&+IjdTtYiW;3tzzZT>PnF~b^B_=^a1|*i`Kme=CsUX#t5;^}61TXGeGV;r zl*d-vT)}Z+!j0g>p{GZL2$@cB~J;&^=+3RmLPN`mZeKL*MTowBQZXI zhWA(SBjvw81|^p+VoFl{8>GPH^s3*W-Q85;(R^new~@n65F;v~LdG#D3q3L`G8T>m zC!DjgRDv~M9$w}PQ3BD2Ft$MaMMHbLy&jT5F~ZbLKz4SQw!a#VfxwnhQW=wVI8Z4S zdw2_(bcD@oS_}Ge{E?DMgP@CJ-99ji2))}UR!Oa}(%{xN-=YHW9suDIkMTE1Ij<|i$`xEBhI5(gB=5%lkYJl8A`eTD z>%RL?GaA#n6vP#V{?NQ2?>MHyBGdU&QJsSDXWW4 zGTMmCU%%eLfiTW3Zp;`Lq~-)$EQa6vQ|f$B7w0ZG69F#va%R6nj&OrlKatIDxYC3? z4R#y`AsWT{#(dMQ#xZLZTx}#UdcH|Pvcco4H_)emlW1=6kW22smNIQxcsJh?3hz}E{vLM_XdfI z$aAV7icz{YP?dmL4f>4dR0E;Uh{*!kYs5ql(Vi+*3Z6&AZPOUfZ?qPYn z87!=YqbRu`iJb@KRVRP<5zJGyKzs%J5ErjmPZ+IemyiP@Ktw~TCOcr1fpeN5tvIAK zUJm4>ev3^<7Ym_WnBBicR7x~2jTohH6NvvH=7FkAGGGXJhSm|@Ly#1JtHRKVrJpZc zp*fGmxao@zdLaEBtUG`u9fX-KXaK(LJ+Y;`4Ktbx#V|A~q5H~s1=t33p!I4R%ZvyZ z+icj#2In%uY`?J+c@yk+r>;9iU2UNT|G@y3qGi}a9U6eHI+-c)eihAjx#ED`3t#O?Wj<8{7kjSIEu}!0%RW<(8a% zaqRoEqE`Ph5o1KKM)0g`&dD_2Mi3?ngB5$D5{&W}B)ASft#|I8YD!*Wi}(cw$nhoL z7t)C$+qc^t&cL;37d<;~5g8QF9rD6II)`+4a@7y(6~ur6EZ+ZVz7I8kavS6c%QGjO z7C>A2`^Rw5f3x67QgnPU{fpXEQwmx6+L0Pv!fl7%`*UfIA#H!p34WEmm<~f3M`Ti% z96|66{wpPAwmfG*QsML0{2-4)T@Jck4-uaI34t_*@Ev-gr}g(sKO>~Oh0zeA_pxu} z&1{9{kJf`!T=l0_j5t}U<~RSGLL#caij@+xZ1t7F@WSE-H$7)aFd%t_5l7v6{z3#& z?Y;&{v;(^Wh5li=1Medf92><5jilo^thOd9kU(FS;evuUuceF=Mp!lNyI5Q>*XF_8BCk)!66ewP0;%9;S!|GP;$e+!TIw6x7tBqwR!?4kNRN*xY=$ zD?8gFZxWIVPIRMn{_vgF1l5USgNQz>->fBxJ*Cr2^F?n%cq0#qM>-Wdk5f2Xr9MqN&0F5~CB{6<@A=u;%H)+Kg z7_HvrW=UXj?udXmEOqh=z$Nb%B{nG$B9$uV*v<>v$7BviAdWRyuLyz;g(!wi3`PSd zI1i=+ZzqC@_4qIZa|;E_;o!z%-Xn44GTCLnd~lQzpU<#d8OkCCEDHlZXcOm2&zn+% zAQA0FCml=EvD&7=w}1WRQ%yU#{Mzax2Oq8^TdKbkJYSl!=7l26qfUn?~Nf zBR7^-6kCq>c~#UWTfLb$2q8o{ZU9OM=&oSjhU8X5w`2mhmZE2c0|rp7|CV!=YOfTB`Fs$vwRDuyOaK#Ft`l#UuThpICcnt)It{ zK#?HX=zlAP=^VP~v;l_Bhn(%oYYhj`zB%c;B>C#It|*vwFum5A{}OF~g^#vii?2OL zmiSGEC4FlYz+Ky{vHZ#>vlbF%f`07Q?nf!Kbso}_(#G>V@0OA8sEHIb@M#I0 z-T?k6wp);u_Ru7gFgEa-x)G8%}5RvUpf4+cJ{2ePC#Q5t5zbok9;BoRcr!cSsC zJ8=i~Vt`1{16&SWXV-T8+uFJau_QQaznGJ^`@ISB6^i?6BXL>gH46tUO7uE{PO9)u z9-&LMfrQ7qcp2|heNYlcx(^4?PYWE#BBd`HS0+Zx#Z$+TFT%D7WE7A}tbh78cTn>t zmZ&j_xom1$ZE6!CSlo*D>m@GQ$LSz5$SRR8Df;Fr%$ibk<;T*kIlmsYOLx zAq+$$qC@i+IN+pinm$WUQ3B*B7%fPH2{{tX+{xeWDv||F00k@dI|F@X;xW|y23zG1 z_x#U(*}`Fpgg*`xu_9Y#^0S%FaKsCmrhs0(rQ-A}YZ^qx@aY;=u38lu7Vz=v1K#!O zY8ZJSc;voZwaVrkD0`_%Y6L`b&xZyM1|E|Uilxx7Q-NO|x-<~>*?SX%@(5yAthE51 zG^?*291;Mpb}~RhaEiiel+hSzV}33LWG{88fT;Z;S%j}^{3Kh$T;Klw)i8nYL|}bA zNzDOU7%FUwG6h_(yq3NFZK`lNbY4}Z%DB(D^B_{;?a}5xu+8t&eQX}1-Xzba^c?Xt z(lhmiE#=V5=+3GL6Je|R6C~CnAsFVwKc8?V+uXVA7Tb4(yvlwA2cnEdY@5ZXN!4RgC3rO|}_`niuzTi`wfY%}mR zR`b*vl3#2j-rynQ!Q};&J6KRcB7ixa?J5@vn1?lNPynni){%9$;X%Gemc#GRK#9cy38>2TqelZ1zA!onTC~^dArLpPI>V(fe1t&`>n&^fD#}m> zHv=zUme^>MqZHwmZlOf!h+DdKFnBkf2Cz^9gEb6?_J{)m8&##CLoCC6BQ4&r=F42d zZw6Mt5rJwNyZ*U%$61;J5+>G`cpE$VkdTrcOT=0_Z{E}{65Sla?lAfd$bk|0_COY7 za40LYq-v$J1=ANv>26bA3jjM=oTGoBh7Lby-BlryK93Ya22P?-F}W%^rp*m(%221l zqt*Gf<9G`02qd6sNhBv%n)zfuI}|Q3j z1`9f9OHUiDe%K5hY$9Mb`YL-cutaMgi&UctuYvAuJQ;%Uxcwsy-dw!G2r2}XfVLz| zCggea-D6(&Jt}rjy2ul5=WP(>hCWtkumFHaX!X+Nd^_CL*$LnLP8r@goYnvn| z&*g5!TBD3bu8_FcQ|}fn-9)K3VNcF)i_6G40kbYZBXO&EDZL?hHqhFRQdev8Y3S5^ zwh%NlWSlL1As^0{xTD1=EopRg0?+2Um_Bl!{(2dV4Z*b0@F8h_lOypFqK}-GU|XtA zm0171bw0WVm|WY>i2M=jV+Wt=V1f#Nv!o-K_x&x;ylM6?Z*1-dSe=E9Z2b4-%&<~$ z=#>V4!^$SLzp?3ka@{)+` z$n4#S$8cZ}ke(|8brJ~vnC8;Cb5fWb*ncwAJVbS*&3t{k;F0GHbi>4foz|xTC@9j( zrsTrbIuL(4s(E`@8vXk87zJDWAlabvXpEB@gkM=)>fSBaY`rgqK2b_xL0tIirf&0S zq{P`pk==tsK~mG-S{P%zg3@i{Qxq@dxMk7ibKYWmAp2j{O*}J6F90Z#xE6zEIiN(` zHX#fCY(rxfaS6iOhIvv#NU#?#rG9nuCQ2^W@`6mN;C#<+me~9a7%KNjFQKMBAX4n? z^?)0D^bgym9RTrRd+3FULxXPa#q7q|0@%r8Wti!Kb%Lom?xJDII`?grWGBsgZR+3u zF!zERHK$8}RjewQTH(Wj7;mH`{`_D}i;u||1idkP&ZI34O`QNtbEFK(*JR^X2+nM4 zN_*~rEKw_q8+Pk~&j9q|VTvm087FiVuo~#aZ2iOl#^8CXb_#-8D7EZC8@1*h0FDJ( zlW?PuW?1qzP(Q-MoO~Wr_9C8{w@EY;D{bG#%|x+Gs6%jd#(XL)7iG;1h@7&+(qfH- zSc9eT>&wgMsI%paLgDmHy9$!`^PTM|>qZ0ESdFnL`4Eyrs3E(PxVngBQ}-O1VpQY; zuF1^#7YO%gLdM%Bzrirp_QdGiIKkKi6C~{X*j@X%sRvYx4XNO2zenrok&<_fWyUg$ z8*R6KMfRM!WCYeDp3q(gV2;2JH4164*r(LRE9TBqdp_ahQVl(la$*DGtFsPKg`};! z(T-5#+JXylA7uToD~Z|Wp1sYxF=1}VgZLHs6bawR93z&q=IO@Fo)+(Lqf~b0_zl{$+i}ICTz1tfAHw#1pS$qriggXCX6AB`PP{KaZ4>%sTsXO2qkwxMSzrx%{0fZ_^==|3E**E4*9Uq& zi^WbOF8PR;r(5ZYS>6qb1e0Fc^|8lX1Qid3}jjd+MJ(w&wO0EK^X`kr+I)W;J^gaWullZ ziAf!@UWvXW>z4fC=PV2F+roUIlB55M03^JayH@6bHcO}uQ+JFV5H^uV z!5aj9g6#fZS}#aJ!wbbRteZW(i$crMJo+1`NcsXH9G5)@r-loWP(*6tbE6m~xfcor zl<}{*@p`}Ap3TAaX0MPMMAo2=7*$0n&A4m21xwjJ?H&zf6IT5RPZ0YQqp5ccjJTnt zN7K}~y<|=A9$#0`hqNs%!9+{$#~ajfG{>2qQS1v(iB~{ZBprHMFhQC;U)c8GD3Cj% z--UWi&5he$wWcAd+Vh5ug%-q?Q52zWvGCf;-qu%@huWnZ&H*6RIPBfS?LH>-tFZ9lX8cSCpQ^VbuFAO zF=p@+k5bOWjcCxi^e2{5c$}2FS-v~72l%SZn{f<)%CtSSGEbSppz~64iMV#Px!+7V z`G0=TYUd`RaSxzN@+3JvfRALqGc&eAHb7%wH9+5kz|q9&s4(Nv@+RtTRAUuLT`YXf zj?Yw~$=#RG;{ZMvIfVZV+Ap6)-;>>frpT);4#- zr$Ok{F6n3XS$vDp1w-~t2&kr{!12Q0if(UuCTN^k*YSKMwt%iW{qa-xWOH~IGANWE z!WOb%b9CptC0k<^rgT)?OUx#q#Z{T}-0M5o5U^zaU%0E7jcBRON+W)oYOB80MX4ny zmW)nz4IWGFVNlZwHp)FJ0M~#tHY#^AIUvtS=UezqQ{i>-^z0f8B2=JM1jsks=pzloLwbGv&|59RP`TSRYCD7TTK!!> z63}kWV_H21I9OLN$yxFWjY{5wH#2!z@!UD|YnWehFPF;U{!X8T3LaCebJ;u^I@sbu9SFf{`NnPfcMCuNigg<{o8PK{T>M=2o1*QM zvliN=S(PJ5tbu|A(YAmax;QLIpC>dGLm9Ll-aYEhYYyvzI~{0?ZjsV$`rozrG@M9z zql*u(P#&=u9J#>dkZC4fUCdF416XP?iBh!@gaba^#~i&8Frp`H@moxyUxOvCS?M@6 zW<*dC*VP3p&`w8gihTOZ{XavvIy{tonaV-Rsr=3 zGl#GM_Bdx-7M@61BqV$Gq*qYmX=dIMv~aVl%@aPy3kJ-^n)3g}@P70NX+9Pr)-uWI zH3c{`S;MX2io-Wdfs)3-9sh}v{gsD4@U=DgUR8HuvFQC620No=xM?3|Vq;I=Ol456O4wMY66Y&_JI(AbE)EcRp$q~#zQ4v+ zf@RjiM7T~zq++C$JHZjLPDt=Nk|owS`jHG8p!`r#fUOBkpN&E>hhAKh0BB>qb$}aD z5v}Kz78gdpf6n0UpFhx|b%S4W`qgSfZAC4o`fuH?ojH_SZsC4ln~9{LpOH(|)AKrM zj5xZpQhkEV>D%(OW9whMiR(#NCqEb!bAqq7`qJtfqG78?%cePAdEntjU(2+N*G*{LuXygE-X$ve0BV*{E4OB{`>|*F*3p`> z=}T8WkFH9*my^Rg=ek~fC*{(ZCxhYFFgt1L@ZK}WE__n%is&wEcdNurpnnrel^s8o zmoe*isYb2Y)H26j8ytwP#@DftA-sHxI%<7z?1OiWyj7-U^Tk9&+4D)fliKGX*9J=a zh5(*WlkaiWY7>BJVPSSn+>wbC(h{3BWlz@xrhX^AMrBFa?{04%l#kER%0n)UxMvio zekvYuQ)w2UIt-U+P|59st?@azKBc8t>=>tlL)-uP7<$X~nImfLb)8C=t2R*z?Uxp} zWBI<@$pEwsNR^kid^N1G+i5IkJJsaKRtX-; zW%>2-wYXAcqnn{Ax>5%&s$xs+cq3_qw`;evWpEw*FGo z#(2z;gD0~SD~uVguKwet=_f^Y=^pW$;-_lG=W*D>wTKHvUAOOh^uD%lU<|XBFG!B} z%G-VnS$>yYoSF6g$|z>YJROah8oQw(Xg66y`4_|rzt-7*$a$FSvndUCRfT62wWh9( zGn_cW9x=#sAMzVa3=l1RgaSx4dZdXSIGN2dDH;3Rp!V^na`n$3C6w#G%XFyEK;OfE zSvO~vKGaNyR6i?x;-Fpm*T5qZRGCe;unlF?I8&}jgIsUIJ04`(J}DE6FO}X#Y2dPd z9dKIw>zGVgyuyUVX8+ojXK08=3I%5NG74$l)&1=_DP&m~?#<{9Kr+n=CvR7npcyCQ z-^0(~4uRa$|8~|RuSDV2;*Ki<3dRE)Dm$5x8-C%k>%WLU8$J+UK~XQR;NzZx!$sLy z*#r0IzNSSAUCwrx2!4X&16(qP3Y((d+pG-5kpNEvr*8)NvS{5`aG_-vY7>-L%hhTX zvw0}q9~PncEH+c+L33;N=eCqb;&4NG1!*Po)lv$F?5+DV$)uN+Um7GmE>{vzvEk_C zG`f9lUsF@K8>rBaho~i#)8)P-1K5c^mFD}p*}b>1ZhQXR!#V)>_6UW+O&&6a_9bOd zM)?kE)n_Qpj6|({TW}kb$}TCqU%Z=l7r$%#J#V*L>xaaB)lN&w_||>c>wKcUbx}** zxlfVcVXaw{5~oU0)KT}ZpGw*{<@iq&H4}}SfuF0`Jn&-} z^Kbgc+QSBF)Ao0y&1m7fOZIyNG&d8IWl^tuCaar8_lB|R%=B1K|KOnOWDG^|o|b`c z*RpCOC`bEoM9I3bCmumNi#bXP-o3Bq&^@SG*FIGq9Gg;HtZI}BH*8LB?wPS}7H13{ zV7cpPNm6=sZ{FNwFc?LXxtUdIY7>v8PvuDyXDzX0%uQ9OSHF(kM;C{f>Q#c0_fvQY zBn^0}GDCZWS`B(2WOy~iDgt*XaRvG_r#Z9izB--VRYC05yW+%gPefRg)9WD+px#N6 zM{aAN&N<&UdQH(DURNcU|FUuVpc~_IF$9apss;JefvmFGCi;F5X3G6J%y5yk?CgEo zdp+8U?4BP92$(%xbK(5?^>2N6s5PRlP%6l3aUe^s$uP^VYif#R(WUx4&}zjok{8}J zI6FHlb=G`Xf^)YvE?n55=6sJDxH@Rn)zvvUIo;RQ=RWRXs#BEbN?A%{ca+1@*8AiJ z;tbB|?}8?$`;uzV?6WTMVM8=t1&5~R>(bWxdf&$J4I4H<0gxR%J%h*Sj%8T3=_wq8 zfv|qph|P~)7iXEk1Qz4Dcf0?Gv>CZ6F-J!iVWPYv%&xSK!h)K8O z>Qz+e!49~-UXJy=qKk`IT|7Mumvh9Lj|TD-6_r%F0|!wK#PtK#94z)+1a+t zun5tfBX}q?*YHqk4+FGgR5E^VM4TKd(?ZA!FiPsu({L)+_gt5?RI)aCp`pB1(%$P_ z_mG@f+4S_xtJ9_XV3dh~P=8bTVk&tBdH&j8-K$Uy))wuC2E z#Ro_fdG0gt)Nj0Zu;tl4$T=!;PG1ZTAnb*hqy`5RPs5+{q$vg4^5NX`(3!{wtU#Xe z2wQl{(dgj`Z~U_w0$+^(3mMkEP97dLx3(M6#NFK7VpaUkmCoT*+Nyh!{OybuZ!!IueMAIXIj# zV!hJXjlO)>CK|h_PZfeZNAJq*X-IaveoImpUWjK7WdD@>EYo`r)|yyF4=b8I+{#T* z$!kP_+p>9KU%vp|dhwipO`@t^0!#$=wU9Nf`IG1m{({iJTha}qVE~=L3LkxkU4B_C zm<`*x2;kX)(__RrI1Pi;O>wgV&(qQGaebcRgXmw$u26wK2M5T#<@cLU5#u+*{-1 zUFva+$1r9zRjQcZae&oCQzj;l?h{Ho_LeA(EXJvvRAK1NB zOlcSb*)?hlfy}j~;7dU!qFx-Ft7302n#_YbQ>~H)_)?1O7jqC`zz%EqPa-p6jW6ousagIYJfU z<35}bPW-7zm8y`vJU#pV*A^IXM4l`$yi&)0zB)%FX{Mc(!|X_N-~|#@6#6)|M0&yl>`O&4mRE-ZxDo9)qpX< z-Y7x<0Xi-&F4+}JDVv{B*isagEE|t&r6`Tlcqj2ANK&!?i+|(_Ouc?GseII(Ms9=l M5Bi50hioqY2O`lP&;S4c diff --git a/dev/_downloads/5271bad998891ddd195bf7ea0e44d844/biomechanics-11.pdf b/dev/_downloads/5271bad998891ddd195bf7ea0e44d844/biomechanics-11.pdf index a3d9bf0deedf0901f9ac9948c09c3e36bbadce96..f4151c5f8c1da4b5c2993ec01bde9b897c965908 100644 GIT binary patch delta 17 ZcmdlMyDfIZMJ*O%V?&G0SG6880{}&d2Ri@& delta 17 ZcmdlMyDfIZMJ*O114GlzSG6880{}%<2Q&Zx diff --git a/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf b/dev/_downloads/53f951a6065782035628167d02f26410/biomechanical-model-example-35.pdf index 5fb6fce3bf4cffddd99508efe017afeac59e2825..51b0dfb26575326b5ede217fc443fdb97d37280b 100644 GIT binary patch delta 19 bcmZ3sl5yEe#tlFHS&S`A%{Tw`U&#UhRMZF{ delta 19 bcmZ3sl5yEe#tlFHS&U3gj5q)FU&#UhRFnu8 diff --git a/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf b/dev/_downloads/56227f1745cb31fcd75cdc19f5cad645/beam_problems-13_01.pdf index 0cd6895ce1727f27ab6c7d873a91936da4179833..e7f3b89e1d08e2afbdaf3648d460033db1563814 100644 GIT binary patch delta 17 ZcmbOfJ1KU(0{}u32Ic?& delta 17 ZcmbOfJ1KU(0{}ts2I2q! diff --git a/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf b/dev/_downloads/56447441b8d8108229134a5d3454516c/plotting-7.pdf index 8d719fc322ec84dff7c8f8f55f9beea5d948c2c6..cd1d94d31624d9eabce782358bb39dcefbd4b72c 100644 GIT binary patch delta 2600 zcmZvYdpy(oAIGthYbvyka!E1Q+3mZz4{McsNvN2}+-AxBpc;`%E-^wyDI&L7tRjk7 za$RyesJTQjZKmXYIhWr*zthg=ulM8ic)cE<=j*k8{DDJdk}!oT*D9Sb`&0Y7*tT>V z;$w$M)LZLjwu{(m<$?zYMDT2gy#Z`2UoPO}Okc^56`RV=KTR!UInx|}^5@z&H#Wv6 z_3V`jvDjfH_T}g~kJ4#rEbWA4;L>uof7Bb+OgW#+?Pqv>=5Rv$R^GKe4-WZBBS$k# z)?}Yw9Q{Zwr>wwF4OXZ2yD~L=Mrh;Fq}&tEt79{I5ZkAusATZ(&F-ePgsgz_i6_bS z99{cqEfC1(Lpm{wKpsBuX5~fw*9c1)i6PFr`seDMYdX+Ar-1E^wE1!F!qoBtA7Ym| zzt-nnV|#{qa&G_VCuzOzMY*6_N3MV*vZk%k<6xX6RvbHdQ&0AmK zHN`!D{d)B?E^2LdJ~X-(uX8uE?8MSOPkkyO$y_&8opJQuI&Y7+5>{nPz!#59*8YT$ zxk(GhN4ppmyRW@AN}R(<9B++uzsiCqBIhPGit&5#Wi4Z~DHfNH>c$r=;)Ecr_z`@( zga-REg*hAinJ2uC>9=(H!Jp~Aiku^2AKz-Chc=G|{+zs3OLA8Tx(TvM`F275)s*!C z$iqic$xS1i_7~cE$y*!)yTj)vZ7vRizdQKQF1`ILLS$!V*@-0feBP=4b^PY5(AqHh z630^I4JUUFB*x%D;FV)V=h_HuIjToCedXffS#d&Y{Wzy2{{8OKsqxn{3@6S-2Yo*y&zhsjPQZQ4?7kHj1Y;K&L)L9EEN8Tuv zKGFwUK$1lhYKf#$a3HXa?X@B6Eh~1lPN%ub`xHY2u4Vf=XtEkMC~~`;QW1Lt>iQCo zv%Fhi(w&*3n=b>_E3S;tq&m=yeP)@T60p^t%9^%5LVnGvT=h$h517vV!i@e~IEGEy zjolF!7c`Y*T=Q~1Y{z9ZPE}r%S#GPWbDVIjIMZmIB{?`Q_sTg~J6B$_3xha)R_2E(t{_iYT0zwru8hQ^ZQ`kzGWnicLp%1ECna$%%qlCkaM;{OFY1F+3nYmhUM@IsY=Zp*p*g{m{0Mvo0CD(j+bmUSRg{iEEvs zVh2<--3@2_u@vyMpzKx5f4R%^9&-iCv!g=jtsejj*BnRf<{pgbw%F9jnGn`}7w@vp z8fZL@mX?mQ2~WlK7Bk$72@`q@r*S&$$_AftC;E3EKqq4sgUJ z)ZSk>dMP%5E$PwyMau60Y2e1g9HnT}It1wvn_=9I+!ia<$4S=dYS-yb-T!r(U@ zBn@{uF?Y*Ln!$^7RA=RX?BWSyz30TJ+1D5uT}P6V&mU+O$}*af@IsQp`_7s>*@zFB znJ-ktA;wkWDILOwG+xX#SW?V73Yop3leS|)WiJ!F(~xz~Z5$P%9K|PiZ2A$Vgyifm zydRFIix$SlAGCR+B^3vER_IZ-w`vyKD*cR51Rg4q9`5$pcbpsJARa?6&Ig76*qUef zv@J`aGn^Uk3572SrO3o}g-OF1ejVYK{q;H7m!Juh0&+u?PL{EZFGf=B0!r#&FDt_C z+1!{PIaE5QtTHNPG=%jaPK%UsA z?oSEl2*>Oq%~J99Xx1^!GEj%&gl*1I=rvN&9yvE4I|!e4*Zy#y6_6WqNulpTLIBJ# zjXp*x#-4X^yuK-P6_jErVKg?K)UP8W&fq!UBBjR3un|SWs#Vh!>!8uEuOlC z*WmG#DI#QBr4^>!W2&H{5j66$s9qlzv-+)4JaMWZcmF<`+Z|RRJfTDJ*9rgj> zXcgGsPvyLd#6Jhj0HKc*(2xj09|{2o_)w_-@S!o(%j$+A1^~5IU7dnK{hC4|0YMFp zH2Bqr(1#&@)leuH=2s1Yf(wu#(8&L3l>e)$4+8|MV)O+oU{ELl7y~#=pepJ=d?*9> zzW^zJuM8jr+W{z;05t$${uTZwi$Myk02lxQSu`9Y0F6e%jthj*e_{VRAzB|P@G%CC ahX3j_05E83g$7;%gD{X#Q^VUImiQCkQEI3F delta 2589 zcmZvYcRUnuAIHsPg_LA(%DUwSDqA`v3YmqIk##nAPPVewnF&WmIPTF=Bov`=X0k#> zq^yfvc&fjiy65-T=k@)4KEL1R{e57*e}$ODh)X@u%NO^Js`?F}goCz&;> z9-%U4mHM4K_lT{FIHOb+ua?^CrW}t50X+I7N&W7BwikjzF>QAHFU}ZE)C<_I63?_j zBCz{|A1AgM96#RNGkkIo`lFw^d2HeZ?pps$!6`C3ck2CC%+{3SVaUPM)K0254oB;u zZGV{iJh^#0(OMw0DYbKzx63pP80YO-Ba2KV&53qdPw^aOEbt_~{&nMkY2lr$)Egjm z&wooP-A~hTLDyM?h?c!gR5jFA_Q-S+if`AryQ%AO<>C`DCb*Hxp2MXQrWpeq?d}{p zXeaW36qs@C+)qrvP5EbEdK5ko-^?zollRaUXAB+B`ki9CifHUI#Zd5??&-y1Je)!0BezCw!S2fmp1p`xbor(_uywnJii9Wazr<+cya$_w{@y_Io+ z@iilsIYwR7BB-HA$`DtRr=pGP9lQLIKk>tK?0n<_DvOtH()Hjb7BE{+^AEPpvx%*-gVI2m6Atvvb$m`El5nm_g5C3okB; zUq>sJf>CZ9Q18EeYfFRD_DSCgy=G_I;W%CzIv|Jta_a{n*p4D?mG`h#U$JkqQgO=o ziY)%=!Q?vjOR*K@LZDZqy}<{a$I{|n7j|jUBY9^YILEZ3eS{weege|IJ}=6M4^G}w z5w+AVXrX20dKzVCy~f=*(V#wpbEs%9Csz@QEgTBIg%e%k;=@lTfAPGqFN^^b^0MFc z8MkYi^wkc)m(J+Byi`~}7k{jDXk_^;(l6ZKEK}+)yk!jEQ@>tUa^V4jWlC!)aZHY zv)dxDpoBu7563CjrkWhnUC8XXu~761bI+E+DzRjM-Q7In&IT`R;C%#HFH~YhYTl)* znrJ+x_Z7pd?~3j*sv#&PKVzEX+h4ZLw^WioV$?uv$u&<{(Q=kax~fNT23-g19&~kn%iOpU8p8I)|}_k$YUwKFHN0Rbpmy! zCC8373YMh}dr$CFhjcXOkwWfM!e_O3F2CpUEncc1Kvn{dlX5ajOr~pNdpVSr>sk|Q zbiPQs21ELuASx|nqv``s!ppqx6Ngae61jssOK>kln)pzG-b~e!v180%&1U*w)*KDo z9DGjji-t2Id3sIR!&PI z`{c&V#e~3SOde~VX`9uK(DE>IV}Em?o3==0Ww?6gXhkKgAZfuox6Ui9Wi%fK^Tn4s z&Er^R9MSbD=bbi@;d(kX={?W}Ln>A8V>#jtD7%_G3}LrX63y~|8mU5YjZ0Z)k`t_} zm$yzg;gX3H{9Z7cH4@<%y-}L2lo_q=>Dy`c%87q*EK*llkYGHse!iCt5xdu*bM1LV zLUIN<%KOnM$e$OPj7=!?0QDs2R7wf2%Sw-Fs<9gt(LR~cXXDCCVt>LChVold6tPg?Rc016=0wT?`>w@H?DgN z`h5Q0`9-MK5;5X-@XdDq=FxhUAtEx7{e-RAgE{Q7aV<(XAmwnqJ6D9G1{k}Mfs?c^ zE3dBaP2;TE_?i!uR4pFpT;A5bZ3#E-2-_AS-U+H9SK(*g@^*^LscPC4P4fagv217r z~;0WL5EsU$vPQn^^e=z5e`C1OwZ4Q*Ti+=zbb<^v& z@^SLu0D>d{5`P2&3?Nys7m2Wdzz}fewyeP|2plK@_F00IPo)6Wp}J}?46 z=Ys(0eGo7xvqVmv2@1%Zk(0xL5&x#ZU?BYr2!Q=)kO1RyY+t{DjW zi}AM&_dlp`0FVw92B$}WL4b5+5C9k*D&+t8AaM9!1#!PisDbF|)W9&h)@o{yzrugA zPz2o;)DR%LEEEW#D-8ufuh4~|5CGl!p>P1*$1orW`tPa{Y7k&1MM0kfihyv)%IaS> G;P@|~0A5P~ diff --git a/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf b/dev/_downloads/569497501b2d3eb864ce466d19b06017/plotting-20.pdf index 09cea0ef75741032dac4304402b7a9b2e28e64b5..da6bd2ae068822b8817e26b50ea5a44828736c80 100644 GIT binary patch delta 17 YcmbQ`Gs|Z~nKFy9xv|COD&+-C06C-u;Q#;t delta 17 YcmbQ`Gs|Z~nKFx!iILgnD&+-C06B04+5i9m diff --git a/dev/_downloads/579106f8d8fa1f12f463433a455d3fa6/plotting-7.hires.png b/dev/_downloads/579106f8d8fa1f12f463433a455d3fa6/plotting-7.hires.png index d8551f1ff813e6d1a15952bfe1da5fc2130d7475..c4dba0dcc51fd652400f2eaf978f173df6ba4d2b 100644 GIT binary patch literal 56654 zcmd?RbyQS)_&z!yC^iNvjS4CvAd(U~1|lFJAnkxkcXtiS5hWEV32Bg4x1xv<9VKUzkez%cKis<5fln_T>SAvITVT< zz8)y2I0!!sdfV*bhoF_HvX#84j+O083vHCtODi)YQ!69=S4=kA7MA*^CfpocH#u(J zVA8X)GP4xq83Jy~XUCsatWed2=VYA07mM9d%PvjqoNt5**6sosS{NcT4cHvWf zwoZW~eN}UW+qb)zrzmeRy>u7(d77+3A@7pFL~4(sn%YLTfwPgJT2ZQTPPb~#i}vLF zycbl5Bq>QLe!nIAO?Ll6*JN)aqcDR7{bObEbnZI@TrF<0x6E?p*Lju@r$%dhaIHC= z7>on?-1qOX+5Lt>8GDdY?tZ6uc^13-4NVb?BHR6X{{lJF?l;Px*H9$HuUN`QBow>9 zbia87z59*HT^2>U`}Lyt|95Y>(0KwTfn9EHYKrprKP@h2VUa1!P)Y^ML2)P*Srv*i zEG#S%GBQdI4uu&M@C)?V|8H08|Lw%FA95`JN|)?xZ>*1Sx+X0&2+8ynT7Rk?@vj|e zInLi}R!87>TsD%55LD3D*Z1`GRa8|CO^}XA?#j|-Tyo^$;TfyG8rjC07#=gzSH#B0 zr|7(~+-_U8fk{)z8V%t_>{RTJ1zpv5da%hT_WbARI*~=&>yt}US&aTUz8IT({R$3$4aqM*8{scHnomZTl>0*~J1Um8s62 zy(S`p@ehcM%*f8p=3BFd2T>|3Bgf(A{S5UItK}|TMqI%P-nA@av$mn3qwX_zj#l;Q z`taNGU0q%NapSFtlYj5-*k=)%J3GH7$tSMYl5U9Tx3N89}>@&o%}X;NcH^}M=W zw8P?eMI{Kdf;_8qe?MNhZMMcH$ixk!5T;R%O1}AVhfVfA9p|*SVo8#%1fF zDnA^SrS7g5Q{xK}GFa7rIsal>1?-#XiFMeFi5DFh2*3#D27WY5L@!U@M zBmB+la~O%9Xq1sCRnBn-XBD^fZQQGf^~AE*{u7=%fJ-NWdz z6C3%b+Gc75*?WuCj`9;aIQ!RBj}k;4L=43mi5)$B7Mm6)=@f8q<;k;#T#?eQu-c=D z+opImGBQ$HMK5TjH&YXg=-Aj;XTOw`l%8Q{nC|`N(qsqcOp`>eFuvrG zlq+UN$|Rkh9CSf38f8U_);@=3wv=#V?Hehc*3+x~L7zxa*r8Kr&I~y|SHjJEIDn~_ zR(=2eoxN11bx6}b^735SVyA|=`S(g6TH7ZCSn;NgehtjVmX`H11P2oyzFhh**_k&w%cy6 z{1N)HVqWn4tOE+gG;G|1Nz#^Dmj4i!)a7)tt@|2Et!tR1uf2kBC2*TR6BhHw%h`b+ zrB#!-4AZ$BsYpg1y{5xuG7v4kUj+L`Uz^w1!m-?u_>@(sCUK?^{$54PUG2QzV=f(2 z4$cp_No5JRiLa85PJ*1=iA`7Mncf2SQk(u_d;hq$wrAQ}S{E9nLV2oJ^5a*)RW!pg zv523!DlPowH*CheU*_Qt&Pic-iW6gm+Z57#Tw{%2gyK!g$sLmehw{RyP$;rH!L{+M z@(GUxzuhvO`%~fJ-1n!#%b9H@;mPMq!L{1Lk%56DYE-KeDd0SkC%zFDz-g{C$V3P( zJsdg!f1j=0v#jU%dCmD$(N6C1BjtQIZ{)(4Bc4 z&hj&B>zp|!_|Hu7g0#4Q)lf6Ww$HkAWo=x>^}6_VHnvugm0ru=3u?JW&5YZ#hs5Q| zT(%IiMgMkeHC@t(oSCEf($Opz+EmF=Zd^WMq2K-W+1B{4wt$rQnr<-R`QBf(}m?>JSy1OlV`}XZn0rQxd zk`?u(=^iEI(GO0F#8I&+KK7p}-7r}q;CH^Mq?c_wh%D4`tLB?UZ_oL;evONJnAh)+ zB4|64$|4yw_Tvy^+xFJRh)ogVxvPf;dw3uq6dFv>E^XIb(zF@>n*AU>4n1jh+xJ)f zcsIJa-$2S~OrCcuZ(~)VtME5r8w>Giy4UR2afg|LzrO2B_0DR;OAgkPX?YW$b-(B@ z_aa_e=I&N@@60IYw`=U|?Q4G{GvXzK8J5?^#`Lzf2(CExyk3j8&wir!?zx$I{Mp=e zvZ03jwWCfQliH*4+@$VYuVZ10V3mr*+3tL@e4jWg&-QBPA{uU+0|!w|0tJ00^&wmj z7@cO_zye|d0?vwxin6k>h{`8CX--wi;&EPIJXd>He4-;QtaSCyQIWZS&xG>m`xn|w zCx?VwSQ>8?LzX0nU9CfBgb^&9$^Mt=3VzPH@acBWMMYF@G=C7)*wu`*MS8J(jH(m< z^TZcQV=k~n3MFDjir>lRB(Yt5GN;%~K}99MybbQ+Z|ApT!23C=stiug*HqmyFo1 z5duE4&OdxAlf%1xJnxNu*XRjHp=I2J7km8vgR{#x7iym6=XHlj)sN2OmtlY>4l-ZW z(=&+Sa{N?_B|aE^!QSwn0yy$fXsR<<1V?S@kF^ER}^nY57ULdwulakhPHaKTkP=t*Re$ z>=<*N#ZJdL-p{_GYt4`NBE8Y}y$gSp9r)aq5#}#csVs5E1@76LEvu7Na?Li+bJN5H zTr_+rC2WFldfQhlxu5av=xM;c#!~Nz1W*pm(F^%5E-M)w+$|68lA0%1eTQN$ zSv7os-TQfx{DqL`d+(-yemT-)@dux;F%Q>i*nKvIiD}x+^LHbJm{sPQzv!s@?(>YJZ%dEeSfkyW`oVk1}HOwm5c5n1vKz zuj3yMdXYB0)^`!=3sC6LpLvVNbP_ z-JLiY%q$F3^&#Nl@yF8N0IN;;iwO1uyIdpT72OCM8fm^oq1Ki z6|{w{*)k!UcuuNeBAsJSwz975;vwSjD6SBk6s}d>w(Gsv9h-G%<=c6RvsgY+``$u3 zcl)i4Ft#JZJX_ayhevVRcZklyD{H}ng$+Ek+@;57u^nrKgW(#AY2n6>#KZz_D&S)1 zwPN_o*Fuwz7g@eoRJM__f!NYCgJ~TE_7{5#Q$Dw#u@&6Ss(4k~=6k?FJgjovhy}gH z<+>Fms+5G%@1MDeBSewPJcw0-QEJt3R7-#Cna&KLfQyfzg0&KB+J_CJixcieruOJ_ z?iRk~T%lzJ&*G_aD!pr64;&zWfqFcBHs!E$Ar1Gw&HNZHx3Yc-7^D3Q{}ls6 zcRh^Mw0 z(ff&PfJY7Mhgprw<*OP8pJ$dm^2(jc4cK+CQTARIwkdiVK3qjcJi$8$X<%KrnQq^E zAa~jaQqQhqkjcP@jA5t#?!l!eZ65-BVfAjqG=95M4NPT7K2z!WZ+D|>3@3OuCSPe* zPL!2DB)Nd)VE7nAkymT`9E1OQvWx>3ig>qj9z*Nz1`{Qvntna;tcc0qx4ecr@N~sp zFQU6FjLXrGeBbKJ2VK_);|D&qr9H@w=g~V1n=)T^%x*A9j%qq>e-Z;xZ~#;bt^K%$ z=JDmCBp0GedGkF^$B2|_R=wojwGqk-{j-zTU>C+0NyLL%1|Gu$pFPoX=b&qD4JpY@ zMf(mB(>53&lYNPA|7_8wZO!kqqV``ulTz(ylXi}1w)hMg7o}t~XVl5j5a)r?mz^=8 znoi-;dA?2C2{%->ak#o9Iq{-SU9D2Pe0Q$@$I1=p!Is^G?5%c-X7QvVRZ2|m54lUk z3n?4^_v(p}To`~1UctR*L?}Jov<cF+JZzcxpr`N=;@P=4Ybdk-%6KmE#T z9XnGwl|#30_0x?z^Z3?7SCZ5`^d$Aovag}uV0UzwZbSB0n|@?3>YxR>RaKMX)mAQW zbL<>HaTa@Tz}roHf`(DMZj;uQI5uqVVx>iv*Vt*s_|`+rDiUur;elkAF879pMi|uf zD=S95ePqh5OS~49&5(g>rgic9m_Rf=1J(<(8my1O^op~J6&LseRrmb;&+3@ozU$pe znsxb`{C2P|?@6i;(|qh`4k-!!wC_qOu5RaDqHW`reIO^uw_rd9_Q_=N8GpU}_N2|% z)XavxouEANzZP!*j?Y8H^v15>I&l1g4vwPH6%UDnV`{5c#iWL=zuBO)>*bK5{``vT zlrI(e3(D~ev`Ln4nQ60>EayiAeB<{oFA36A-*#LtXSSZCG-f^Sdx-qShk~DkTLVih zBdYS*`2FYC%uBEZW*HMLaNq&S1uf~B9)+ZcS3cBXZhK2O`xg8+=1(ka5;JT@F>Ho+ z&vZ+?i`0e?#M6Y*=6y@>qyYm|HaUld-Mv=xAmXgiD(5+Ojukf4iUMwOC`V}D?MCZ0 z2lZX=-(5lh@Ildw9Oj`-i78x;^`_z+#0QtZw{!k%U;F)@$QfSd_}F+Jfm5)>6Q197 zhVHnwa{RAjcw{!epBV>SkLOz!WA@g#RWKSHN@9Di`uk=>INp0ASPsUS~S zqIcY1LTNHs7Ed3~rhhKiaTeo(sD7K%NxmmO9{ts>kD#cTc=Cx{-ic;7cn@Ki-)pNv zBu(?C(_8$DZ|$4mwcmXT(GXL-slgBN!#)Q^^owu#3toUd$v<|1csIJcJ0{Uk9ZNHQ z&|*EV3a*~gvfz1PZ-!fBPN6c?`+Jce`=X<1tew`y@z|4EX@vlfBdj5F8l1nS=mV4g z^GAwQDo=L3+w1nfv^M%m_Gw&2uZ#-8&9K7?aj;$-{h*znVNQLM_-KI>8N_)$;`qxJpLqfhj#FR<(iF*eaEh(I+LM^Rih#>ZEG&K8Z4EDtzfrg90J74amCZ2wE ziJj%XA#Bd6U_Y+l;h7s5?Zr|>`v&ntt1DNercXg1Ia5~f?05TT>c45wWZd9Y+R?W0 z!gYE#fG^LHMZKlmQNUVuOg~l8j`(jH&)WFL-n3U#PR(=aTNFGGIvtH%`N8W^+_i4Y z*}MAAv9WndXI1x>khBjx)H4O#n2@hokyY1M9+<_JFoNC1(mN3up3mg* zoprlOGZS4qzr)g~MHZ^q>RIxo%U`|jAKwvu&@|#gK2SR0;9P9uvA+hC2qq%IHsReh z0uJ6Ert{PxSRewP&oy-G1#v5z+6-MVKgRka+BuWnfKf=E#a^74=Ni3UP97$yke%1P z?;sxAOl36d(%S5rg%&L3S4)q@XZN$KY^MZTXlswC3hXV77cQ9U_avRLub*cV`7g)r zqwahV(qdl4Ua}f|cUE(`JCoEt%*C2`HTK&O(KOTrghl71&YixP4J-MLZIk0bzq(>P zi(2izVYs~zSO1(llYUD_$y>^Bw4H(+25O|`kodp^;HMLN`3hx&`kdMpF3+*}(b9ww z>+xYBmbW zd!fUq^Ql~V;F_aPS6)>@&*3*Vus{bJE`-FH(8qZ1dt6F&^(D2f-~h_BYL!0r_qE(R{GS8cY##3sH|1a(gfr+* z*sm0@%RIV$Cju2ZsI%BA&DKowAuT!L1&R4I~cVlD?_i|#rlcJ6(Cku|u_M~nfWjl*~IUI9})pMC{Q$`&> zHa4B{U)(pI_R%J{2!B&WA0r}Ys+?JZ*0Y7n<1~%p8t4sN+{!Yoioz3Ij}q+?`(bcN z(82n%{Te|OipTRK-vcQ4V1uZ4Xq`-YWur%WR=N-G8eDhVpWeP2&J;c!JVWhB*&v*; zx+i0;3MECA)LEY;bJg}1y}Kpl_UJ?z2{P9-h$G+Nkk#e)r9TMWhU{J6RjOn!YDTe7 zrKIB^H-vMe*)nWVaD(MFc+{6;nXtC`Ctbed+8mb}Jnwt$MF>O3m6ZF$eEQ=l4k_9| z9j;SG(WqkC@`8a_R#x!mIKv{%D3xfh4Zzo2t9G&^bi-VaVX9~`8l6zK_Vx(v4d z3sdH@O4T@HER>6UzsK(hT+!S8C1J zswsR_l9%~gefO?rKkuj)J=jQ|^ywOjE!gA_hf#hX_T>`PeBsaKXn%O$Na{9C=Xj%K zl$IuFbXkv+l90a$DKZEzp#EL++F4cp-@P%C#Tpl}<(Ms)AcqZ%1le^H3q@O&tCbhB zf`fgDhD*Z~BTL2Dxze2?_DY5RrYA#n7(qB*e%B`d1Gc>R9 z6m?%t^{)Wbl_qsMnbf;E{k;*EvdEDt9V^8hhQmQEOdsGXf2$E?OYRR~YX(EU7JG5N z{QGatl$K4Y_{uuhAsKhhBk0He4RirzvgWX1ypzeBt0f}gC>w%eO)sKFtq>kv=AYW;rClMm=Q6}lt> zxM81Hq7qI(Y64duvW7>W-F@h}9W^_jiFWY=pU%KDnPO1xKX%T%X0g}q z&P@5a=f|7;UyCS&7MTZg75UfS9RTX}ZPuZyDTYn~T#ldjM<1tTd1P4Nkl&dYkwP

{h?pk{q7 zw)XnuVsj|{US*H{wdVATBXBB%OGn9kjq}7CQc91p){-~UHB+w;gVrwJoyBP|=tptZ zZ3AcdcFLo#q0E()BDGvzeFOUem=K0fe_U+{`Kwe=hlS z)w-+zvWI+ZiVL&R{a3F7AA`8~4+MjQGoqLLk zQQ2~2*0UlsR2q$*-m6~96N14AE`)}DjZUJ64Y?VGdg!%j$|Pvo$}tkGum>BV?RvhK zJ&H`%T{uZcdjy?5_WGqrAf@Fj1F7%jlAvFE8JCeA`&A7eDVv>lUY<=AU?-Q6n?XqB z;T38RDe?c5ad2;JQ5gG@hKqTlg?0};cayDeQK)}UVQzOkmnhbBO}m5tR=Z~lKU+8J zbs7{hSO2HD0hB2@JBX(#9f z^~$j%g>#j(OBLre=-M~xzKE#FCrT>-MH&+u8yFOn0JNe35Q@f|La+@#j7Eb;8~?m< zxMJ{-Cd_rr0^K*153o^XGl4bLS?e^Y9&j zM#m(6agZ?Kk8B0L@C^bBHWboVPEDAPdu)9ba9u_0&wb(4iI38TK8UJT!h(+A*?sh(d!&vmM(#EY7Jb`T|Gb@YN za`XwiO6Egu-G*m2Ho46D>x<*-YmKh`C(76WlYFAC0o5g9gAWUND+ph<(3a1AhXll2 zsG0g!Mh)tpTbLD?8zd^%7yY#o&0otVK~Z+AyKY%yT-HYX;|`y>qPM-d=K1d3P4z6J zu3J(eH}5SiElso~eX^PEX7T$wP;riy-=yus#RqMm7vR#Y)B~Ev(?=xVzce{n;?q?b zMQLeYVFo`SD-&I|)^jEZu~AXz@$qs0I6&#+&h1`e)k` z)YH`R8tk@V$rK(ucoTOZg)A({)gPF{#41MD=l;kD#Te}46kJaNNMYyvT{};9TO5p8 z^8q}C4=9|sam+MX32flDDHN=&txKx__}5>y25Mbo>bCFD80`K>=Hqk%Pl1oUJGJ(I zu(J72Asu+^u{|XcCH5N9Kdr0BUY{ms@(ryW5gb1AR;FXRtznB7sjr&ul(LR6v-0!j zb>WP=GDTb5c665scsze&ZLPel>_=w(`Qd8zZB@LmhO+Wkm=lAk7VP9D#0NBYpVqXY z0wcZvjwIv>_2-z*-*19Ncz24>m`{y8hJ7^Z2U-3e*amXN#A1R&Zd|W#ySw#({f*2JdfyxIq?<&?6t3__ECr&dN1%@f~E3uy=qrzfhL3_V&sSp!nfQN?A3P{KxAFmv+ zO5`cc-qhSyTT3|F#+5PPvF@x!nUpLk0uxW&7#JM9!C*Vq6kVZl_0FCCmHe2PKOwjH z*iQnzHmep;q^4#Y7Uufg`ZO$Sr}^QVzA6Ai9UuD$Fci_=-T~3uy3lwRKQ&4xWHZ$S z<`#9^a+GfVxm5j+jgd#9qB*OR55>eb7?hNhBGIp4ucmZ3xH1lo1-IP;{2elhA0P;- z0;qO8*?jcK8^4YKJzLQ^~&$3ZOHP0l%z|b(q6o1DV z8~{Q!Sy)(DRkH+-Ww>son7cfA;!QAb?Q=Vsn7cf%BcrJanh9MO7ZY-!V6D)E^yuV5BOkaHnRDVV=^r@ zbrGSPe{TC)x!!}h3#-?&KE=f1Z0SbK4OMNDD;`qlq@w;cAHQ%uX~AQOM~Bn70HaQb z4t@x}rjD+v8I%~8#cOJ61c&=w@w0Zq4zoWFv52c@D8WNh2?Yriy&w4|^a|$=ttN8?Tk;VADr zbwptMuVS9@e=2%H?Rg=VR1e*@s|tAg_U$Ff$T(F z&cGn~)~#En`1=TgRoMyC3SUA@S6WI)jx?$wTLV5)umKeU?vBz;6aiS{j;Qf-D*o( z(*~pkP8!%V_etKJu@JXO{u6V_sme$F?+4==aA!Iud1~jMo4GM3ef|2lY@?5GVxv&R zae1uY5pXCCyTN}d7l4oszI5rt=3NjY0b!l9=BBbwSRYb6*>8=*q%EmIIK8Je8r;*q zxV%0md#cbKvXs}5B;AKte{#)hY=osp0k4$^knHO|PS-U_IDq1U-!9KWpibrQw|l^* znA(JdwcnTh^oDnJppC^Pj3GdP*K3crtdm@(2V4Qru_+mEdHCrB7EZo}qec zr|J5t9d+8D;%Jff+Z-(+CHZzmd#OHI@cFIuxJf{&7v8c!-Tf3|qvEME)X~65(`Mm< zM^XyY_kq^e4}fk3^!h~|2jiy%JsEdMzj+~L<;8hVvIkEN%x#Ar{9jew>vBgnuk5mf zA0Zf#^x$|N3Q^?RlETXIw(Y+EfZnECJCPAG^%Lp+m?6kouf?DqrWD#ZnGV@0{J4{L zz0>gOF)%_Dio`_WhdTVfZe6;_`*v474BSisfj%Ia(Ht%FxlO!EpxpI9{TF&otIBc! zjVY6_p_-E~^>Sc%8zBAe3lt@?j;Dy1y6J0Jm-MTs=+&ju;3U6LOweR=Y(I={$8hms z7*>Atp@DI6aJIj96xJ0!lrBKbMTI(K5ITo!#%sQhvxk$=F+v7i2>fCMHv-wMj_}>~ z)nwhfeT6w)$!a_R3SAEzuCa1e%3X551(&~{+~hk@-KUTQ1nM4CfPSG8u9i?Q#OB?V zb9KpNw7vX&H0oiP0Be@l`c>uethjxymO2U%-y2vfwcKZf0J0E=5Yp z<+y%`b$ntZ@Azy7XTMCGJ+BWjoQes#jH#|TTdOGijic+eisHY=V`KCjOjat(=PI%u8vm)nP(53p;>NAVKL#C=s|S*>F>lq@gcg(*8dYg4wH%;3-_Ny>{i)`eACDpQs%_Qc6V( zkFY4c=4GF*1+Uya?6Lf?gUd&IZ8czq1YMP7B=xZeV1Non&)iF=^NzMm-X>259q8Uh z4P|8{tDCZO^5`h}Nh$?+tdrZ!U8U^6@R#O2Pk&Q20%A{~O-j(nNKteixFB%#rOmce z=0#RZ;w5SV2lNnK4owB54(gmkvZzZ; ztEL{M+Dh@~j5u=65V;1dCXek92Oufhb)B0B0AZsf85{-^xSRBb%dx?<$BOuP(soN1 zTGbOzq?>?bfdv2s$SKO_9Kq=;YUHcc>k-{EE91MO8#f(8{dfda27$+)b6D6 zLy~t`E?yyp!(0sb??aCpH=JJ+sb6%|T-l1oD{nF21%XASgVKWJ@}2Hjw#qmlE-mI2 z5H5b#TeGKt0wv}4TIE!aW-Apf)l1e>X4j6O$pQ#Z#?lhl;%W_P7CSueJ3<`Jr$V{E}_q=i7kiZ_hW@ZPq)Cp>CSXFuJ6Hbcy=B}fYf@J_w8G6!NdXICc4cWY;ZEO> zPghx4r@>x0te?f_XUgQ+MYLpuMchP#=Jk|WuSu}U?8d*tpR9!fG!(V3?(&Z=p391p zu{lECUDjtDYNu^@Ef0cNgNd{yTUH+us5yE^`f>6y<94ER{Wd~86OOYkOXiU7Sy_cv zJVYddn%9r3ZOS_mZVrbD;KEFE=6gd#ZoA5hq)oB zHmuXW?e2sDB~rvT>D^^}Wf45707OHw)H;(nL1VP7=5p_OwGjd7JyN`B`HPxXf6N48 zDP;(ISpE^LD{3u+^tpyydPRXY*a-6Z*{`(bm~+cDgKJ@@i;98=o~-w2!&XTr&yIM< zX?NnR+)Ms$xm-aU47k;pwi*I(Qi_Ru2l$TXr3424rTGHV7on zvSH}mwRGmzlsk#f+3;`HwUn94-(AKO{+2RB=m&5VPlgP7C*|~qW z_+qAjAN+fK8iKgl6j%Tcm{&S2z9+;vKj9$&XnQcGd!cjtl7pdrG*{7joVw@y(uV+G-_h=U8GI75d2mNM$-97)GG)_m5z2$&h9+Yw${K z-y$wU6fchh{Z^G}bM@^9pCBSZ7B#R6Cv9xiG)o=CheZB@g>0O$qxY=iUlm#CxfHIcNY$V^}Sz_KCfB=dC8xh3aI-qS@vmIixOJt z1|DCfb5pIJ(~f&=5?KlyQB|d4d`O=#Yu0C_13v(Lzeh;DCr+f3zG&~JXag7Ol|Sgx z=>oT|j|6^H8t?=68qW-NK*)6@X#nX-#0U{WgEf0y-_auBoay2L1AX-tY%%^JdJ@L^ zIN!pkFh=CijsPNE8Lyq*i~g^xvowqXhvB|)D|iPgYdGlS%NYzJgEAI!I^sVmJ9ub`%4wCjAC^ok34Gy<&;o&S)J zX#sC$GI)$BAFNXAn6!AC`yGr=*Wy}%MQHlqt_{C`lwtY%kw2WJr0fQB8&VQuEDWT= z)o~eAG3&2tP4=iBx0#_Fmg}AJ#&ss40WYr}YkCC7P7dK|!Ak=Dv!^a9ovVADRyhYb zGEI9*7HkxEbS46^?cF8y>DCCsEs}O0Bxkzc z5Fgvx#>LkXvgLR&1x56dS9T()9GM?YLX`+u>M2UDW`x*r40mjtE5s=UvK#fZbyz*us0r6;XSKp@!@j8HJ|s1!>r`S=n9x`#U2 zha7Uu4pM@i=afI_YZ0QPa;iYI=UGpa-flEzdfL{;KT*L6shECjOWW-`H4s&dApmHB zIkgJ(E2u*bcy8Z-&w}pJ?zeHwCVv3geQ1ff-vO0{Ak6i#tcafxc>wJTg+tx6k97y2h`=zlOPY(4FQ8+C3X$ z2WzZhI9C|g-3+j4#8KYw<33s+d3eLd4>!CGq&Z3VA-H2`&$Qt1r*N4L!m}BWjqTF5 zxx+KbO+=jw?NyzcX&V&@vh0&^+hStitkkUAygRoWtV(qu%+uL=`?O`tCPAQ^M$DEI z@)pQ>jq4D6zeK@$uL`5!-AJBTQk8b&Dl&M^Ss`iK+st(D9p=6Q63HseBP9P(f*1Ys-A0jb*#@(CK`$R`&b%-9X^*ky!qvvk>2)5r-{ zAjh5?hV2suw)No0od9ZZg7D&zz26;_|hRhbPHU`_`<^Q zzETXkJWzH@%O*p*W~RMMjwWggHaE4`$rGf(AZT{}tfaHcyG5lr2bL+-=1z0z@JrPh zjkcrp03T4k4K(-C42^DGLSrL{GmxFYzF4UvUC=E>YX6xgsE|-XFe^o<{rl`J;8bXB zofrvJgwZ1x>v2Q;;ssG9_+PN!M^8PNif6Afy!;C>OXA(!sxQ6R`pW%X_ly3z))-@K zFw0O(a5U0#Pp1hs;X3sKw)v;DQ?{6r-=ub(dM#^Hf3o1-MyI7Er{Cjb?}8{#ACW9= zjzsxoa1J*xt`=`$Ja}`6emWf0dAsFTQ|RuFE>%vw{RCv|;CoWam#p#fsSS)Bt&nw# zewm;t-aB`ylCikkTED6gfs}^aA$VXBOfuKxix61sT$5XnHf#K-#s8#Qq!B{`4hHJ!T(n<0WQjUsif@pUysQVkDk8i6 zPrh0HzNRZz3@9|3EH#<&%fYqQt7ot`(IoG_EvNmcmLQxqtkb#idw)C7E7|yovNq}O zf~IsY~3c?}XGzb*7OMR9%LtkC#@@ik@c!&H3sB*{{j-Us2v{xolxk`j+vl2%~YxErssUTxO zqxBaBLrcqhf6pzF^aZwG2Ei-SEQ~?Q$<{(+$PPr~fTjTGfLx5dyk=+oK6e^)N~zli zo}9&^&*+|bA_to7%BkuCwY_jmSKYc`;WHGS^d8YVBAXF|A`3NxfKgBQ6ayU@*{?Pr z-XS+c)vM&DJ*mxu){wj}En*zOwbD#XXlQhHLDZ>!|AM}{t+#it!2edUqnm?l@op^& zN@9xD_sb9IGB3}%;)1T(g2)dj5BRti6kT7OLm1Hn@z0*#Q4^@mIRz5BN`)Z@){EUk zLN;{c8Vd`1ims+FU`C(z0yk7+)8wS2(35R;;V{?7LLDbl&E?8@(*MB(W_|joa*(z~ zuA7iDD;4C6XvrmsQCF+3w76pu8Q%q@}(3sjAhYMNMN9Uj6w33KWWt1~yw)M&{ zOqv94rxXz(WiqluU=|dmwyGLK`GBDHV^l!3i7cRd2IzOMWn{O6^w}6NLftJz#j zU)3XcIbyxI93A@4*_Z4WPu)L>+xZ%eF+@FM;N)pWSfiqgUA?m?ULed zZEm1GNFXbxa^*LEw=Y&sqfU4s7bl*4ET`xPR+LmwP+v@xZ#Q*s^EMW*Xh>9Dz}zfO z1T!*=Mv?ix2KkS1V(1F#^US3tnMh=`s5Db3(zlCp{|)KmVU_=Qs*R?+d4P>vKmwZn zWG!BK697i7Ohe!4Q55H78S+fN1SH|>RsV)L13H>JmHZScC{=+o(7eOo zx@q1A99MEGk1f-UYuBDaGugQt%28VzE0aJeiwr-{z@_w<6iER(ch-h=YKt}q zWq74+ZCzc%(Ynv7nOg648p4yNri{c}7ROtc79w|w`&?we*B3&%ki3sezkN>)rg-o7 zh=A1jW>NwFyUzLQGEOeDE%>h#c}Q2B|0c)DgDCePnLBF_bt9~Un8$_iYrY9Gk?FsG z|H=^lnvx<9Tp(8uG#tM@Mji9^?Li-E?neuw_3}nWsf4xU)S{b3H>2bn?s4+8m$9iAXG~(Q|D??zs5xI9Zc*I z|C73>0e=UAr7^KejW>D?pgAR~-X8kYT{fou<4#?Eq*v)pT@Qr*3DzCvaU#k8%Z*VT z*|yltPjUJA0wUY1L;i6vM3MR5m(!>iQP`-Zmf#*AkO`PX_U1v3rUyx^nKz>JAHQZ< z@vj%uQN;=Upc_Z4Z9o@ywtnjs@s^U6em1|qohGqU0>1tBf9b_r%H0m|x@@lgDmB?$ zouj$=0?RxOQh-zEK{xhO1&XT#&fnZRx+iC%5m=Xn^!0go3Z01vi#!MJ$IyKD!TRT! zed#@6T>2uh6m z3YW;_4xlJ|`<2zBFe5pYQ@*WgE6W$qAe$ufeGm!Nf5U*5CZFa#Br8Bd5rvM|dCnka zXp+5l@!~zsl12Zw$7vJNF-6d1Dv2qwX@@rQMd-g*fv#hZ@G_feRs4|KfkU~ghP=)$ z@CpL<;?pQ>Q#&Mi@|N|-&&z-eA0*pdhsnqaG>crwv5mG@SDK+U%c%-!<(tkpVqFnp z<&^|yynb@Y0J`S=<4pPr$Hnfhe`Ii+`u;#Y&wS`npYuu|bh+mtB80D?)G7UYq_h;!)fosq&)2mYYLvr~(NI zmyS$hZ6L08D-^{PFx8VMqfT(6>Q7P1=+N{NN%$h-IPuSU^`|N-pP_e`$9Cp9-gygY z+U&Dxm8x_M_#Z6*=YLv&%!I_myw%2h^C92yEzltRFsIvESYWR-vQrh4n!>ds2N*)$ z)d5GBA{nTqqGfP|Y+#t1&cUKO`xzP-AQ}^dBF895it9&?r7sP=c1}fqcX>D2L$+f4^Rq_fHC4Ddc}4Y zCM57TbbA;^jM!U4ygAsz4}-%ze0cPbh;F2_O;!fd1Uxclhlps1y|*I1Rw|~gR32i5 z&pYuSXE>qtJW9=9DFNv~=vuk564+Bead+V1H#pk&5UG=dn5Fe^`2~wGpwXE+K`xQv zxH3~Zln`dM>h=D;ENDrX#fxmF=j+4HS&DUkjUBIKWZzPSP#1Ic4&I0^(aO6y;A0X* zuV^HC-2)*q#FEw!L~qVV5YDB|I{-8%=#ZTJXlZGI?dNZF6h6e6eL>jn8)1%L=m`Hl z+aC@-GK*JqV{z>*rg94MFK7|5CJDb*>WNh}YtL7oxIn94_vK4f35ta2Svc%sX%)o0 zjQRdD*D?u7Nfz;>q(e$c!FjTg&<(4#v{S^di-bJP^&4BlSUX!;hiWuN2O@_uu9SqrXDv zR}}}X)X@@0!lE zPQt4LZz@^J{R096ePtk5BeOYg%K*v6RZ^Fvpk5^9I+@ZkR~rb+ykvytvmAtp)LwrQ^juU{llfp z_eoHy_0T16)ukP*U*${h;oJ{;jO`5q?#;rk7>-q(K zX*;)#kp^?!L6EL#+P*@ejMlbNtsNZte{AeP`=_c|<2aJ|ha90`hqi82*+&4!^8*nq zlEoyGbDW)U0glv(PgkT`Kv}q0e&D3uzwb^-JbCgAC_`3zb9@J-eDakm9W7Ju-j}m3KNz%Nj zz|_<}mnq3_e{Txe8gCgaM4ECS@un*WEdV;oe(ICd`eYTYbCpT(Vwa4JJRyDVoIFXi zhhMOpA|J@`uPlxm)O`uh6IJKLAo@v^Q!G@lJIg%+b3X@J16tm);MTW-yF6>K^O_Q-d0H=n(b<=W79DLwxXa%B>{AjGx4 zkyi&8`NS-;>URS z^`J;#KTAi5$o9C-E?&lT6EbL#+qPa@w871ynzss}A<_NL5pt4IjV6{1&$Xr3ex~W;?!-$~v zJ_rZG$Plh|pNZ~~=Cvi;24OM4YP!2;(=3Pm5#v)VX7wcCVuVHFC@PH1Gxeoxo&Gu-S~NTDm9smZs{`W;|| zbqd%F4)&)1FmrTI7r=f>L8G);Y*q0o(9;I^uN~B}-Cf2|i9P#dJTpmC;^3g3UO}um zoA|a%Zo(-9@>k1U5^CA1SFnx9aBdW6dV_ui$eB%xFv#6ik++XPK4S_U8QWQUVO&Mf zQU*vD{2o!;m%k=R&7=^!;N%JI-sJYX_%eFZ;pH6PK5OonxRet@L7{OLizOe&{2{8O zMF2`zR%ln-yL}?GLo}|kTL{=b&Rn-40P#rK4{!XCoDoRNcz)(>Rk8W`;Lj&Z#mJI?`>53v%(hHd!uA&IX9TG)Yj&sMKNVj#paYXPr zO9c#W4}zt;3r(qKB8|CpARE-bADIq!{Q$$AbTNBt&*rfAP!flCz7XM!FYy2K16vrFCEUC~VNo-oqi)CWHCeAR_FTWq#US&J273Qg7jb&;uAxX{ z9U_T>#r_fS-R7%;!W=&{SNP%rObGn|CUhYWsHez&Tu53SJ_VZV_SWbDa`Zda)3!GT zKW|Zidu18`(;^v*8DyPkXK6s(>*yZ5GhJ(bqHitFbj1!MAY1`O6FUTb(hpaErU^-N zE0J(iv$X~n6z$#j%^i4klA-73%$DszWC(x-k$pwb`z%dwu8j@dR8r)Wy}%7B?ktU; z%kX;iZT%$DyMe}f&gUgz0F)$wD-0mTj`co6B2wS|3+Y)^a05`X zb))*sy%H4Jt3^T2?BubG*0p!Y*0^A1ZB@gRa{y>#iP z4LBvUV|VcRl5ATu;@i$($@f4RN3+dr+SaDdb8FGp!=RUh3fO1{8FK6J`#A$d90@4dcX)q4s@e}PSIN3585VXT< zl@iZuILVrpECoSPU`;4lnLx5xkcnrAf4Y*>ZVF+TE*?x6&hfQMbpFw)46Rg%z)I$s%0)EAogAyf;ZBI)Z7*K^z>{|(T#|A z-Pyo*f7kT*;<{~r{K8E%yuz(LG18^`(KrdJyxD?I%ypq>jUPDZ1fN$_w<({12W4vE z;*jH)so~MdQViC^%(;LgaZeGN$$t>WXWSw$BN7k5gQ9&S)S?*2=^WK89UpaDs!s}d9Q4%$seRQbL9Uo!oD&r%C2ks0zt6=J5azz5fqh{P!vTal#*8IAtfbe zOcVuFP`W!uVnBu#1*LmrhEfEik*H$LFv6*6X@v=h|zX>s;qflU^D$ zhkQ21T=tB3m-qY8iYr4ORTuYWb5H`z6dR@2Oxv@VGr1!oRlt6&D*^X%;#cZ!w#%YQ zH7Zd2Y&iQjOc8~?)Ov8)Ew6zoNH2x>yms954M5Fg%L}QMkMBW&7)$iCpzEEk-Y#cK z{U~D%l;>b!?lHLQ5LHz>0cq6s$?m?fw)g2ktMYAL$^sK|$GwmF($I@n!9zO-N;bVc z_?YRZx~gg{f5zv_XuPei!6cq2#m_J>PHBlwKuJ%aL*x#)MdVSnDScG+-IDU82y(cD zIFRZ~&CI+lv)Jf2ogGOZNvhX@AqCM!>Wd$+Q5v;#jPr_X&TFoA))lQ1qAE1caDL5* zd>f6#W!|_kF@G9tR+ec!7N~m|_U=SE$1r&~Lsd>rE}IC2A2`dXNk1f)Pcp%-v^qZ$LY2midZSmy^9!x7akTo(JH55Yy(qu#Cbo((c@A+s|W zALsy}R&rrs$0I$^n6oaSJE4jewB?~#q|a%}Y9of_dIT5fytb!ntcJH~Hb$_)Jmst} zZeIVS1G3v1nxMSo=UxK__h+wN{xs-*4gT`t`RH&@y(c*_A_Y`KfptF!1v(m_Vm1vJ zNNRDh{(FaozCeq5h2%Bg{OZEXeu4w?i7sT9yF)uDLA5}KgCrkf z`LWOcQ1*-oK5q&YB{xzv(wl(A-T1o%4mj%6DTW>Il)ox8frU44az)nmLO{jgE0hy?B6SP3UuT^#_X6v zpsw93jkLSb6a&1ToEJMOY&)vz=~^OQdyrEs^$|7#ANVqtWf8|tw7qao4^(1m=ccDY zC3KXPu!sl_%CCmHOG->?f(`{%AFF(LQ~{xG>o_h(L0OlM5)5wfyKK^}&7z^HtHq+h z@WCYX!LOuVw^X+$P{;hvuYKEI*(IE%Wed`%1W?#xuAsXWDyTqML;lU)X#8?750WBt z8t+Q~;eW!SE=)YP7wXJb2k_%1PzFkd%rAI|IU<{6d9QrEBLCO7xyFr2@TYFdF&Eer z4W8?_?2Q6IO5Mf91q=sh!nwlKklYvS5Y&o<-k^9P2fym6XIsXKMA{0mw&d6e;CqzXxeS4EMiTWYZ9^|$Ry;RspU*_CbSLmci z{~q{oOKF1*N9W9R&r=TVTd*a$!|neLm82>^fC&OF?qg27d%Nz*80Lbm*6x8Z>;5g6 znVy1z!XlvL38(}wA=LUk&Es$0{>}ntN=LrEBeV`^Pf)p1(gc-w$B7h+LqecbX0tY+_1~ADWK_JgF0bN zKBso6mFO9drwSW`3@T0`;2kJQm z%ljTkhK*IE-Yp7w0q2f~UW>D%seaOnN$TBPu+O&o=+j$m2D-te{g2NwikzbR2<&r_ z#~bFR+>2Z(F!2I3sDaJ}xJ(2e9=dM)nxXu(#JgJjebw|pE zklKg?)7F}2)2*QdW7?&AJE=qOL&eC6?kXT;8K2w+^aH!Qn^>OZypSi>c^XC7-Q-wN zF2>*4;PHr(ysXS!`Y@G9q{RA3r^wI;m8nH;z?fZ!kDMOwHb6Ci0AYOy4^NMaJL)*r zp%pIatO14z3Yv0E>$$BuKHmn}*VgyPZsvdtZfi@+yv7OTP!YwFRr)xXN#m)!y~x)J zh=>pzEX7slxmt8V|CBI|>)U=r{j^hg}2JE~SAmF**Ls!4LSauU4 zECb@+X!F?lGLF)JT2M@bBx4~bgA@uELF6$SkSYa<1Rmbv1(Bl?657oPip_qW(??)0 zWhkBlAQk)4X>VZJx^6s#e>Sq{VVV*b2*bd5K)IOgUNO9x^476nvl{N;?AuWA4yOQ1 zLA0D#3K+&yf`VHk($mGDAc;ve##duPfYA35xW^O1IBW@umT9&2d z=4vo}zdTyHeVzC<n5d+v^_~ zOYHaW*M%=!NXpD?3^MSTX|*fp)F$CR2$n3{-5i8~L>2T2X8sK5ylMZFHnu;o9YsW= zJ~s)E&;GJIc$f8OOWmY4#Qdpn3O|9&7{J@KTr0^x;?`%jV6yjurDZgiEcU-?SFY!7 zs7Ymdb{KZ)o3NI|RHd1M%1W65>qa1;p%G7QjJ*cZ#n-dU#O1iZCXcm8T9{Sf(lAfuV-OWo+1)6Jkk;a&+e*AVCW!6E7)>Vs2Q zS^u7r`RAVS5onXauesV@ZYft(%C%qIE)Jbe;G;lR z(dN~0)-PMZfF^iO4&49-TPZ409G;4dNC;5ML;;Ek6eL3&f;6~Wl2z5A`nEMyGc_fp z>XBaagN8o4WSj0{)K91$e6K6=FtQoo`IjR0KHr|iIH2bY2Xo0EMC09ubI(; z{`>du-*R=1`MTf^T&yXGA%QC`J3s%cW|u2SHI9oNZ%TJ@j?9Srx);9q^Ebq$go6M$ zIY1u6)w5Bgd!#jt8G>H}&@0Ld+9G?lU~wpwdXgdUm0eFy?{tSW_dqGCK(-p^4CBs{T4Bi+zHxE$@xk?RWy4D2q z2s{1_tcG+~JAatjMD+(iN6<v7jXF+Tv%3u-_WY3v)DgiHz5=5V`(4K+Xry3^j!J5s)g| z0t2|RR~Ixs9zHVvj;EAq*$OKifD)Igk=-^mD{#IFyK1o_z?CItQJ%=X@F-S@tKrC{ zJzJH*ftKY3OtfdmzF%#AB_E7yM8=XD3ivm#fiw;8K`O~?c`y1_Fg^ur1?Ya{$&(UUk;8&s?No+wao3dRba{h|Ym zPAKckztr6_qPA5@0ZP^p*PNvxW>sABW@E%tygJHCEdN^n8jf|0Ffo(JA(~VM;;*q6 zt?7S8PQzcbtOFw=0P93UR1uV_488bxX5Y3sPVa&pN7uJke48oz6 z9=@v>;mB_L@jrU84IxlbJuZFMv__)x>X2{qBJfIigBZ^vLjBa6l?s&QMW`QRU&uaM zm>AwJ&|ORkLN1o$8=s5I8?go!7@1f*NGseJK44M9y=YtXUp=*7(U80GlGe4Uadq}- z{?GRKiGJY}M2av^m|-rI{6H1>TICTN2NZlO>Nsoe%XX{Vm&C^*)3i=ZV%dtRCkd4_ zmEV!vpM9<0QcYd&=~|1-XaF*lcx3$u^0_r02g<2v|AF2Cvlz}g@8(>%XhYEGDPrsN zf(zIT7}My{$Vi*Uh!j^tr&ZRc480^~&NpZ=`1>z8HpA(RXiGY3+MpSQXnmX^r~)RK zwcl$LaW*pd>7jL>hF-{y3>Q^Vl(9`qvuH8&3_J!;V`4)16|<)}E_Q439^lC8m+;$R zNQaVH%mhh_Xgh@nxdF|*ia#CZ9-e0tu<)K8WQbu6JuGU;b3?pL7U0NYm3{cSx^qqk zEhZ#f=Szkm!vT+9uH-Q#1_HfpjB~WnuWrcZ3@0H9aLb<0aZcW?08zbZPisAfiVzsP zMD}G6sOR+CoDw#HQ2AP?#1%9;Khfw|JKq{hgh{R#@yl+jHebArnoo#r163I>t>HIX zK(w-sXsLv~84Y~%(uc!PkS|&P*R^ylQAb?*kvK5#)glXDNQ7DJdCi+Mc|h12kHO ze&pv@Sl%hI4hcgUI4t@ZbYUZ?7L&&dFI8BYx}-;Fyad;BO>=fq0 zWmE+Bq^@FNVlV~i5ALj5OT^cO?c8ywLy&q@YbP4%q?h@WO@*VmVWJ{2khNp zeu9(m7Et%7R>&9`9IJTrrroB?0AS&@qlN7ZIP~5tw@VL(f)i5COga0&uQJdT zyQ?VkJuSoL;vbVrkeWbB_mGb5mWhPxO}5nsOS$Eu8&x3Ux_a#zzkq-uFq2wG+OuiW zXR*?h689Vw^K@rcjy4qyY|RN`lNCdDJz;&~(IF`Jt{AE9d#)W^LO}rfRR|D1tSnMW zxMzkDeIUPYH@ZW`b!jvYd68tY#Q$gmA?P!(5-i%FAvDrWOrbgBsv#N)6biLGlu*Ww7{XB8Kdd~YlGhN2D0M- z^}6EKGhwCK{s!`vkboXp4MbvE0A6taO0j`R7QZqTc}&5u;!We1=bIgYbc7rEnMt0k z;wRlJV@C1Tdjwos06owuga-~%l;AM1Y`3aG99G9skbvDru)Pe6Qm;cyNUn(dbzinj zojx&SQ69S8GmqGxCG+3T992LudrVA>@1r^tbpxeOp{dtTCIfg?y$k<~=@+&iy9Z48 zMjq4PxiTg2*`VA2mK3KoS_-d0mtbYieX76Wxmzl5+%i!2mWv_!PK}AVjL-;(RiS&5 zzOev_Tzh}Pwnx^7M`q;{kxRz25TG(%1=oRa=g;cQ*t3@uyGarwPx#}%rV(nmSsJYC z_PtN@KUc6f8^}sA2bV11L?IZ?!37dSAk?G@c@6i#X>J95{RjY@jt;(j{!6re&+gs0 z;kNV>0lTn!-4N?ZEq8CNu)JsY1Qhy#p&%;;u2O?F6uo*r{BY5|3ySP7f|O8Wfz&_4y=wfOY`iXbL_hAA=%)5l8gy*=E4YW@jr z1LBi6v8b6Xila&V@`=MA!rZ$@W{g?Mo|j*|hqErGhJmb2};x7~#$@ zhAh~3=$0c0tz_Wt3So!84TcgW3H?1qN`5(pwg6L%KXi1Q$z)~4Sl-mPjklO`Iib=% z<5RIZ?!eBHrJ-Ag_^m^Nk^_r7GM-3nz<;KLO_s1%dH>*W`_`?p_ZH~mcp^|f6=dD`c9{~26LobuU5D9wb(jsA-R|Mn=N zx>g(`U*kV?s0^;n37pZ;&{*W=8MM2PzeXrzn=;ETx%_!|O${X1q&*e^M!Erv#mPg& zg~ef_ho206TJ=M~fzR<}SNG_}&CfrI4U%k4J?;mMZII&HCu)#Ci4q5vF&hE(e| zgH-^A7r6)e`c6tq>p$JVF_ zyT=hqz&_!i&{a>Qs?cbZWX#IYQh)`p`2UFW5W_`nB95LE7FOT4Z=cn{tyqJ%#-5R8 ze(`?#-9+O=oEotXjAAJhEZVdJh-SR~BtHN1>b+j#f=>^#`N+ylxQY~s4pf@|i%j5p z>JB$u6)%XgMgUp>oV=q4@BYdIT(o>e8yL8==~x&Lw{!(HUSqPKAe=1mwDAe?+|0FS zSF~F_7swP~%TPIrwH-TF@t3{CN9N<74};~zo5*goIaBnUPaghV>U9t-QesMKs?PvO zP&tAXy73;g)W#rXG3(2Qi7}0*pVEL!jw(i$66aJo#;msTqA_Pu@>c@|FN6`Z)dr|utBN(cvQ=(*Q zv`uS3*I@|o7#JMFD@9q1EjDer|E$omrNFnTNmfPq>~}jf>PhZ3&2QC1P~P6 z-qHxlV-9dka8HJyTU?NGo>;Un^KtCubf@=Qiav4O-W(esw0MZ=i**cz&X_@=_ zx4vKf*KPu39U$m~u?d2F(f>~uN6%WcJBCU26W>qO_{4r|Arq+dZ55YuMNX%eop^^a zk1VF8_epurs^Q~@Q-47JVc0K_J#Wt@?D7?$^))p&A5#Fc2H9LmNXkMb&C2WQnX;h= z-4CH?S4-yN)phT8oK9fIcJQ28$HoVs+fdW(evUX$wT4SK)-suda-FaO8XwTpss64& z#$y922gY0n$fk;JOW9JqnD2DxT$?v*H8^Z+JAL%gsz?_a-nl242hU#(Uac87czA?n zP}*>ww_5&ZtRF1BO#aG;xMFkxoMpi0?PbNYgACagl9lY@}riilb($ zU$3v;QRep(W8Q(6WMaF!hkZO5-3O74udPYwa1~ME=^*okqM})MU!`kZ63$AD`^Z~+InOnY8kp_B#5%XbNFF~Ukq*sb; zQyJ>cGLkk?!0SLAX@ry{=T20a&p6njCM#>L3mtWn`=wTX95?*fnd+bL<~o8S7`}g0 z4`f4oj>+x%m3QbnvD;9N6F#1kE>ovXyir1{Uml7%WGA}NwQ~*Ch!i zueixWG+uk$=UaZkOuzSKLnn~jL0XtlxO)KVfUrw_*Gy+L=UD9J-WrrtzTky#n|UB7 z{`V-+N9%IVwYf0KQq)mt=;)IhAUWXaSr*OpWZ8eMlT}bg)tnH%3*Zu1k02e593gjb zkyygZt=K026zW>hYS%t{5bnyF4(hJpfy4vj$}$)ZD2iv{bU^ON`ENFIZ`Tt&X9T&P zKqI0Ym-~xIDH$@4LiYvUTpT@C{$~6V69c1Qy8(N~;c52^-bkyT@ldkFsJA4%{Reuu zi{EWx^HVElny!niV4QKN9q9$^1&6-xZ*9qD474x0&4>Guvyag5ex7*14v-yVL~)nk zKBGIUZp8~ecgrGhh^r4129-ZQ>Al&tjDl%2$3uJfnE&^UQK-t>A9&xIZL&UJ=O-r$ z;wmlS5(k6{opsTb-vjk1=*-GtM?;MS+9;|o4rCqrZqub>fv#%8p7_Ah{YEoLE&kV& zU)zDt761|MsfyvxKAZJ=PT?N$dA zX@GXj{%nBX2Ez_XL9|2=0b(kz5#Vd|#oy7mES{G*uEIrO#=Q2Nh0New37u59VUDhn zQ<-j{cj1|j4EAg%YLBt)jhN!|hsuL$wesXZK9;d~gY@-7hzwnE4yEx#5H?}_1o->B ze-8ZQJX#e*AL=AAnvX?7E=Fqlm#bkLh*w#Mb|6^7OcKWNvJ$X95GIGf#9fS*ln(f1 zQ!GH8OK7P!AliHO3Nmo$+E&@?;Ax}?71eIN6ftiJ*RrInK~9e!fLc40(Sk79{&z77 z^a4N_Fe@lzlf7v75k3cs?wPLf&%E zH8eti?6p8t@unSAd0Yh&dnQi63%q~mZucV?W#KXa_8~2Pm|Gg!C{1W?ROl2`?!%5{6uu{GB1=x8=9zh5Ds6WaGv zA8KaufttVzcNs9VZ7wM^`?THgV#UaS4N=3AW{QEkflT(yd71Zh6CF|(@8vQU8YMuz6{*4L^ z?hn1M|N9?tAzxbu?)Nwh@3WRgIoii-LX_ zc|5%pH!T5v1lSb;U~m}}XUikSrqgh_)6>8$A84bvU$+2aL+{=wiDLnZHP8h>@CCpL z^i}w=52$vitRGH`skmFfW<{vn2t@9jPKa8&=$Pk$_DmK8%EW^cn04)P93O?xCX+e-eEoz#V)^q%} zcdDYEC%rQo-Pi-40>Y9pEXS2z=huPF>m4Zha{dVKfJ$wqXX(h(Cs$nCmu*l~Am1mv zR;S!^r4{rJOl{K6nPk4(=4xA|lCNvI%*3E8v+0EYj+ut@nJXK(v4|SLIPD2LW`3Rs z4bagxukm!P!+`IGNbXSP&BED+jxgW?pEs#L)0F@W^0gOwNuXsC5fW%oBcI^hwDp83 zVz@Ga9+T`{xUpcd^H}-L9WE0@xypBAZuTT7bY@IS&)o|bTph=`QbDWQJsXOmxycTn z4|nJ;ZssjSOU4b!`2iK+P5a_|J4iyVA#%R0)2uGwl$Ss~SB~fYw_!+Ti3M5Ow+?8M zrkDCBAQjLu+o{gjCp~6Rn?LlaL8AXKXSKkMq;s@D^-nVJ25LD7&u*d(~FzU zQh&!lRK;R~Z{`hG7oIb8>irRnBs9QYaz29TiFy?o79RiS>t4fIa4$%CDai4_unUQx z{ko&%-u$??=Ym6T z>DO02tu(wiS0@!I<}c~ol|K;nV(4y3R`O_3--eu-?^+g{(3$2*^SEPRbrFZ-Y9N2i zu+X8!cw?c|4pTgKtHaT+@~~*KT=1Zj|9zaBi3)$K z_m%a_>MZnnPhpW|jsx8L`&p-?rrGuYo#$ zZ0W+Ylrhuh>R4*^SUp7x<2zj!gsHGt4QVua&}-!$J0DbT)Y-xcnXie@!Tg4#zL@8f zu~EteN)qrC%1|p_jtxh;@lDXy9!h%p%G`ByKq?_OLHLVZZS@xH^99ti!!MX2XBi+^ zes;P=Q|CkQ6ovGm_PAnEbkUQMmE9WavA!KlFe7rsa*qQ?Q5S(+C4|=t)8G*^#&LCL zzaw8r!=ZsK-i9&D3UyLSg0V3+0CucBa)0q z>Nr?u*PhB03lo&ex|f|LNOp4VtC;m>WB-(N3Y$2{Lcn^MtcKNLtV2SmPB7MM!}vMQ z8BZhDJ~X{$m1od(Jy0~=TJaLrV+h|Zl^ZL`a>O+^X0 z$6L#%zmfz5QrIwe4kljg(e)L%$9ZRW!VOQn99ry&+zam62L#JI`%V4z4|ZNU^q4XD z#m}MZ7x{?MrILQfhQqt}Zi2jrZ6?LDE4K5*om*D^i^8gj>(x)AucCQ+bXQ;Qarfc} z#$wvzEglp%hnKmBv(P(nheN-$12$%TYmgU z`EJ0vxHL!-I=Itpz~U74Xuqij#>YAubISYOL<>zoloCdc5m+?YMvpRFk_E)L$3m2oNj+`urZiY>49EfnDOdl*n@lF z1AD9~|Nh)kr8Pg*PPsjE_Vp=dg7;&zTH4oX3ah3{^eK^ZYq0_)L-1ci{6qQJikRw8BbDA z6kIGHn3AI03}*BhBlei=>3#od4G zYJNrX#R@ZF51QsZt#7up1-u)*Wi{BYBy|z*e?Telsyh78qljwbzyHqU@*S(bkHecA zNvdz=$byxh1a+rOrPb?mlG7h{4u?`jxTRzBKK^Il*Dw94ms>P6h)K3GN_5@-Ga;8T zcvoQ6~D`|);n8|uE)LHmKm=!APp+7fZo2UoA zP`_mrS$Uw5gXW7y6_fp!-VvBI_iwX`%iBXn>Vw~;7G zW}#Ih{CZsu3=c+#k^B%6UsB(Fw0u5QptL)|yjSAng@%aL9ZXofFHG!djS^haaf1to zW`m~>pjD(RcqGykP3^%K_y1;|$^C0|<6|=Ym4!|U*fZ28F=XAU2)DzB&20-L5^{IB z?GUzTy~H?L`JS|=vJX-8PAFP=#9I8V)AvF4!}bs}818kJBB3i%G3mH#>qDsqEB6Dz zO64-zc$2m*GA*!}2DXozI}Xm4OP-!0u=Frpbl_CItcrf@>gcdRRVTMR9*w$*Z*xov z4EtnY#Aw4hdr>~x;5kx>1oyD1We_{G)_a$c}|4mL%ZX}tE=>fd5kIk zGj8zO*$jUe-l8i^$RB2xLuS0%CuNd3*EzMcS&wPw3 zrm9om`eFKK=|}X}-;q%a5W3`qFA~r2XCCcWoj$TzWY9r7m$6`%`@Ro4NGSJ>eW5S>ss*xo(**8?wxh>_4&K&ic>NxQ2M=-nU(&ln%%0n;? zFakTDp%F;>C&iWQJT;V%JDzutvS--uE?N(S3$S#(#T}?EA~|w;K0~_oV6Ct~Mo$7F zBNbPRGM}bATOUL{ai$~V=hqzf2*&1Xt2k~>CAukE&7{8g`)!+*ad!LZluelJNyeao zlhTHl&lM%b8%sKNCvpV@_c9ie%C>NY`nK{Zkt)YB%cCovB1J;E{)eBgo5UZ+O6}0A z6?(MX+zN+u8yxN7X)QQF(Yc95#R!2}@yu8MXL??7bk$igM?y5|!EJSn@Z~VZLa^(} zk4|qbH2Iu7>M!g?GP5s4vqA7Sg5jorqJK_KH}%Jn6Kzz%Qerz<(U7l;e(Y3aZ*TgX zWj>S|xoo$23iJvIcSr+Qydw;9I$Jc3U65VnYQDYVS+leO>tjOi?5MT4`WJk*5NcCa zc*s|G0yHeZs9$WRr^Bbp?(?ltFjSXF{H(}+MkS#`_dtI1%>e6>?Z!Bo3-so+iL@++ z^|-7qSSP}|6(aeJx2tI8Wf(&r3BP$U=t=+c`&PU3sxR{NnBuwH@xTl!9=Gx`^*MXaP?6zFu7KML})-@gnJ5|5IM;weRl3qT(2xw$M0#d6oNJr8^-H}!y+Z{ruBx%*6XG_(z=lw=8CWx{Tt1v?+~D}2b@G7pATN&h<< z)}904y#CSDAv?*d!z%V8sTQU|XHOzglsgl7u__;H z^c_`Ri&Ta(7E*~udkcc+_HO{ zCB-ez;r92d6n1ciWnocBrn`6<#Rb67O!rRPBu{0YbJk0OScfYGVUGra(49_ z#AJ>u8CWqU_|*H=m7Hs-9AW23dR;joE8`(%XgfdJj7I14)D+VTy$gx;%?38D;C%{! zEy5l(`_cS{i~5!ntw=|n&h&p)%37Kt!M6{Zx?)LKNE;jF<`Ebmlm5>a9@e>r->9t` z02#B=JztL}3^vw_hEkcAty~8_)}?TB8-cOGY>=_p^x$r#E4eRgeFFT>xeJ5MTdN+D zk?q3*5~eM^#^^>xcd`y7%;L9Lr`K&wL2gkg4Xs&b7uZ!pZQtE9S4}NpPz%drya|(s zfCr8W08pJvQW764E9=RN7j>ahlHBVnISqFK?Hqj6jbAMSy7Dh+4UjiNyyfwd)#3n8 zW^C8H`+HschpniN7r(Vgry1&Xwq-}7F-*I6eoOi1X=@BKc=z^we6$Tc+7Ove)oUcm zU+bAEm)$B4X9k!V!WuaC?RmUOS*2CW5%=7hBH2n8i$Ixgc z$X|Jz&`rI1$!Y3ZsZ4Qu!d5S3Fpw%v-zqC_zK7DFR4;DV>xdhVig18mJWQhKs}{M= z997`KFQbyLS!TZ(xOL-md5KcEggF$GYD4Wne_ePg{I9}$>E#JIIus!C74fjiKL7M@ z!o28{SwXVE#qSw&)`OSlH(L%(YOLF_@;|z}Whk>yGcz;PdK1X|?~V!>6zjsxN5pw`oppvWbDfE}^UfL2GVqhH4FiZ(qNDx6ZQ|s0+unr3GKZ?}px=dZC)EMfTJlE1-85#Ajz%=~SW( zq4Aqt7E6kfckpg{#=k$5s+3@4{yS`@%1#W%jn8fO8T~Y%(GTofQMd!mm;qu2d36a2 z6TaJ*ph_?H%6x_SM8!~(O{+&wUbvtJbrSwZp;eIGU!A(LfSuZ#Slu8uCDONP_4uqg zV+8iX9#OletWUX96sjpovhtRU#d~HecJQ+A)Q5_vPQSVF?nsM*`+FB>X*S0c1axv+ zj05#P4m=br7&%8WYrOn^8tw|4bYqM9zA`t(P0u{j*wPmJP+dyo({p4ntC0CiDjiwz z3=zrj->D&yU4SEC>IH~fD7O)|%I z^&~hpRe^ogfdxEyP+3EnJt*n)nJ3S(J*(7E@3RNY19uX;>{Z)&HS)^J!g1Bm&iVvr z>#?+uZ8f8tv0VqNWtgy*ET=eq@NdTG4o?ee2hTZln{wq$tmu2EY}YQ$e(VjI6{Ko2 zwhCnf4jCT42gHASx+gyutvl0nC|oBgmQQfx#2FA};cxnf1#k?uvnwvc=0A5ZVHVu# zI}~|!v=3B1!uf+8RiKbkV>e`2CYYD32s`kd6wtvhJt`_LoU?n*(q9C8?M5_z%~X=b zF@+=7eAR%4V>jym{{3&y1KiyDJ^#LZ`O@L1s;c^0t@`<|Lj>=#zH`%a3!ynvce9c` zY?ma+*#NJ2Gh+ebTbR~kK>Zjp)9Xx0NVclXG(zyg?jzXbCn%efTKMDtJ`O}(P;q9h zeMwDCiAL|1En7}c1YNpxX{-|H2HZ*831{2@HCcSPv{6;3dH;P^7c~g~7~XV%a0dW^ zwo_BtgLp#;+&qn+By*^?v-nZ95Gh$lVQ$s}ci&OAJt_$nozE8mQM=eEebB7P^kZqqCO^D6kO@Fy1clard zeCpy$qANxynMlU4v#;3L8#d%QwtmXf4C&t zSAFB-M36a3R*sZj7~|Qt?HA13{UUR7{PXd^{ete9H*3$Zl{#Bqbl3Lt$o$sQKW^GA zDe8RNfB#iUxCPyvM-H+L`4^J6Wr$WfH9bG#wMEX=c1-@@bv|mC5rO#1&yUioX^;-Y z5*U@*FmcuL7hCx!#P_VX57bWT{ZcR=)XX8P4*}|58#vHuzs`}Axtp{#FA%Mf&zkiH z4!F08D*_fnnU4i-S)B}Kr(4yz#vAp+VR0`VtdE|3t+0e`4}noIia2zF3x!ZqS->++ zC8d^noayLFQBQrKv8hxu-c-_Iu2Sg6^&jU*-L6`4oz(1i$Z4p$2s=`?cx;rW_LN2u zA|YT10=UzGudiNG$qbWn(?Dc7--D7z72tZNMxat?CJn&lfp;B;+dep0|9bmm8Q6O7 z<3I)=8SLV>GkXd34*{r}Trjcn6D7{mQniGoB;y>V>%nb??xrl+h#LfwKUpgumwq&DQ@9I8HEVlTa4 z{vz|q3Cy2@Z;yp2Wi3W^wjPSX@WoUJuqqQ-uqavNyW=hPsBheQmQ<4OKm>RLc^czC zKwRMEwj()qeK!=E6}) z2Bz6!(tR|=Ycu`Ce9dLLt-Gc=`S1Dt7~ys1rn6Yj`ytJ(tu#^Rw)FFDRW4->-K$IP z+50s)G+$GxR;QC~#j?fLl;MXrg=NnsTjZlbteW&#J&to==U9jh%tgV`NRd zK|qYCUo`!7hjNm6a{?8Vx=T zfyo{cV%dwSm?6YZ)In&&dN2Q`nbHm)J25@*G6Q(v3bzm;!xxCd3A2_ALVBCFY*7PM zK2+ue>&bZ$2KMH$<#j46fAW5h3j_-Df(F#ijc^!a-bc?@CJT)d8~Z<>PneZ-6E(>W&_f&qH`M1Puj*3G zhs+Stxi)mBP6!asbcXUTTc`=B*>txAPjFx=M(%bP=AGsgf3L{-rYY-u=zzT2{eSHA zPos~}vc;ZfLZsNGOQtZKTd&>%p#ecG>MrPejI? zFllAqu@4~}$+g{U2a1WX*1tWN%0(6eV7XlF;y3(scUa-7?LJ?)@AQWKcml!_u)gMh z*}>$c-o3`+HJdG@+&nC1to0codog489G)|1zhzj^DoQ#QZ#+D!W#M>Am>(f1gw4iA zl8&&$C0rW4OGM|)qG+xnD3&G=Azs7+Ue=m4m%PYR?>3tX-?%|J-r`H8P*u%CZMA*y zqfY_uYGe&1&HU9;UFuUzHJ@w{$!fP;xVQrX=R@fAy95YKiu1FzDX%V&Y%aRXbJWuK z601KYodZ0o7?00Wy_w5>o+O;IJH^@Bl;H+$@F!pnOF$sTQ0PxFgAAQox#C>Trv z??Xv7G<+8xpd>UDJ+~W4hcD3E1UF5H)@x4xet&RrCFYkRhN-FHM-*FPH;WA5@Bmt) z4KX1GMvhPk;Q)EX&2WQi=>6*mKb!G-kNj~$)_q!Ic8J&sd2yww1Ni_~-Z>(16-`HJ zAVjIyjc=cPX8?%VosfIl>*fxV%D?}Ko$sZ8j&tagwg`tXA6BQUa8vi97`}^%yOF;z+^O&jM|xfVxK(@((P?6+AVY4BQ|2PKadk} z!-p|jq}!{z`}5zhpMcpK*=wxpFbBDa;!{$zXi3vbJ`thX7Edkz6jv*U4GRm~Rv-XG zAW@WBJDon=rWoFus~?x_p$e-|%qBJr;cU#11+WVf?3^21&j12#v?MQsx1nH1F)$ZA7V|6(sBTajGuWODg?+ewAjt_Zb0#IitNVA{JazKaMJ$B~elj#I!p* zX&TuQu6|&`PHks~A=Yep!`3z;S#a{)PitIc(c)W^7M~YAhIG05)$>1l=h#8KDA>s-^(3x1#;O zYZrQJ_=Qta>ItHSIj-92GddTkk#BLRosTN0KaawI`3pw;p8fV~)Io7ryKN^cmehdO z=f|L*iLU?_f1Ese%hlI9lB99M|2$*6zi+oce07HjQ5EuKI6R=QGFe?w)lK)#3+t5$W!S+wX#0J$AF+H>-BQa0SPLT zY_u;?i+69{nqyHhZ;iVnRnt-|C9UP`nWHq=?#ozf?Qes7TRM3v&FVK!UCa&Nuhy3H zFx+@Hc*)4MQ z0v!oFxjdpI%1gGU5lM3Djk{53G2KHDIN$mG>Kx7J^&4h{WRJlNf7eGV#{uYJJYll; z1;7oek!j+VI6t;5i`j#n>VPeye|w8y@Tgnn`uvye$A+R`@`5e-@zK!rceQ}sHfCn* zGUjuQp1g({?GFjR6pl(~^{CF}+rn-$hl(b9t3=bPWzDQI#{5WPhABF zT;4g|=F(M|Fm5z1H3h{UdW!p6r8So}12nxtE_b;IW~F{%x?T>dYkhS`{k?M9YNhsT zqu;s8_?JkCtj28K3#q`PsTyrzSFsJ002PagQ!m(E=ICBV}Dz} zw|pFR7##C6%n=d!5fX!8(!G_Vl`{>6igtQCS2}6LWbR^eK5~0im|4Kq*;Sfk54I2M zSXhcqrMwOn7wlYUl&})Fs|fi5r(zeeKgjG*B)5*LP+B5F`WmdxQ*d+tcD_Ef4hzsM8CL+DPK2-0oPE`LxLsv+Z-+N>H>}a2 zQYCEyqJB4 z$FN9*;!SJ>ce<7wTR;{~!QqsD*!^wWhsVvVs3J?mmzv8hp8D@R<&*&Jz{*yfrVbGj zD=X+_9)t@|?E7`e3GFDo#+r)<#H47+G}H98#3MAhZRDkLo51-MwHpcLEuN04+6XXh zr!S}j4lAD(q_m2_L4UGt8G+EvxdXecHG#mfV@ZUR zB!S7ALz;xRnx$!Tx--;*_IYe(=J$ltC}o+%2??|a?v@*9vCIxjH|MUp zm)wLcBK1i9e7mLlHWtjF$8I0!L$Z4WREBrKmmB>lxqrequ%xr7`MX|#4|8OlHlJ9j z0de^=EoT&8GIBeiJh^g1ZqMdJSb#ly;!Q9E>IT-|i+Y-SDY*@Cp0%fwHbL$R`9P<_ zmKH@--*zf9$PxItJUY0mL$FzQFhkp+N@Y0=8hKr>t(uyBU{vhQ!p zj9?rs0_X^M?l^3`b(iH_^A3X$%@@lf_2uyMxS^z3$bD*Qg3W2Di!&Ye^=mWl{RN>3 zZ$V^N5g>P#TGhyQ@U3GE0o6xum>(K}k1SEB+kB@K(%0%Y669=rN8{eg;y3fNV7gT( zfgxd-?i6`lh~%}QUD(iFbH?mWZA=w>h3j)Vn5ti3UNj+A(PCQZKU9JeJZQTox12_1 zM)!v99kO*;v4rNlrtoPM`|;v8u!1mTVxUq#*UAb4U`e)Vf>ejILX3|u zw7VU?Dq5I#!%HbXlsc@oscm3~TZ*3AG4$0aOJt3ER)@Q@68byZ_1=~B?>omHaf9;R zSraOgGQ=q7R7Kfbk#?J{4x9l5EsZ+}S*quX|hl^4bSbZiVpr0&!O~@q}K6 zh~p8(QDmW~ez?|Zc{HF=UNo-U=mSoedApLT8zitVjN1ez1B{GjQN;-j!CSA8cV!_m znTd;6C}&9pTLvS$ttkQH&OaQ>Qpzww)11q#u;ZRt`t9t2$wiRz46)aAR^PO7EvylN zb%0H7<2Ita`KRY-7?`9>>(VJUK#{{~uk(K3PG9^1E>PsS(-3e4zPmK?7_29yrlZ5( zEJ`ZU6i!w2g-x722P@_@2LA?cd7ZKj>)wSw zE(bHI4QR?c3)@m>5^SmaUeKm=J`a`EF1E4Zz-Cw-b0Cm&QC+;USYR3jTq6;^cy4Wf6nXRC_G zLuF-08@1M!G24Bv4rL~aI%Lfk_y0^;Vx`~C*@wB_8=(!7wGK^z~Amv1dU z4TP^XiWK1ifFDVI<3kx>F#k|zhw9xJoGy>XgQqb+2SJg}i;_r-{NwR355B;~pK1fVKrF zskcfvi8QxxZ({^u=D>qVI|&WoL4Fv)tD`YBv#TgS`^iYZ9|aLR>0LOFV!=8zkd|Q6 zQL6P-WSXXHZgWn$XDg?N@Sxp{#qH*pAwWK)SO^f{G?1)@|5m%5(S*EY!mMTDO+S48 z)q2kYMRBEmRu+|q#^Pb3=$s6(;K60D!k-Ie44+sD!rzy1R z(xml0u8ZO)PE0W~C%t{&l;t?=Wij(@@koBI&(MK*<>S*TqzT^5U{)9;C`@Hj%JU6_ z{speU*vQ|rLCfvzD;FjvH8D5kIJ2KLyxC~kQPqOl<5CZ;Zqnx}X3=I)I|zXeBD>w=e_onFq*YhFn=7H5m~aXQ5J z!r#CGm7#;E=UD5Pr)WE zjMcUJAs$Me20;d&x=uy}0NpU12G+*XLnxC|wRCQVue&@PxrXU4GCXbhfn z=tgt<*w=3sg9xW{V(b*q-ApbSV=5Q;=Z+1LMK%8HThVJwBNw}U5(UQ-+l{=T(#x&o zPp5x8<0jK5<@0l`r0q1GcHNDJL-C*IeN2T7SWXBe&@ov~{;D?h)<7n7`Y*w(wm7?h z!L&I9=Ikf{n-%fSU|HiwU(Z~do~G!07`5%AiWC~^(Jdb7TxHpCS7o33H_&TREAjOB zKh=GCG?ne&?{0dU^OT_?DMKXEK*?B1*@VnesHA~N=9wmyiZV2qiOiHx#@#Q;lp$l8 z6>am7VPhNK&*k~O?^@@q_5N|zIcJ@9_Iipu+r97mx~}i^`3@hdCV)$HT#KZv==$-X z^Q5f!^;h*i&4hA9+Wwm)ep32i-v5cVZQ}PLMGyo zL9T!isg&FK(&sENJfItod*T`cZ($3%*cCiAHWXD{>P9|1WANOd^wU06N~8x%#j6xF zKjg$l_uW{&4PjC3_&{H8&T^MTl>*_c%w#z$<%ax`9QS7T=3Au{ZE@P5ROFHCNyYnT za)3yPI{mXtrke=ndg{xeklm_GyYSbu*?LZoXY#U6ESVjhu3xoonBjgyNbkdvzZC<2 z+4cnTIP}f7v2-?G!lRV*8T6*?;w-xa7ZS26Btp(^>4S{7RANU!O*Uw3%J!=chl5{WzhLP+dpDiSW%x*$6y)% z7Ga-ZW6|WYPe-B6ARd)p-n4;5LMu_+&^68X?|r#xVRp6T-}`a`H;NGN%bqoETUldE zRyzps6}>cP)+L*n^{(aCmJq4B)qCn0mTPy{_aAFyXX|uDn?j$MlM;-u&CSa1$FCJX zF~&n|UU-yvH$g2@ztea_=)8{}G zWvA*mlA9fbD+d&$YwI5JH45*O{8$E`hN4cqvX9GWGMUj^4d0x85dR}9Q*r5!@yQHP zTPY&pJP+d$BbjH(HNvWh7 zFsb=eShI}-RkLV1a2&M1z{m@{nB`e8k{OelRqBlOi+|9G;_&VZab zsDfonJt>sQzsc%*y_#nDal?u8H%GXm%IbWuzCcfL7k^dTtySj*79W;0^tv>2<8Ugf zGET44OBt{eUe*_b527imu7>+Ui6JGQ6rO;9XUQI7KjOs>ZYi;G(GL7OPck=odPIPB zbUP*KJG_=}CdSuDBEZR#7Jp)itev5X;+_U57dhf;Qg|}WJfeV3247&U`P1y~#*}il zS2C}AbnfXBZ?sZhK=FmR+mw4=mTh=iXx7klqOrs=G2d&c1ip!YpV7W{;fX$=+_sgV zFS8cm)*)H)6MVM^Fb-Ikvne@$MxXz4?0Sl>42*s6+hu3cf9YGNAU`FZf0<9#-C{K< zXoy<}8%s(}DD0o}{dc0~&cc8zIDkH}du?Jjs(5On?C(6^b^HC_6x}VTYi^yk3&%&% zwxl#aXR0RL>*?ZZOg!@{fkS&aboYYATlEy&pgzPU9G=>Rl51r+KU4uCt_6jk{NG!ty-j zpUOMb2LO}l=4rcD6RDLo#O4>>!QHoDLdJ);iRpP&AEtB%Z_s)-)~lW)aosTFPj(st zEb(}c{V0Bqzt!J74s)tV%193{d;ZeKGUW~98C_OSKjsNVRyHoivi}qB_Ac&45!Xws zCC9&&-X_5(O5Xo8$3m4kpV#L?_PC_14jGTMJ7nLL{K(PJGPbCjR)`&KZq3us$rDdY z4ywEO^vNG@O4Y$lUXkJUA;EMpT8;zJmj1U5t|~F5(tfNMTttam0INKM%S?&%s!qAb z`t7%A(_m}AUZdK=)jhW>IPv(>f?H)=i$DIkPP!D{2+cdq9bG&lfkLE~me`dKT`3d_ z0Szfn%1Q!G&YF*?i8gKtr%ybgc(gbv^35izYayZ-wzd=6jcfEZ%Xqkmd$gSI+N){o zC!S^_D=YUV#!PS3ge7(<;wu4YC{xoG4C?G?lZCfRX|at9R;H!qeY_zhg&It^+8$Yn7? z>L^>{R76W<8GF>56_hd-i0`Nm>-53V8E6+4;_6fGT92LdYMn7nKC?;aU7K?W)B!zgC0H)Q@d36>Ek2er&g>ed+|A zba*duxI8zUwrLM|J@-b1Yh8GWLwIX>Vjr^SwQ>n*4ZTM#mwKAsL-~q@`mNT}nd*J( z!YUl(e@{URg%OO4qWl$dl-(C?GXI(q*_c@1wA8cSCYy-b z2jH{nO~3p{Tf}(3r{uUCJRc?xEwX;8Cj`ah>~4jJnV}r#iMf7YYh6wmqwnxhgM6mW>eaP|d0YhS5$2Wr_>dj0mN9|BDKfi@da7sa zZaCZY7=@lJDRrQcM?$ePsV1J$m-tY-p5kl_aA&lkum=XYyZhxMS4QHQo%;B|y6%+m ztY7d09k(pn2D>b=`G=ZY?sNoEaTS+3J9CWvd(Q*8xIIdgy8EZP7# z8}e=v$P*?#Pyc-3VT%4V;sObC)1*tOQgNLpPvkQ*Qdr}G@YG~jn3sj;7{e^>TsZtj z{-{Iq)#Is+_1LPbX)x!YIQ1hMcD=7+7iXe*fpC(0@AjphG4#nFC*9us^ps-cZ)Lb&UaU>%e$d-i)^ah!lv$ni3ehVOX;dOglZqr z6OiD&Web?dPRsW%l>T+*@w%;86mdD^WJ#?amrw8Liw}$S#sZ_wn`-N$=Tz%(0v)_@ zXT?hvwt^Ko-=0@G%QLp^P`kS9E9<5!jGAE|JG&F9U(9p_s~@sI^H}Ox`23gc)gLMT z(=t2M%IpP;drIdwGy)eq&)wS#xvR_7#i_(D6qB3>MMw+UYiuf8vK+?$26gkY!6p=6 zJ?=lN-jEspN;z_oQNo)UUW!OIoEh@5#+H%^pKFsAGuEavui7>UsrJ`sk0++xUyDnT zW*}rjI#KOwN?%z%!>8-u`^zGvgv7aRa@&8EhN6hhl`wHZK17iCS)brR14o zx$(x>wf8E|TF-x}E3h?b5NfFsP(~%43hgk3;>o+9o=jUOCf@~R{Am~1Xz(Pu>afS! zD~2ix()Bt+za`k(D?e?guc!QmMJwDQm0a0Sc(tV7L|N?IrfhyxVVfgu0(?Pkm(CK3 z=RQ)TObOsxx%2ci@)y$=%eN!PYHU4U8o7wGHpPde`34^+lvbu*xF^2UGb{9DMeTDg zAG0GTL)P(g~qjEZT;JZGhZ$BP~J7&vge?axcE%3k`l}p>!{svoSIysBVqeEN|I;?=6(A zN=kJs^YUX&TO5A-F`3LC#AA9q$QgrzpnU;b@Z9E0J)vwC4xGaopQ|0eCy$D@Zlfmm z9_uZACV>W;*C>A%$zfS8%f6Fho4v+D))_}PtP16>=9Ld>kIJS}AMbfQXkg4IU8hy9 z#4$!em`$o`DU;D~L`9poq$&pg%II@cjtpa6e@$=bcU_%W_G_~L267yfDQAi!QkS~@ z)Y>5z*0G}eW2oBSSvz`k$*djxFV2>X{OmUo(CouU7H*V2AQu)zRudQ)!gRK2C){a* z@k7qumZWSciMS|$qP}$)XtX_V>US_<1I3_NHa50s5K5YXO@pwkv2k+tzRj-~&7kZ- zX^6au{}?lDY4Z2rQ{6c;{75^eB%W!g&af~`RJUEbY`NoL25h1bDOv`kdw!GGfiI!o zpbiXjyI#OYSv7kWfEQf!c$ZfRy{#V-vJWIBKuih~Ou!D3-SzAYxI9AW6CjfiJ)L%} zJV;_!{m7_R>ynS1U$-R7+Zya$?w`JUBK-jOp;y<6Vm5jnN(KB#dXpgY8ooPpUN%7W zF67lI5l2xFgZ>Ev+JIWs^&E8$=NH3H2ZC#(bnj#zOi8eOoRFY(yEH-XP^VwPiG!BS zaYlL0JNft&IyyQ)*B4t$^Y8%w<(1Z4r)kU+;tyTD$mGHWw)GuZI+x3|C|5Rl`Gl2J zz5cM@`;eo7xru*zpQCjohf~(6cR?M!ZBbsRDLoO|tM@FNr@#ekQAqG4%C;V8(b;^# zBea1-@c{G!{d$D{>`l10JOOHwl$AHuCr2L`=hczk_nmFk#6NYwPg*P+P*CdlSEHcTp4}3U-@MD?musN zZx3WgIoXY0HB!iXWgchL^+Ypn6YPoWg2w)!1k?EVUgedkF#lrt77f@P;`&s5IQ zgd-Q386MO`*$3N;u(*=>gBph(+#7!{ZCT?ol=s}+1LN^fOl5|O&V;jBX=-6I@!$BsblImU?HePsGr9YGI6v&my766!>Z6>!tcD;56P_AV zu7D&gU_KP9l~+%%vygN(=)2%QhI(uiTWRR7{~cDQ(zPu(s!vw~Wshe1q9@lTcqJUE zJ5`suA;F>5QAb^VHh{keW!bghCY2d6aTKM<1V4QRsVWqR={u#FeSx)_E%?RjB@f~Y zvlEAo-kftc;I*U|` zFke$Vs^qKFLX^v`g%0hH)wkj0pkKbKb5PTwPgfH+Qwy9xB97C!EnS^Ze9|>u#!Z z9Xg`%1u(1AItsPv&L4tmSLpfoMtY}k$7cuLUde>vs!TM@$?Uh!(PNH5>vdECpd+sc z-nSR_9(bk%vrb;Fn-n}{yD>Vyw>2+^|0>4UC1}O^6tYJq{mi@diTr7I)07L5vQtJC zasdC@&HIiG<&LV|WIFVJ*N9aM)qKbyI#wn|dy#4STQbn^dOu7Ge&Zpb`32Yl8?jv~Yh@(iRM(lA6k9gyl8u3QB)TPjS`^VM+ zRlgQX#m)e#OBjMF z`PoTX#$-vKbR4LBwjSE;%0*{q`)i1mjbn(N{HeUKVhOz zXrVGb2TQ(WQaA5C+|4fya2uD%U= z0P84m#e{~2^Z=k7ns6u+QcZ9T8RMTp7|hn{F%J+DGx@eUb*_Jyh@0{hTZpoTqtwu& zFgG*xZzGe0s!*v0In;m>v&YNJD-wr0qU3);t;%`3_4t;(93%x}U%0Mc0r#yG8Y~ts zSyGpDdOzWH%ATKNvcoWr$oXzL6a}_w6+dD*+1a~BC%F*oL-K{Z z{&{Zl-SGLPp5!ZTkY&LQC*QhmTC|OPg$^oMka_Yg&%&aT?+m0D@ zq}gGP*)~tCwOR9rx5y#mKd?<{cmA?y%2Z_)R3mK&>>D;j;fHY!L#>3Oq|-`L#()Xt z6Nz&lDRn7^XHW@l_WeyHnK+tkl-Kxbw!IqjEc@Nt*e2RKOZ*?!HC(67>h`)t*kVdy zYE^1vY!bM%-Zxu6W*sXjdR>*r=6nZ^J4?l6|;_umJCVL{nLiBZ0p&bB4W=mS3d9vibYsfsuf_?#Vq6y{Z}y}KgM`0UxU`EHV- zYQIncEj(-&zUTa{4qGXezM^A$#|K+-PSM_zR->nZfjUw7ShsiAe(bB9@f?2fDc|0W zIU%Yc@2bAD&D;91^W3-$XcC?>J6ts<*vEn%@yO>_6^;Cs_yRG0jIE|Osb9Pp{T5_z z8yH$f-|wDXQ(z^ZVvv!LZ9f2QqKmWjR$RTCx68FqcTd1KWoq*$A< zg-F@;c3<~ko_WhW(xDn8PCeLcrErsp2PZvMB_$=^j~>eSNvV4l2*}eM8de zcc0xN#%$3$1X5h#Iyu5yPY?Gn@~ch1swF!+R%6zX68iJkuW_Obuunu|43fLS&czt4 z_Wlj~vu};U`Sa(==}gJ)6~+-iiv!=7WfR-#I;x7#QNu9R8q%7umg|6!j7;w5S!<)6 z(x~f?+iUVg=)ZM43Hb~7sPy;l-Rph-zL2hbrOfCf!U{#jvGm^x)_MtxMr|fzr~y)^KCpnU>0^Dfamj;)}uPXrBJSB|WRNYb$)x{LDE0rPqh&|9#7s6>Z?_@%F# zsMR`phB0VH2#iy&5HvNu{ny&sG*cBUn!2KU%KMbPU>z1mm%%_wj-H<_w$B{1epjtr z`7O<~Y%F|!hHMJw{!5PtI|nYwk&|j&(7QBEBnaeBBj6)^Ip^H^=DdP}@C>&nh7%tL z@o{tfpL{o_^}znC)%*^BWX$W6E;QtT-j8v^Yt7~hl3Ui*Ox(G%^wp8ue|ho0vhFH9 zj$3%kymgrzp23DeA^{UOcIRr{qumcwr_W~_RMXOoOTl~iNI6h=v)`k?)^c`cFZt17 zwMoHiO~YSuI7PIT27hedoD1Gm1ekM zXO^|TJpDqNg5|dOK47ol_btO*k55*%C0$ljw7eUwA~`-Yg9q+N{Kc~M+ShP-`G)a! zr;=2@xAm+;Gq+97+g%>H*@q7)xK z0(B6V*ZECo;8M(AQWe~=X&$qhTgFvGr6d|A0(a?Uo9`SLI%m3!W_VY-mSP19IC!v$ zOkkE_P*qg+CuqlCP}&D(8N>cYtc(;xOv!!Ys13bBbhwSN5R}HcGTy{$S z%%8GBMk#dsXtN;H$}od*kbg6FT)57;-RZ%D2ZQl~jd;@jU(oF?b2Fpr4D)?Aetwo= z+>i=Aj>TyrV!fr(;XYC|K`GyC>w`i+e@7;nttaWt~FPRpO2I76jdnhdq%yoYniE9qfLG)eJOKCA>N z{^+gPv#H7naEe^HZwD0+hp;c>IcHL zSEgmp*y8~TH;1eKS8Ja;;kYtLzp|Z5dj3>vVk7$dFie%Xm%cK9BR^Jq4IzR;8=?SF zZnuvrD2S%4FbzDIy7!srnb+?wS1S8`@#PVdr{%s%UHvY|+iDK*uK-<7&-`1|U82Z_ zkgA!mlQ+t;Hhs!G4HptTG&bCQ7jE9XIcWR_T}C?v1!Ifd{`HPSL_gxuqczm(VL^#;jmakRxS zE)EF1g|0mmsz#0Ru)Jl5Xtu|_94>R$Qxj-vt_oTT&F7o zi5U;N_s5TZM$oDK?vg4RbraAw)!UF7{`%z0D0tc~os&Yct2snY!2rNzOt^o41+fkg zTd_afpEv$;@g7o9RkdrAsDqk=cU8$()aCj!IM?a1#`k>0KWGTl?RQ^ze5=ml^*F|s zcJirkX0TQY1!;{NW$19W4BlS2%O8*N(PoY5@kKs)XuRZ>bJd5&l(PB#=zv9IG-*(U zd{o2Z+5B4POQ__Hqvj1Mb)bO-=T!_8npwxEyPOzSE@j`ZAH}kxVk3LOuGC!Kdj;F6 zgI9MbdyjgLlR?NYUI_J6(`Y&g+BZ@gPuI2?SFq++{%1SpM6J_LSWexeM{i*$aKMu% z5$FT$1MQL~(c237rw$B!f2$zvFsOa}xR<7uR>t)4}6+R`&3Y{x|uPvEZcTa zOvp4#%n`C>(`@_#vFXrLllpkA6KLG5W!F0!xkEJw&A@$d0f^hj9DGacJXT4-K#e=5 zpt4dO6Ql!S0HWdF#bNg$&)?wKks0^{%~@K~_Wh>_5uyEnfy9-nh+;RZ{9!kY=#Mq> zn6;zQcPD`zpmhVc@2K(*jes`ep5`GdXsV|k9*5K?$*_2j!JciPuRGmt_2<(S$f6eu zPYT?xL^!>eocs;nj`zfd_aZi_23e)JS*?($LAnwe#6kt#mpUq4xf18KjyoYSC0m(z z%#My9q^~&<%E8{+oo?XOgERiZeQxUVvZYJedL~2EUBhEfkkzxm>fOz|l>H_(A|is9 zp=b0r<=L&TUr#cA-TM9A@1nC!XgEts(!{b#w4kcP1 z!=A-bu`z!DKgsU!;z9_5VH4u$%2Ebq_YKULSy5kCVX4SfNyEVdxLvWsdI}O|@ zmuTp|xqNFCp*?-fbifN=nN919E71Z_WtAb~3N{)&RFt?dJ!qN&e}(@*`` zx`N_AzxQ zuc=Qixo$=vsr&|EZYkg<$^+7uc1(T=Juodsh(@b6rWGj8&UVRkwe|i3!svr+!msj z8~Z;zK``N5L+BYQ=VmZBH%9_@5T5=D%okJ(>309>6y*wM-~r)FrdGq%Yfg0F;Gna% z9k^Vvg-Ra`BmSb^bf>Fk{{OU5g1T4W#`!E4E;A(AdCWIY~Tilp*|i`5W7*Api_f;*geH`nI5~! zD7^O1c@BdczTjf``aVaQHi8ebP^sg_)s?&T6Jd0x5fSl+y38WfJkw48BU|Wzxdk8e zPUp={_vyqav!{-gO+|x$LgF|kO%T@#UU&~Kv#j;JbABpf`^m8x56wgCC}J7c(gT5K zkaDcT!osT!DTd1iT{AN%0}bZ|1YT4>%lxTJQ%t5y z@^$LgGcOaP(x!8@svE?lq{tpwONGX`TPAepju_oQ_v(248B8DGrB=V#YXapsra8p8 zK(-lALQK)bK$9R0M~>`J*$2OwISzVul;rG3=?$!`c0?pU-dy5WvG&*4@9rfJY>qkU z`8D{$!|VIBUNy|1>dhX>@PO;BxnHidWM{a%m_#SC?GMxEU0LA;9aRYZ9=51E75v?< zXoHam7PM=zZMj~E-l z_oFr}99^mJg`_LyV|0XD%{Oh@6bDIF@q;&N*dDTpUMUF2VcA^a*7}zaCj_;ERL*@D z@5@bfvQAAoF-$^7y&XbnnMx`uHY`&WD%2EF&V!cy?xJE6xxI`wkLR|QoeHmxKlZL= zQEnru5?mmR%SD*(Z`KOWZ2JOn91e_9tpGB;a;=c5cSf7*Nsd< zXqU3JjS=z$A^w(u%mS*6Ql&4KP}}d(Iv;3<>ndPTSV$=u!RL!M^KyJ!Td| zDUd@Ep&}GL_LO;~Bvi_-RQ663FajfEQ5(4bQZ5ro{DgzhXn;$AZY3#h^ZO*jW23|1 z>rwja&dyF(y$y0eyKudY3&EXfQ0fxXg8A9D`JMt6`2gEN2@DN5lJ9Uka7V?iR=bXj zLIlu%nu|cFIR9N6UM1i-nv&c1YX=y^Rq)@kXaUC8$S%+-Shx;6%Gp=?0)Pk!YPk+v z0|&+E*Zs~v9|(%XcYTufKcpTY248U+1UCXy)!+jXsy5o2T-8TZ$)uGH8#eG$54PC) z>!r&7`;2tM(QXS}8ZM}@Y2i*uDBf~hIZ5!_r4&;w>-MxZzSrB8u&fnZ# z5{C@O(|`c&xbQ_`2)V@>ePdW@j%g?2+0sD}d$3^w)U76f2bOL9g~(7`STE(8(mtSZ z>seW~KKE(_xzCR4{Tl13nX;^`s5k&8eaM|>&E|dlm9x9YjrOi7khJR!(1_O*U`&bZ z-TN(_#F+>{Z}8AHheRFQY$|2x?rwxPln)R}aZ!7&raP={)02ycFioI#vNF{}r83ZI zi4SkioAu(dEPm$;B2z9%F9Knxz2m^tuDaka5{^1>!}g98SN>I5Tw1yhLvGsLLwUdi zbAg+#*${Ci^V;4C*z)$h07C}lj>GGJXqSJqM<2Y-PyPMo7*>IB!4avnHn{1>_PxOp0V7AJdGXRNRsIk*tD@Q$X zE(>IN+{QHQda4UeW?yw)stilUnK6UAL|lJFZ;{}Ajd}grY<7Cwd487BqOcWXHsT4v z?RPhwWCI@?skFIlmm?2u{Q44aOmh#LT;H*sJpE{; zyjV~3ll!nP!Uqmyex#=ZWGgO+mrM;Xyq-Ja1q>zz;o90wdk!NPmQEf4|11was7^4+ zXd4@Mxj)5xg}r=G=)STOFNli)mKlPjtILes0bHAaV70I7xp6%JAOR}gvuV^Wa4%>) z!6-k=-_tDd6Bua>VCAkHk8|hFy*(b81WV7l<0SEk?ON;_;vw$9NrMoI;aOtvTeXJw zXfzr@hg<*Z0U^yK7 z-xi5`%()Kycz42Ae(nP~T*PbP=Ra2VOteNtERP>H{K=EQiFGX;j6M5S>ZZuU-7~8d z&(E>jKL5-dqFrB#kxR^G*aa>CGj|gNXtbowU$UZI{}ag7Yai9fwjXTnaTi6rpdC#& z>QxI}{eI(EWm{X@3mK=h4(lwLF|B`T;j+3%=7Eb`zSfp6+xCm?_qvax1aL0EgyE)! zh$FWjVV_v$qlMz(>u~gpQvKF*aRv8DhUk^Pzq@)PCs5z1{N2b@Otn%+aAZF)a$tT( z2MU0QfZFBq&D449i>YL2MfLPvjgyM9Cpr&icR`5n<{716H%7p`6)?#1m{(dpyGL^# zn0(-n&@vziGVrTYn094-J_$2cawBW+&Q@5@8N18ec&q{NYHh(DXaI9@p!IF;ynK9* z0n7w;dZ=W5;`WT`hr6N+1ZDhp@O3lb9^SsbdI0bdF~tyy7MzLU;@p+kSb~+xG5hzs zjeR@OnCtY8pdNTvJfJa>M5)6OV3|24h90W*=`6WYH02wZ4TIcp-)t%Z_nu_{l=# zc#T4s7Xlkr^Y~zE98QOEWMrh19OILX(vgQ>Ca0#ZetEPRK3D)b=mhKq7DiGDc$U`> zSOuN!emVrm0w=2m$6C7cxEUEK0#~;RqKpoIl375w+1+TKT8AT?0?m921K%kS$`4tNx>RH1=f>_?#DY8>Vu5w!rqgOB;knr!W2O6h6ZC}KE2MZF2$DHg zlSm3+9v%3EYdOW0NNNqSV)xVh(j~#?JNI+({*zYnwD#5UMCzNo{=2jj@>=Bee=?Kx z|KyUxN3LGIij2fFSm+?}t5K*skzte-7gs?6?#9R*B(-LdeKJa6!_zKI%0nSIlvob} z^k@8qU%r@4^#913AkHvqXELy>p#AAVNTm@j=ay?IjNejzS-xjYK`&X{b|+wC-abC{ z9R>I5;xzb(W?Hmp(cl1!+++l*ZFW$dXU7}Hs}xvH>n!~0deRv{nT(5w*hZjUzi9AS z!GfF~v_PbtAU)#(c_Q5q$Ql0g&OHc%5j&VeC`l?0qMHaqVgNfBczzT7(-1jOZ=roU zQ3XlS!#fvBKZb80{2|2i0#rzB73^97upp9NxyR#v>fE`ALQ)kOAx@ggD3g)}dup?6 zE?YFFm$X1MrIYpF9t{-MNlV#-+i+ZF^Us^GbU8!$O|xxC;MBt#R!0{#<~4=0XgJbw{D3fp(=*bN~)8Q^CTrC=BatQM0}vQ_;&)Gou8`o5J^EZ45gJ+ z(No%ARaaM&i~_f$)nP!v#8s4lb4;z49?E?MbzyL38{V9IYazqD9OKtW!WOfAo}!Ef zV}~M19vCPB8p}(+eyv6R@SNRC{KD|!#fR~Qhoq&tA>z;ZRm0^B5f%pU+jUnR;XD55 z2|pPqgebBq5g zt2_)9aOn#4mtQpQw}yME(KV!Q;ZffNFpSWA2bQfO*c9vi5$y?(Mc2;`ZEmp`DL?&N3kPwNMO?Z?K>*(2=q5`rl7C+KQit z?+VWqE@l%42OE1aUS7-puHdn@d%_!P_rMNDIcRfR(;kI7_Z9h{%&Of{5``M-my^DJ z|7rB>kh6Ojeu%KRCMt@35k~RD;NC(|w`w7M1Git0UwOjTY>8cK@utT{w7qdCELPsWma~R zErTpP1oF8NJm9qV6$-`unw)y?YpRE*y!XCBQzf7%_P)GvhLU;jE9$T8C^F)g-qg3q zsP?|;bL9|v?<-~>Wfb||m*@TezdPh|-!YhkcdxRxcKY+@#>N-@6||70?wP-qbY z#1`lXc6RoA#>Sto^7DJhz&B7gnEwA|qyHB+hfl`N*4oUs<5Jy*K@y)8cuJ)k8XD|M zb>P3U(Liyf%^l;m*vy8IOPm)k-t6e;X#DY`{dYr%pxf%~Nzb7EeyyERCPMrA;%HcK zaC~3i1Ny*!M{S1D( zYHPl$z_g1_Vj|XUzGJyfinq9Yu}$MRgGihLZ{_`_a9*i#OhQ5eKD>HcW^K^E?ckW0 zW@%|@V{>yT%h>PV>=!R4$apfsohVML!_N24X-`t1)qVQ&WwOKE#h`1yI0>(g(tn=n zN;b#l8AVEZl)*pQ!$kMO9Tz zO)Y7`bFKVRVLWm=Ma~g#@fP2tzpIjPE1)w)IiWk(P(qN`P;4~z>>&y+P6tO3H1s-MN69uR#oa0Zd-HPoJtPbki08_4`oU9*jja6 zYPdx2Ua66-x4F^g#WNLk)n>f;Lvr+4m}N>3;y2<>1df{YW@rW{R(WihHAnE(U$cfk zr@NAaSWMyjOVwWP=^Lpqoa#;u$;-=Qk@GvvEf)3z9^<+n zPtw>ulu$xvnpS1y1r1?>eJb1b&%8FQ zj@JpQUgI$998O_j%-ZHtdSmzU(pM{rF3x2OqauNJ_Vymdr$1T@8)D0y7YBO|!GOYVS0ag!9 z&B?*BSgCaTw#m}q`ubDcOlN23X_t?qsrolyQWPQ18slf{cf>C#?+RYDBD1=sar~}u zpcJk|UuI13eJ32FE;UWfDK|!%o)zIZIFeNu8X6kzC5U0DPm{M@3MFv`Z4tT>6;tJG zHg*rl`uusALO<(QS6}aO#9iCUE^AFcUfqh}e&SFVeFTMy_Kk=*gPWP2o@Q&yOiNp; z3=9acT=JM^`q;e15JbqV-(8&_O7BRJ{n+gWk5^D|ymwwrF=kXeaH+%*8`paJy6bz2c3=~^q7Q6^{U*5KI=i&%`^G;f;t0z7PoB-s z8`OC9yS|zw~rn=qL*1lhqh0=2763%@=j;TIH9RQzqwlUcc@t{CDu% z7~R@;+PYcm;v<-(7h>A-6e#q1DTKV0r6%5we>MUb9$)*^Y7$mj(Ks8y(GH*L1@%Qh?+P<~2Uf$iki!5UgSPSK|75oD3K{PX9gIXqqQ`M+Hh8ve zN0s`jc@wW;-maLzym7eW+p8%N!ku)G2?9;?$)CN6pG@m!E7dlZT(NFQ=>W?gB$l19 zw(UfyG<#5XVUS1R&DR5z2AqHN8zY?)Z|Kimd&~iw1U~2)?TQ`mRT_=6`RT87m#xj? zP!^QngH!L;OB>c1GZQajj&9a5&Dy1Z`#w=J<{x@d`j$83IW#3YS^LvbPqI1h$vDO& zNfWO`WhQ5&spn&8&cJZ_o7si;P({IVH@n8toE6+m)iNaq?zOM)JtFG-uMkJdv=q@Y z>dRl}I>G-$mXIR@hdG#?Ot7tN*0nU=lvw{~?+H$AEbNMZa?VrvCjlldb;>*Q2SI3L zL;Fx+bz-Lq9q}UX_r=92H~fm31dIoF2g=w{+8r|c#5i~^e|4U9OkC5L(7prS5kBpC z!`flI^`frPXXZL!w*7}sy@IQibwXunkIz1C9@cHJtRY^>EFc<~;H(i@Owbc5$$xa= zB3&st_cM4#U5RF$Uu6%ibA@P55&ao5tX=OIjrq*3iecScb!HG;6@$%xA;wyJCjUbQ z`QEM1Pcl~bc%7YlB$#I|u3-9=7FNa2rd+@@qO=7M?l)~&EI?;(-%z`oO;>Ch1eC6Q z>G{?<=2XtbdPx72_vv-q{)*~EdA}mYoKU1fgoI_I1*eko!lpGdq^^Zz# z5P#Kdob^k{fOrwL*tW1F<8V@D*`<1I`IE!!DDDrl#fSdDB3w>SEBtS$Q)=ClQuJ$Q z`PB*7n`9;purQ~T7h>0Z!Jp)1)jYaD9L;-taS`LDraOaYl)Y8rP&TFA#^&d zjl&f4^6naB5skJC3U7#yiBgIg6*+pShVxY-N8?ROqmzUg?eS^~Cs-snYel3J83Cg`|n6Hr?GMerN{Z@W@1)~|5!zM9_;jme(I6=)qU zI{o+D+bmV}73kN771mjFwhJhj-h-o$ntT@=_vwRW0Jhvy!FX>skbfY|RfEUWxK%E) zca?WZ-Gb0ao6xMPvP?jdz}~Gd%^R48RSj0)B62rmN8(UNsKbvdsXqSR;r1)tyfShJ zujlvIGR@$f)n**s>-pYU>0ZqVsg;KG_X@heFQ`-0Lj~@gUUKvdaa4+`51x#5FL%T_ z_}JjEttX(4Fz=R=@ea7$c02a|@AkKG2X|(oX!VY7c|pVgHa1E$**dNNd*s}@IHx^# z(%w8oBnbg`RAG~3Y2+mdh@3uDgZgLgjY*Eg>Hw$RSf=xF3F0l$aerJHD<_<{7SwKb z{eBZ?cZg+sfa(e+;DB&h-Lj7RggSC%Usp(X zvSB=*n>l4M8F3SO*Nl2?S>u%6On-b2&X4XU*%<>Jp71PsQ=zeZ%$%B>QNUjxb~H=_ zW44NM3&09~)7+u`7gnxa4NjnKxqE$>pdLh3>ysLL_b$k~+e?#@QP%1_>y-Lsct6#V zQ{H6kqUW_HRulz|2O+j0AMyrmtg!}Pm9wu($Rn<#>#8tfcj3im)_lm1dsn}zD46aI z7uX0H602v_`%S6NBhOyIYQzi(t1wv2Hw8@ zHZy4tr|M>h!VnMg{+~Tt-`30SibF*U2q^NsJMsRXpHJbw5d_N`%GxlkoWgdJ+eDc* z1iok#S9#c+MgPu}Q-M)a{)KqXME*Wk3WNPlcYsXfIX~WW6Q`e>|pNePV{V?M45~iy|zndsF%jbsfzXWEcdU|27%(bNSkj;47wVrMl`qI58jN9n$cEPvG+uwbj z{yM4YuucS)Hc^ab5ktNOoh$Eq(dFLoAt?Un?!533q1UU{j$zJ_(_$ zvGv`k$ls7+GtE%np^Y7%tA-yYCPv&=cw=)JhHox}?A-b?d&lPXBhp?(vulTIWGGUy z*3F7p5sr$%pyL^_jG@Cqy%A88V*ajq4thOaUWje>3 zRY3CWKEahTG{|0$&=n5u@%jRfcUxC1CI46a1^0SASyyMZ*xJ3!h53F(`PI9D_A4Ui z`x6xQI~CDVCBKBLYh~RWu*}QHhqbYycGHBZy)Z5!7dSeZX<@&H<9y|yZc+L2HWgI; z*JsP#jTe0Sm*1=DuecsFanO$~U{T8YP1T%`GX&!B+I&RQIY@Vq%z^S(kh>iI4fP{b7=|pYN~6ge^#?NuYIxO#yR%=-EMbITZ+e3%7oR; zZod2QzB8^=8TE>Ip!ivbBPzpU3`xlZ6`S>@Bh|jn;BG1I1{FF1;X^glKcQ-i(dQ?0 zK;ojVX3lYfxZ$Yw1H7oVdE5EVo`XqQ;I5t@+1^bxqh&JUII2ZXY4C4p zul1XG4e{fqZC~vE9x>*D`}Z;mOJ$Hk-jK=@%rjo$nQBH)YuY@l_l1;v$9*c!Yw7V~ z42g%lO8(-Liw|JR5hizivX;v45@Nz!mRuQ0*$$dHEp>UiQq84qcKYYpx?OUrqcA3t zD8u4u<&DOXvIKx1h6?l#G^GWcEhoHU1JejFbIW;%v(n`k=arIzKEs&T*20ghx$cXs zUsUJ{Sl}wiWazHt*sqq6(`fWQfWi^^kT>iG%X{RyRD;)NNhjQ(fytJcnM7X0&ttRG z@MgW!?xd6h9rx5)Ep~c(j+UDK?5C#v$(nb3-b<66i3hJf^L&>v0P8>I#zo2#o_)2A z-VbT_)s&Eb;w9ey^C=0YokM@?Lor!)6K8K(#fAT@_#i|(F>^~H0PA@1DikN5ykQLk z7GmNHg!t+#>g-=^o1G7DB26eZqvpCw|xlp1V}{)S<&$X_fp_ z&pp(uXY4`cUv{>wvwx^LW@1z>5Jzl}G@Ge#?E(lR{nckqwyR%NE)>9uU$K3Gv#fzF zfZwR|_7nBbIzce&x=}9l7>NtGNIyJt>_*KZvMmo<;3{QqbXD zAOvTy5LV^{LCt%)`1Iw4+b>C*EKYEiGpn06YK=ahUe*x;tq?roJB0&|>W>QQoo7Wl zwXvj>hB*`tZi3iC$B-2GWrwkL0lzox{V?;}7WaMFj`9<{t4jyB6^PS8`5eo}bR4O! zmC`t(qSpQcWq z`~s=&m2Ng6mGEQJ7R|#CVlUP|BvlqSo~{N z^H}+@zd3ef7ve(dpItR{8a09E)qv+UdyH|Ke)o?xj9K+J$3b6l`DVQw6w9$l*OM8O zB#;vTD+!N1Byzbc!ebk+N2AvL_W(zJd$(lfQIS;>F(l&KBK7qw%nJ~TSJ&nfyw*9* zD_p%C{|3nshZdc%Jr{WOYZ6rW8?qwc0Sy}tc9g|=$r`S{!tJ|3JZM@| z)h6gmj<^3U3Z;4m2eWxY3gzJ8nG2P&CJFgas&AB#EpX9)!?%p1I`tEdT64fmSjI|G zZk_+%Wm4LW@^Ua`O5V#do;`XVPt)^XbW~MV(M&jwnHMw`_HPUw zXc=ev8AwhISAL$hrns*{jGO}`2!eT}St};nH!|U{D_|tL!WRo@>|75vsRL0$nnr>9Vl z+{DhBFWN*l+>#tm?4A`Gk%xBF1KKCrZ*zkGwov@0_trSZ!fBjU! zl==rd%J$Cg$1}~?lDh!r{dH=aPN&{ar^meZ2d4&$Qh$r=U&Asx6XLO*P@X~3j=vFt zy7__Ca4JSpQl9qMqzT7Saz;w#Kn_Ty!;i}I!;Qh`{>|5-(#$Je-Cma7o{0Q8<-02V zK;8!}OZM-rA%XsiqfaNEUFBZZ*4wN8v@p>DTMjuH{SiYobJZr~l+1L3@#fXs7nBc3oyr*=WyBdTk1@|15Q_svv~); zk+O?|yneClVXcR!y+d9nak2%sNVN+bLNfqM5&?KUJ6BgHqs4w=HV3TFBl}N8q>x@V zf8#(P+__$`%E?w$1w~Z|^ert867OcUNU?PG4IJXAo zueiQ(N$%n;|MszPeI7Y6yWjr;m22X@^WjOXvZZBaqP6=@o5Wf)ODb^2 zccpe5@^^vYLjOT3Hg*Eb)aMS!@tMykqkj1uZL&zOiuor1JA>>;s(n2@JyjS9*A)?2G{!9asG4_CTvjf*?a z-}m&aVlf4aDeh|FJSBK}@0L5wiS+<+%Pf8B{e9EcI*+cA6Sm!Q9VGa%sx!{%WC-0_YWo3O41>&a@wgQV>*~WO3$Am&B5cclb zaQ}hd*=mHD-QpAbVACzH`s(!b4(wcH>&%q<)(KU}l_dtksgacL5w{iTB0o>z-!t9S zFOtQHmnUC4vC@F@ZV!!)&hR2^;mW2yM->2#6hJ2^kFaAvJKxvRN|W(BJr(4&osgEE zF6h2)v$GiFC6LwDB2o6HcTs3~-6`bQR8)YN(ybl+i3dQ6x~VK2K%r*s7-ae1FYp;7 z0HeyC#3X4d^;6y=routa`q%(0jv4kSI|Z!yH(PqdRIvb{{Q!LN;!V z1nuYAnwlS4r3mgjyKB{$Pd8t${P}j=e6%hgEiFw&S^1sh)+~Pjy|5A%i!GZ@OJ7Nr z+G!|}WMivaE8Cr~saH``8*^i%r*~5kwYRg2+GR=L27Ee~Q7nDqN5L^Q|&h4#d!>zjUgP8r+{X>Cdh zyROX_O0kJ(dxxJdX{Y^otJ-fKmq=W06~BA))sc5BtZZzXty065l}1KJRhas6-9Fr6 zEH7ft`Y5buTB^7!=6Yy-W;%9zU-G{+Fn3$!bBgDzc59dGmKXpEBOV7Mk-!96eRt*H z(6F$c5v&&uAyBs$>sjT%!}3> zpP5+61zwR;C(jyJ4|pF|NE3MSO_Jy`&cgog0*kW9fvCZJY4F6wTkCq({RItcWk6%s zM>8qxWUtL&783K|)U;pmQut(dJgSX+w>5$%Ao?f+D4&!xaY}M@9X;;r>n_>G!$1!wwt zKnnyQ?!;W7ItZJ9dpGJCSD!1o{8*@<9q`Ftl0k1FFE1a=!mXK?*ziw|XDO!A%^7DN z-jpO4!X~$A{1Vrhq!8q?1AlsOqAn>$e!p2ohN8MD`npljdD+u&HHJ@jqY4GE5_R%e z=k=H#HlfZ4#V0h(C}y9MAuC-ctWj_xNJVy5i>oEZU0xq&>b>i=sft?!Cu-%s^W^~3 zeQ9YQ7E=guX(?B%XHrvA+Cw>1fk8*eY$l5=90Y2r3sBL#vv*iH&U(vDz|;hZA;jqb z1YG9iQ#v}L&1t8mru_tgKUx-Y>(8m`=tL)4J5f|EHFDxx#TQI^($uu_9>0n8+%!GP zD0ZJ-$l@(ajPtNd*`Ke61J-^tHg>`eW08Y^(c716C}>!B#OTQr^E&^tbmC4KdHMOQ za>pfB-ny>M5BXN#1m1)S$(8uU>p`1wP1jaA7HASB|0dh%wZ@u;fuidB6NCo$*p83Z z3~6#Vv9Sy&YB3PxBt%)2$sIVxV6s#JDGKX{_A1h zA9Gf_ZKn31R1rTs@%#6g@{(rkj%qK?0_oEa0CwE?<@h!a7pGG+1(X-B2+`tWXBwpsCj(FFrF=DKW+rNy&-o z;F5e0lFi}yQKfmKg90x<#(NpS6Zipa5gqN-u*t8<6ZH8{tm!^;zW%c<6)h>LcPqaH zDW3iff|M=y5RrxQKDiW$o38%t!>)TRE(H9Q;3;pD)5_r)1KIi z{crUxNCm_*OUKp|nQL368@+tG04Inb&#De$88x#<1$=HEXVYQs@DX{h5gtizVqDW&;3@xUN7GY!Ij~z0A(m~i!gJGS7 z{paI1y)?qqd!}~;Hv;sD*)sZ!tD8&~Y`?0}A5`I4Odqh{X=+kGp``N_0J65e+j8@M9-JK z_Y&+RbEjEe&2`{`;c6uAg(7iMR2tblf*J(ackO`o0_l^IfRgt6*QT7#V*k=^r2GF6 zG_(Obds;Wt2mx5KC3oL6FsWnSi+u8Rr@n>t@4P%V&LvPf(Mm zu_N?@p*JaWe_|oPIzOSb;BK6A66~wn&Of?UP@Dn~6Vdv!eJ*i#4i__CF~*4|m;)Ky z0!m-*`N$JzeFOaeFk)O76$xf{NmLrOtDbh*fQS`6ZEDkgXDC^I`oP6mz;k6S4YW++ zjYQM3@LGGABYGw+Bee_sSO6A(k)KA@`pc1a71%SEt;D-@I^E+68jOh<(; zh-C!0`H>3KILC}8&d$ha&|Z0cyA#I>HtNw4hzkMMI{?e6;3SMh3iy2bsaD-0C06{V z!-ZHBi^QX()8Bw_ECjcF6vPLZ5mF87A#`Q0xL~hiRVYzRxG1GoVF4-xU_e!xPL>54E$Ltl3ewn z$^KP$zO}a6I2~coOe%S)&A^>azGKMFcXa~W{sf72X6u;Ulsceg_QG?j^FQsxpCNZe znHWR)z3JcqJm7{u4+v_3ekx!%gnq#1@}LaB+$zKDi^PastWV2$+BuE<* z_#-ER3K?9TMcU1w<&T5mYF(a0T1GMdo(aAHo-pZHEyJU6Oip#6gdHX|&yIT7lKCX^ zxTJ)RUP4gsJPC~fjY93`9U`*{g})Gh9FcmdZ;qbx+-y`K9eax6@bKBIfd`U`JKi=I zspp~op=9PNZ?WcoD<~>kAhh;x7#DF$(OGjZleBX1-hAa@JzhD;>j6N&RCKzaa=yD>yHJx-LWL2pL95s6oGLb)_Z5( zY;~qbhRDy7;o?v}j>7)a@!+f$O454Mh4bx6Wa-FnLUE-P}hCJ1U#UG+TT|-6nt-PSiyMX1d2FTlBF&H<_SVVxB{uap;LXI6>0H#4xuUhIbSEH!*S+wbL1d7{%3RG zR{TeWa^C@AP!@BghVLHgg2DG&GLvN|&eqMg%rdBT4_rTpjO&e7(Naq<&a)4|9!LtO_FYJrPkRA~K++1*dYxzOf_zXEvk1i zU&SBWgHEy*Y=R)BSnf{ z4jeOa`&8;O#`wfB|KxrI%^`37o^ju(C`iyan~Q|#q77V3J9tJ*oXwuMPGi3)or!}K zj7kK;Rh9j#(nEg`N-ig{k+fEKKty3aKfY5pTa;hcFlMJIPay!9CD{~ET)wLeJ8k)& zTRRYHWREu=Nzr&etFlwygP{MQLUeoP%?5U32K8+x4WiHuHC^%V0|zOhQLxGd13Qw}H4EnAism^XI3Sl& z&%d{jO5xs;55VpjP2@Tl!vtXP3{VNz%_i0U4J|$rgpYD=iQmn2vLA~-^gbyKi+1|t z*-ufop3vnxtB+5E$TvwE8PnS)%sxfOUTB`*xcDPhk;o>GdVW#tl+P=B!FoG$-`Z+grl6v}Y9BWTS)-Ur8rYd8s@u)o8rD(hkl z_!%rHT#HVuI;(BmpHGOER*clsJJz6@*&Wl@mRP%=ON z`iEyufF(bZZwnJ21BV6qeDwv8UxF|=nlX0-QN~h?RZC{bO^W$?+{3C;_SdJof;F}{AlSIqmk`VIIu@_ zqS+B!^|&zNY<2GYWHEkt$alhK2_E7;@O0*#Zv~JXLn19LGe4B*_Ndb?n@_KRldhWu zzD(X1$uW>rk4g;8WyQe64xq+=nI@ImLUse@=MtTv)4+!z@R3UUz+Os(0+yJLN{Gjp zc-{YHFCwCWqXK=~hVBcG@$!l}C#gh$&!m#yO-EI?a(4O-y(UFvpGeRG7fM$5MGV;@ z9?ZK7c21nbbwXgH39WhaZlOu|9vScbb~zZbXP&uH2d9ts|6X|Nr_+>E^#qT5UKM&n z_VO$RF?jm;KaZD36mJnjPR1G#i@})5kicA@L4bHaUt$7NnfJK3c5g@C`_r#c4(id( z=#9P~R6rJXJ-RTm0$b9g@J&EB=)nB3Nb07nORT&AEb3G1?ViGCuOd>(WW+Oqlb(Vk z@m{&1h45%eO8hN=%CQHD>Ln^yrp%#qMBz85x?Bdt3W0>E$h_^g`*S*>jOZOqY>UQW$`1BjdqYA$4_ftdra0IBr|@qh=7 zbAe<0c+kmMxJUnk?p}-_QL_{;LGw9-HZ4SQ8lQh)Sby;EWpRM4^g`HI(XC`1M21Cm zPlyD5<{5n0T!)uehtv>Ox&_ef^JA^KLjj{h2b%DZN04F*`OtRefdV7_RK9XI_qAKC z`=6hrWWLdOc4$C&J#@TQMx3-KDauk0H}`lUwPvofZ;}AI34+RPTj(ybw-7cgg02b6 z%j`uYv*ifUhMIio-B&j|Z#y)WMeufErU0w`))8e6plc$>*Ji7a zEh;0~zY1L(G>TmK{ayOjwsFJo}zwHJ?ZE(yEryjsbO3^>Y=1Wey3I%-2}Vmw!ETmhtUf$dWZqo z%t%+SQsTD!s%oSdvs>v<3@UR0U5+;$U^#9-u-r^*?s(B0=*%`B>pt5fguT&=^NrUS zd9wM8or4yJe_+vnU>Ez5_PZTgdmDr{yjH|UXLuR+5V6NYG&XR zp)hS114q`0)Ry==_O!`B6slcUPTKSODDB<}T2m0E!ZIuljUlp4a->|iG2D_+&fago zB83O_Rru+JJX+#*G^j0jIgZrgCIGt{!`QAc_ELYX>=cwZb+hkJ)icQpbd54oC#p<0IfIoiE zryEs5P6ZMts>2eh|2XL30_!aLzs96xE|V%E6YjB|Lf5%;@WF6zGbWIooMu%FQjD6->Q*!Mr(qY1-mP8%zwFcSXHkGt`^@ zM*2}v=$!OrF$h~C#nx%ANojr*4Yjam()Na>qB$bN834wUutT@ zy-U)Pm#c8^%(tubj-TtuL-;$1(efr@cGPzrp4WaS*;++q+)0vf^p@bVcBTh|tv=2tfSkLd`jN?j$A4M-H{r z_SiM3|I+h5w~`jzo+C4@XQm0<`^+ul6ic1ZBx!GGwxQBq3tV`}z;rpix14jCq%RN% zhs^fA3Untpl_rYUJ6Zoa#9RQ|*#bWkok+xAx+%qfXBJB{AdgP11CODn^Vn+F*0VZr zI+nqjDr;>r_1xDB8+QIk*Y@laDBRBU}ErNVFv(E#9 ztwdHiQRRs?0N>VE4q6B?HW_dcd3#vZ^VR}NI3KNGpQ*T3@SmV)rGCf@MEBeiM}A|F zR%rk}9#|Q;k}XqCQnf{g!YK^K zh`KT`(R`wpbnPj z)H6U~*QK0;W_X+{C%(Q{!0d6_AiWf+aeaHc*Si{`-U{{=Fj)`-L4Q4s z+Fnd17kOp=>Pd|qKD5#$#T&57~TSA1@kQ&wSWJtRj6*vPa|b?w>kBeRMAPDn9# z9pEmLuS28FEohJ@({u3ycZJZ#kQ=1eEG*tx^IrhBM9sjCdd9XQuh_n^1KM{#Kc}>! zR+2=}hZiJAQsb7w#uv+ry4stIkWm5k5(#wMk(7he_318V!F&%LMJs^&^0XY%H*21k zDo=*E|0fPb5oqYJwhCob9r4gbZ*H{^!>3m0sL19(_<+BrdOZacQiTw<-C^ZKjsbgZ zKr;e3Q{%7)X-TN0nw-vcrb)>9W4#n-If@62E>TlU!&9HMX{b?>x2895){CeH!7MU8 zDk-luw^eCvsw2j!dZ?)-&wP=pv(dpn&C1B}DE~G>grbt==BvMHu9y#6)&Bwp$-Qe4vx^ ztT^X3%Ljx?R>RDb|EI=j^-btjrq@z2aEG=R zPVZehlkVH3V+T7A!s4ydpZij%;Gm9tbADeVSF)Tjztrtk zW1*I*kFFmb!ugD<4&V)U?)C$WkG|uez3!UWwGgW zcdDmr@bZzwO$xKPU`XJ?!aicb4u3|N8Z71$x)zg5jI^ zm9D$O8t%Y7_A2-}(~apr_EA7`!S6JvKyb$*hy-=2qAIn{V){8_TGpDEJTQJs*e4%N zXL>V(6Olg2rKd_(J;mS`1hh}S{SY*a@BoT?Tunr z!y}l|b}-*#0WlhR3f=h8@%dYcDb|;kyOOKDN@FGj$L=Omv=5fr3qJlqEk~SwkB0tPjK|CaaS9AABjcQ# zuCj86PBp+`&+9-&UjQ&U-!cJvxTXPF+HX(;r7LWS7_P4I79*lelY`KHTDK^%HaI$v zT3iJ$fupE%lTV$OR86^CVEiwtrr0V0-O zVy$AiHKcwN(bK%=)%R>(69JYVufcF`!Ret_y;~JCDCDd**8m9e7s#t9QG(W0t>qql?Wf|wSfAkRhmk~@Vtx8L*Vx;D>*^XN`%lZgNW z9P3PhqN0azDoE^nf@-c-`WDnlKBpl|`7kJ2R30xOOSs+BEs7jn0E@iGuRi@_pljE_ z8k`6(=a>P9K> zT3NQe)Px7Mmd@eRT=$?EeHXT_X?Kcp)ltcFUfZ^#rw!!bjS~OIY=2qxbrgyV3w18? zCWrimXsntXAChZ-svi@4B%;5ky`YQV9pZt~`oh-#<90gKPZ?fvj%+ zI||jev=t;gy|E$tF_(VK*8Jz)Hf6I%{32Z+|4BZ4t}1PUDM$N&uK_Fel`9=#f-lK>ZH41f1k$?EV0EAv@)bK3qbW zjjdZ8j+ckltL(jYH|QA$as3O=D7Iaa*LHy2&u#Fycy*5ft*@A?8wXzjnOPRJ3e?px z1q+<#l-bucfNWwUH-EXFO+E-ZbbC#iIT_i3ng3f>aqK(aK^ zHTrotBP06o1GfU6l0F}L-UL6(Zh`c}24IP2r++~!Nd~zNbZ*oR94F=Os~)9E_o5ET z`(t;Wtc5m>;)j;2gcnzyBr4ZJZoSTSMEBz~Eyw`+49k{!j zRJv@PoOni8Pylc>W_QF)T+prrHKJ9sq^5qH<(9%8(Ba)%Y^48Y++y%a^ZZ#H(yw$d zE@?6OhzTX`Y?sVmn3L$R;0gXLZeO#<>qqt79ug??Lmn3*iPrT;cM`1_5!oTp{m_us zb*2HJ8qM@&e=O9A5xz#xXGJ$FV`p87)1Ayqz_DzI}Q~$%cOhj43 z1YJ!Rc?^Y2Z%1D3uf-mu@Zmt7f5^*;mxyW;^zsJwsuUAZNVPNLed!EWhu%m4a0>14 z%vwDB-6&xf%aQB#6uiF(KWR4W+ zOVe6A_En{u3)`NIg3OuF2#kITubATc@T>Tcjh9>)NcTxxR%DyG!rCOQ*M>h?qdNN2#KqBWatuBM3O8l>u0g${d~PM9?N= zYB2_*p-UBr*L?GI-zdGB)bEUaXU)yUTHEa3KV473tMx(g@B(+ z>gpTpL2=O~U<#yj2r()bAXm^}PC@>i655`u5q~l`Xlchl8dwMPEIW8V%Q_1Oa9~|8 zdc4qaaQex8KodX*_8umn`5yQ>!_`@xJQ zk=ZKx=n|2;xs3=sie~vW2#d2)%sFrh$UyY08yZb**}Qwz8Ik+I=0Z0?cj6A#8n6E` z@J(5c*CiM=n(7dm*&C9i$*O}x0ay?|0d@Cd&kR2;Kt0`m|K6kK&(RnKD`5yOXn55h zMTvInWSW!hySiE4Ylo5hqdD!PU!@aVli4OapT&S%wu!%11nIbzdx0zCuuGpmC%ucVUgN%ALhjvWHPfCB zHKgZbW{Un*|6$OnAfQI|dM&Sj+p2{eF5}4CM5P!p)0N2%I=)9f@IttrDi1g0l|%5( zEht#u9%GWsfGW~tV`)sQ+$qz{%#1~jCtLw4ymok#QU-_WXLd2MvJQRvWHw=84Zw(k z6QiRUj2=IJpal8yejq8Qt9g3?&T`MUV*DjAA$xM{je+h7>LYOOn3sMhN3CFZi?#xX zc&751l8o@$p57EzO8L8;L~MJb7>lSE;69jHc!RfcmN10y!?w&`>^9o0Z>N`<_BiVpqCid zL-Rf!OC#&}n#419CGO z@I=(6v`k6mb%LgW5KPz%rPD5Q~}AhV3XS|S=kwJ+(sahqzVr|y;L9a*8n7iP0X3jyv8f2c^j?aXC(;}~j z0VecIk<SNdgj-jR=w? zN*0lvRH8!~BL;#Z3W5X$h8z@zoD>BS$qYjdA~}a43=G`rVV~c<=iYVJ-G6-FQfKDv zx4XK!>Zzxmb|L3YD!-UHl4Uh$kIu(HgSSOt9i=LW=~ z%t5EqB9`l-pA&BVqfcYn%n$zR86pADnYilfeh`t2zn5}PPcInd1AQRgXfMs&Zd?i= zTwP(x68dM9Pm$9R`M6KRA0A34q2|+Io}Ak&}K#X z`$k=vYN^xvc-ww$4UHH8yG8&GLYimuupo&9!j)i`E?2S*_%<-nhejn3*EI&msx%&+y`t2sSiBZa|gJ{qhWt@ zx4+_ez_1x_m!5wG&GgaA>yR%){(nMA&)D^?ZkjFFgTX(c4PPjw>&GVm8iD_eo)wE4ULr8Z8gdNGkDrYxTJWW*`U`ndWevS#?`)E@ zOH4^=0?;WjHT8`5Vqp&{-MA3QQcriXegYqnp{%CX^7Rpu=-og6*1Q+4bTh)RY2UT^ z=$eYVC_`{NiGCR{mB-JZMqJ|S=wzPbMK%-Ytblq;T7r7COab89MCTzjFg$od@k|A~ zLH@n?$tDd(2-T-%P!UC-HSqrHDP+^B6&zR{(Pcyv33G~yiWZEe7tSyB z2N|jWbu^0FY(!TRL|mWKyYTPOq`W#6WGFjrxFyfFZm)NKJ_>RAPKt`^_^!=G6D_I_ zfn^!rD`fXcc@5gBpe{J_=jGXVPzoVs_{0OHU)>~weEAkIraC@3Fl7T%!hE6F8Hd6Q zV0bYevz(oFah=#>^&4oHF+|WElt=o0+S=N0h7jHdz(_ryiYK5S%%NSx`0kH`X(7la zf?+Q;LLh>i(ty7pxM1tk;DVn$_qWd5K0Q|SX=~j)D7Ef6eAs>U&6+xNTA#gL(c|!35C(B8AbWAD&UTqOl+Q_)NAZApPbJDT0X?psp=1FB=rN z*t}eWGScG|P!6>vqgXd~$CtlIfQ+%e5e?UEq^x$dNvI)ATG%RO6xN|v#MpC!$R_EM z*bQohmfk&Z*26*8qg59LB8gVfqGO)mMUtTXx6Y@86t=6%K4k~h9q?;8JBZ#dhjmOe zvYb7q$Kcpun#@8Tgj0uGdma>Z?a1k*UE-ZF2#rC25cGJej}!waH9wk?F$#*1I_Lq= zyCx4l9W)fJgcE>s2wXNrXg~{SD?dzmUHxNJmOCW>Xr2J$Qp>s4Vj!ZT`dANl73PAMioG6t#iljWOj%V`2Ri+l z(~YHcw6%xpKgvsbEoJ6_=FcB+O;?anU8n&X#HFSwc5|VF_!hK*9<1B9CU}}wiCOv0mL1HS!vnCaxn%_^W3YJ zuv_HvR;oMGaHGP`b3yKtve$SDa)7ocXJ@v|vS(}URA}<05eNUaEa%*00xEanZ;IdP zl{<0#xHar~+)|$(@-#J3(uUCflK_DfU*+Av6?GSvY$WI_OB+%DRbAa=mr;CW8G62U zoaW2efavF_1kE)Dvv1~7u%m|V<%#EQSE3o64f@k+rR z6D_D|xZIBgRVg$;kTct3<`zs_a%Lv_lO~*snwpv+;4m&d+G_Ln=W8f|Wv>=OY;y6U ztZyMydji^m&W?lr3%&(1hR4qVj``0(@RRZ>e! za(a4gSdZ6S4Tw*o5H`JVQu5jeq!!*Q*Z3$vHt=r)IxW(VfkZhiFq-<{+{^@D8TB5E zo^{16NRluxTY_eEa2z1d;!A8nhqq$fnX3~oCqUDX`q3Eh60WEo#HmaJyo8yj-;>ua zu18n~s&ir>Fop`^M?0SF<$<#y%4=2$!s@m_*duJOJ@bq*d@X#2eJ7@OQm!gxhA`uS z_9%A*xMR5Cf952(K$n886Y4>g&LGmM91JqTiH=bA*|VMO zd9-ropifW9B;f2%cXK2|d!FsjSI5x)hL+J&TLr3XYIH0I#Uo@lbg0Yk0g`$RbWD3Ty@ z(*D`p502j{R{WZUsl9#b)?I9W`8UJbC&PKkFDO`hWj+()NUU#QB_pF5nwO}7<~%$i z>wV54!ABf~4r1)!n$97;QN*@D#3{RO`JqIuh$AqD%~=o}oPsk5aum?K)-^GSDuLn@ z>?QUg(%G%Xf}yyD@g($~u+yn+bv`ZapUa^M1e7$*y@%I}vph%pUao+rEISF&pvr`# z24QYpM4d=+WXc0Y5Zc=4r9)Z_%x;dkhVTSaUmB6RICZx2Zno=~ZkkE40kl-NKy5M` zl&>eit$ZcIr@&=ZdgzH9-Y$nRbGesh8$~;{Pf4ly&sg`B4<)M_#r@F6>}Nm@zAVtO zYNo(Un_!ZX%hL+&5(N+@xvB@|hV7I)R|vhrM4P6Q3RisQ%AZsZXhKC17Rd$T#+6$B zGiOA$f7MCRwSngEoLdkKXzGs3*n>p&eAhPVQ|tJ174SO#6QI=cowroOqNc(4s~}gW zzHk2hJb3yyC`Z2i6np>V^=r4#T*y@3b!n0fwH*nRFVXi~I#uJlbo7T})>dX_J;x3P zthGt#^c55c{6Pgcs}zK|(Q7b))Ic|IW1(%6b(jUHk{aaL@#HHBt0k{oSdNV(53lSoq;k zF(Z7G`!wiP$X>|E6*43aJwq}t5Fx>TYH;Yz5|J{=O5Ya!7yiAKKG*>~wpItk2oh2L zgOKNJQ%&;R2HlDIHb7I-(v=Vn5J=TD{Eg1=2P^C%ovZ6Cx;eQm=td)UmiMF&5dw84f(Bd_q zAIWh;qSM>&RyaTX!`olK`}OwXH4^8>?~4qO;tO>&jBI{$79<842?CgL0k9u@-+1bQ zfJx9&qghOfLBHGv`rdm(ImMQei?DiV@TqS#sX`7;8(w!On5rzraEnJ~szKACaX7SL z@MWJ@?fTR>_)^3yW%Co&A-Q0-g3q!YX&`z(vU?Iae$A zBnzmC0CH@2Uy%>23O>uNwBe=)d2s1Rf(bs6Z;-VO!~BVi`W?P~`uv~a^JSxw8EY4< zUjCpj=bEH@1fN||Nk0go$zCi)#BHSTfxiOH8%;p*Jd%atosKn>h$Gzo9rDCyJAgID z5%m!``)ES8!b^tF)0{o||C5zXkgqOQOX1a&a3Oe#y+T{wTOHI;8= zPjZsG!n}c9p5h$Xx@|Lj`f(D|r%854E-3xSSr%pphV4NP^9NlB+> zqC&@Rwk$*q0E#NwNBdzmdH?1J7baB(m_6<#o-<tgG2VgT2azHdVgrOcakaYt(?$81K>P6)$V0o$ z#f113`fv@B9~JLq9=mR8JBSw(B1Jd5R~+WATcevrM*v?%NESoKs~ud&a}J9 znc54AST3p!e}qm>WNB__HrqB0E$Uw0(93d?Z3i4FJP+}5<;)?FEnV@56}qPOti_#o z9(lb};L7g&f~vmjdYg1W8>l5vehkv!x8Mt3CyGh;4Wdo$fBU#xdiQ6{dwMs<3skc* zn|!EPyE>Y8znCrz5>NVHq_;gEP@y5D$C>CEe{z`mniUNRAS+Dmn#%3R$e{?K)@|W0 z&KqRKvd=|%)(NvH=w3H!*NbBIabdcHTQb~SW>W~gUBGeJ@MiHk#Qz2~07A8E3qRb< z-7JH4OD3o%!@6AF25ZnX2=44>Jk7uDL8EQ)IVaDJ&W6OPwz^!gC5-mEn!3>>#T|k+ z*dZ&5GDr{AsPmfM$dupWlY0(c7dtm`>I?}Qp@cvbHs0CNGYGNA+rn<9 z5Rh`E&1BVVv1%-{L7sVhMEpdsBFO(_JqlR@DE+il;s225Gv_V(PRd3 zPb|Dky5BR=Tr*o}g;p7%J+$F~xRv0fz`>rbNcFr|Z>5J{|KFGa;UF)UN&?=)Ndi-D(gldrB_)7N86`N#C<_~ci z<3{3f5OO1O;pnI>5Sd0mx1=dP)Fc_`33?_Oi%U*hF=k2d^24BPTQS}u)YVLsFM@UW zwguMV&?2Nk2iRHrq!uI_r>vZ^!+IHkPs1|cz+&{f?%%bVap8!prMfZJx-CqFoxSkIh4dm$^YPnnv+L2_` zvZK}o(meAoO;;}m&!Zgu`t{27zKQ=dfR2yk4@GG~oIgVW4C8-94kJO?D(Fu@ zN;?1hLt2IX)hq1ALKkWf3I;_zxs>OyS%3w?o(26}xP`eiXphDo4E%h}gFxxyO6nJ9 z9tXd9qdr^!#hoRSMW`xNIgj~z_g@iHVZ`5D1U|(Wsz9%xEivH+s1Enh`}R!O9+L`+ zS_?G%qV7bmtkA<#jjFN2pfvpXIX^>Li658G4Y;iXG&;t&Ijqj4A?D1OzrX*t}l;lm!n*KW1cB0X|WEbCTA;j0alx{R`D80BDYh7IOWB2ZvQx2}2 zXjDJzh&yos%iiqBu(f`)z~xyJG<~pV0XJO~H8niPVr+o)S};|z0%^0)QaP7xZ`lK0 zS8of8_$kVa+s?p1nF4d1g2IogEnBe7{%6IfkoejLnIfZ^Aj`~%e^&-uM0a&jqIkac zml0$>vo)OScOJpq>1O+N)nl9Ap=+Fg>+`0-W#kiL1@U@&1Ntxp>6+_)D`g!W#dQ<^ zfB@+v(;<)Col{+fda;T@GD(Y2RVo5?*tNy-T@_~}jw!Qz=;=Uf4h|B3aHfHiHXd9; z?eiBcX@d?KDl|G$Gl2APaue2s#79Kj$g%(T1X0l2BbSDbw}6-@g60lAh7sCx80;18z-vu)8*!{-_kDVcbjOXVaUbWqWLY zKfRsZKrCN=wG}T7E;ALt26Z zlM^<`AId~h{qrS2as>Tt)NttqttWU_7UNFEZ4HAD|C$z;nwVsm!#^CQ0E$?3_ruBc zq*9@uAac|f;cM6ntuOx@-_O(zT~2clPrsbzhwWaB`H)FQEc{A$*ol8VQSyb(j95rM zZiK>V&h>#@9R|qLCuql`A0~^vk68Hr`4eGWo1pUk6VyTa#{lpNKX38kcvb(*FjDWC zcm@|7O@p>qT8+SYOLXKXJ-^t&hDRq9<2Ru8=q=uMwyIfQtRif!Q)j^6gc^3dA1Cf= za7bii+Gq1hTfi!jCXYX>u!!6E4bbGd7R-qoK1P}B>aaAz%9KteCpPSl4y*H+fGZ3- z>P9W0lD}lOe-FlR40>|T3Qi>yn*3U**$zi|Xnx0h)-|eu%2upqD7TcBwlLL`ffS&S zL|K4%cWdtlbS+Hja*flOxJ}rHWGmU8WO{q5p59K45I<3IjB%4MI|K8Pp@oS=fZ~p1 z9X>qSoW98dqCdGgK-~U+uX}k5g)M7n`GiLD258u4%>ux<`EhE9xhaMn$~#)wcX|b5 ztN`(RFp9PVH)7V z;~}Nz?p2Y<$c0GTzYRR!B}n|~VIhXvA${f=wwkw`h7))r#;b>J6^wxw(li$1=E^W& zVkAQkrNc(Rg99Sc0B1T7hn)3gf$dK|NpBqD<_0lRtw)U=0P7FgH+*g6qyIkM=`Tl8 zeNRcJztYU7$=<#Y8ZI z14U2(pcBm9QOP>%0g(x9U^JUJoYW|IEz0a{~;Stq(!o=LIn$?(uC z#xP+OI;uFTQGee=o5Pu7D&GG zaaHhD$ZK2LB-aap=bi%)wkpB3KsSF!Mdupl`&H8!eR6p>LiOT+C3_?bZVDOk=j1?H z4I|JZ@G)@L(|k4m)+5oGx+EM0awG%#J8MACun%PoN9uVb2n~U8rYp+Z~>bG z;FcUpr0{R6R4=HagZjZnM1Q#pEQeR0iP_+R{b{6!%qFA0`#wL;=Etjp^OD zLMuN8Xs9%W<_M)cmxiF|3?RxUp_TH42%Q_6q@M@j8)a2(t}!ZFhsQ-M;VLi}pHjpm z>TQOcnOQQ5IoId@56oOwvu%0-%1>CYw)9%xRvohEZ+|$Z%|jPMs|RfV@L|j84-0X4f?YHY=9v>B(42XmR?!bH5UVwH<0s06C}cd zz90YvF{gC4L~7lwbkL2^o63O7`@%yQ7x(aLsk&Ga-0%@bqyA#JSBNa>4zi?q5Wps- znHR8S)rn7#t=JbfO!ej*De%$%Qr&v`^mYyryh!+7u%uVh{X16RZjg5PB^rf(=MFOr z>+7fF95vbKWunkE|Apa?FR2KRtAW&9?yB{E_9RoIZe-h{UQdzmM(@;=sUtb?vU7hB zm&vR6knh8&=-vxp5ch4=EKVmOHXWL5-k_5}7C8*+#H5~*R>$8+up3CFs8!zpL*oHG z{Q1&1Tlx6@44XQ@)mA|zi^L)m`f}i_fDI-qT#E7~ak!soekFzJ^uqvI?C~C$uVe9` zDO@7;*-yw2l@v4&A7diHLJ(B z=(=BZ^2W9UCcZ&@k9Sd3m<5P`JsMg>{tPv!<6rFu*vV9#?dI>@K&g7JE+$HEApBO- z&*i9rT9;R9bT%D4Jb==SjV~Z79J1V?;XavoA$~ z!D}uCJwnE^=bO-oIM9d;Za+3G&9{va;!jC$TKCEP3jYGs4vit#`8juTa_!iX?6(vqu2hB$l0%`Ss|RfZH`r%S39UO37}HZ5%hXd6AE`m9x&o<4E;>(taq7EQo~Ak#%%=M0Yn>=bWXgD!c+IM-Z` zou^q6{0khVHqoj4^{`by09w(~S|w;ViU!8eONezkhWZHKkNIa*`fonS-I!;!pr9-r zyuaKzP=IL2=r(owE%{w>#8+^F3=_F096jf4No24K7+ZxsG`iqG!*1g_r`5d+^g(@~ zV*E2dHHF@LjooB|Ma-NlyI=ga~a1|E}mc-+FM9zrLB$+o;(NR;asSUz4D+9$mUZ9F-k70m2nMCZbnCs~I9~?thW{ zyawI1iOwqox?)Zm{l-IdiVdEJRR`4vAxoC1=y*YnKL{l$M6YoIc(JCY5^_SX71!BZ zj*cWurRwN7MEYDESsxySlW4+iOM~CV;**L%LxCCaNde^Kv)3OFtw7=bU(R zi~(d>!r&^Nwic*)GVcMS{1y(pdfs%_GeIlE0!nlcA`LVGN)JtJ)D3vY+_{{ZLAl&~VN7Y$e_net^#5b8Lw!^@W%yzq6Am=pKpjnIJK1-@6-15!SzRXeWR&-QnK`-N2y6m5x&Q zKG5^QMwOl|4ClUKV$BNvWdQf07Q;`$8Xn3ZFRxF)4ciA?*D7ZgEt}Xs`t6Z?+%0uA z3;&Rr`JYn{xBN(VcbhpNt-iN9De)-ZKc5(Hh5pgsz4!Fx;o{K8;q{HxmP3n7vbs+X zXu5xifZMfu?~Ykny2<2ssaW=`&}xU1GQ|0%hBB&&t={&yWopZpmDV%kJF#C}jB;4s z)ly4Qk!<6Tq=o(#bAzJgLn^zm{88z?iZ79&UH8 z>1>-3CztdjXW6tJazz$Ar*_X}hy?3Xw^;ivrDJ-*W7c~6qw zz50;kE6{FvT@k(bRP>G<{?p}V$uv7_yDiHd0{`=cN>_(im-|_4g!aRqXQ<}xpXfun zSyj8AYSzD3%i(I_DN10HBm9iU+Fp!NPR3p=!sKYX@<)ae0*Ip8YZ|=ciB5xOXy`V6 zIf@&M5Fi-DbIa2D+Yc?w7QZ{)Af+3_6osir1P1UrI8y zcO?%$RcoMs;}QDC*UCylRk>kx&tir=q3KoB(!Dodj;igDf?9s!k$WGWMy*+9!T+TU zIxRL_Bj>)WvCPU8#-?{}#$y`HyHfl{`}iZmY^8#D?b@9@(ez+3f5M1=@M1rrMM;xm z2Eac!?aHe!YB7|TlnXxUmDl(OrsKSF&Gs4Q1GzY?FA(xo-Q$MiLbflobP;>SO1``J|;PwSAYVV%w*Q zhRp{t4^H%?hq^@mky?{MrwB5aWURU_XC~noeCg~$-xu!}(jM*F>`iIu1tN*Tb%!u~ z(H@LZZm+bL#eUJmL${Jum+vP0QH$4yVPp8kHrI>#8SB~A+9`UXH`I-rIzI(sWzJ|# z_imxKQD!M=s>J#6qtdh*OV+Jg55O>$`J^h7N_{_H(w9)vtFe4zQus0LGNYFO*z?8x z4DeF&xleUmwa5j8_Agz}!wXN=!cSsYQKi&+N34L~8x^+>CD|=+vb5+kYz+J&dW(JAcTJO0c-q5l-|tS~d|!G!aL1$(6HIYYyrty) z@M^$$!MqnQN;87czY=#>JGGY)%uHcoOt(eaoBh45RN#rR2~&4NWHfTil+{H;*E6TfwLNhf&ZJUn z-7Q$mZTf?xJrwqfz7#Rd7%c8tu%>-%qWdO|wbi_Vuo4sBR_!rTTzG{`njIQjG5srB zmfF|X16_Sp4ezow@_@zjNL7BTg(>*u_vZBb@TD3{ErB!jdKo*Ncp?IlN->Rg^tGMY z&$g50^+be73n$`ie+5Zx>`t$9JLUJ6wtae&q)(v6eHA!(aPRHwdRT84`i_5RSHkP| zD|+WiG6p54{EJc9i9GO}G4I^IXFi>{-`a)A3aZ9EA9Lu7%7bmjpZ{aG*f7S^ak`A` zmFPWQ9iUw0aszfDhIb8&tf|lHaS$RUKVBM(H%og@-GNy=gZ25P(a-h~XD_FvC9vjF zutvO7NOzt$%FpeTo*|t)VG&l!?0wgoUx#H!W+FfMA^Om|y0ad@hP{rG%^fdcrV_6Fk`EZ8x6M=fZ|_S-TQ% zF%UNT#xM7J{7qT-ssFxn+a*+TltZgad&QDwM#~%6IG#d^gWgS%M>i#?5F3m~6Jc|q zl|G2PTHf;-%chV%hXb6$cFF3imM`~dofjAdrxr6lF7Z0`^m>;~GVH6y?=LN{z$za? zU%7reUQSvzEQTcLH}!JiV5hU#ojpZbfOyC{!grCCSe(kyMdM@rl7?XUY-lv0}+jX-V%! z?u>rTXAc?qS!D$d0Y7`T>2<7PN$V-Uxs2)vbh?}0mIB9#ydj?;`YJlzUF?FWg!YA4 zrSRGQ+9Gjy*fh4jc0bq6L?orJyCk4FUG1^xE@-xfS5j6tX;M+Od-~p1c&#;~$1N%o z87cmcq33i+_qumRQVWCvoOwmhkyRZ>PtcBuHg*bfJnL&Z*SFNL91#*0Yy&orVG5xk zuhaa79O}0S`wm#;js(1RaE=_qu+EpU=dc^8Hn+pzh;>XpLAX6Sb5^|SoWEBN*v~21 zo#pjfrcSzWENju6^nN7XPrHLG>w_W;aG-q73I(E%^vKF!w1ik0t`JVvMixU=qVgpl zoSlp3a{KbnZP);VqB(YoH~GodVajUxEtXpS4FBO-VU(9$!wL?cUf)%PVND?{{7_G_zmCvDKe%M5ogI zW9S=$&+Wno3vMh_^6$2;3fxb3S+6?&)F@KgqWx5emaoll)K3u+3|K0C22}7FFyFQb znCaXx>gTiKe8(i3=oYlL&z(;-$d_29y<;|OEHXm!RDGQztOR})oxl>!ah73G`8g1U zg$2he4mpK1*=+cdkjVaKd1o@e1cYL;unE}6%tY`Ea+i>2_`udgOi#BrY0@?<;J?I` zap9(_JO&z{YqUARG%1$~ZT3b%WpNk(9EbqQPM{M~!Xm3p#NuCe67!C8B;K>#A14&w zoI(3f`?l}6T61>1rz#Pr^N8}NUiV9z{UO&aSl$6f@F z@qK#ySA{n5au*z7Y|o>+2uZOW{AcRx3Mw!x^j~BYMj0nbu6k2X3GI{nPgBX?Cg^j> z$Cl7k&ok%T^J@HgN<@;X%VSZ{-`*Yop6Fs(EG;70LOU->%#(D9_GJP^w;2A#-*VZ7 zkwxQe1cM#|$rUy)`k_f@@7}i*)BrrG5(@=&Fus7^H^^{$+Li_hpLLIL^TTE7(|vg zV2i}$p+S~w@17w`iMzjw?((XMgci_Cesys}Sujeuz6qJA)S;3d+hhoQMr*E5{Iwf0 zKaP2@1$JV+4E%FVInCR}} z{70+aHGXrIrJZq`o+r^Q>f-g)5fOA6Y6<+TOLup)&5)BVR4``1ls7SOV;*_$uD_lC z<|?2{3{ml$T(*xq|HYZU)E>d(8>Xqmx?793JZ6x5H{cv{3L%G(i7<-0rN@p*HH(pQ zxKtbCUQTvH0QM?W+_x>>)vq?p_EE=`5y%f(M8KwWHsi70E&t^$LZb4jlzh8C^Q3kU zx{ryvxg7Ox@nVOGR+{76n>4!{{B8DP^aq_p58C&2tpqnUxO@A8xM{4_pWF!I+$X7J z2#&96UcN`*jLNT=?9-$)lOrsQmMAii#?*t0 z`zX5@eV#=9u1#L5raRu4RJ6>8sg*>5W(ZW17HAbb)cHDj`nLS_W=fp1!OwSGob-ur z%P5=*1O4T$>sVO_{Y%^Dv&M=eB>B$Nli`45>Bxpq9PL~DJ+q!Z53{@U-VRTafjt;7sws}r$!=s- zMV(u@)9_Ygq~INT**k~PWA6F5aj6z3 z6@!C|7|mGC)3V$B;TJl;dsW|!U;OC1{sr=%eSb3Go%l9fHs+2_hV3!B@!ZAt&86A| z^O8&0 z7NhR(+EP&=NpK8n1inFgvp1kI>z+to6H)osov=}Lqb`;I{0F`edG9T=kh;6HDe$gT zyYbqNuDe0Z-OGB*+#Fq|kqEc0ya)``m6O9?mX|*WQWzbMg{r=*Gm5XHoM!&~Ks=PO z{7T1`gg|}p83deYj0wMaHfT3Fzr6Q0c1!Pa;*4EaR)B9Z{p-;%& z2FjYt>B2s%9!OG4Mkan;+5tp@fC$5*1RY>nE-o%fQ=8? zsz2Gfgq(2Mc7HU@1Osb4A#jqru+H@GW|5sEQ2r*0AN%pG7C$=z)QjLaxJgHPzFwX> zTYZ)Y)Son?d`+jKnWwhobO9wQa9~`<(sB2U5jEi5E-UD|U2I!=Zr)AOMN3re|CWE?c1XaaR- z;LZi$Sn$%;R;IRZr;hzuflElxRco-017l+;Fs78d{T1=ltaFTe5|5}Ix3I2nmJNAj zU(!IHHUA-&YetXnBr5qci|{%(KTk9*pzq^ zkdUsGwgRKR9&Z}k-ZcifEmz7;tRZ%u z+X*Bk_ux3on(!pUT*vz|>bZ_x&Dl0uN{#M4-n=Jmu~W&RhaB|AzcvvJAU2p^ObJH; zVa!F8DsMmYvnPGA(oK`7F{io%QeO3*)S%o%{<68-mTRJoCo^6@Tv?oQH@=n$Ep=OD z$jbxhx}67`n3OY=Fq5eW$_&-x2ZL6c+rO{6IZ53v6Q-El4|z0pqlstSs_aeIeca}l z9`Tm6r|!CIm1?tn`rNfpL04%_A!$| zD~CpjM5G$DlebZNfUWhLsOGh5%42)hwLf4E)VgZB5@SyZcB-2Ma!MP-4Q=XWt&Ov= z`Ihkc*H5?b(RH>KgEU*cFX(W-e;Hol)p2lldL2P0ZCZXkN^hTuQ|S`*OdISbsXp+z z--9tE4zJOseC;Tsq~N%*j8YR0DK~iHy?bBA?pj-0Kd3vrZ{Hu>hu~n%I1|C0EDYK^ z)e=4;?}Ng5ZcWR@K}oTW>ev%8y{waNY0R1cT5#;2cUF7q6R_^Y(0 z<7RRjWOs{%-7iwV6FnI)OD}=V*w1+V+j#)!)M`7kHEx2#VeNZ!kvJpYGcbeUU;G)( zutRS{rQL3UJzpVe@fbjjES1PgNzs7;$9QpOZQXCdfA zA=lsjQQg8H3CbYyXCgM%+Nyeo`~5(yOB68FWn);aZ0}@oPc2ioG?|~rf@pl*kq^}ZtJ;U zlQP}8>(||TT6?t5fJP(<eM3|5m+m?eShbXxjljKd0b2rN(@AzXN|4dwfHW zL;I{DWsH2*ryMH^ghOUDrG}0^IvMg_MzAKpsfog1)+lZI847;IPCQ#@4ggXr${p=w zC$eGF(;6EaMXc+&K@LnUSOi*crDwkHf70D;nUzo22Ja&ew3c7a#n2~{e+Apkdj2uX z9H!E};*dedlU^ntNMxySgB-XEJ~I8@yb7rnyMS27x>2Cq5E(;SmZ{p;MdAFv7D0by6AmYTH2W9;xztv6`8EZBD;F0 zijApP=a8dhvfjGg+N{9$o^;k+H{F19j#LKh)Dd@vt(cLf%fL;r#z&58)9Mm}VbqnS z(1_+3gJ?rqwm`=jZ@L-l8II&qD)+``yNo&9z^-e;K_WWBAqzO=t$XvP4@+z zB_j*qJ~|{cI8aFAaPRyGD{BfTx$Jcw8JTWZt3DurHg!E`2vJw8jkEh%SpD|Z2b*MB z;l%ukMO%6ppo< zTAh}^9+KoEUuiul#~k7e(ZfXqls|6!Oto0qrd4d!pG;lK5uDAMQ((Yirk7G+b@s^? z26e-_*eY&*KRQRQup6A+)FQG4!-u{v^6*Tb&M>3wDR$RV{3Z)1@=WL^OyjnW{HFP@ zt!mq6vm!=8L)REWF?y=rZB{!fPrcdZqb2Z9t2$S}SgP_@AC%Ed-`MwiPza`uw#KO(I|Fj#BLrrG zBPehfWaE&IK)?a!K`7pKx?re@c<(|@sEx194Letd8zf}t^iWvi9~RSwf9X3|vCeWh z=e=D>$ZH4s7vD7{=@-!YMd?B2;=Dr~yCeyg1Hf&P*w(M#^z0SQ9+=g8*iPj>qSdYm=Y zeTtQyn*Gf>fnf*1@DO5~*6sUC+sU{vxI6E2nwJ-V3|p~j`nNT&OMExw>S<9RU8bp0 zGRPb)0Kn7d=vVIgnXZIoyM9&T&uKaD3+Znj(!3FF*o(qxES><^Wz7+?{v{tbE$`9w z1#4IeG%C5}`TlpYxPeLzg2Ah3W3IrlxbVIQ^zmLnZ{9AhdjG|V?=CwlFo!OvWsa0`q$hQ=EA8%^|}NDFfecM?So5M8_(MV zFpv9hgIIt2xqvTGMFsD-X8VID!|>t&Kw%-zBMMuZiV1X)8B|44ArJtfq`Sg;V=4ykP=0kY0McN` zi2N%n`?XXlsL1u>W12siTSt*sCGeZe=@t4bA zv>%Dfnai3-09hQN8A?|5ga%n+_%G$AteD*U*+oi&uj5D}L9|?jBFdyT_IjCpzy%Q9 ztr*_(LgZ7<ejQ7=x z^qkRREOLFKA@wbjD)FXop=EcwK2+mS#t`!fAv1ZZaEgSB5gvJY|2{0?YxY$PfN5(P zLk6t(z0CUDE0gv6p-F>Qxi%2oqvc2WD<1+&@rD#zO=GAfm?yJ7ov-iQWdN`$nq!Ru zpU!*QbzX&S+F5OJWW^jU2wTzGXk3S^4C{3CsI->8r{j+hVB6Ky8xz;AqV0q!S0;P& zQhGag6)ef<)fsnOCKCg`5Kd!qPf#$O`JEOj-jZ1BszPkCX=4+2CI<3a&^^hCEXq&) zE(v~J{oM&kYh?ogu679Q+JYqxBU^Zv*=CP}A_2w0HfrlZcRpitnN_U>&8#z{I|1C0 za5=BqFJln|*Y5;v}5Pc0^5GKXXGl+5c-pSfsBasKu% zVZmao_XP{PRxA4Q37u%t=BocfKvi3@2!Ut;aFm{~n%K1`o0n_{(~O%l4W1>H4BQEJ zjLyGeqYog(W-P|*YVFUKG_cIxDiN(>yGMKokZbd1hAz?;6tmn&$KAkN22CZm@4ZC8 zLG&Mf&NJ;i2f&D1F}bf`kuGFjJ0j(3a8fs**fK}RN)LS8(7<}n!n5)BK0-(@!``Dq zDrZ!oSQPH3lno)gZV>sFmY;Xos2xSS4DzSql1vhmUs-mw==VJU_X}3a3U40MnP@8T zZ*+Hq&fc$sEGn`NQt6c?oyQZJGLcvN4YmmNnub3Dl`0h5k6??QdL(8Ry2ram-?#j# zJmn%|If78g6D5`E``%bza(ub-(Vjin&0>I%(olH;WsIZ!9R-PN3S{CItjv}^>;!;n zz%?l`lnlyhMbqwIeRFtC_I1f$TX*OW2X5RT?CI}oo%<}L0&?{ZG)`EA)_%)d61DyzOAp$hqVMIB6$iC^Y z-JdgHZ5p5h0$=jZ7t&i=oPMh+LNJu3J4jTf#|FBe1vcQ!u2vgScuTtDxWqU=$MC=a zgH4y*)qAeshF_dSPE&3#fJfNHZ%`eeKdPD^0EjpT!&KN8IR`>kLjLXxiy=^i$j) zTR5NbL&)8Egj8-7A>~aD+6h=ld|;F1*B#p(iO@}a?y{wK5$F48#U*m#NAS$7eOy>s zEPZ4zApCTGWN7Q*XRReIz^|C=lWouucwE1k6)Q9JDqPFtT>i&>$sIs!+$|GaBvXu6u)f*Q6Den6POLm|`sGFH{T- zW7|`p3ZX@FG01VG-g%pIRL1VQ6`b~zuBYW-!<~ISk;QC#))=shYz(kv&6iiG!?FOV z!HyzO-)Gx*&41-{@Ru@IHHTk(W4a{1_GK#$cheb-OA(olM>e-_p-cfWt3Xu54-aT4 zij5q1GGcjg0Pa-@uNL-y*&2S~*)$8*yNs5R^X&05Jz=MbPf-CW;iFaWcLzj%Hn3xf z`a%!T7t1Sna2}IX2)!nx*@s!tb3*A;{REz4=|7fgqMH1E^z=FxV|uqbGc$J1FmvP? zXRZ0)9tY{MF)s2xc$Xq3^e%Rrfi?iK(`ZMtm-(ya)T03_)SGkwpG*(m7I7ma|JoWeU+t{gXl@fQ&Dpx&*bi zG3O_~xeMH@n=lVvMmY>m-Zo9NYYz)7fZDB=G*3rThpb6#kNb%mXkl$%iVbnCNsEV} zd5A>wU{cjXR-EeUyhLA6VGgx`_2atNP?b#>!|NP!l1XM7{JVR-!Zkw?ttr~ySjGUP zvK_G&d} z6sQtib8QAR_c0;l?eeOF3d4i1uP?b@%f;cMV1OD7^ht=yfG{@J-6zKM9{!|O6rbEMEY{B}RYyP)Vp{~)=vWL&zLZez@rHttxCE+<@$6*+O-LEjgBaQZOLu5j`mft2-Tq7*2&=0aXw$gnhtzMhT>xTj?mM1-Ryx+i|97&R5l!dT@c21I_Rlx+q{zE@{dG0n)fHJ|47Kk z5;A@rTwCt&o}X0ZKu6v|ltssUWA7AGMmuYd?_5Yv8eD0At6iDn;(J?U@Yf_f&g<|H z(wcK(l?XU%e1=R(an{zHbPMDTLb#B1T`fpe60M1-H>O9#@(GP1UhUf*B)nSCgO}Ux zEu}tHH~a{HkB%*da8EsPinVqP`o~kI$fB2g0X}LBbzjuz;`>U#-BNz%_@P9zdhxgc zm}l=T{)OY{O`s@jkxWk8mzps-l1@K`SOEq=<$CNeIyOzan~Vi)pG1rTtERwp&{m+; z2=70H-v6f})MK?2 z-Rt4#xhLQWW+c5#vXl^Hd%%dD@|I8oJ_y*KFS0+VpNwvlWuq$JVH+?@j2w`KqDs@_ zIrI5WlE2*ld>5TTzkb$!ju8fO28vmFtj6Y-qy6B=mwuf@Q5hgXhg=})pr1y)`=E%# znfK|rNl6J&aLs?YdZE9-q9R%{;+=!4GuHbf`1}{wvEL->-7z7pF3UG-64`G#OU_>r zV+Ut}g(ApL?pVO2re0HpOGs(Pa@|n)rUcP@RAqV+Xay7=U~Ad@_0_c{m1q$PP$1FW zd@0wZ+WY=isBVd)C3tZY5aXJX;+NkTy;UiZm2X_Tq^gN)^)|@cOnnB@(ysgN`SjAB z{3fsU^{r4;N2Xtgs<(1`A*s}vo0?3A@+koa1uRD|-?t_DTuxx5y~~5?GI0^IM)6ue zslfpcqNX?{0w1uE?hqnn9aW<_bYCehvMz)ySfPsnKXey3 z9IGsbl)vPNw~^*DK4Qt7pZ>=VK@>9zm4xxPlC@6UFzxA(4;8JIX0xD9t+)*FepasS z9puLDoVIHE;@VMZC*r*Pz^IxkmX_``IhKUek-z5zti0`r-GblujCp}vnd{n;COtZ2 zuu#guD>7buQ1VsS=voCapy@x|O_TGgf|1q(6uTX};|Vs|zaC z5K>y#8h43&GS7y|+F)z}^~#t{yTN^tq76k=E$K=d>qeH2`FZh(w*z+!nmMo=h<5@2 zcN~;42rsAJHlOD+0w76?V@xN9AOUQ<0}R|47N4s2_NKS1ItvuBg~?weQu;*(%Vk~9 zpJ;kmi|oxWE--Ka^NBm(%?JQ zqdnExZ1TWoP&OYb+jdLY2dQ_fg8>42$tM?l`Gz+TA5jqJL&_MN!~qiVu?%p~o%JmH!9Xk-Q zP)rO^LNQTk#Vt|-l7hrmH&O!99R^?!G7<)$C?PqbARWq96eJ{7V(1!%9+4RMu7}_6 zoIlR_*80{t>#XmOGi$rW1E$RWJ09tUAMckWOo>(eABE zNY^hL%1XZ3O>aKqkhu6#6%PN&Ai*N+wDmI95~*Ot)czbFzyZ&EouG3rT`TtQxW%vj zJYMKuZGT+qlB#>Qf{c|^n1wFL#QBbAE*aFlj3dX_`vCz7y=~hQH;QKTMjQ64o!H&* z_WAqm4MmyZX3fzxgVw7kB5!vM`lHUdANSzVy!?Rs@Dao!|H(oqrNKy9pPq=$9UQC? zXn0#}QY|_vBg~o|a_h1`;?3(ljXlN{&aB~_(~U;0Iy+3Yw^_|dxi_`9RCyBgM@dpn zp>)++OQ;eSYHdPovVNI}we}fWbCtH1>o%OeG@pGgs?Dfp zDwNzUVn9mB)y3ZA|G}XPS(ATKU0X*#zy0~G3|Oq`__Cz&L8_GUilu6MBUH|i3THr# zPXF+eCJoOaW~02_;6R*S=&k*|t0|NX8#TNaP=?nKqEPYJae>49up2u963xN=(0Afk za%JVA`|YIeJ=OJD^4u03&XI<#C*Es3f80+tIpsd#I8eB35iN05Horg=)vdR&-MT?z z(KAMOs)KQ^bJotC3r}qbtTF3-SLZiA`jV+wR{Av~k3b1-_HK2nxYA!pfHuC3+>P^N zM2}A41K*z&4yYR*^>RCwn5g5Mc_C8Bf9V}${386b_D`e!m_G^|`pV|NUA|YUik7w` z@8vyrroIBaf-3Q?-hO%+Lop;54U8)PlCl5KjA@aG0~imcry|Z!?#}S|M!SIc(f*MM zZfB?74g)cHlrAoie48vt$h;xlv0re{rGp2WQo#`!)vqu;r4Od3i~o&+w?^sYf*HSDxkO7s+815T0N7XuDSnoCv_`A~IC}=6>8N>!cj5&72p5 z*HE;t!)*|Z7s~yj^)_R~B zS8xHpuZ(&mqAUW~ia!c-t2H9r%45l)Q+fq%;*KY-0E97QT015TIH56@nYDqEHrP>r-kvulml2`6mCrhCK@ue<^lkJPMj z%c})!rgY9Lokh)bS{fm%_pTm1MY(7bp;BI*B*UzYsPhYH`00r@iTso4p@`4BX1ggA z??#fzsom5!KlV4Mv{F)UvQsU#@;?hO`_SS`shT!0&!O>gnj0upa+xI{Hn$qYhPgN& zimZJ7;=4DsHrvw}Sz)Z6oR+PfiGb2#?-omqna%8u+>~EDPJ1i60BZIU7L(4S{y|Gv z;){XvmrZ;TacDuaKMwjGo#^upIuGi4>JBD7gmK#ie4ruwguVj!NGAT8P}bzM3o6Ine6*Mdzid~JM+%6D1S;-Zp8CJ3Gx68itOq4 zZa*bnzZ}7b_vjsRfUz@SpYA}>;o0g)#WK4{P#~Y$8z?zgT&yc^j!s`gapj7e2F>gx zajX;(5Cx}h{FKhm{fAcl&TdrSavNNBE<9CPVsG?+9O<3mdrYcX)i0TP zZ~9E5%5KjL_kpdpEY*~->t9feF7A;+zLsY?ZBN@-$Fs9Ww~(D*zi>VE$%;uZy{BKSCqVkK6HM2Jt}fU1Pj7@FqV4 zBHPrLQ_2n&A4>nHXGQ*Ry1_5UV}f*+h=u-n@&VI1Ggf$H9|;~rIeU%AcjI;OL~xmu zrdRUB*3!%zq^b)O5c70?9(>5VuxQlm6DV!JYgE7*-Ai{6uTM%oH+@2DLQbn0oF&Te z7IN%f{MaU@;*r~S7hO2v?W#QJ^`;w652>X5 za63YG(3A6Fe4o`fS`Tx%YQaueku*?tQE4;lr@7g~bXGcChvEqKguAhSzYd3uogbjZ zvIi;WD*6MSJN7kf-#2Oy4`vXXoycR*d_-MZdNEwud`ki4RKizK8GF2TRJ#>2FI-X7 zj$#1l$SLr!B(#{Phjv$`ET^P^E_4>ltAv=W+$l0g>lTXunK1^IKUcu9o)RQxi4rSv zpe!1RX}^rpME`YH#{z~yOR_J@m@fu7laAzn=Uh%{t~|5~H>G|woVSW55!mCljEQ2D z)Qz)O0|qqDfkrlQ93$ECNa9ZsI0^#k)3ob_*Jjd;1VQ6#u+WmwclvGq`eus7TF;PO z3r|fbl-c$^WBG}K|HKrJq7ETpnQ;JYx}_#1Y9V{TY5=EAlW(y%?)FHYX-EIi8`@%@f&yYy811dGM63l1*LNl zp!=M(GdOE&$quJvD#%yVf}w2+6dI;>uD10J#VBAK*eyowvMZa7mvx^+IYIA+Jl5nQGr{`UIn}F|f-mUQ+?pTZ_LLdRu-9 z>LHnG8~kt`0?6t&?qP;KO#2oIs5$=lFD@czn`$VJ5EGu(SpA}IP$92pI~q?ayif0|50|m z$?*NtIDa#Z`B7W6xg0c*TTtd%R20e2_c~X3yc>Me{pqurk!(MIgSE~+Spb;{US;xi zfy-^r_;qbv@V6BR*yDs)>R5c)QY^y$D~qASS)a9oCHnH}u@kSrhTTD$@PMJif(=%g zd8F+%)Tj=HE2ER@rZ(m2~1{nvI@at9|tQ1o#2=rCQCou;BiS zw6_D?d{qgr7reO4^UFcvYf1R^H6XV&#w>IDc50S-e6-6ge z?}H!C9zb!ZCsvEm%QV@)5 zJzg7)E!95nd=1NkJ8IE~GhTzMacLY;YH4OkK09xIL0DgEiEy2&RWfptmQV>?2xfI0L7jM}U=d+Rj5c*qdkLOTb zkEh1Lv?dxfFJCgf>EN0fP(6-a`^Ll1-{o;2=ka5n1NvEN0b5Uq)Q|O))GR8(!sx-X z)bBW%f-1C`N7H81cYIo;6V+cJI@FxoC|ZYmnf&Qd`sNbCv(fqOrFqd$B@UllLRJ9u zqeL~Q+ftQ-S2ci~WYD%o|8@{cI+I_TXe9cF+Tc$FCCD`4@o{?}UtbJZi&8K2WRnp^ z*>*ksm{0%EUSu&QNNHWXcu~Rgul1@cDV)VsZAbf1C{DjJCo|mWBB^^;$}S*bbK-&n zd&myftLuL1iAA_Vl3~h2Agu{=mNL=EK5Ka0)`bQe{0TPhIlFi|!6R~cMv{i^fma{v z-a2OOE?#s#T7!)5ha&Cd)Kou+H#!)fbiQ(g%umN;rf@zodF|;jGxd9(sT`pVl&V9k z01A?R4v?~wkMl|=ogXpb@Zc=u!1GOXdzILa?mE{K38_#>=qL0Ebr7TE;lz>>1CTT zWG`Nqs3mMkFECiUcCENg`<E^{@hzgS62g>!7*ycAw$_Un>$Z(sa#DjyrfRjs*Mwo*sQ4JC>xk1w@) z`+bSXxZC?`?1wcIS4S#?eW!^lB0<8vC^|Um?;V5^G}uD@`h{;1?z~hy9lQP^yqL4_ z!c*8jyA>--zjqg#WWYA1$k^+lh(EyUWun;i3U{SclZ(P!bC1iO{t%xkV{AucpN&0Nn zW=kns?Z&{pf?~xNx~Erj3~OC{K?792Vcp+4^4>HA4|tkkxRbMp-A&iGij zH;4MG_MY0aU!j_`H7B%Tx=(#*+CdTDwwka@BXhB@Z%7m$vhP&(b=ZAbtF-&I)xl9x3)$fJMYKU2pBp zJ092ujI(lbr40@FJ-4m6C$0!$*0}qA8;uKpHE(f{(?oZz5ii;KHxJ0<26w$ zDeTks=)Cs)TOY|EVB?!rq9hZbAFDuJ%C#dI`Wv(&R%3=mJO+s;n$^Tjb%h%#mjT5O zi3m=CeL<2hAX*cRP=_iO5o09@|bHTOMl7p%CX|h8*!t2NiN=d3j%7 zW4exxh&h=U3q4)uZq7RT{AuKFA4;k^W#qHukDz34Q^wLo?5q`jsCSdg z`p@Mh3Jh@z$5C?G3y&2P6jL<5Yds4arvbk{4 zA}zeJLQm>F{f7{E5ymieYL?>>ETW=6ahFBs_0mmuDg1h860~jgxdI0BM_Mr}3-TVu zEr?Mld0Q9k#EE#O@A%W08UqGwib3viIty~D{jN>W&pI-Mn1j+nV0ye2rq1`fN7P!(-Y} zVP3dYMn)#{H)1!+P{;3F3Vu`bAM1Qp*njOaVd<*Mu+yO{5f5`+9x0(SR5(|_CkS10 zGKlk2Gqz39)_E73bz%B9Q`EXel1KME{>Z&LAZcN`6k8?^gRc_Jr`slUcPBn|XO@Q2CN4O4%E>Z#U?l z#>JkRBwTaw^5;KUQ@IIDkNMZ|mBrrw`RczbK>m@(vtTFr8=wA(gq8EJgM=J3|C;ZE zng6Qj!FHKjBv7cM*_e#_4`B9TVjJc;lPhrW@rHO|5u2AFl*G|>fO`QG^ivfCH zSp|Xvg$j@Ma$6V`vVUKCGPKAz2@0=1o}5Z$P*x?58tC>S&={VeaT59ym9`pL-C$h4# znz4%94ueg)w1TNbaDEjnWr)c1o6E&m*%WVY%Gq=0EC@L_&)Ft{xhVD^1fdV+4d22| z47oD@FYPV~1Mvbq;^eXu2G+;Mzo8j`$ggDV<*qWKd{*q-fv-anC67jj{=K(e@6F#g zqdb1=5+$)yc3F>Ee?b<~yb%#sm+U=6gZ!{;g z1~-3+#gh2ONX}s?X!4aTG<0kw9Wc^H(5CahbLY;wiHNYUYpb@MJVa-M>dJ#DghC^p zYR;8X6Z!?TbDne3b2DRCm=+L)^JyuutCZ5okr7Zl`&`;%C3{PlZ%>q4#qh|;S0~=v zOF55J*VHH(8wp4eq4vw~eu_-)=xfS;XEWUTVIA`UR+NPev9+zOZL(ko*utNoyfW5w z9O?@hhWh&Y1=C-?emy*x)e*SRXkw(JWGj?+jagS;J_gxW>ovU*H1RFadgK44bD_c^ zY`?C$xXez)^Oucsp>G~yDuboFj-`{DbNyUWvdKken`&v{EyG7R6WmiSO)i0HkT!dT z?J_yIPg1f8jA>rQJYLl{;m#{Oz6_gCAuZDIl5#Ok7901hYt-2X8~X-xhr(+5G@+A2 zB$XVPzqI02BCD72y1#&A-n{Grp8hx@(yvyTn{s=|c-RLU4^a8QDOcr^8h`lm<;!%J zv1|F`)k?o|ooIW{KaGL??1LDH&~Gd;G4^u)JQrHUai^qFiO2)**pZ4|80K8a>oFb- zvl%foiq3)%XI=q`NO1?EDqd#K3lrG@Rlb7?B>s)^oHEO>YSud!xa~XS{9^f)!c5zs zc+CFY$eQeV9&UC};3=kvqU+P=&K*Rm_W@cO~-;$#HP7Ydj zvGpmJ;;X8v)(wT@iKTh6U7MXd0u)tMbxciPN4fS3lDk9y#8V9Sl>XDYi1{l+3C~^~ z({?|8{CGd(`Mve~$hb&q%x`8R17V=fE4hGlry;}hPmY{rG|(C_EcSJOT@nMcjfKj2 z*YewUepx#&O>LFcwiHfM$$?R?rJ@puv!2jk?E3kvrF zq3jpq&DfAcv}(*?$GUauFME3I?wdRlvx|eKAcwvQCJU2s!w~Yq{82Pp8NBqcl@y%o zuTM!r{|ursPodHG&5BY>DVC()sapu2~g!BMoB4b|95mGCC9|@ku@N+`(GIr zIs+aqtCH4#88yY^- z=F*|uQOA;m{?GAktNqMeWMyw%$h0yzLxu0T93k$I_+whO4{k1)k&)XGC~==Hxhb%= zZR_Dm``N}is%M#};6Bx;V?tVq|HvP~Ej+VW{ImIQ<#z7`BmIQQ;3C{{8R2|7Nu;LqpPm-vuJu(iT-} zRHeO49~O(f;*4uBpp6aueD{F0jT}Fd=N|Rsp!r`d3ET|Ng|4WBqsvb@MO~eNlG_c| z3FFcb{j%_bMuYva$uhS?H_bS5t6x}D1izl$avj2mwo!~2Tui92&T+oYkRTIqv~JM1 z3t(*GD||F5X4k#pPq&{aJcyRizE*d&3HQO36eE`|?glsGiU={6)b*P-nfzcno}nJT z(OPtbxh(eJ;ltk@`tD(eZ<=;FnHnO4)rn__J~?z*Hj2^N*~wG>?1YoYt|PIRA46erMJARtR|pCnPphGY=`rUAC<++94os6DGw_JTMq8q zSMu5*_x-M~%Q-nku?rutB)6$bs@g0(=IMR^uHUPCgGt(;KK%;c z*S2@3aVPADgH*-Pt;fh@w}{!s#Ml+bIl<_3vibJyW8f%+@)@{vg`$D7!Y-e*PQj8= zW2_4%yaySTr)zYhqZ?G+i zhskkZg!Q-*IXFz)sgoj>eTFZKvE2B!II$-bdp#>eEi-P^nX<$amVO%k>Ir5PL?Jek@Mugcrd0sSi& zbHtJtw6(QUdvYEZ78Wu#U58D^JX(>_0<|2{e1-T*q542(lX{|)(~?mtrq{yXDN%Er zhD5x)=G+^kyd=MV`=$vSb!qBMAHEEUS!Zx*V^`&*-Ghe@*EkIPI80|L+FGTdyQ)F7 zbEP;f>&9eTv7ZA*K<{QQs~7k3e|S>m#Q@pne-JS02UU74Skn0^vWI6=3$x&bheLnu zS8lyc`+`P}E%r9v$R$P!QZ$f`^F>;;e$LH1Yx@-^_MWq+HPct+*!d0spBn! ztt6q%%H_+|5MPqX-)yF}mvH@ZjVyZLc8OY88;HjW96F>%gkPZ`&$zy$#(7ku4u3z0Mnh3KMmGR>_)3Mnuhi&Ku#?lpRQ?MnSbTeN(j5k!*Gh*b^9N`{^JE{|HMIT zK$FnpIIW89GM@TG;s^?Cp--M95E-xOp~8kNn+`Ou=B{I3Zg;+LIB%*y3EiR8&YW+5 zDcI+?Ya+bk&IB5U$o(=3l^7>S;6sIX?K%z3RYiIE zD)i^EYBf|7E*JZz3K|JKe{b0shfY^v^im-vAi0P1WaoMV&&e**r);ss;DU|hh^LVU zE0nSN!`09Jf*G67Z&S^C#4V;EFMoIU?%gXhXm{=`u37G49WvKYBJiGr7S6q8i(YF^ zk7`w{9sNZ}k4N%xI-&2(+6%|s-QDd!aqF03gJOby3PQug&dz^G6B-E)u;Vh&{zhCimQEW-^+6t2 z;HH+LN}0LZXVwLReNFf3fX-;V?CHo-_uSAmp(8#a5%Kh?UMJlsaDB@VeQq|BVY>!K z$Kz(rSB_Wk$wZ-xj4ek86y`r$K#O#0;9cc-jjBu^q7tH*>-nc`8HrP4NA_T5(=uq^ zGE!@}b@Zd*Z3T}VtL1(_(<3wY{p+KB(6OTv)vqZ8C|x~0Ix#&x&h2bPH@WpC>xZtL zRZ;(87soNdy=IMCC);HuHq^u5;5JwND$)0RPg?YQXv=gACw!{M;KCKDh~1UCo=sFl zN-$bK+|E|{1_|L8h@tusXQ=~larix;i{@5cGMN0=d&^7h?3d&2$m3i*C14~DHbY;5 zw2(nJbU)c@=$3l}`7Xxpq1zokP7M@9GDwa{MKrfoW<;V)-q6}{N2 zH_h)Vr%O5Z2}Eg4K^;d6+K}n%r07Jd81ZITBC+8xrFG+dH4bPy7RK1NZl_ewpPU{9g+Rzn|kTpHZw?ksdk8AHj|IkZ#z4Z6y8#wP2_iAgL(Led` zF#&2SF8{mzVs96ZZD#rVEe&Ar5@f_rlq6# z>Qzhd1~%ukFoL-sktfKOG-EErv`2ldr1rmx%_EuCREgJ6@B3!jj@^>{Md7|}g=Uk7%eo*=O4++NZw{gHl~YH` zt9)_7jbe?IrcH`|T27@TeEwKm%>U%zEN5jagTWB*3%)ub9cNFUGz{_2Z4qAWcLp83_RR@4 zGk->0S#>%}_|5jLc4;KXiFz4{z@S{d(&?}qxhmHlOih>Be4O4UX8RXO2k>NeW9tV= zPsyX>(WY@$X)2SW-u(MZA9U>U^))dzadT_+T24l^=i?#_oOJVl|FY0R%#=A0-f_>w zu18D`nvSzGW2(>~>4&9Q5_m|ekcJGvjm4Vd<62EQ=+I~??BnB;08wyEU8sTMTd6f+ zIpuTsiA*3C`Z7)OWX8v^C7ibrd{zS|)NkCt5-}9mu6=$kv|@Wxg^}AE0eZ{JnUizp zlQi=hs?c?7kYgXrhglMDi!820$V4q(ym-T(0IB4omp?8hU=#Hi1cp5TB#n;P3_W)U z6drV#ZQ3m=S|{2iagbju(-epdBO|YNJdy4-XHcE}gbVKCV6~^(?}{j?qy>wXX3aV( z!*0T4J#U;A=%b5VOyZ;QA`H-QbbQa4d4;^(Du3(2|K9jmk8=1g9Yk0b^?%un@~EDn zT$Gzf+9K#aO*PfkhV^#>cM1FpL1uE=>b|?Eq zCpKi?Q`zsZ)|vDJcIXBdcl({pmwn(b$Qgy1z4d8ebJ zgN1ZWo|>A~zOsfTt|mQ$NdqL`6zFTRIOa7w<9_aTC_h<`vBw_YaR;6vNd2>?d-q~<36vs>E|}cblt;EjEy%# z=-w`$3rS~0k88LqjmP(LgrrOLYs~~I!#V8nV^h7s8z=ptshJzqqdsΞn!f$JN7i zy!UcUOw5K!v6HFJsR(#CQ&$-o8D0H!pBqfXCr4t7#(WPJ{P~#S{_owjE`wJQTlh9x zo#5MyH1r6tHsvyGAb*_r?5Q6Ji4$h73v34zBnR(~g!2rSlxA{IcCA=1#7_L7n7ZlD zHkdLesdNAQ^G{l!j=)xI@ciJ&$jG5ll8GXwJ2>1FiX5e8xUJZL)`z5?BZCu>hke^* zC*sPL8RyL+uj>E#DNtxv4~-e#REId_Csd0`z>2tT`a&5Am#snhOaIm-LE-G54lWJm zO!HM}$l3<<<{}d1-n`i?5pu^wQfUjIH~>4f?@UyQ1~8^TJV3CWf>AU@qWjpe2Q?&b z8So_OE`kR|yPk?Vl+tMP!2n{B|AI(thS6L#q8dI0(n;SaQoZus*q$Tq9v%*G%HhAp z;C8g3d7|;`xaBd(!y}`)fMAk}5fS*M^uIqWgwk%KX!95v<+WgYlq}~2vJuYokq`}| zaN-L*rb)eFB^Q?tf_$Q`j*Fm+c10t-cExy_`}s6L551u}hTof==qW%k5+R`c^rX#8 zoQM=MFQWVe-M(4v%6RYh{>DsevzfaB{2K8pbp)sCYYMq5s1aw1=e5MD1|iLE)%bSA zo%w(=Nh$!`kf^s1B^iRk!q(;xibFaYLMAz=hyova1wFm zf7h$N23AABHACe6Bxa(LpRvhLwY`Q5f$@9J7b$Tr4|qyCw65G6CLnQCzdt0yqQM-l zkbD>kwg`NN0S%$WZB=kS<5088o_f>BbOn&k4O}UYcV+A#kq(C4^X1}A1#X$-$(~xd za;5r}D=#5ReS(Y+x_9p$wZcPNaB$p4I^H=PJJ908ttHeLD99(A@mn1`nuqgW%v<(-uJNUyANG$L$}fCS9~pAa~{QXx(wYi*S_xxA0OX_#PFE{ z-J||?3X__P_Gemd;*YEbWcnAY+m5p@~%?a;>Y#(?h~Sra^52)l^^1z9-;{_`2P5W0u|Zw ztbS#&&8K%BSUEXoXXgT%lCrXL!5%>*O`95AGn;Ic{sZ$`0sCHPG$%2bRSeWuFo}2l zC(YWce|f&UB;v4I@5fjdT;LYE=d|U|*(!mzWAC1cu&gn>> zcN1rBNRF)bVSlroHS$#K*!Jqs9@M)JIS#d09y6=vqqFb$`E8Y%89t*hYds?1PuYKU zUToTFC^eJrc?oVOi3FZN08o3;CyV+yh}TG{;r#NIE2}^Ha1i{I(Get5|2bf*L-)7M zb;-IKNPepUW7Dt+!au6sX@4x`_MTy5MxWV(nGj<=l?|n#!eq$Pc4_yE*b=2*zNp12 zhLYhzEM}t)0{@=f%&yw?s*=&D`k5i?M^5r=-MV%5{k4Ki7B7B{TnSd=5dlq*h=%@( zeDxe6#+*EdPC=O}71?tf-a~lzZdu?7b(WdUanR!qFZFDF0zAta$FiO%KGk2cHUkEH zKPV_1cnK2ok(etsh!ycY z@*(+PbUc;uDnJDNDmi(7U4q6rh%DE_)W;y~2rVs;yjgx|G<(bL`Pvh@OiK(v{GNaP zuZvTt0+QGNm-Vjyjc++Dn~;!@hy)3>G=vDRfs0EvC;^{`02hY!Y~bN}4S&~M9*Oee zi{$yDoO3j`II*tO7{EUO({!`zQTim&bB1k~;^dz{y-4G=K;~#}7Q)JuJ}y7BsNhA8oBLy?J8T47%=pun}!2?a{; zx1?!>(%QAEcwY7Wa`94~6d)OT@2@{0IJyC$nB3qT3ybxuys9K+~H zTLOi9@q(Rrqwq#tRg~MHSc4bPaiN_%i#`V8yR9mVz44df0190g=F&v6(?xM}GAY57xuVqjUoNEc6IgpP0FN4jBAyEDp<8MfdQp)ARZ34M zb05G{EDHEP3(nrvhp&EKMHZWCkAhL|t)d4+!Vv~99A1UMc0kp0-<>D7uy(;tvSt@i z%K*r*8z~U72~#*jB&+3i&G09Q=bs(7#ReSAVT>c3$j$~Iiju`aeviCbKV>c5IsX;D u{C`k&{@-{C$<_V8td0Nw;3|L2E!bn}@{uKc^Ez1wg|jMurON(&>wf_HbFX~> diff --git a/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf b/dev/_downloads/5815ed289d6d66d90e420fd31330fef7/plotting-28.pdf index f28e0ad76f479a4d3fb784dd4748e3ae2bc7ff44..e27167f90784d80de4f6eb43a65ba19d2a033fd0 100644 GIT binary patch delta 17 YcmcbSawBC!w?2!pxvA0Se*Ke707hsA^Z)<= delta 17 YcmcbSawBC!w?2!JiHX7He*Ke707f(h?EnA( diff --git a/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf b/dev/_downloads/5860560b08ead850923e530e3240b5c6/plotting-15.pdf index 3673ef8ee62bd1afef8977083d694953f20679c5..8bb86909e690cd2d0a0446c98bb4aa186752713a 100644 GIT binary patch delta 28 kcmbQdM_}?Efrb{w7N!>FEiAIqEXL*rM%xvoSw1lV0E?gqd;kCd delta 28 kcmbQdM_}?Efrb{w7N!>FEiAIqEJntrhT9dTSw1lV0E?3ddjJ3c diff --git a/dev/_downloads/5b83bd080155a6f59e2eeb633bda5ab4/matrices-13.pdf b/dev/_downloads/5b83bd080155a6f59e2eeb633bda5ab4/matrices-13.pdf index bc1553e82a66e2ac7da289aa6d0ed9bc7028e3b1..f042aadcae64565323ddcb85d79e80f4b668667b 100644 GIT binary patch delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd2{#jJBUlVv%A70Il5$K>z>% delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd0u!&9|RSVv%A70Im88MgRZ+ diff --git a/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf b/dev/_downloads/6236456dc31640e622c3f943842d9925/plotting-27.pdf index f1381d6b322c9bcea26eb9ba37359816bc6ef25d..74b21f9758c5e24cffda59a26f8eef24a95f421e 100644 GIT binary patch delta 17 ZcmexY^si{cMl%*;b5o1!G}B_Q7;B7# z6w#1vY!RZyE)wH8KELPt`(4jCx>F^ z^$)=M`Y6gNoRm9x0_71H=ofHCUf%mZTgdtPyUVBfTlvFY*!}dZ0|3~I+5I4*LhgzK zaM&AtQOo@LBl?J!pM^y(V@WE7LjrN3{7g#5Eq$g0I|(D5lhH;zHGBSg@3)`j5o@A> zqV~;)GACs!J~na;j1UDc)-d1U*OKGUa2_(@voY`fj6gK)5s^KV&)mbcM@I)cwdHui zBoJAX6VNvr7NKFW{Z_L5hMrzu>ex_NS%$GR-vI#p^m%Cr05n%kpp||+EbuSezjN8r zw=Tk1k0M1e+_5yW-a7=3eU5}kg$PoUX=)0ceG1*)z7{nWdI?NSk~*_VZK6dxiHOB4 zPdKQOvB`aNhtcvDN6&G7&GXSWzN(C+4ORILa54dWEOyLcvp*`GKoDdo2!?ZM;)+*) zIA)jN>lS>jLnDntLdLxNMumJlhTE{K+Iad9+Tej+)J9BN#=t-_jGreV!=rELs6odN z%}U|1v2^bSx699g!|JOktBgNiH}8NW$L*=tXoo>>f%_$F6Y|BSyv2x)@=?}-XUP?A zNlL-E(;CMBm={#*D=ztJw?*1>mM#AR+wAWd($q)N>Z)H$_I{YN>CaiIu)5DjsC9MhXnZJ26`vG zrl&jIxRQu>G&oKl)jlS3pI_G50KjMHODbNj=y+>2aoOS!M6cU|1NJR5cC5kU%@KUj zq#U4d)`mRH4a0o+bZ^v4XYFMEPn;Q2^tz_!=-I5Yy#T+i5LziZ3p+}62UzOvcJftScpKOV7?q-viM$A&m%41iGR`U8i^nrmIl zzQxad5Lvaw*z%L#;)luwyAuiN?>ET&( zAlLqZaJe*1G{QU~{^joT*!Xw_ufY%LZr&?`T{uMV)jz@5X~WrOZf_|>bb>5E9q_3| z+f*BW`1m^K+lR9%h-y2B+zOu@CC@av1OUCA&rRIu%gYn;H^PyA?Us({j}Oq7)Q?(N z3}Tp=*?9rV&eW7R_?q;>jP&jz4eL3R2%CA8p|!QC^CRR`prwTXZx2i9W~o^Up6(7N z)UK@ZQ@Xf>rM-uxlm414IWB_$J_(76UewkkhRxQ|yn_Jk+5hQh$q6eI>FE%L3HVuf z7Fs9vl_+|pj%|2yj?V)hDDR$?6QkIk^$)!GYt!XR(gt4U)I#e&Y{VWhEe23%@f^D zae;OE>m24qPBOsPejl|Ts<-~oQIR7N9Dt06=n_Van0H#Q%-xLe=v%pjE!)e@&JACpemCqiK5Cd2TI ztHiKnD--ik8HtU2-AF&QO%}|X)%W7ibDzzR$>^BYObO#P)R*sAt5K;qsrX_|0qCC* zo6V60qBo5wdsaQlyU;~Ll8)fTPjmdcry=#x& z^D2=bi4L_fRs3iTqW)6;P`tlt%%^X!z-bd8H`|Mbi8I~xkdW&A4Dq(a%G4LFN{#^y z_aEWqisg-Awd<9guZ>7x;jfv9he#B*ED*1 z>EVYD#8P{R1aMKmzjWGNJ+V;>vEk4dNxdgBef{gkbs84mI#fCo^@nZvbHVN2#>U^) z+%ZVMOriw#%Q5WN^YaG)KHsCK6}QHiy+lsE&e;#_w6t#r_S;i+#Rf6RiwF7vs@mDP zBc0*uO65`+z)Y$eg3|l|_gM-8+q!ob2y0&|UaT(c$ZfAjz20zS=f$77zND?l1)}5F zLG-M~j#=#rh9*;=#I7lFS5!9Vob1#T>={&NF}6u7GuB%_qLIeB?d{VywY0Ti;DP7z zfD3iHbGY5Y5@u}AZBD9?uU^knbR0Jg!=%J-3lX`WkDI93Hp0RU*1moKeDxnkn2OX&x>-H>uw6pa&qECAswRZvy=^n>iUBZaF!{STUaVjSfc$If;2ClBd7!e~w zP=M<=H2V#`g5m`D-ny#53FgG83KMWb53Rt)(V69{#tsIQ-S1UI)TO0eRf`WBK$d@h z%d*meN2hj}gFENQz)9D$u*R&=*ReF|)opgX_O)x&?#EQM1-<52$eiG_ftS!B zMq;B8AK-rfztZ**aY-GR0yZzt>l;9t$04qF{GwAkGO2N5Ll~q=ISc;#_s{qmSDZ`q zgox^qsTr7Ms5{Fmon0ACG1gl#(MTRtiLHTGpWdajSJc??s2daPE3ZjGUNkfh28Uqo z4jDr)G|C%g9uYYWbE`f{7WDpX73w_5P!H2zS~Bf6bRmqR zp6Ki*t1B`9Y+y$(2vM8{fsDjp{f=b%BAvitx^-9B-+cmM0Mu?lU2$`k6X1c3taN z8(6}fs3F(J43tB6IaIS-0kNl+ONjXSiT5+SfC54@NhkRMChx)WGENH7&2!_%bXZ1< znB{o{QCVwe zpM}Ikm|YHVw916UR8}s6LxhE(!dvJS<-Zi(h9~b6d^eF?dj*LPRSo*E6|3Nz8_1}q zD|wui1d$I@PzU+5*heb+p-9nq4Dz+eKFV#ek&8F!5+1@F_%ZeE3Z;lzI^Uu=8FZsU zh7XrmH$MPQJp(VP<4t5UN|`k9D97XwgMM^8(Ka)KWq0^~uG}t3@6`7`j-e|p9w!4H z{<227&a9(weWS)c7bgoEXTKPP&dI#+b)=!kL-@e0&h}KQ`nn#i3MN496R@FuKKifU z8o!BY1ZOp_XuK@AWdtd7W6A9-J1YEN?8zT>i<=kR8X0{5PUf&*P&&PDcwmm24MmR}HTLK`K|@F55{MTFztDnmSi;EZ=T)i!9rj9SG&z;RfPm~OHt>WZ9Byn4;ZZHFqX0V(noLT3ZCi+&O+HrE3)AG zlZ0jHLr2#Zx+app7XV5^@d@md{_JO6QpO<~HrlPUgRxUD$SAg&u3{MM6y0-{vy+o- zeNpxODGX_&w2+MEwB;jv~ZBx^a z3pY8Z5(X>Z6Mv|PJw6eFS8keye8H}sxCTF$nS)jSAp?S(# zc=pxQP-D4FLu=_0nj;Db{K8eYEL&#xPZc@LDIA=ggZw8Li$aoMvBbAAow4OUI~qpv z6vd8d8Un#WSA!MXoqVlF?uaO7Bp6FbO6TApUWn`1?$fOJHe;ZBFC!`hzJ8nogv-ks z*}T>X{k9*bNVHV$$(>P~Dsm39hcG5j2UX!Cn{?>#o3#h3y5p0{-cskg1L?3JE)1p? zZSCI+aeHWRaN6UmQTAzTp0CQm#pVt^rN7*lbdCM?qmZ+S@{wn)7d!r&eCw)RX7Jwe?tn&hn2L%-m8?`<85PbuU4ug zwfY*BQ@(sdd|>1L9mcp;Qj}5@y#aIBQ=y}R~t-4)bUKSwSBDsOo#{VDXKBqf!s3s#Zn}lxqp94+V2jgy52ROi114 zOoYwuT9WzegNN=7h)A#}X58Qd-q~2Q$mC{;%KwRpl(8cl;mSgzX_V z$9X@CCyx6duDZf)hzwhe$z2TBLk(>lQ+*oSjhg*p+39lYtGu{QM%hTd7VJ9xBm#I| zn@js`eXuQ?5ylI7XJ z|D!Lnj0<1u!U;U``yC&`75uOH${eD?Rvk-9j_fvL9WK?O@L;@Sh7Ax*L`#SJt;sW2 zn>-SdRq|FW9bnIbF-V|v{vT0Gjb<^`PoOI`JtR1v>o2m*?o!9c!oK&Uj?|H^O+s+v zq+W3E;1I)pF*V)tQf&}ShoG0Q5K_fO&U(yiB_~zpNS=0f>6}>|*W!;tJ%SJScNeAy z{wk*P1%0KnYZ~6I2rf}_y9@Je5&G)Lcoai-ZiE)h5%pux?92^9i`X4L4#0yzqp46| zK2jy8ZuAsePoI>OD`q|ds|_l;Vf%9EiqUQ+@=D>Jy@+2YgHzsw*nLwxVkqkFczi;~ z*B0aoqrAK>=Tweg&geRbe-Ed5 z=hgaXDuX^&?_Zd|EsGabC%We;H~wb2BPt0r)7IvW!pb5l_^tNZWXDW2H1r$?aMFs~ zM_rzxDt1-hD0K2H{9PyS=yOg06eP<6$}2jJRB&W=B*eQubhQfnBVo~8ZUT4-IhF7&SE3unxw@G1|3!{L zV1tDhP^6rliA^yiab4n8I1L+_mgoC7muSZX_Xax)Sj_AzAt`$irE(#kT(x@LdKEb? z4<~tUZ6t*HXTiYisUF)trPU`&IL>@8ODNRfD)6b1(B=@p6##HyNTX z7N=h6fJ-}#TZz355f>b|@s`E_4^D@CI_tK+)J8IUHn)-+bR4v|Q-2OpdtaCqUFO=$ zPBDWCiLd|tbaks)vm|!5m(9=mjTFc^6J#0`6hvIUs2vnkY1135&3EKO zWto;VAGIc6W)*s($fD@7XJ4_kl?FqDvBaHoF2crJj`pprun;! zOQJx~NKpT6WzM;-$^|xgj<@~!+KK#Ut}i;}jE%O-;#XG#MKnGQ^hjDZunNdKK_h<(%k5HR z7uBMQ3UdVog=6yaRU$_{AISp$9JU{$m`_KB1sfUhz+v{Uxmo&C} zgHK4=ol(h$wkzif;lF46?V7Mpp>pEl7rbfYFE3r%PCVmifDon+RT@mTB|nr% z5>_>ByC*VP)g|pUT3-{p_pgGCg-dR=Qx9wdzrEjI_gFY^X+qm5O9>6F3LMDmo(=lM zk8h6S_L`-VLgDnhb#D@37#NFq;ft3ey0|n0PuNu(!v<9%&8jUeEpsDvRsR0|INkVK z$~iWaii%}=db%=WFjqY+a4cdSyEM^~kerm}%8jgGuhnBL8`AL$tx zhdS@zr8;udEc3#b8O@mUfv6j2LKlgK%H!_@4l;pcc> zDJAbArH``(s9VNZEY<_Yh3s(UWk+KqOt~02%F7cbfIIivRw8dBSDV^9K#jT zQd3>j2&w!hta#==KhgcZI@?2jg1Xuu?+`kBl%`P7I_L$Q#_s;582Ia_b!V=+?cm_x zhfkmSAZl@K{%>EoeyqR^{vE;iJ(Hyo)c~`=Ti5^7(q!9O_XTdKfg6k)Be&CXa!MTD zgbvAn^g7VtPM>~4$L z?y;L+_t*|2#Cx>f8e-`ypC-kG4^R}`yK=vz9KK)jclY5ZqcJC5} zFX<6}EsT{xYZ7BA5g6B8}$?6#VtEG;eLG)@A?JM6d5ABHE3N*HbJ+w=7+ zm=dd(=b2ddK41AmdiLzc#?s_|Lsm)=tOMcmlgS!=Fv1n#zn4R08DO}T87$VoU1g8{ zQhU$-(h=^RF|$kRB&`_MFPjZevV}mO$H7ksT>1ihj5G}I={xY$`u|`4pY#J1QWh33 zU~xGnEnP0cg6D?f5T9`-sBn2@#k&oR^YQ@{xLj)YqPY0PNHEQN7cT4^U_2m>Tda>t zGFbbTdTHn$lA`PE%?A8}YHDfN1pEo~J54+sBH6{P$m8${TO-mz+QSToRPzgb6Gp3=gZr_$HmKj0|q} zIO2-dK5OcmP8;)gyYl&E+mDF{N_vNR^ZT@J>m5tTt2Z%e-o+~tvTN^&4??xL%haEe zLabG%L^y};E$t6bt~)2?8qR5?B_S2+8wj2xd@`=UnLWI4fuoa!{PEp|@{_TD+K%TZ z=pLR;uU@m7=y?_lPR}wfc55soRj-aqn_600$^t-*XC*QLfE&tzlcb95SYl81f8&s2 za21gxhvwFhq>b`No&vXvGVt$+=Rtm0{h2vJ627)}M7?xC3AnqH2TI8G_p1ZNz*0e# z5YSTZOtWwOIrU>?@w(3nRtab|EQ%Rt{(5Q;w(HPbra#`T zWcFvI+6yM0J(vc+6asFq==_EZ09hw5JX5f7Ewl0xW)OCzGbhI!k+nRo{--!T+GxTa zu5Bq z>I5zUe2l2*?_vOI9lz=+5ii`MCuO?{HNVl-L@7j+#&H!F!H#RJfOO;St!07j zFYhX#eGc}3fXmo|>kGA>?X5*j3dsoIgw~Jkeo?cwF+gNGtY)g_rLX4EI!c8YxVG}` z$mZ`JZzVJMP^@NqJ2}l&U&(IhA`)mhb*6~YMr>QP(u!pfj3W7_c%rLn5@)7{Gm4AK zkqB^RXmrd#iBi&<&cevnNVysl-5~N1I+Qg<_AwhbF@qK0KHUFy1iNGljXqqwr{g#qqvSuPB=Hi6h5yNHY%YB?$Ekm}?DQUnbn;8L)|_tKU3 z2Z((j=sW^A%G6=Z8aMC81cOs|G!&w4xyTHsukNj81X%L)>8hj>XMQM;H zBQ1g0oc}~z(3S^w*03PZpMu5RMIFNu@NZ;i0V6NaU+F4?F>AND>ow^BXt&54t|>D$ z|JWU}>s3c=D`q1Be?!I|!LS`tP`a=}TUc`Zj3#^)LkQk1%aki!9nM-?>UO^;%`4H`@JW;(Z}x7|}X zM-wufTSMR#L)26)D^|11)6?XsD9jC_UXnb;kg31T1if8QmbY~Y<8Tz4iEmf+6-+|B zRp&aCT>0mPpT5J`i1#7?bUAQM#!3c4cXMKU*bu3$?~0DnJ6_v9Xbh-{{ifIf8SF07*`(ioQs8Ml~G{AQJ+4I zyYMV}Yc?2<7o%Y7Ly>M=*RMNCGG8+SJWgGy=u4Wi2FW*35o_hlZd_@q7|o3sJ`Oko zkYBV%2tW3QpHUVD?{TK+FEvQ0uO_2Z9|D|6irSS8`uVwTl(WPS$c8SH3D@usn4I%K z_9Jn?+_PI=Z+q31c-dE238?-cF_GUtHL=R1i2Q>|#-s1ZXZZ6pTJYdSAt=S&JN2^ScPQm~9i z{5bPnVFas&PVX4e3qyuXz(qjK)bH1oxvf9^jD--S5gR{$uDiw#soz9#fm(45tBtbl z*sI0SBUKd{txaag{Jg(uy*h(Ae|I9F%3Hok75Fpi^MWR})yAo%{%cXnc}OHu5DRC> zO!@S3W;wB0^MoYW`>8OY%DW`xxjv>6@=}PnxQ==4r^P;UX$DQXxtUk%VZ*OPWslsI zZWJ*Ns5J9}dRb|V-wc0&wI&4}62_0))zPK0#(7Y4JUt)Ux}o+IcIB>z>Q&b5Z#P** zo?Ib7e9Dr#d~O|HgaRaIaG*(C!UpgsqSbj4G^a`T;^Koo5Qi|^tG-b8~--#DqMORaLG=|>u;=<~epRe@2 z&<|b@rHQ$*VL*6fsU<-iga1C}EYZBb6Zq<_eJ9U!k@JnAHMG7yJ7lXtIml>u#1FV% z`xB?*1vP^ti#eJ{(DPFKd$P%9L%`ZlsCrI>rIA zMJ04oHLd5zDBipl+!%0pu&K$^N{RsPkaK}rcHl(niwZ?&{yzrLH42^q=0_w6H-caMpESwu4=y>6Tu&Vsnyspjp9;d)?k1W955x2aU{L@8Qsdyfh4Ro&o%eleX)MU0u9IUqjgedpQ|r$QqN;{#1JVWx%H>1Yxd(>BaGjp5#l)9#=P`gNey1=GCoQJ`f~g|FDNau z(e+3Su5n497S`?r%%<-in@lvCU<;I;l3_An*nQQ*cKqc*)C>()P-LRwmS+jm9bMfa zv)#jnOs=tF|aiB{Z zmsS6{s{?V9on$*aO!nwOtNX*%2_z%jOnWlP0r-H z9!Ija`73RhupP!ny$^wkPxW=DXOd*T$OI2oFaz|=UvG1C)5HoKRf#&-lTp(J7f<^WwBosmO!3 zP+T|xe#N(fMGbz6>r*q5AV20AC*`S;JuWX zdnsu=aL}8#Ul;>|220XR%{~Zi8u@pEtO38(_>)f27oNkMH=^5NcHV`=)8%IcxCg?mh;{``$WxE7#NMB2} z;R@VrU(z=9hBi z`>#x|W1ow&25U1Zf$&1I31sX!vN#3p<_u}bKvK+kRFX^B1;rln9Nz!=(@S!}Wpawr z%wzHJM0v6OdJdumPw_#q8btnGUY|HE)L^arqei6B2R_zjKvs9@CW1o-`)! zMYD-<#VC)v2=;$`#y@lLiq8D7H>Jh?LuQw>?e`R_jGDAv5$H9T*`IeJ4|h!F*~Rn-Yi_9i@@zqNg>aFChxnH z9GA(1UbY?BK4395@#Id>Leo!cTTYKJPmDg)uU#uU*@nEygaPF)gL2pr<+)I9Ckgft zYyA;1Y#2UQW!*0k+%EC3$9_3i;Nwa`Q`PLiP0OWma;^cn{1!28-7*Fr8A~j(gUfXu zQdqXKr-vPYLb_+2;eq{qZ*DG+@Pq><^cg%pF*ZnKZXkGTOg47Bu6-&Q5&r1w9qi0S zELqIMN0YQ$6428Jt&{9}632rlym=28foxgSjUB$8fPbkJGbC>!Rc@q@uE=1`&xq$+9v`b}uTMhA-)0Ay*RCFm6p~Izq8RdO z%OJGP7Y0n+EBbT7Xkw&DML64q-t%gndZ`Kz##p{sMhc{@eS3MHbBoT#0RoN)CPGz_ zC>u991+#9Wtj2h~>a}8pr7I+EIHM&&O&6D!epDPy>@0~_E6{64TOTLnQ4Ep&dz1h@ zW5v@Wf?9*lWaD;$#`EIdng)!Js zIhu)p=b&|<_>MlYeX`Q4OYB=`!2p%s#)c~2iug2X6{ovU4)b>c5rso1<2P0l^fANN zd192DlJ8&oMeCqO-GnUkz;lZ+h}xZrvPVTGDKfdKcclh4gj)CI!Vr#Wlakp5RdZL^ zn&wt>9U@=dn;yCwCcmu6L$+IvB$SZKCrHnp`Bmgt}@VdVE_)++jbhbwSFHXi$*1*YQAuELqYyr2u3wtBM=Ie+hP3RRF3_nxky!f zdt6t>D6aNY<>!^}W1L%V+$_KlyTj2f7JXy&bu{Jjg6m33(@l1f@$oQ~^Z3gkNY{0r z>-~eJeWH-6Nw9Ad4YTO$WkXo$_)7w}@n`%d#xZqqS^lHafSujxFpHiH0zerD+Z0ZD zTE+G2*)(RHDg-m5kANYEa_ggfMhtl|E}dZIyK~TT@DCl2Nnv0Ia7B}o_>voh`^!!e zXT_l4a2`JDOlhTZ2kcV|A3cTsz2ku#pA8uTR;Js$4Qm%_PMo zD2Dq2+S_OR8(cDek2B??V5Pq6{&pa?U$U|zD|p?WJEt;H3Is&-?zYB7CtYUE&{e*T4?I;hnPw zH7wKu&F2TYym`0bcK|m(GCuY;%HS&=pS+!Ckk+{^3S4ip1A5l06IiIn>d%an@xd8GZ8dqj zKsPGCff=U;6*fKVusZ&H7@mC}ey0j4XlRWzSUn$hkbx+JAU(W)4+bXtjzsj2AH=?X zi-7v}`r9m&qfAzv!k9Kca;v4dT;suS_BcF(uJcG$ucglzL38Uz)U|C{DYSWI>%|3C zM{io2s;f)sQtp|31A4?r+yt2hp{ELI;gNX19&lbF90yb)*DonD}5(;6`Ac_fr$-8?It&zFKQ1Zx zDgCs^%39O5`tdT4$rg439xuu05xRfwWi+|3&x^7CV?o32%egrs1#h1jp)UpwUt1^w zBh`+1A3rRfcQCNECGhUs=iKI&>ZlnyKkpE@I&8l&`Bc8Y3VV6%UWe@7z^!1$l(3rr zYH_NnYtXNyFp__fKrC))WOd2K;{I(zLl6Zg-Ye=Y7W4m?wxeA|j$X z)!Fms2~t&+a>kkKP3oVFHA@+sa@LK-Ol*7di;FMX+S>Zjss~{|y`(vmZDFu!%d17h z4UXSmcttux-T&$rH?z;5KkK8>z2C>)d@j6Fw4hOX>)qpx`J%F;u?Vl(k3Xoka$B5c zNRTZlC56tp5J`puCA@f1w)tmmVYJTU^+M?zWtosSYhn@-MUI1|=1oBjVg-1-HWrIj z6=Wc4VVPm}*WbG&u{b+%&+-{4>6*LlKR)wfD~WraaXQEvJE#j759RN}=ZaaB-!o>lhO_wzhSVGljUZxfE<&)Hdq3 zP_nlR_u75hmww_vFsorV016h25;k1(X#l{faJX}V3r&{?`}gm67_YD6;NWo5b??sB zdD>rLqw6)_kIq2(H2SfkvX?$KBJ8`t~1jLX7U=-rgKt z=eB!q69SobygL@i#1jYs*dHUR>q#XcxcE!y*=_=8Uz%!-RB@wf z!Fi#{V?GllHf_&`xu&x^lH?sBKsP>@1?~TV^7PB7WTD1g(&&9<+p+RB?$XF}BpT(t zSnC%msC~_Hl}l?y)}q$v{A11vp?9Zsbadu>bHZL#RyylO)RD&7L?k41r>Ca}88v}_ zR77EVfB37MhD~BU>D054La3{0s;*bhojWHZip*39-UnC_)UMueZ|Bidt&pu4>8AV?-0^0MDsW>cB_2g9}Cm zF8UtdJ{_5!optO=Rhb{IwC6N=2~D8pH6LGCSSXef`Q*8-Qo02=w3V zr$;p*AZmv>_tOI_$pI=;bqQs<|nwgo6RXYyOSK9ZC zJP&d3uwbm#G*t_U+NGXs8dgUfi8iNi{r)*^-WX8V zoqjqeFVjySBAzIEdiHC3T&hOk>+TntWg3ASlG4(cF<6HR?cVd{Dhc!8{Aa+H-~PY)_+X>T8Eus*lgDUcTo}2**wDx*wM4(<9HOG zo?iU+?YUn|u%?j#iY=UgniU_W0eCpJSj22ObY=7@9j7bx(gcmkVZf)^uw=V`xn@b zL|I}EB3#iB$t>9Fg2TOmO?*H)%LkVu2=mVW^h46@U$W+~WLxl3v!US0}{9#phZg_HBIO4$e0cq;qy?drsRzY3CFyFl}Cpt-?)qLq$teA)iCo6KP?%Yfei*y8{~(Txx5!vo6E~Rnq{&#h<70ute!*AS-Srb_ptEU z19k9DQ~#gYTJrzF8}}l diff --git a/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf b/dev/_downloads/68bf3baa5f6498f8399b26d3d85ce17a/biomechanics-12.pdf index bcd11e82b2126da3ed237ffefe1801ed6fa65205..2fdceabeb63a4ea2c6fcae584244ab5064307081 100644 GIT binary patch delta 17 YcmeyJ_B(BZn?8%Nv7yCgFMUH607Y&F8~^|S delta 17 YcmeyJ_B(BZn?8$?fuY%EFMUH607XFt761SM diff --git a/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf b/dev/_downloads/704bfe351153d402a4a0a831ece25675/matrices-2.pdf index a6163b80f5352bab9c11545fc2c2c99a30f9e4a5..e714ed700283e796640424ea5c7043000536706f 100644 GIT binary patch delta 26 icmezNkMG+*zJ?aY7N#xC276eHO$>~;o9tnBVg>-Bu?g@1 delta 26 icmezNkMG+*zJ?aY7N#xC276eH3=Isno9tnBVg>-BcM0hL diff --git a/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png b/dev/_downloads/76c597139b65debdf0e125c15cd040ca/plotting-25.png index 0ed7dd7fcc282681c00b40c462f5f6e0cca76a85..3df60b5ac9c9cd1d6aaf5e3f3c54a2bc7639c9ce 100644 GIT binary patch literal 10117 zcmeHtcUV(Tx9(1;(iIRznu;{(ARt{udKaV@MXH1rdX1u@D4_HfdMMI+hoB&+6b(oV zRTQKIP&!CBli&Bo`#(Uf*^V=O*LZ( zf`dyKikcF9;dv%I!I!-6ZFAo{o=(02_k0{7y?ef1?w-ExuJ?KT9et3lo*q)765^ub z!aOd%zFtUqF)_sdZXxRF<1CiwW9|cbIpw8kfrKDBebOH+BH-0!2;%##rFO$4Fq1GH z5@_-*m-t(j=?wWT_-R<$>tgF@URVKjE^6|e9FK^xQDQJ*{#>~2>%6<=jl1TqJNB_T zfu;9L%)4oMqFE{4!Y$>fU8JqyG`#R<55-@r;`%q@Odo#|xhPe;yS8(zXuuW!IxUFv z`&z)LZAf{lz4$p62=dYJzOz7cx5liIF~r|-5t{Kc;YWziu2A6VA_(HnkoSA*)Sv3DcB=35 z=R3BxwgY2Sj9eyKT3Q7Qu&U>9Xn#tuC^PT-_xo4)`MI~8;g3+!FJE3xr9mP3VNmFU zp)94z8b_Uhv0CS$yFNZOmUS-oBv>J_`wYvR3oi#MZWglAgWT@pE$UYI$QS zHT4`dm?u^c!rlPi;1d`Q;!p#2`=85y>=0Uzmv=M8+UJG5|5|Z{O{)+;zsBlVWg{mo zisVh%&GXML)cF%E!w#2=*yVkT)nnKl70y76c@U(GYw~uW=TbD6kdTNkm}w7rxbPvy z{}ybMmj;@1VCL5!`I37J(F@JpsBR#GsN;Sw^gcX3+_9{(?>Zfkl9E!?*4CC@`T5hQ zOXulPRNdr}T{#3M=;p(BPfi6N{7ktPK@0_+hu&Nw`^OXBbJL-m#etjX+S+Cn8f4q9 zMyf!v65xiWw|BL%v9a%{g|pzri#Os~xVbAaIw@Rx{;wct{T?~A`9_t8M_vgvIVber zUH)!u6l%!SRO{O}eqwVZRouy547-+uMD9m&tTGM6bi1SV)5d5yE{dB=Ss*1v2j8IO zoON)FFSFvu6mg$~fBuYVM#dfQ*+q!-^y&!qWZvLgVq$#h=aPh<3+h{<0R!wMbtZ1Jwk!BC zx(R;1;MJ+70l1em6+`No%?W4Yd%1NXje?YEX~x;g#tR=BnBiaJ;Lwx4^lLaayVOWi z@9M;KA)CnwI*j*E=G1fk>oUZ+?XY9Swj z{Hnb3>+B!ZImexU$1UC0@50!l8=8?<4gEFru0H?h;Me6lAI_X9$R=+0>9D~-teqnt zt+*yN7O)|+A&K-UNMym6-2BW)G1n?|6_a#zAc-|YRtGJgCi$hMp6~z_U(maELE0` zMm&qRncIVVX__Wozg_j6vS1p~^f6>k7=7`#or@U-x*;y+nf%Uvg8B3v!!~i^HqF{JBL=sp00vdR6f!T{(XB(K{B-Ifb%yl zPfxYj5Sj~NWp#p&ms#LmUtGiv(H`y@L9yFAW4P7Ij2$k~_K~&XK5N+iDGI2=^e&%X zhEoN7=b_tj+m<{3A5j`?_3^45uC!8nYf0y_dg?G4i{?HIG~JF;Nktxy+3?ptbXJG~ zUAj4s3cDWoAT0zkST0T)L30`pz zTQJp;t5*~F3}hl^d|q0-%)U6;0@~S_Ce^v8Ne5Jks8uaVzd$p&y*}Y<%~ci2#&a8_~Hv7wL42x?1_5{8S(t z1!Qz@m~T1BtlurHx!Kq{lb}Yt38QXD;0vO-B+Y0aIM*I9wMD_9p$z$NYl||$btet; zJ2W(^fgF}$f5al*c(i>LmZA%!pn$S=W7p0X)- zrhS>IBKAMK7HJtM-U}b%4(>~|!Jbuz=1z6xNQX4k1y=iRv>R_NHZV6oJ&o$K>aY$b z1|dJ%AMG{_V{fxS=8e83+oM*-Q4F|iW8?Y@d^9M|klj?R3gGjd2QedgPYG&Xz$r#e zOw;DS{PEfPK30`WP+QM~#&>}8gzag`PVwxlBNXVZyEq_oBO3(YEx!%X=`dNUh^BIc zmFp)K(r$NqtjcQ$F?nM!xbnvI0QseCPX+opPOuL8FOCm}oNVcs^udaa)HveCt8q2~ zS}G^a1Zh;GwA+IU1{eJ3ntO9dBSCFbO0?!?w{EJvjBXGyXmpb*)_K#u{VlMR76sd;&CGHvX@Jt645qLM5X`pwP zRO}8HxCb6|j+o$GQNPYIJ1kOcFJC_1ZN$yAH!ycG3P9A&eyjb>pEbCXChKd_l$&w6 zw=kuZGDz2P4QS^!OjUCr-I0N~(5s`DF{!^$DB#S*J~gw=%5Ny%so@SaJY2khcV#LE zgTHY6T+le1%oT{utbC$$e6(lA!&Jpdb}u=R_ju?el~AjrgDAQood@O2%tY879?cHW zI8_UaP^jsCPF_4|t#-g1AAtsSxloR+@=?G0PX&+6k)~>bba8oGn<54LQF>fWjU@h! zSNvqXR6Z0ib&*q!G)>?q{N=@cy8Eq19)cIU{Mko(n!FcGtgWrLyjMz!CS#uj|H9pF zSrMvTS2s-}NIyTz0%a!FNN(Ln&W0KL)DWbhnwo+&_gbR5Up;tC$pVc`bP}(`a3T2q zqP?FHr1x{DrmQL8Fjh9UhjZ9RZnGWj1kLBKACX~VIWfK5&ImtJufkj;dre%M=;=I zftGP_i|_o?h6G6NjdPYn3bn_Si^8e4XgJC;XhX?$Omw;Cv-vNo=alppv=jI<(BzFC zz>RFxVAxX#Jl{YD|1>f#$Oy*786V&OV7iy97EMli=*_9R-57vS4ZosfcO2>7+J*>tr&w>uAlipm$ z#3{$iAZoxJ2Et3lFPH$dpG8Jhz@PmiUIkle*&wY$u5w&Q z;H`>*qc(!RpITNSM&?FfhiYmuVjcD+_G3nnp##BE3hwp0hcre}>bY9PW`e<_K0HGJ zdi`LRG5h)*cKH$iGte8al@ep8!tE|9umERiAYLuIa984k6csGzWsUUjLxr0jd5|g< zWBSg!%8p6W4}4cjaLr5UXtH@O8mP`KX{0ing?d~c&V#FHR<~@_7ZRyQlfO}iq4*4v z)njVVa1_0Sgj2=_n;m$6aNldHEoiZ(bKD%S1&zliIWEEola30fF1>)yHKo|e=n&yv z_?#O!yeD4&k!Btwx0Zd97`!8S3k6LjCtMEOzt~FA@&rCtwLBcO$2eED=I%Ow6EDal z$O37E{eC*qP@b6hK;aZrc~0VHy2N{b8Z{aUtWjm#C7bYO0t?huXeNdXW+H09yuReN zV~25N9{{TEJWP^yj3%%=C#OM0-YviXo*U9&ql_{7eP#;m>7!kVTq@OR-(NffX$}e$@1DZv zm@1B`4B5&pwL~mQbIOI}zNa}Cgde*XK}?9ZZwvfZ-HTM^3?Ytc*MyP!Qed1sJ@scM zCJ(^RAHnCI^Xa+sLrgKisp6EuGR~{Qywr^23FJ_o(QqLt-Lg-ISwjWzV9;&uhkIQx z0D@!KC-h-FmOJYrNy(G?j|>60gywiidIUor;Il^?89QyT9OcpS1#Jjqg8ivNJzUNW zk`?@IS~LOQVWGbA@79p=9dq+y<*>tIhu+wgiQ1x${qMB+H&7s8_Rn7n-YHc3;q8M& z`n{)@b(wDQYuOr9@SFARO+Kc}p|1;~ci zCU_YmBqW48+*y6Un+oMIle%0UE?Ql0-59-+Vx1SV(QZb?z(IZBz{1K}qL(2P9TStp z+tb}$Y}4vL*%pNCduI7?*BXA6bBzb$54fDCt{Rq;(wc;?pZj zOH02sAn>n$dg;~uUH_(Gk;W2xqQ;ih>LnkznFD&!UumemIGESeBnM)3)S(CZG&T9n z!@qiHA$kshdJoQ;*6lJwm4Mv4Ha6u3D#s=|$--abujoj7&M2Cin!0Yzb)_o?`Dogb z>u76_bcBT#_cuDi0R>(=LW&>Z9eC z7vfYZh7o7ZoVmHXFZ$K)IM%3tw}0QJ}a9LK@OJ^WxJ@At@+UTL-z|b3f(D&urwM zA0I#U^%*vLOebb#RcIyfJzcmL>WVAS(l#(KQ&)c`DJAvL37PM|IEXIgQVJGOR<;G6 zT+hib#B%nm+tDszjnh!W;lnE6Q|^&Tz|SAIIqp-gA^8yK5x}ZFP0hsqyh=tgG+emgD*qusD=$ zxAhk>({?>IGn2!*Gd!$)eJd`4?smQ* zMRwV5elxS9C+_#EG-L|Mhi-OJb>-#d*}J*9dHn<-ZsEyvHj$;}NJvbKaS*K_Yi?u1 zNkAaxg&f^pcsK);)8-(FBI}e7QOn(b$bIGcdh$={MaoFu$*z5huYS z@6PBI>L&&7(oG*<^O!P^q+-0QtNV(#Bw%A^5(qE9xUevwon6aLNlqSBOz}J2ASGYf zzMJ0SyPO9MG#!3KSOJ<$6W6Ckl7VUsb;EquIr3CD(YHdVINr^`1HONTPf-63grBq?P!Y;U=T&8}>VV6cKPzIzvBciOnafU9N|Cg3%mF>+VTzmFp6 zJ?t{>sn6)n=K)Vd_rE{TMr0{yeHt1X+ZnT~JTK)`>^fZd=G8CP`Y2>xvyfKX8HHGk95 z$?4fbZm9Fl$~Sh!z^bgUU5lSTemwc1-0FvPW`I@}!HOO2ZKQw|lWQ3<5gh4V0(e$0 zTiFIg;+efc=Y{UwwTXPN(MLj+LU!H3D5bYwp7m?Vt|}u>&B!4AM^IE$zsugRxw*OJ z_lFC&j>S6?6B6=4+`fA4TK!@OqsreZN(K(|%A@vm`DL+)61xT$pq{~PLJ0MftpSyf zyK>GjGw=LJFj!e4aU7SddLY$-i3@?BJ8hs|y`sZcD~id=njx14Nf9o-E(hYR)oFI6>N{NCdhzty`%NB0EnH5C7P zxtvfv>#SlCk98d6D7i(&$9!~pRsMROmF%)-L@j`kbryA+@&svsbr=BF*(O{i;U*An zkdv-BZqf*$2>m%gyLkh#Asbq3HYCtOf@$H$sdUsJSaPOIImfa~yI>hm zuX#<)bWZ*jC881k#&R8Dm^hVWVmpk3!_?C9ZC4}}DSh9)e?QNol^}zEGY7jMqbVo| zaM>Av%iKmZS7xUB|2)mu-I%SscgjCN1SKGLv^zI2O?hj34D67sf13SpV~UEbF5dc7!MaNk`a5UQTZTH0VYgC zi{OXNu^K2|oDQu8IFyA3^Jaa*+{kz0={X()S(%H0LfPmNHtIA}Q(4e}fm;a;&BPAX`Oc768u% zMPie*%j=21RO>mADx;$PA{_D>lAYBAiiR+J836mlL|#WHZSHVDuuz&AlD7|sPU_Hb z8AFIii(OJJU8+}@j0Q^&)UVm_t9~m0aJz$!;z!;lS#W|4574mMO>qIGBjK^*RzQZ> zBPq4S+ORS?C|YHr`P<^TmWULFf^+J8N9 zCW18Ed7rHT9HO!MSKR9UQt#>YcC$nLZ2u+?6mhV5t3-$G>@kqMG)}YePy4*|9kU@Z z9t;7GS;|fc-?<9dBLxe@VXFSjcXuL_2KxJ>y0>3uF6IJWA1;;y&83o5pffc{AR<63 z4;OU>MPeQjz0XlVy(3k*Ab8{Ue}fK-<3y|q7?odFkT_7_De&}LZlnd@e*GBOQ(lrl zynMkt(8l$Q_}d0hXW$%8iLvorqef%Jfh1IE7nY6lwN%2P;DqSuI;#xWXlCE1B;2d>)`Kq{@}Znj+%V>9Wnxyy zpzswMYz6~|_+|eDe$tzOhx#=&{erMvTBxn$?I++h*N7h311$HNS1N0LQ{H;0mwvrfKeHtpn!I8ZOs$P`)@P~ zB8bEO>=B@xfpaZF`;WwdJTE_O25J@XN2&uF78Vw%#+Rq~^b@0BVlq6z7Wm4?ckahy z(UIA%NRo{8Q+?=quRnVuD6w@811z~c?hyCwQ09@UYEMtkJnhq}RC!adH`L=uKYe~0 zdZK2XnV7<_^tZ~SS2iEge|Nz%)s*OiMDX9J%Y%3x=wH7b{MUQ=s|JV~4d@R_v}c74 zd6*2re6k{lK|u8wNR#UI7k<+9

gw8kBO3bzcFMQLi6PnIF!cB;73oi3GekmK(4$DlYL-Z=X#K0U*zv z{g<`?gs@?Q45g2-%uJiseq6^=w%G9xexMhM$x)!HGGvF!*aL@@jLC$G_`PYctsTds ziOU*XZ!8-d(3IitK1;mwm{Tpe!(SUJo{~XU-+2FNngR0UnB(v1;Ii}4&zt`G096?{ zU%w@6x)rZa9%yEo1h6x1wA{&R_CpK;Xn0_<&$V=25O8ABR#Z+LOb`=aOY-rI{UC{St_qR1C!D!ix}AN?T_@+ZmXM{(_T2j8!Tb zlLag5qT)%KbNY8YNh%#1Gq9~;Syl=dkAiU5$S-*ccg_x~c7V`K{o zcxxl=NE$Zw9uQn(9>bSk@E2UIcpbdA*dv_?pS5Z|<0{%9|64SG)C~?TpV1I-3%^k`El-UZ^^YV$g;c6;0P$*)lbgFMy9tO>j zgA)00l4{`;^_jwcL4Em~87Azg06COIN$<0__fOR*$kcR^W1~OKDIvKdY#>U<`YIH% zm;UV#RIgrY#+>V7z3jzE0qw^E(jTWR`I%nU(}Ry83mHo=nP1X|1@76nE*oz#MEo+W z?J^P0$a`-D3TWs2H)N<@J%$T1iN9>$_uGJ}u%Qf8l0d4=Txs6CSz;#Eus{Lo#)elj zWHTfUt=;+PcYob;dUo_v^?MQA&|0|M&Qslo1Uu>zM4MFIzP|I9!~(0Raw4XMSkI;h zB$bpn$pv9izieq_CTUect0el0wcG}!cOPA;8wBi5y}E%n>O+1iN7aeYcPMj))*1Vt4yyR`YGa;pJ#iH{$h zUXJ?{+=~=s#Mn@uw2>tvux?jkFiUmC}0#Rtf85hmEh;~chGmfNO zoOTOsOSAq(VJir+vf==00g@%d?&>J07rUPQv5f2KpQK`9XMuR$H6WxmTvSe`GV^WQ zCtop1BizpBX=y(H+x!r0fP!uo07fN_q}*pcMB5b?=(a>VH5kwSfB~cm1$LhtXPelH zidZ?FExK+($BVRA+_OgJ=;|{ZJ4EF}9EvVyr{47cY4P@6T=ncs0vHYiLNnun!gNOH z&21Qzht=Rt^D#8!L5H^-%#4m&>+AMKxq)Xq{sn=hhimbp*l{v1V}m6XrA;7RxEBY&I? z#9(8)_kO_JvQC_K6(a34C@YPen#YHIoB;@Dmq1MzLPZLIOF3{T>X( zCMgt7PK7{uaUz{kcv;U0sk-WDD#O>O%Z`Fxei`7`(gYsz3w9fdei~S88f%Ow7##M>?&V zeK3G6^J*O&9JCM*SFbsIpu2{c+%8th{y&a4+~huoD(d-P#~bo2b&*rJ~Ht zOv_nOChB4!Y`yvj1=53aGTG+s!S$4kTxFn+-=I$w0eOHpz4-zt8zOcc)+Hq+*JeZZ z=cBH9&0(2ml21ceC1607|2g0C|D5Q-^79#Fl>rLuw>qi^Tq9lDHJ+deDGKwQqoYJb zL530F(2%ySZXz#<4uJ;23o)|5Irf-mWd5}zQ>S5p)R!TY0f+p)4h{$pCKeX167*0d zka?B=00E&yCq)#Tei|k;&f1m+oIq3Ef)J1P14qY_s;bT6h(^GiFa-r8q3zxa>Ofl5 z1;SsAyx)p%_t4VMpMqjym5ZxD)_Duk=yonFkhEn=zUFI`0{GfOXu!K`z~)G&mO}G# za&i{82>8Z_^Y5O1>hG^hrADRvb9_shPd~HxKXn8^A%TDvOE8BNqwoB)f&TURU)@Ik dpDjmJ`SGgxx837vH0T@Bx~;EPant_se*hFYAMgMG literal 10111 zcmeHtcTiMc)8-jq06_#1RFI@dPAW+m2_j08A&KOugdt}Hgc$@yKtRbENs^P~98^Gw zl3_?D5M%%)=RNa#-`a2M`)l8={b#F|DrTncJ@=e*yZdxM{d9+DpcQGTn5h5&G|EZ} zS^$v1p9mZ!IsC$NOt!!;Dfc^i?%GaP?q24umO#zi-PzvB-5z7X;c4mWhH-Kf6~1~! z_=+Hhjk~+Eo0N!%!~Yy1?Br@K6631p3THXttfcP-z)3XmAA$9H$q4}WZ)JsB_aCPa zroErUjAV5D;i01^yG?Q$nfNMC@JWW3|Dn)AHyEZ>UVx%fhp9!7>5 z{%-`N%5Ll-}jf?20s?^6TmQ+=@@i5*SsXx0Vf(!!+;%WKgr1&W z%)Fg!b7`d8QxLG7d2c0$Yq6hgHda=vf%Ka^Z-3^mDK5%Qu0FO`Q0+2r8wHBZK z_pj^64(9{KuzgagU|p^jKVDU=}Vgq5k0N2mz^5HbUkdTh6>)%^gZaT`m%1W`P`Cz<*1+*$wJI$7C z{vI3imwniAl8c9@P%T;FtTtlp(mVh%S|%nX)WWrLa5mzbOjbJ-*39^Xh2Vhyb8P_N z`qy8;Z}$BQHpUw)n*U zVCN5UJmEaJ$vX-S^{dPA;kI3Gl6VrzYo-54SVTnK+uOTpR`>pWg=@@!_QeVEz+3o> zAZWDK<@?6pZV|h_lp884DpJe+6eNh)xVY!C=Rv<28CXk%_M?_~EvJtH3mh%rh1Y|F zS~=O-zjnSy>dMPMz04;gV?upS_~sA7c?6hxPYLEY1LWk~eSk-s&VQ`=Sb#_`EQzzV zJ$3BnyUn(@nk*h|VId!V0_Vp7I6@DcV`phDWJk(OVl_&NVk8`6B2X)xHTq2kD(bQu zhYud8R9LYdthVgl4ULR9sM`CJUaEJ|<9GG(zEyAbdf)z^ehp^eWFgAYnsrtvYKzdn z{xe=HUU=|x>|hAb%5h=XCIXZ<~?7#Z2-?p6`K3Rb`b3@G;H}rI( zR+S8Ek}|dR`8-wxtL*tKtqntvJ8Vcm8J&4)UD)fVN`9l!(y;Q z+P4?Yl4cP7;}F_GvZkGrV?{O}t=_X37euz$BZ~E3yaWPC082-Kj@A5LwZpuz6*?j& z$^xZhvzq}9G<0Gs-Sg|-W!CB~O^(C_coOV+NE?X{wC-)rryfmK&F}3m+bLe3gte8PEDC>;tD$ujX_mfZ>lSL( zM&dT{vo%2L?%l^@dZ00s1mqGX9zGAX?w1hVtf!O7y{SvpN*f!Wtc}{;9W3uu zSxD>VBdL8x0v3jc6V}^Btr7y|`qKvA+;TKET(LmxWPGz&B-HepP%$wL>RTsvpG3%J zfmSBp?If>#QR^hTjo?$8+unzJ&Q0K8;GC(FNTZp*;&U3&7ETj`$`h1~RN#rzwxcM* ze$O4#MdvoRfIRHv1+v?{l7qiXlQ-G=WM`N2x{MGzCy=07NAqISPG+6N!MpD4X!YvU zt_EH}v3Z-7!Ceh#h7;yE8GR6jts6aR@PY**XuSpw@bz_9TZ-rgij|FP$^@&4-<@FBS88GvI+=f2Vz zo}_;4L6&}4`o+mTIMCFis?z2)AL-)a;Ky@#G}$mM5@-sXkKw-es@ndwaMN(ncrbic z%t$SKW75v5a>O=15n6`H;JO6>M1%Z62xON*^zJl6cqGuy{)iTm7Fr$ zVh4>cNpN}Byh`*-B&Ch_rdP+e#P9Qhj0(GW_kL-sLtL1MRq=_(=irj&(^8AEx;?gj zb#+=sDFlThc?4xs_=TMP6;a)jkE|NXFn=`&vwJo|Li;e5{xql?#82Hw-(wDio5>@X{xKoX*Fg%aI@sI^t`OYAzvr(%t1~pKLLN9^B%(st&75z!7?>tA5uiUkz$!j-Cn><(Ejj&xnnk|5%FA#)nMZ zL6rSYcIuhJ$sXKV!jE|}*FL=g$}-<}G|p`WdOgHtGzP#@VuluXAsN3=`mD2x1_mxW) z8#bapuy_ZSgMj*91Gjv>omh-k&(<}qN+tLIpnA34w)?DGGq#H^-&7V_=r8&U0@Lo% zG3g@Ghm{1ewF^|B-3qF^q#?Wfq5c+w&C8Y}9V)VHL&x$|GJko5oZgQG)#FW5t9Pch z1q3lU_pp$w>m+Dto%%yhOy?;mE(!(^G_^D`KlSrHtt#dMp(wJgQR2L=X778Vwj_7m6eE_4>t^~$t6-23k zyw!>k<`X@iNdL0$Db#bC3vZFsXL)1YM4CPRetP?8)-7^_P*Xj`VW0`<=)=w`JGBTM z?)J|=;aX<8Vum9Lz!A<mcSk0LcAmu5R1th00 zLk9;Zgua93ftCgL!L(;`%que#&Cv4 zO$C^Qp^8~?izF-IFbqRW)naozKCwCd7a zA3Kv%$pQk+$-t)TLh9g)(<}!Fk?!8uvx2XvsO)(HpkLRpKEtg9eGQZKIGSY6InC#@ z(Ivh6k5DI|7sp9?uS#QnKUjQ9t@n%K1-V+X3iMW~WRmt}spKXKh*oolDc;^Rp=p<3 zZ%qUpYgAOvqiIDpXf(u|7YWk>)4rwdz2aIGR@Flwue4IEB49vOWCBf6ngQlsS@nsH zonyx~5-tN~+YgkOiE9;)&y_)UN3jWgGz{bMMi!_OxQ-WL(Irg}e0I#^s5|@_0Lw6; zMwM3j5ekXZP*N4eQ>rIh!RRbI>t%a(Ak=Rwf%bKX@-e{zWtI#CjlH(<{C zLD4HJ>YM;l2YA!gYu4fJHlPCjkNVjb|8&;ifq33_BKnI z_9zYnQHBQ1DLGG#6%lg9I)y!ytv42+xHwWQEPATjB4r)n6PZ9RYC`tOq!{Lx23{E` zw7*tVfgmE7eG*M#$O~Rw_S=lz?GeV}PD%2LVXvW@-gDt)T%Lkm7}DVzkTrSOJBc#8xV;PMi)Fz)?x zeXe$*qSq2zUS1sy%D4nn4H_Oy){l77E6^ibT|`>!;|`E>)op<}HM7;JB(D_^&f_h| zLaDByOeAD;)hR5CS&`#H16&LsSS_)=0SopmtyNcBoKVP1&q(I-es<@aV$IIJ4BzbW z$F;A6!}-VM(NUND)&d9&|BRjS8!OsCg5aToSoe)Dg9SR((Hur_>_nqJ^OaUl zD)1!}i(RirU^BsWiv=|I2FOeAOU+3Xb;y;g)c`E*RmWf{%NRwB7kqTW3_$VbW(-pw zDQ+*XBIRq|FL51Tqs4Pnba$=wR;$(I|cv1zC zB3n-@D_5TZFYXE%s<^noeY3#5JU;Ty_j1DX0foYM*D&2@;X<|yfWm&FolFkU#J@J@ zCT%zUcbYhdgF50qP$ji_V|pN;Br^@CWe!GCxUUF`+d;|UY({EIi8h3khc@(I>E)c; z`n+-{%R}Ob8Xs|8k{udk>%wSpwEv+Uapi`U=^V2GI2k?6=D|PN7N4NtaDHxDfv|CX zo_e~BLGzP3f)cn1vsQ(!Y~|=nf3Mfo)zuSIGM`P`Y1eL{`oEtAIRDmyOll-}@oIa< zS3Nh?GwDHz5mR+1uYkbNw~t{Si#hQsQGK$2_a4y!>8?zcc@vM za_b*S^_t0-_T36PxC)c5;buSIj~yKPT$hTJ*|Ygr z?)4~8=l=a)U7V38Ck_ddT;fhE9a^m!{wwWV=TF*pMzBsc`PM{5MKQ3mv%lLfDJU2m zEjIM%p)ENS6cEt1u=p0qmYbO=KkK(`OxP9|7hf94xZUMi%WdGl&774fPt}Rdr0zGq zPMB`cwY0RPsdun{QNb%LjLyl)$!IpTCL;-WC4-ITQ4J(lCQLqC7M2zm?l;aG86N(% z-Y+}W$&M|Gls(d`u_-Y63bQwP}`|+|@H#@#4vKL3ArIbaQcQP+8ZjPDia?oA>(Z-HT zmX{#`bFIyLO9E96_$_O!|Fp;0VhB$f<;3@!o5R{fg?hkDxlpI@fzL|ag1qM}INEHbOXr5M{_oEp0{P=NfLoVTHw-1qUR=f0Of7ZLm?=foLqUTJA# zCMKrOJv~LKz2WtV;&yR9+bhL8JCDPeL_0iF@-+1H@*rVT?jJiKxcE4g?7i9k z7NN>CK0cm8TTAPyYMkJS&fB|?DsZz+Z~6A^o0+Stt1~q6@cMoVHp)BiewEpd6wJYe zo_bBWD6Z}OF0EnZ;ZJetU}}TbNDz$?%0f17BUd^&2zv7AYz!`rD7)oC%?H z?_SZN&q7~nK|ujk=ldNkPft(6dVEw=rYB)CKRY{HbGy#7nBlpOwKQfH73!z@_1nM} zfpsAB4z={e6_Lo<1;bx<214{&>v{(rijmds~FU%*@OIX&fos zsBH^mQcC@Ve{mX2}iO%%=b%t+|?H7cYKFo)XT zIyD~LMC#1Z_GY-rcV`9rFRI37hpjbNxaGi=NTrlCtPE1qBoL+=f=-kh5i zGOoYR$H&JkVV^+6jG392pwsYXzV_%vJ$$cM!RxX0H@%`_($h-|OX^j$bJ058aYCF- zUxt?U4iGO+ZO>v`MvL^b>f9D4Bj`QSut(m?gOC;U=oYH^MW~rA86#Y{50)yrlpuUX z-}uSUv^i?X07eLP0=&EfuP)ve!wg=A6kzF>NbkMH!87Vg{t0JvXOWK1HgH#yW#)kf zRkmE8?C;+et!_W>+DpB<3(FMij-C7{k(Ps6fd;o@Q31W%pS~ zCXVfTn%_Wbz`y;?w`$27NBgS+P@62YKT!e?iU#J|0yp6i6X4{xT8nQ$& zR@ud0-a6G9kn>h0Lq=xd=TFS%7(SoXrfq+BnG3-+e*2!qrY+4|`%I!%yf<#>J4{yQ zj~xbCain!32SP>}~h96BOCW^`r=9;TEO79o>Hz5M+AD(u!=Ag%4dn_J=a zvjU|tM}HzaEW^m%7WzgQb&WDuQJ%c#Px3=Y1if6X|2}?pGGbo8@IkSbmDO7DZ zxHkOf&mV(YXY*fdA3EUy$^CDvs>}C|eCz(S&3g7Y63-8Tw9mJ&W;@iXi0@`reKAsA zR@che%S)m;eYRqbcGZbNE_ru7CoAIJzhbsRi$9D3|HN#VW3pOssw!NCG27x{j!1J^ zDv6w!e)YZ3FbG(_$|IZ=o-|JMJlu99LcTDkmRPjR1dNr`$kvO{nGL<2KqEK|dXmr0 zFaq;)@FGld!XO|;a4;7cT0cLoQP^>s3?1yQ3*|mN_hd8Hz3;}q08Yf>xTennE1qwTaeK-wl3Oh) zyPyD)RDCy?W&IoXwpX1{X9e+Pw`h?JI#GmA1*Kjcepg0{t0(Q!fB=`QPjFXIhuPJP%3Ld3St$jIxzvE z(?5g8)b}>D7mp=zfmxrsyNSMF+7s`fa_`evg+l@D%IQ1Pkw<;uK4Tw;KDm$XD7=a23z$cn4_2llds%jmY#%9$rlko+4rZ^ z*?1?(EJXRi+3UG*q--*w#eGpr6*I>Osm1QNdD5d!N?evfT$IQ^XuF@^neHo%=BAz{EH*F9a^19lgB9#p1Akxeme*U8P z*SxutNBOK?-@^xMAv6PJ`R@i(PW5y_a8AV0Mh%|x*rS6d&;-W+{>rkNn615zSEf^D z0KfXN5^e}kyMTAf=}pc_VS$%141kwU`EyT<%w87+s;?z5Q5)>X<|w578<;_eJ$fPL z_Ew*q0e2xZEN8Vjy56%Yl}thda41X7pRbUb+h2w03X&o%8;ajL_4XC$o9E`8$VJHb%Ii$CLgsOs9i~>nesTav`@xy!)bnA9L_n zv^1BPi_gLAgk|*ExunGRrv5NXgHSvFwaJq&47=!5``myr4dATTo18oZ&TuCfzXuAz z-s?S%SWZQvk!ON8XnOkWFIhP)hia2`L!QhaxWYYus7?IP$tbcQIcsxp{!b4Co}2 z#4u5g^^4qiO|ws=v`V>Y{50obI!ELIXoxJ0OR$(V$fychvDr2Tj zaTlcjDBv+uTk$Oickne%W1NvUwHEMX|0;cmFtl4hEbvZ?S^P76l=Cj+Wn5geOwu;y z0=1-PUy|71BxkM^9{il2L_f8;gOKZDaS7V^l{E-SqjY~;RJiYaUuvNo#~WBWk=|df zfV4}}4Y#)hJ<7mf_PA@P1>I3fhZW#cqkJe^N(+C4T|`i_c^UhVNf(? zrndq%(vLASn{I20m&=@Zi|W?o7h|-0q~;}O1uY+qqshkqd^lruJN=xAnZn7}?@O7B zRMf;TBtgCpa&abP2;Iirw_-k(@IXS^o8{oNeh&g?9TT4%+lNM}Nv+<5w$RRk>zZuB zr!2^>T-Sb*EK!w8DV*ulE=qrBs~GiA=!%qCqtZkH#LGL5ubS4n`nih4Yo_Xmcjnpr(zJaonL zJy#cY)Mbr*<`Acj*2w2U>-y)<*%a(Bvd7(h`O2W`U1}FLfs~F7)){&dwX~up+C+r= zJTIBSI!@+YD3S4pgLlp;`|ba=U{+zk4e$#@TlGdYA59v4^ZD_*`V2xA(meO`^In}5 zys}!b(in}@mVZVNp z%E6BNB%9kyg2I+2c-b!#eY7c(UvIECl-@(GgENK8W}6KZjY?RCCSG~`EyU{n8+}py zr)B3lz`&?n+RRUw;!Aapa^IR*Ibv%SVgT1m>nBsbr%LqN4-S^5?>dLrAE6IR&`%Ti+ew`ol&n$htnDtq>hb*jeqxO!rQNd;2aCo_*|p;_0fSni zm@+RXQPC+83VK;a+@KbwmsvDwDD&BHd6xU$qE@m*bu1uS9Sle^(|=Sca)M^5t4 zvYek*ZM*A>;1!IS!Oq@Ww#Sbi_*Oaya9tiplM^d1HrXOAF)~NvMyQ$cEd49&6AvQ*mF;k+lB~SL3KtD z3OY4;`5*npcwS&>`Ie(;Jz^r=e2Cj^@n?BwlGkpNZv_V}9hw2Oavp7Cb3UuU5Lj`& zx7mUtk@UMVPa>(MtLraz6bsU9)uduB;!)gKc$nxcb~|-ABe2rDqAu!^_{bCRLJ$^W zk&rQq351EkudLp5hj9*Zr)Dg&A&FV^p8u4KY>QvvgW%@l_l!7LNZygHGHW{uY<#5B z-Ms$SusWd#!d?t!@B|Nw6e+HY*c?!99a+b)lDj4J$ekDFHUr-y*&D%fL*q(r^7l&2 z!?U9ZVi6bI6g@#F_d~3l6;fadu$25SA`Cdw{crzFPq$1uTwGjBBZcwr-o0}t!LK2%gS)W5p{uX&!M9_lvHwcW zKe+M(lRL15!3MGlu#+TtZ)5QxiV8%+&`8GxpT4iB_qesiu--jiOH1pr^6u_#{Zc`p zn8(unD*K7QIN9|0_}s?E#>rIyetvoO^SE4CMQD3Npab$*Z{EmRr~6f>dCxQb{PAOW z*Aw<7Ksw9(9(k)Bu}S7bD5HQF1ozU18$+8?JEYEMH~~)m$B!R2f4+TGQBx~Ete{|j zq7g_=Bem?n1e+UfBY+$No-jTrxc`G5p#P*_=>Ms)Pb|KD2>IOArO}@z9h;U`0y(Pj z2(s4q7EjwCA*@R*x4Zx|Ws=jAEjSId)0#(u+ z*m9XLRi~|^qjPo$tVvP9c9PPjt)zOd)e_jCH2wH{xQEX+ZL3-e3CL7<@F0$gnwoaU z3-VPu5Camn@7%c~wc5B&Y-uTkT%GLx?tklldL|_Z7zzb<# zZK!+(28Ln(Cd?3b)A7+hB-knwC~@&0Cr<$mv5rXg(%tn10mzBAnQ1)ic&Uj-M-cSD k&Cq}KI{jbmcsimzS=siIPR1w|ni^2PgH|Y!H+%X&0NXMdEC2ui diff --git a/dev/_downloads/78092bdffcba955dd374da738fd5c1d2/control_plots-6.png b/dev/_downloads/78092bdffcba955dd374da738fd5c1d2/control_plots-6.png index 360c1e781f41efb986fa941785e5906396507076..53f120234a4af3c99a42663a4cd94f8c2b76e1ff 100644 GIT binary patch literal 22678 zcmbTebyU=E^ffxe&?z9Df;7_IBAo&v9V#Kx4N`+Bg0yrAN;lHYh|&^*bPdwoUH6&q z?|tvOYu$I?IneeAt$^^L7xDW`0KvhLS7XpDI!A~qUCiow( z)9Pp7mxPC+p@*KcjfeLOH*1LI3lA3uXAcLvmyBN4Ztix@PJ%rAd^~*IjITXBT-+si zc^&`ncknp7+43g18M=X^;JBz5xkDiMTBsjrkar|A1Y(G$s_^)kPsYxiw`rm^4c7j` zi!fLxl=BlD{xbg^_HOWMPnl6#kzG-$O}_PXdRm*coso!;`T%$JZ~aecNq)MB zoDGVxzU@J#yj*fnqFLMPwydEe@yI1{3hcG+8>zE^In2BSG-6_6GESN~jC;hyM$DLe z#Kdu!_?ApeOazn&1qB6aK6rRon2;rel$h8K0bylg8i7MK6cloyu#~Vc71;mB2mZV= zs&}HpB%+V}BJKC@Z;@V8{{sOUaO}R9cegjMM{;q}M4h8qHPbAIzDSGDpKTOmb9rIyHv0b$q8#ddHQvEb~Ari&nd zWSs4Lw3;I2D*!=ede8q*=WRtdFqrU{UMMrEzeh_ONk}Jw++X}j6j0t$46dZ@mQLsK z5_SrE$mz~Zj_Xoa3f~L)uhO^p4?Q)&w!INjvg9?X!%r7=?&^%77*%SzOUlTIlnJ=Z zwjKJi{jE?5F>_R5&k}~508j=0xlV<(o=5u9W75iIkcjJ z*JkKTrk5-Q1qDRT(vtBL8CU4~`np3_iO<15-?yerdR-9K_{Ht*$ol!Wc;M2W#4#y) zB)@w0sw?uxa&LSbIJaU1`B#hf!2Q$H!P6$|7h>MKv@I39bGp@SWxS^ z(wFGB?!L0>8m>WC0gdmagw)~8CY0fU4WhVj~&I5GS3V zpJz9!ddT^#5DtZbOky5zqVKTKMwjJ(h(k+9x46EZQd03}e4HFSD#b>(mCB&ITkfp( zfGZJm-xack#>OAu+&eS%-5a9?qcT}DYXOr>sQB4yzmxIWnZ{67?yiZmQc_Ri{^8ty z6RKbG`~i5nX3bt05PT{D^eAd!`J2lVojf%%p*Mfo4J^)nW{A0>1qTPeo^KIe zy3?+%uGd3j&EC!$=^_NOch`c(^-fX0e*Nk$Pwip9ABXe$&$kcMqD~o?H)jj_MY?%^ zYwafzbk$BaMwL(Y7A!dO{@z@jCC10cUv5>jkKE36e8AHO>#MJ;`}xgie$<+C}mb)HF1n;gNGc#SD3{^IagYO|L+UQ%uaztkF$zu06=2^`MKUZ(u-k zuGyPcd+4gLJ5|i}+nbTxUS@l?Z|{B*^Q9&@%{4vXB+5 z5x-Lhd}<+Vg9`J`%abjB$7!L2M<(Rf{Yjk(9D4L6VUsGJ71h^ zjx`4Iypkp)CgaBBOU>YIzb28rIVL5fmr7Z2fAWz~QAGv2+^jh?o=yAZ+F&N7(Cd33 zIYS`e(P}n3chw)|ycsJ#2lMEwFs3=5$Swz39UN4c`h~#Wp|l`)Mye$kfxP^M(^>G#~+hwndp_%Sypz4I#O?fk6F z;7|6v(tnI2;ZP0M4G>w~-(Pj_uVn?J{+KDpl& zNfiR(VR5|7Wa>*7AwK@EZ;BBvSEr7sXR_CFq!lfkArn9ybbWyJ^5siQTifJ1t#Poq zAWy%)?5yDv!89;1@K_&)I=7yXqt>{gK`fF^l3elA{m0-gM|aN(*9LZ$qzF%gSl{}C zg;51j{4-ZI-UaL-?ksSRH1twFa8$_wwM*;j90a;ft_rcw+qX=NjF8s1Cw+&`Y}#KU z!8^W!a#CneLEq%P_vIA<4i3)w{!b#EMmOsOPJLX|`N_ErW4+#-mDSI8fW57guYt-d zmj~^yAs`&|jBlKroWugJ#XvfNe`Zn7pJNjpN>A_hrHz@n6X$KsKiUL~@Orj^-?-*= zFajaRZQ3yWI!4n<1GDpp&nlE!=rx?jtjTh=!Bu>oje`T{^z?MH#aD15j2x18Ka_|e z`e3PhZStK!fpC*Sx#{C@5*D{Pdx`oOydLURkX|RJrWOY?C4K&dv(ft&1*>3*{9~*> z>ShQ+f?{h}Z4|#Vz|1xo`XOE$-lIjw&dy4o2=m3leEE@_4U`s>wjR~F$_W5 zE3XwWJ``k!uYXO@JwG1R1`&PBEuC6@v?ntF3d~@gw!52~04jrtI8Nu*Hv3PyubjFH ze){xD9#k7pm)}=e_fxN2J+|To2;^dF7&!-its?Muwh{kPwpVU7MA~5KSxo?q%nvm13K39UXeZ3dc`DNd9Pa zUyB75DwKeRI`7W?O~po77~Ev}Z9mSLk?p3avo01GIk-wJ_}L(ISsLnLz!UsPue zXZ{aqH4y%vu#`=yQWSNQI^#G0mk`p_?`X1XxhbrlHxu8!;PZrVa%$aU-lZVu%lT{n{!F-yMn+ueJq zgqVDB;c9AV-*STOCzc!D3g7Ici?Uc&SYV;SR(Ad}KX~lDGFAOum1yKTo>|8lAPQgf=j} z&#=YBAI#)Drsyt1OA9eE@s*-U-*zUzq{3liRYMfePqp45gCko6>Am-C0`7Lr zE?`VDw~GtB%H79LLCVAv6eNj+GZmv~8#=p+d zC*r~>CHk;pgJcj?9e2}V^dF!a3EJV|h!1#(B0a>$s9XBwX%vmoo<(U2dPsrostFMh z)l?#H*4b#8lhZ04!Z$Gm+q8{4=-2xXy>XXbn~n|+<3R?ERp{RRQi-P_Cp}QQjyDW!g{2MHEv&Q-N_5_~I zD9))rq9dCMD#^CFXud4Jd3MevxJ1S!`&^-WIgW<#&{Q|&p#ZT zslSMmqxh|={79&&3khlPQg?8xUvSWE+|ndJqqz8u%vdp0Gac=banIsLQJJa06MV}m z6%G!!%+tO0QJAQZ(9Kbv8Z?R;8bt%sOzY{%w^9u_S*3tAxO8^)<%R!!I$y24ik9o< zjg=;unzy^Y-E*~QoUX5;%D27DyX z`h6UALvZlOVlQaXG#8?1NP0}_AY0?T+zyb+>iDhhof#ON1Vme=_s{p*7m)bgPvLQu zX4OhgdhT6=TJP#KX|f$nsCJAyHkPj~A?aC1Yr(blE0Z-Gtz2p8>F-@9$^|66T!u~9 z$fUsO6T+}9$2b`uDwt>JPArTU#?d!CGEP~0U-S+E5pgD>@3GtbD<|WwBx7EDf4GQr zI0tM0cy#1VJU0<6rA8N5%!g0fgNQaZW@ZNV5b|53ItneFL-6WNBquNe6UAJyem!u!^a zQ9#$m$!n)?)WX*l^r7hJ=!^iQR@)4Wm=UIaKU@j^{wlcI*4oi^ZP0C|DBhIec9|4; z>NuxQg0M#z<;^^bx97f#!i$K7kBT6xDs~a2P08Cr?5uESNH9uAR(c6my zxQzATuQ0$3!~o90rg86hW0XJO^0?;g)ytPI=@t3M*o%vZ*+w_hR?a8~Od`yApC_xf zvGn+sZws5fgFoQ0_~@ng)xUMk8pN>8 zUmSE<1hTTSLJpJn9H(ngR7GyJLzN3=h)23fySed?(+%cD8e06CH!Sg7MaYBuLJv4_ z4D0aEw*@U1WG+^=M-;Wxg&p6t3Z@J|wI9cS&yd9O-w!V3(o&71OTE3anDULp#Z*Q- z-`+K|y!1$=nraqx*-kN?k@i$eA{Msq+GnXEpPxq%$@c68wFg$w7{#+zwb%{O&y5+e zM#Ia7GbO8Jye~a`oBe$)&s{dYECKK*(T5ieFUro4A!xa4D}D4_O+@WtnbbT~0QHHU zR=*9rBQ`B`Q&ad}TRhHlQdU0yaQ4g!-u2#Z=zZ}x zRMgM)xHr(7Z;~Gzjim85cL_nkn1;AsN*K_`uOz}Rzg@IpSW1hVHdMCTgz$831Ktn;RpJt35hN)Eij{#4~N@d2zklTt!N1-31Y0HmUDBNhD^r zk{!xZ4K*6dB;4K`Zr7l%UEcBkwD&;if_?D#P3`824oF=f_ORnL@>h12UA6O&LLc)6f zPR+pL+4`wkaLIBLt=9$}Y;i!{9A^lE)Y`-DE{L8MeQseOVY2rR5Bse-nveMU1QEfj zX0d^gqargA#HP}zAgTo@;GZ*v&h;HmDd{~-ceI<-1bWq5P77hLDK z;^CeplQE~EkTf)=Zw|vE!o0o2!^TC^${04&Uwi?vC!t{5VKS-xJOy9yXC@dB-(+F3 z|A&P9{zC9O4a2nQ;lzi#TN7~D5NPR-`Bu5PrYdX8c-E1ooiPK{d$+9kAWuG`*-!L2 zsX0#fXxOQDLwFQ$a1iftMu=BCFp%-uR*tmEMQ zyXoeHnqme1!}II?{rbWU(XH&Qub{9B(7bpEB`to-Nz(6>z#ZW^ zeJUbl1cv2Z;MBXV7+Lu3O|V%rWt)P+#o|9Shgo(>E&>Lgt85co%t~So4F9uC?nj>@ z6KWlg*7_r5n3(#qK9RA!FL|DrPuHKcQQjj)iBS5S@NjDqlPHNHsr?Sq-1mdMUwByL zj{$NH7kv|qn^(rTxwgA2ZV)*B8EZYp77s^b3g1yQUoP`NRpc*&6> zh`Il&=`GpoKTJ1o_ZWhDenFX-1lkaC$YcwvfXYT^BmxqM&!&w=K!b)w2q9(bJ2B_s zXJXz5F+qfmEG}C@N=@thjZw8 z7{tp031GzRedEQ6f%u$hZdmD_Odi3&@wZ$SSTkc1Xqtzy^ zKALFwksQaA+*faB#FSA}4amY_$L!{`AlTWBpP47;cM-%B8thE>vi`|a-zxv~yEBZK8M(266Y>KNkj{!vJK!$A8rQx7{BReb zf#XtA41E+yjKDE+^~M`q5qauOCB1Z*`%l<0T5g+!CST7{pWk>lj>{#O49Q$^du>lb ziHKro_uLmdFf>y502p`fo~pKW-I*5tohn#xujHXX5Q`cFWHQhQgs{4&nE!?h2J0ed zoO83h%o|DApKEyQTRHs?R;vFvZ#z|G4LEu{&gZ4r;2I4q0>}U{$C-;8&aFICC%4cx za?h@pWNu7~8YV`g26b-ZC=fEPfym1@d_^P6sI08iV7AiM)&?w@U1?a4zh)NC9JX>K z-wlruJ~BuLmr@Y({2yMnk)Y+t8}Zu5R=D}vSpcNf*D$lPDtW6auy%H0oFD5ka^j|l zXnG41bwdW_IFPb;ad$0UQPv%aIXSzljEeIT zJH$$0j|jX0eWEp^=gOzuH*Q^!TiHA~4kEjrBX@EQ4l^9gW zb9?~2Gx?D0UCVA&*zcsWNBfH(XA{AZW9-iI-gZf zY>ihOVEjX3Vu&D?!`Y9qad4mzA79_a_PZP2G$A`Q0B#x@8Z3KaA4v4G3ixG8^rrr9 zbO)Hx(;!~@^j)Zf<5)qAN8NNw>Xv`6eWP!n z{e0}fC;VIztu4T$oG3$rg|58GYs`#TXWkWEt8(1pkgx5Pjm12?zGLpHW+dG~H zfS&m9)z6zzhW`9WdoD4zIt>CYRK$_zIlkfdclH6{VWp~@rdbO?6DG<^UQKxH+&@3U z78l(v8{c})jol;Gc>y}z&9Qg_FA@?s&|D0xSeTKW5y4qON#j-_SX<@DUO)e}Najo53&qLsmq zq`?w$C`27vfK1rFZzr7e?G}Wa4_@ztk*^7R_YQurqxiMEx z&SO=g3Ud1IKRPz@g7B#AlL_ng?jf01_2BmUz7!N3hYb(BMDyvyO?4Ujp5q{>qM(qF z`Lffhs@#d37y)RW8D|)adesbgT+*h0z9B+Dv{%MLzK9Zu`8}6!c&Uh5=r|58+xm?N#wol)EBmm*34x^K%pv-D4)Y`+#9zCrqotOCS zg-%P(T9COlj`8;NuNeU`acYG9gw=d()GE5r4CITD>bR?BX7OD*xS`dhP5seHhI#Is ztzS6EZie9JWpEKk57cU{$`>6IS322HA@4YbAUQDuN6 zp9`b6BoouOmYHS)9<%Y1f@TsyJmipUvUK2rpSCxPf`V1_=`O~badfrB5wmbAjQ!3C zL?{6u5#(0-no1rpF}b_%P`hl9JZ*2=ReL{$zJGn;Ch3wrFA)~jBegU6pdKG71(qG+ zRu_gdgcm5K;|o<*hE;E__0*O3ad;)LieL+M3q2qMtuMN`=#y} z+r}ZF7e56m)cMs_0UaQ#sf$^vOuv5z1zT>ZOAb}Ch;6=8{q$bw-BIV=C<|e)2*sy* zXJGD&0mH;c0N$C;5&^jeDyh-#|8C0zgB6~?9H7QoG;j4V_&m6*jQI0s#3x6e3(>Fc zEv(Q;K}PlgNPu6R7uq0jdg-@}Qc|=)b{#XNiaRlCF-&5RzAD{S8%gzt@S0*jWOX|v zOU>HfcWG#9>KN405~9M#L`gy1+}!;EKyLX6heOaYFkXz88htS1j8km()>c9cq{9+9 zH_BNvRkPkb$4wC>VmG4(U=^GlgBhq7pa!_OxydUipi6*m#n#sL__s~g0FWkLT^?`P z?REe9b>F5)!NzV;9{B@?yjb%z_?-HfBhP~(E?(LX9!e0r_%j$)y`LnA>ged~9~}G` zNEdx!Ym1e4-_* zsPb(ym=W&Wc7f^T<)xyg*5N)R{V|-Bts^#~RYV+(wJ%jy&XUpP@ZmjjOfku=a(2OZ z0_4R}aIytv+buPvhz3~Cd?0BhR1?sE?WA!gkl*{|9Y_r9#`k>|G3F9uS+0P{b&rMy z4`Ntlg`*Th9|fp}0e#{>OKMt4JNBR&i7xy#(>&D>fIoQ>43Op9V^pMKSc6LG;^G46 zYxb@v8Z19Qzm{Loyb3nXxBiX(;%*P0))w!+sj~eHwprP1nr=5ql}24%U1e=;=X9+- zzsLGhjZ^^)@MxO)nZ9+qY?1G0-9gAWA*8J9<*c@>RETsD)uA==M;-?9NjyLSnJ72= zS*%|ITn_jU6)mlCll#QdNviSit%=|mS&^uKAorJU(2N9hhbg8R#neO5XzrhdIyuO# zEj%_hHt@8NKxJpw%Z~)GfITakF21)Jpx2wrjq=q+4JYzr(0+tqA^=KT22Ife`}ohF z-vNd2K8LP?H%DWK(Xhe>s7^{z@DQxLIK8K_yPxO>myLCtrXSX8OXt-SRyhD25cmTg z0UYvqXRX;|L$`+vEMb}$v6u_Q=ge%B$O3_`jBuQWfEGmY_?sdq14(c8kv~!-y?Ko5 z98y=@F+-r~x_2Z(uC!3n@JA+A6D@$&&Xk0rnt16nRgC=*EV)zxIlyDU)57SZp&Aci zBC@i`E&}B6gKT5rIkJ^#Rn3m+RulP@f~=xSZsQvE{_cFu^!%?ROnouG6p)Q;@O>9# zKkopWKa>;?8AY>_1l9PkQavQ|bNK6%xY$@YxQVYo#hz>nXhy9QMFLtVVd6HW#NTU? zUH(Q0k3KFo_OKa_Q3NoBbO0d}I3DDlKE3xYB*Z-KMrz*=qE1v^;ou^qU}_ z!*@o+?#saF(6f{#ubofeDWDt_03Rys&A0xku#g4Hp1HT3LPCgHb8c^F30I{})P;zn zKq~S6V5VFDY5cPkl-ek4Kb{RJPHb#!1h5cMD9G zUf2pSBlQX(G&I>t1YkD^`<~5t3$|K(Q^09KNb`kj=)Nw@U}+7cGyE<;ew`*5PX*1A zU@=h=7h5lXU-}2+BYvCTlqf+sehQY@vrH?ED`bzUpoE4;4oMm=9ek*SP*p`tRgYjq z6juJ~>Us&Z_Y_fQ`oS#O7$Eml# zSA~_=!23|BS3roW1X`IAKL!U0G2KlRRIGql9UoWm19E-AHe8;$`zf;jA=>$|UE|5g zmqupaS-5yCwwC)lFbg&gh$Qd4pJ2$?&umH z2LAj(*=~LTdG@>0oP?CmJ_N|iC@I)xAT6(1im4o$qvf3GXuxb_%qj7Hs-Rmx)o|_;HMLK>Bw?i^D8lBA>bcArEzqAlK}tu1($YPuC*#^I3n`5+ zC}5MhTxV7&xMd{K32q8vK(XhOI%)RYrtC8~Nn8cZRUHM=@V)s&6Zbi-Prqk?w}Tke zTF^G4tVNU6wlTY(!??%m9O3P<`#be=CC^6|8nqd=%x=B~kROK;BO<8~EB$T+aFvgf zlZHTLzXz;o5BidMV{~$qz5>S?>jGUwbv9n8u3LbBlqoBwwUpBW=D&Z-KKqPEGngR` z_|CRilQaDaOv=jHR;pB14Gle0ZMb9t3@d%Tr*D%uC8&L_98(=ukPtv)RosY7e}uoa z%X;s*7CkE=4!}ievMz4W%?SlLuQ|T5vhwln91Tc&U=OPwT1>hVJGEl~N%z-mIRssYi77ySHxofEwd|D9wKC6HYxyh-Vr{-o-R~qSb zbeVw?RPVd&q|q8w*aS*)~ zQy*>hH}vf>-%c7{`YEK%U0G{jU-pAXSY+g{tf1TQ&9M^Oi`k0y+v2ZGob1HJh_i)$ zyWyj?l~yuez5(s@{SwPTAtgm+?lrYp`4{4o5KTXGAjfV{6|oMTy>{ zrvB6xaMi*8(*=cys7v~!FXUcImlXW@4=ul0tcr z(d_q@vfkn1ocXTAAQ-Ug&TVmje9MdxS9`Fzri0Hfo$QD#v9N#$34}$|$=(3EBq;_U zSBL4EUiKIUaNgUSt0k~O0S@gTlD&qrW%&#A->eR#e=O1~Kv_Y{jB7hejjAoPB2s1W zk)?G`iBkaLkPzNn8aXpQeAt7uIeFt7HQ=+;>}Ybqoab(vtq?vdySg!2rPC23+lM_n zMC7w4jbkn-9hVz3!p@_`Ay*_5;PL$NGZz2}idKiRDiU1cDdu{urM-KLzr-EF0>i+f^QQJG7>JVTd7owL?CYxj+Yy4ojQHf>H}$28r6 zbS~>x%oXjO5nN*>$-3<~`F}&O#P4PvnIvq^8r>3PKfAe9ySZ)F?d|<=X>EAF4C;SU ze637KlV6Qn9Vl0asn5es;Ukd=d-6@zkW^KJ?mx5 zDnzM5t?eL-j{&cesWcW$tlE1%ZXzKoXxuD(quEWdh)OWw&9sp8v;IWA%_z|XwHvYq zU%jGK!NkL}PJ!LU@3U_?+vJJIqLzRF zu2&=|Qg})!NeuM#guqQTc@xwX^TQI}+$;%95`;y$G~Nsmn@{fgd~ z3g|?k4vfFZ;DjMwSI)o1w4`^d z;o;#f0`m5Cz-2qz;!6saspr@qcya)4R=Ju4>MP1t>UOuMl$DV1eruv4=cR~b0&qGa z=Ue^k_PFw%hD)1{0#l5XPi!PE8Fxd)E2ye!T_v#X+mM}U&2}T)j zZ)AtXuL<$uN2!^W$>-e<6EY7BJI(|c8RaJHy-|NHiL{f`?#tH*|@zMR}8$7Vs+^EY!6UjjwQ%iPB^ zGFMJ7J;A0CR?oECUR@1c2)d&K!tyWhKq3z(K})18CkG+tF~$B*3ItTHKxQB&s*eP` zC|1MU6HZ{F0*QmbO#2AwJX3y0eK%0uidw?`InV3LA&V=ja^6nwwRNfmY*_)#h*9mVuix< zXjQWo*pgS4mU1#OGsl2CF6#6gtdlMQjmWdHVtqZ(Wa}wM)9R>k2)iKVYQZk5xk}_Q zGxqiM<>2MzJvr>>EqVX`y{U8?%QXX~NjQl+S@yH7akaUoyk_cAm&JFw76B{^q>|0Y zIQl<+r~$YGtf*6W%|UnmW(|xvuh`gp@rj7?+HOSFrbdrlreTvmpA@}4!QH!%x!SJo z@Dsr6-pe~!KJ)8^3~t72=a)Qq@{rNg%(^JDHd7$#lkS^dl05SO{i4mWQSAqkV(epI zL*Cn1E$1+>6=d~GdM5y+kt$5UzOu?%owxKa^7@0J*iMufa6R2W?u?KqVYIKa9iq>W z^d?kQRkdUA1Ab89=Lvoezv86x;GjnoT}aR?KiPr-Qbm)E`@7Mvx#kgvPC@G_ly+VMj%hWwrMejB>&(ax6x>Hw4i3|>^NoVMprSa|=cFsW zpo=&F&1A>I0z=*10`Z(BpJnf7mNc$@zF!`7d+p(QmEH0C27U- zPzA9&m)`dAAe?mLiol={Qu8J;5Jc;~#oEmkqJE+8>~j1Om0`ds)o_dN51ER_QF;W5 zSiR%cY#HzzwG*%akMifA9A%xqrggtAC@@`iOm4H=ueV!sYFla zP}N8nk1Np1W9W|Q-_@dGOKEKGfBxx_u?lj$v}lhgB3(4NH$FI3FzuU|;C1E6J z3C3#e4fM;5h4l-x=*F5nx46}tb-~_MySTjM1Vr>0u#|gljnmZzG+n>V;To|>Grx}1^%-s9*P8tSyBhZ=3sam?1eq}KTX=wR%C z@5Q@q*Nr{rjBbaqVls3814WeiyFcmCPhiE247$Bw8x5#)n0gn-to-lZ*<=4g$C7Rh=`6Xm@(cLU?(`-h*+{(bS0ce4Kr@ejz8OpM-J0Rst( zdwVfJp;_BFsCUMif2*z)Z%~8=l+7Av=a$QX%+oej9v(OQ(pm(l3X}ED47ZnCypXCc zxAXl)F|fW#C&|aJ2i#qW|CdUmZoHO{QfL?gj^m8b_W|O8KoY0pz=vMFOCqp1WHlcEreM|q+mjSyd*<%D(nkimyu4PK>-4CoNSW3a`1UQPx?>g% z4Hs#Qz&z{2p7pUVC8wS3+<;e`i|gzRqSoR8yig=SVc591^1xmTc0(wbV#(7q^{1qv z*RqcZJ;F0{3Cput@(e^f& zGlxicZr*oOyiWZc6C-np4Oq@jz-QsDT;O9)^|Za#S;`_D-+8g14$y^Zn?DsOZry-M z{8M7U>wh|BODSlhQO?k=MmCk~^M}du7xon25>QD`Yf4J^+ewbT2IM7uhcy86wO!B( z+DNGkH#h$7?r!R?LGiPqn$RoYs$QRK7Oit$a6&B~fGxl!op5>!0<7Ap+g=C ziB<92p)Xy2zh{pZGWlPH78_OP7wZ*7qkgA}xxW0$t;{c4(Q^2y*tD^#s3+9<`r)x`^0M!gD*H=b<6jVi^Cl&!&pc9}g z!2oU$`B;RsazN5_1#>H!i7SN42rE0S%+EG-6ufAA?L?6b&W-Ac8ZXgJYdKw3J{=RY zaB3VJ9AFa=X!^+l0fLBL3IaDRbA8CPRICG=tW~#BZa<^vv%-#jks}cCk_0+i`E_=8 zt_1L&GN2WIoTC)A|5s0Yv8dpS{8CpGzjfbz0AjPj>`GHVbCnty7aB0z6sTp?gWoM`C z+qZ9EJgXKMI~=E~6hSNU^5r+w5SDS3Rk*HN-kdT=9vE%R1%)E{R0aa#_)*@oaVGv}XGEz9JoxTNDnXaMdFkBT z+~v&#A6;D%Fhc_e4-XAu9(ZBx4?G7xD~SdW$XJO%Hwqttaf(GSSTuCnQ~?G#w7y7% zzxWyY6~syE=_eKej2tDXtE-#Yd8#d3_745i{Xb^jYPT8OIL_3UZjNgaTGxspNUt)7m%s5CE#1b!uM!(KsW*!}|$7 zasW&b2rxtl8lJ~Ts{;%dQot|K1$s~v{DM@G8d_OBjHZ(e1ym#yLP#qH0i%-d*ZAT) z0e)lC%0K`m0n9;Rf}6(tNJuB2Dqu~&hFajgHay^F^}}sH{Nynp&~HQ6^btt~(uun% zB=TCAqXy{ma&rqoMk~lLclIo1OvjTEedwkH$Vjg@;+Lp9ZR9h(jJf7_+h_ccMR6^ z^1o&}^QpfD9zrG?NnekkpYJ~r@05EsEOU45-f}kY=i=(BYA+4)o(mXU8~}-*#x=GU zk0`k=v9}lTBLrShu=~kvC>KqPhtS0hZMqirylljbzz7DKUDPcmf(Z&UwKg!A0++po zNO&bU8O_wE59M;lOJJClQX=* ztw4XQuJD_O&=x;YV4j}`!*G?BKhVH6F^>u(TW8ZEdP)IlolgK_GXx8!91ZD=*ec&# z)BtW48n^9fjN^@*dh#lNFpb&s_fuTh@8o0(u>BD0f2ykI*|OHl*B3Q5sreWMC#9sU z)O_8lcHi`j`1<$&>lk+r;2(m65w=;-tFtYX8ps1Dz|3~GU}TaXTp}gQ1IR@sr5ftA=B@%C?FbDe1jT zLrKY=sTmf@;VJrU8=O8vHmL1hNv~`)JlxG|EjscY5O3y5^2Zr5NRZ`R=Qp!+A~VmgpLCoF>K0JuUa=D>F5-ckWH4FHosze5Dl47Yj9`S+}>u!qW^ z=ebn8J4M}(z!U^?Sx5*1B$jc3utNtRjElMcLm$i#4*?#Hm(w+NV06$Y`plxmhaWWx z2YQ&V033WU}g|FM!UA^A2R}--ACpvlp$C|p=D){ z`jQ?+06hBQ&o@ON8COXR4kGY)Ron{#u7E`^RTZlec)k8b$Qe>rT1V`@33KBGP@A5f z-fqtij6(t^Libhs`M(I%w#6i*4Fj{^9qe&EZ-5hTHf@@HG8aY(xjajrVF(;H#?)a2 z?bN&KYWF&2A0MAD^!A{ph`B9eqp~8(iJ*P+b*Kx}2QY`4)i1JD2j;^`YOUXShVedfTxb+QBo zA}N7tUMFiceV6Xs2EOzltmfyRKYto5DC0hC&d~r_&9K$jn`J{o1`bV)B%{IOHpy=$ z`8Mmj+qlN(y=(fAjco})NW&H%*Sh$U-Gz2kds@)i4qTjnK~cKL#ZpB$B*k17oy;?4 zrYcd5jWlnCU}1d;Wj#Wvs;IUZuo_Q*oI4Nt&cEemG!T@j?(y9ok2|m+);LU&cy9iE z3{WMi%LcQsa<&@^lUk+Zir zZLaxb{Dl{@B|HZVQ})SfYa=@_=JZqSAh3;zcWjzy|Ni}tiRqgz3nQo6oy?I94e)}( zNLhP)uVZA#|Hl>eO>sqpU&omayasoux?YY){4H{mNDB*F*V*0yI{h`}_6~}f%IQTJ zmr7IM^Up@yeD~V`$)az*>#2+128&`SYke1fi>@hea zc^-j{R7-^4-5Ri30przwMm6g{f2w|HrwY8?stki*j<8t;T=TP8fz=!QmXjA353E`> zDUiB)thQTYR;wsVXo^J;FR%^b|M>%th}h-iW`{$w74cGIPr4ZpeTn~FoZc@84`Ws! zF7T#53586QZ=g(k8mb!jz~_P7EN&*j!?!dr0G2U3!SVL?+vl%<$x4EdKEWg?sLUEt ziGX0j&0FEg=4iLqq`+kQKL)kQb_=Jiu~A^%`U=H|0EfY|3c{8nLKh?)Z1=F9``a^Y z^-w6vZzl$)qYGAySl$6FV~Z@x^?P##b#}h7hePoQE#+=Ifb&GmJ+$>3@Fvc+`hoGt zeAi2=%6)KJog8?bW3cZLJWu^Uqh8bY{3B^5G?=FW6SoZ9(E-j7gbpT1!RQW;*@zi1 zDQ(0~Gkgp116Ho8bMX03WWfx9klk76jtA5=MTES;V0OdN1anc&ci2-{^9 zROLh2YJek-EFXpi55vwj5k*)In?+ToK`^ayLXnn$(J;yfcDC^sow$uV)B5&Qsgwy- z<&Jnx^XSx~nDS3nWOLnZfkSg8>wkPp9?6fbMm~Rr7whKAQ2ZXn^F*%TWh*MEJLIu~Rin)S+V-{;OC-nl zK2%aaCX$83#mNm<%3L-8~NF+QiW)kP&|I0T=p%tesRNynpEyNgOh~yM0uv+E z*0$^?Z=@5umm;X_{@ALn*r0+COgn)wb?M{4|Hb%Sp6=j5Ko5rnzVpEKbbG3UJ-&yD zP6GY5sg(u=p#;o%$PWKR+0ldb#BP_KxH~6>Fj{o9rd+&}@0CB-%rAF;Nqz$cWTTMV+Zj8=^#4~YXBrOW+y3!kEGdx| zOGOz=hCxPT*P>)FBl}=1F(gZ}X9=m_P$B!87F!D0B8DhEb}E&9%f2UM8Jhm*^goX0 zcwRm)p7%43dv5oAUDtV@pU+pw+V-PrFwGlsI&uUdV}y0xN^9!sk`*-cmG95~ctuU4 zlvP`Qy2&HJq4w*b$K1h_!PR=7P_6fM;>Ev1L=5bYvZcR+AXg+PD98iGC-8gDqFJHy z#W)>mXlTR)1+Cu}$NBw48Bi#Vh^5p31#B!9&$<^1~%suuNf!vIhG)>r7WU>c{@)RsE zISyP9h_efPKRxI*L8%fB&o`hi2!yb(Fyv1d^an$eE(+?wEa(!asQ5@S2Bj}uQDq7) zNmeRBzf7L!9~t^K!9_Sb-35O2e0NvH%I^*GJ=IuuHCBC=4D~&mTTFnO!7(yA8iWGD z=uoegKBCM*PvM@L4Iv;8n$g?<2cJ+T_H#5fGOtdj6E>NF;zXO_&%L=7OdK34%PUtF zL7~(eqmXp^5q`P%|D(e{y(h$iU~0t={dwW3VZPtR)d0+rF$#UOc?|=So$EoY-upIg*Xx-t9b^t)zdf~SvuOt!CBWO^CaW`sC!Ca3+bYaI zYU~+&^OP!yLaoMTV05D(q2y{eC)BbML_Bk7P{9gsG=t1dydf95$Goo;D(Jk&4vyYbUoayOH*Qo*iJ-9hKYwC9wziy} zxR?PAG1Y5+n9W1@B!B4JVDhQK0s)BG!K!F@U-BaZnk}YidTwK51U6Jek__w7quypF zpa9)%{$kXhr=QB4p)4Ye$QF+e?GW8uU!O$%2Fd33V_v6Qpt&qZ~Qe$}ERzD)I*X=caB|}0|{oqo+UqPft ztW1&#ZOUHRc1>RhZQSE`_x!zIMe?arq-m=JBI_0Dp1`sOgrc3aB{MrW?$}q$$_Zorfr^!65uVtp zH{Kjqzg%3`B|KUjtbV=pV$B|rt`rzZJm5FQ30<772Q_#>+qJ7OzXscnXHpMsJFGSv zUUyR-MgygfUr{Jat$N@e>KQ*jK5%$xcrOG2JPu~tq~Y@TeY;R7Bd^JO1q=MAE-79% zujJaCI`YI^4va!BFbbVNA$rTSeRt^$NoNz~o#)PKWv3frsa2-ZpuEhwL80cVbv{)t zwBun^)Q-tbxE$I%R+5V|;frd|tNEhnh=Ol9y4bnJZ@SibNz(C;Mq3j;gHH%|y#z~k zaLNg1Cm&P`R0L4A{glILX_O=;GP1NpuOkgR7yO-dv{x=w2?tw*C4?npgJ32GygByE zr#4+*(!I#fBtafx=_6IL<7$c=Y{vCAAv)T14Cld-#$V6--WHJ=h^No(d}n{+?L0c< zCl&z@60KlAkASX2c0oJz4wQl|I%@>gCEKDT{NNiP<%>H$Qeh3+E_7X4o=OjmiK%(~ z@Co%C3hPu-(slH?g~FD7osY}tvfXIiAJ%)k-$;*cf_M5Hbs<#vd?@(S4D*CjP_pin zykqfeF`h|%-0otJr-%JmI?hop=^3Y&@yia9ZkQJw`)c2WP0P|xGq$nSdxXcWO6zqdV z7O}C_QlcoMGPfi9K+yEz7L3!JI)9$Ll~r3iHHJYTds`1mvDK`n?d<=(7XRRm=C)pv z>|P;E{2QSD7Kf#u4m@LB-WaKGlhqvw`>4s@ngl;=66{@cVBoBQ*F=OXx9KY(fCjtD zUSHTl>`F*^PQ{@l^|m({%WKr(7I)X*w3a)aH&+n^0?5TeY{iLXB}^)QNp+qO95M4n zn@)o#08b!fK)^-;6}JlF`QfiG&A1`c1uDLY^FQW6BD1lvffjB9OwRA~$;xD)B9Hg@ zpLS=-yk(&>_xmShhki^|yml%$$lL5{6({Znh1iOb#L>rouUj6+a2CI2t@c5JpC-Lu zd3NkGqwa=50)|w55Do#1P2KZv6%Wl|(BS^4X~z8jfpNt~f>@X>3K<2nwm!>GcI4;_ zWq?3;4N`UsY1b!Q*jlL%p(8UixeKh&^E-gCX9nObIyzFA2CK5DxG$!)0X~~sTY#40 z{m@#eA3h*#ZlOg6pbil~+(2oodHApU0&njEd#+siI&Awe@;EGWFe9Vac&{$+~a+-FHSzcaNQwNB0z++n4R(r?xeOv6;IW6OI+PO<~5XQ7mdqU+I`C4!SjD|VdC^Y5^k>9&W#U+SE$Y|FRAC4m6&sbK*y&2B2OFMxMfjvG?m#nePAa0^)DsJo^A7!{|E24W;Y=x~bS_e*%$NmLP6p|7 zz;MSnS%&F8ug=Hb@uo?8A)(Tme8RER59Ga!U_l1N_V0iKc=paE%a9m_J>)?I0hI7} z*uFLsHZkEKkuy3ud6$s@mRV)x-NJJcEbY4Mt5Yq%tN@P=4ouDZ{8k;=lOPwGe?~&= zK>01Yz~*G~+UpN=`u-1)PvNkSae$cj{`DfmjW)?=`%!4i99E|KFbD?N8N%{$+Dd}0 z)@9`T{hV!I>6)0H&wMLw43ynjWDno8AhI_AP^X>s^gBzr`YVBxGrJ%&V{J*gP^4;6_EDq&{c~Ad}!`^nVI`PfN`pyzH(QzlD|G_ksiDiOf0`t^rNw1vF zw)_sMtopSy=TxWvl)w``fgzJPShZS2v#sUvd&k4sC&#(C&a6&(1{C_Z5dB;ms!%3lzGd4yn*y2DK!$kg=nHZCdLCYsoeG@ICy`_&pkfOC!#=_U~TeU~?v+NPi zO{LWzgolT9<@lK7Ll}sfs2J1sdJB3o>PXll)v!A(TN&x;1w&9VUaaBb3UC2%1tDH` zKv25uj1f{9qo?6+FVb<=qWs}+y(0>7QDPWy?N6auVOO`K+98X{x&be{$Nn{0ikt8D zRBZYfBZVk9giL8qGxVgnH?VPx>!)LXe4SX_3z(=KK;8x~lgJ9=8w{W&IcXtO|6K{imN9)<3ns$c{{#FV%^7M7bw>F=jg~kv9j&IX) z>qwvSN(Jhbb@dYDk4$&AXw^Qbbn0}VkH5Hjxys!#4^O*HRU93A_UcwCsQb^<3~;`_ zD!~@f@=jgXWv$z*H%b6@e*NM>+|Ur&rSZY_WT_2*U4sH(&PS4eY}X;z7l<4q6BF$l zm1XgNVh$@{DTOiI+c8Gp?GXnAbb^9tGm;7kM&U5Pa8W{@DY-IhXO(j=V;Ezj@f)HY zES;toknatVO2TLH?AjMwZ)|ze1_VYvDy=G+lw9$w9d6Q&{#sdEI~myiM9kV&OD-Q;Zb?+po3$wJNfO$5yVqAoInkMH;BK7s&hG2=5W)=xCrb7^k z6%pM@D|s$Kq(}}T)B;#sU8IDqvM+Tv3~S79<60ursUphCtJ~Z{*%a4nqf>X^9hcT> zONe!uBDb{;6cwe0EB1F|Cy=g(0H^;RXw(E?AG7pTo0E2E+_Xt|HQw8b;JKK YrIDfe!Xusz5y1$Z3wW)fbGEnt4{vmISpWb4 literal 22754 zcmb@uWmJ`4)IE9*9U>AUjdZ7UD;-jj(vk|&B_Lq{Dh<-1go>nea|ETOC8R|<1?l>) z^Ly`m$GuOu6yOu!x#{TT<>o2L z&;R)U{sy0`hXa42hp`7-1>a58#1nzIqJ{oJ2Kz=bBM`<~YKph@{W3PEea+r3p5pHG zBgu8i_1&0m_UY4ps=My%GVGD}VNt!p@Y+u|Bn4e^;Fon~903`<_od=1nH1awSca zqM{4SfYqotNH?-jyxj7lxUJ(nW4+#+~z;DY&{ zD+7$e4~MXRq>HH}u-z?loo&`EeY%wDAP{ii+<1O4IbQ2-6HVVgI7o7Faj|oF*rCGk zG;z3WSWQbyxx)U(+|p85R|0$bX3(qNueW^>inh{r-HBi8z1MZ}R7o<#-7)xE&V&xO zXR}xL)j7|O7Gh%VdTckJx;%=1n%K}FRqZ;Pm21r4+v4Nnb98<<`^Bz@B16iTPvuZM z(R3VxEyqhenJse|#3?h=p1?!}c^l10(#kXQ5r?-g)`U8X3v8~3!bWInXC z$fb!sPFuiAAj8MUrxbR)Hd<^Nestt#R_B4u$Hzxyaky4k`k~tS`Sa&r9Qx@uepL~M zc>V25y@hL9?fi9fvc`RX&A@B(m&oK_EL_~S>1jG#VtU2xnI`w8-qb4$Z#vTikO_=O zr>8a@(R9XDkFM8yt;YKYTwa{d&&`Ec1|73%|2D31F;6P}@#yzInBgp$06o+AtgI}` zTlQCQi0LzODSyP3CG(lTemq&tC@wBum4EsvFOTKl`WSJO|NfojzDy*-!op(ZR~7fk zzg0|retykVA?)Y4#C`vKUqwYJgNKjb@pL>VNW#4kR%BBAak*~k@*xlXT&C|2(^>uEy^AqoXD}$INB_%t5 z|9*XjO=u;QN}o2hu(=tP9dxq#{!}DYbG-4%EyP1}S@F1)bl2wFFA1*e)Vf(G@|ci5 z$05Q%H12kDk5@U}kUjr*Ph3i>ZDK+~qb0YgN#^8mI|iO<0Rm?=i2nNZm)31zU)$O+ zU0hsN2Hs<0U}D}2&idK$bn5&HwJ_dx%cbnW)-<7m!}3VdpXW(DCeIdol5O_ae!}ii zsd1S`Alkx-RdSW1cK!`(=R%Y@j(pNh3fk_F@LnT_@EGc$Ckjk-%Nk@1S0ZnOG^s@A>lniLBX{su^AnDdiu4k>4pjasmuCo&U+s|K^UAl zY$zrMz%Ex6< z9(>m+G8WWK7u|gIz}?L)M2~=7JL_Afl<(ZeMkI`8d8JwQbmLZSeSMC8f!@(>55J)A z)|A)bbqb0w5vS3)9{v`^0=;~lGOOE~*|KzBzI-vRu)mwc&|`L}pjh_?Kjq4DVQF)# zYs+~Uvr2T{=|ltxbJ?SxTra}I7homED;$W!u24N27|=n;AMY;SD}B1Np21<+EKR|C z|3#hWa_jIg87x9a>q|mUFUy6F7!`eea+j&vP=)ZT)^n)P)snivV<7~3`xMkbco4&s zLu6nogkAYckp4TFrz0 zbC@Y>7+ZmP!$Nx$`jKB#@Ddmqjj>BYDY z_gJzjFFbu7-E}aswPm3ebBTmNcxTb%pCT9BJh7GDnW6dmT);MzTG%n9#Ju76X3cEh zzqD`P6#u~5PgXx(pdK`Pm)QDAH&@`v?jKDJ9s6o!F&>^PkfXXiidTzf_-{I;BqSuD zPmIYL*M)+QSttGPahT|gBcAj0L1uhO#;#?x`Kzj4;R_XnNUPlC8D>8DuPUc-IGyEm z&zEs8?2N|$!FjqwvHg1J9gW^&vz?zurWMt1_6Ch*L zdSRCYJHvz8i5j90ksFqQB;IQyUu)eL%Fm5sXfUJSym_9R%Zw;6H!n2g#lpfub#-xS z2$C&c_qk0rXhXyxOS{~ktpbM=wWzaW(n&vO)dvLyg)jd5k7{dctrolA+CM3RGuZm< z=xF`^*222n{YJzH&7rqF06UrYJ>iz>SD#t>EZ4n7+LlVrQGMo?QTeO8rDqw{&BO{FVd{_8V;8@6s<7~B&cMkF2)c8M9X z#Nx+U;P%YIcE{J-@x_^RIwct_HLWj)`(lF3KV6&q!%{q^5)*j*$JsU8=Tf~ZZg>BA z4J!-caQpHwZiqVObv!XSaaMn3Lh1Hw@Y%LWt=q{rvwGpVMeIa=ez@nuVoxRwYdx+- z?KcsclyS=1uT8dEN6110thAANZspDH9jQSQNKPVMH4`}#&Q#e?pNA9qRb)p^k4 z5fS~Ev>fQ&noU*=TnLkPjgfMh>O7Lo$UwMmSH3u#8(ZwbRC=?t=&G0~0%MX$jJ>IL z@Nczpp_fWxYvyin)0>_){MI&R-oYeZ?yk`;&HzC_KjR>bzUUWNt3E9r*mzg9F6Y_A zjoZr^42mdqitnG~YEo5as4=ivB)A0HQ(lu zA+fi!VI?J{R$@@tjrA!p_mM%WPGWLONQD;XO=&Y(O&NbhMd`rD6Xo(v{_@lH4{;NO zQfbHpCW;{U#XGCF%J^>0J2f^UKV?@{(Lew zWs?CY=(hDL3L681h3X?MyEewFR}aVZKVu0y;RrwGQu+Rx_TGmg7*ioR8Ro`pc9Qeq z*4uo3&cMKs_NdU0*-3e(g-N|!)xw&nC+ipIm3e3Va;U9oArgKih=Q)#hxd-Jb^K;d zq++uwClC}wm6)SG+(kvx2}P$5Jx!5o@uCrRxgz`!L--MklUgy7tSrc=RGmpnBAQOa z)PCtVMx`@;UH&u5YKR5D{au zTBv(!dcUK=2WeWZs;#MhhtG(Qm#XGro1m>}2V}w9oKzLljV95>ri)QmWA$G0-bXy1 z>`uQQMO{7IZG|D)JXsUEIl1`!_tFn}t9Mf_LP#QNgn50ZwMMBaDV&zZzS|h5`Ur?ViY#n&K8&W*b(1@8O1fJ0is;*P;?U7yxp2 zN70}@8=$g-)!#7kX}Of@DaAt;-Car?TYnt&8h^a}dq+>k%b$gdcvq7qGc!XEHbb|j zLrcu_t?*1BI*0g#$&J5Y7&n{EM8+rB-3v+L4W*X}>C3d+h#a!PsHRu%68e~E3rpaU zp36K?KsL}&bH?lD%d!3yOY?q)40rL=Vvk)s!A-LKUp3kq_1|BwMh%h*AWcix#}-{} z2bqqoJ|}KC{;VowS#Zd*7OTp)!T2EkK9Q#%ZW*1xzIec-#4;g!TGaSnTxvaPct`*_ z8CGZ%ny(T1{f%9_+)a&)dS6_NK$4xq6yS^%?W~ z^~Lx9-aAXM!l;&EWJJZY4hhM6sk-bP;8^%Wd4{+1Z-k1@4wpeDy{_-8JSWu09Y0HJAVe$Q!8p(X~fLT77H~7>$L9H2ml}_@V`dhAon$78k z8(Jpg>9P3Z)tNGcy_tk(Cxsgrc0yf>-;*tqi0jVWoSb1vDPT!^lDcTV9&CD~H%JYX zGVHVx>ebFrjEQee)se}{$~yk4`zR5Z1GKKh{om^iHVagCt zd>?f z#J+Lk#*47995_x>q@M`+@2|bx`bBli-l{#4s$f<{MTL3o>*K5lp=;CxXFJbnNl40* z{044XwPK~Bl>7yd!#2~+yu4G}Ey>y=h=E3loo;TSg4YSsb-1CvOy)%xw{KJKPfD=#i?qN8K~hGco;vD^P%xOpJTUT>DJcP*t2aP2`E**r-?Y}eAJ@*p&KXS;e~~B1#y)&)_>&UVi!3%W<(IU zF6!U}E#F7&o&eM{?DEJ0YXz${ z{emv7y63!BG)XCVJZ5-D$7)oanNs-yTsINM6*!KgkzL81hSK}wJ3aiU<2_Ua3F_-} zy@Ha*la>CPwicQw(UlpQxk*>MrCmaPRgp}wnOM2TCwsQi5fRP_AK3+*D6Ua*cz>vI z!KN0Dby-V%m10Z3@vNG$#zpP-`H7QBk7;8qPalJbdNW&38%+7*k6Osf!(hGDK3fbN zVjS5M)lr(^1Z#|H!Ex4)b2NhT_pZ^>r@k= zW-1d|k$r!XcG~HInwZW@g8E!$CR3xT&-y=4*SK#=(>e|-b2&{ne3TMefc3c6)fMl? zZHP4!Y&p7HV!>;}uPs+BCCQW{d~i@6@ayk_p2o@P_TtmEKWfu)RD@(@*y7&m2Xl0y zSIR0dgU)o?OzHerre4O%$Y#4@hU69KM5 zN{A_E!)Zj7%~9qsLx1?Qx#`T9GZk6c*Qt8e?|r7#SaABLH9h@X1uALFP-^fF!ra0Pa8-L7mdVsX+=^iU> z!eL=qiRRfBMAE=El<$bv`)I;BS2G(zL{nQ75m99HBMlXbIYe-=L^GG_kcT^vB!G0P z_Q-F%HddPaqf|Q^=j3pC!=9-;$i)TFiIAYvx}nKuueHRjPrFyi%GeIKy55uo_?j#< zcyaEmmli!xQmkgRl$~qX4l$_+(MS$qyX*WhNtmn*M_FWN!58S~#+&n)bq$wTQrz0WAO#NwKWh|WMRqa+Nv<6WeT ze`mCNQY8Knex?NTOOesygpxQqDcf*jCMKblUsa(`_CnUjLS3dqQYfcM7HP?L$i^#F z+5`Htahp%nt4Vlt7X{Lc5s<~KKq61raGs>Im)PiIJY z>J;d)>VMKf0)?e?=gyrOY&BbK`yUw6GNFPtA)d=#DhW_;#l)rHU7@_W$Qp2vcq^Go z*GKwr%5%IaK&-K`QK)GNcpJavOy4r6F+O1Vug=fU9}ULKwv$nX6mrAfk#{Z{nX7qG z;>b3q$-;`n#Qjhec!SUOu0wY-ka}%xZ3|zVCH4wJecJyKKkG2+d=e%TErO4Ng|)enTO6thWW+>61?{H-HwtrcwGuC9msa zwz|_%lvv1$f;R0}{QUg#=m(X9!x_76 zST!&ho?@BRVKiPgZ#mM(;2$Box`d*h&Pczz$37P$mlDW%_{87;_fWn@!7MI_0>i_% z+MIy?e={&JFoI^5OIumWDci!KDnwWY6TJvqi)QoGL|y8s+xMUE5)OP}E_0@uTlpl# zRgNtaaPaN3K_Qy|=mXJ<#=(UId;}{4uT?zal5)l{}xHA*5{T@`5PsU%ErlzL_1CQJ?t;tLp z9kP&V!pNmwB%j#;-Q9Lgb(2=x&8htk2KiD8)IDvrCtW#8-YQU6b9QA$3{5uEIZo&q zR-Wy?*>W7JIL2xWsM&a=U&*lpHJ(k96DieIGJ(N`Do5nTG`G!HR`r$WC2P@XY&uGg zo=95SkSZrQJ|j+V=ZWt(T2y(`r(7C;M^RC`(O>6%XS~d5QJA`NqmK#r(zy5 z(*YE)g;odKV|1^|POusulI?6Y$Z!5a^`_S6GBPol|Ei3u(5-)8EQz#iB52%s#)Gn` zCwKE0qJxXC>b1z~)C!QfmE2ReZYZ+=&;9ZntI-Mx zc?qhQf!y#dN4PCsn&{g_)sC3;=x^#|ZpM_5vgEtsQAU=l(P3~pv`(7#F*4q7Ls-4+ ziA}_?c!C`fiG@x;7G}O^t%y7;%R}@IMs+>KPU}l3TIFY(MnmE*5XhZJ1b1iBny& zf`l5Go0~yK`mf#kFaFWRQ*@H<_1!R@9=t{pH^|D`HF0~7hvQB53lV_5)C9dLj3U{< z{n4`v>h>KR_%D>LQ0!z%p+*XZvgIDU`0vq4^D0BU*{$BVAcHR?-1gXZy4dAIG5#B> z28v>b>~%z}%QBY%6mZ@u3W|zJzki9mGZtiy>e28e zr$`G?xMRC(FkR16e_K(}Bsm4otgaO+!)Cjg@LPul_jn&uFeY%1^WE1|Uwp^P!2GC< z*>XW}bc*?Sat*yWJYD%39`+c0p}sRnpqm~JBNEj9n<}+vhGfshZvO=Y4-b+-9KmCX z2LDPQ%4Vt1SAIAddspmp9SzX7`YvcMESOvLcnKs*}7dQI_@E()7< z4ih)zM>?DvA=DyX|BZ=_0}qcFH%$y3q$ya^z9ktQk%Kh2FscukQj1eLFK5K{j1@7O zgBgr#ukGw(uZ;}S5y7W9P>oF$rT)*S7ImZ%uQ70le)l?*^W46D+i|K^kjtnf5{lCW zpww4OCYqm0Wn^UNH27?eFpG*BDpV?ta*I+JH&K5w=n+3{H&rC*undaxNH{-TkAA@s z5Jt=p4O*P_z`NVV^LCzkl!M?tU9`w4~1l9&qme)_!tNSKYGjMMYBG(rbx{ zj_&KxdBro-_#|E%DoS4#;#*#XezUSS1$64K>@JVd5$PTzavNQ>wzgJ1^F4IUCx=sc zZgur|z+34xdFY!rga{O({SHkS6^uj+X`Py2(?@%a;0J1Ta%icG9nz zWc{%<@$s5}M$4+P7QJE}b{9o>1B1U25%?Edz`qjqYUC^Y6b?^~Bt%mHCK)?Mc3_TF z+P^E4*qP-AW2*PsyH04u-4LKhVSRd}Dhpms5u3voi zk>7%DSUPr-Q?hf?*;ibsbRmbCCVY@?W?g@}PG6gZR@vn>+0e@|63<$eQ_ZmdUTsxfXf0}G$)h^SY89#5>5T>X)PheC&CLAf^l=w!v8~&bj z=lm34;6M&`ne}t@YR2HFsIr;;EaAOQPE3cvWiUjiJ4*S8babX^D7=5mp_`lV2A`(y zB?%AFyFSL+|0Kj2nD-0o38h$;qK38i_;#9L&+okYMhK+M30MWBL;) zR*Di1DHLw(n&t z;rmwaG#QqU_*bt{QbvH^BL@WDBhZ??!xa=`fWe60-d``bv8ZvWXZH69Q}uOs-~Cg5 z!myYR8m#r--`~-u1wOOdknwTj4PaOecbpum#0E zqkxQe3v@{d*l`|z*qdObnW?E_}XXHH# zd`Mqly7_x?y4}{(Lzuv>t$gRsv#qj-6-&7@*nY(0lbGqECYHO{po=I=NJ-i3%zZ^G z{b=vh>ESlBtSmj~&Fw`d6<*;gwiTqLc}0J?OA(9R$Od1H8lY0Y_D3?m>1n*czI_e!74I8*9sfiODpN9JsrIccDDD z(qw3kPMp@Yn?sQHx3eXf9r{Apn96zQ=TUQCQNOA}YQ%OEZzRPrW<*Pgjb?#;zUMm~jtN62cn z`DwiZQ~CXLQDk#7s%ExZnE;8D-=3+@9a1@^6d)5=)z4SI9(cT%oFeJX1?Nr-2ECmRDX-nom90I<=EO5`o+dBvc~Fm>ik(d&93x>(B|c$CMqvo zj{xj3-=H>~2lohQ*AJke1gDzZ4lLc;)ff+xJI^Y=T^!?zdnl4_)p-gri{0|^iC3kU zeoYPlY*AG`{;;~xh}F8|o3t!WKmeztZgZoiGMA;r()XhijJMpTTaj~lELMHARzoZ| zxd>LKsE(Fs&{)v6-6{gh*?~R#>Z{#fVC~s~o8|zSo+A8^6ha0UK`G_K!{u)O&OlF{ zbhF+Y6-ES9Re4Uz|rhd4||XB)2I0s&q_;aEi5M9FqS@^y&6e{Nh?E;$jSWbXu=_i z&eLKzD`a~rPCNQcn~|=>qUkkQKi+|ZZZ)Xdagd3KMAtd+}>R?Khv<(cfaZ{Jea>zd1aE((ZSn7dq^Sr*P{UFtz1)*Bxj?6RE!S z^)1E7H1uU+vS}g=i@@BMT*|Ip{X@<0QYnD7$bUbNQpK&TkE4@Go5RBY*Z zM7}M%m<+{4v1cPdGkV5-Pnqq)Ym29N>g?ECB}D|p8g^~lSRdK$?uxFOH(v?-7gy;;Mi!bS6RItT9T>RFhoh0(gdKP)+7YZq4CnS#gD-Jc zS65lZaP!TOULK}9_bpp4xMqFVup;S+DxDvuCIl1Q&~hsHSQ~5^zmp{cdZk{U@2sp^ z;K70XLOU>w9!DojTG}?olmd^_HY|Xy=KUKZhm$5Ic4=cmv&lP0%9=+&u`Zu*)wS_2 z&a-FF23mrH#pMQq$Euu+qIB)(Oi@&mRT}rLKsU*scF68JDyY&>kKbAYqKbc-*K~+2 z%wSpc4NcInt@gO6%#$L%jSRfK|7(+v$T4>)SLL@gCve)SB;zQJCNHJ-mi8} z-4X>h2TrH7#f#_9o(Z_k$%ESl6C935i^-NcU?lV!`vIm#hTt>7_=JSP&j#GRX(EKj zPv2?Wn0%V$sritcrjY!deoK&K?#*r)UejuQIEz6F19~C&6U2Oe z!xFfqK6|YWaq;kIva+)m@|o9va&10l(>S!Ob~f=0bNX9iY4q7qH~%%c?pi0w^dP0S zPOP3~P=S7h{q77Q$Kpnj{^f;wu|=`InOXZKpM*(4vFY2jQQpm2k%u`Wudl1KvM#Qc zS{YQb%{h(zk@NV5m#G_D{3a&GC^R&5ZTyQ(LAV4syb9qt3SYdy0-qa%!Drj9crFf( zmG|ptW1vXj(ay;BSc!RIn()K;{0=LOpz&|7cC*Ue-fyW!ZtvRV+xO~xzWuy1?|$Vc zyc+j%0_o76Wd2;36St$9Z*g$Sef-D{C?Ac-N7m7Be;@UW+|||f#fulx ze-|cmM4a+sU-Bl4^>Pstn|zeAkK_rsU#?jHw&hqknv~VHaQp?bdQs8jnvyYHa7Q4hBUmq{wX9p=2$M8uWN)n{`v-gbh?;p4rJt7-)(wQ zQqs8xVFkxPrPX?`Q>Z8L91kqi)z+d02L<=5KYik0fgS7j_ctO0a3wm#^3~s}`(_Ug z4%P-7x~v_lb0%`$TY6Yl?*p~*yh}sWec9au=y;ryF>l-!a8>Y?3 z%yeh7i`-+rx4&+p*^)L}hyrwwB z#4+LZ*+{fK3hh9HdIl$-y!rAX06=L6kKlNkpbY{=&)>q+pbk%yul*d-O-_Pe020F*)quFdq;=E>P7MVC2ES`dRi{x;m_&D z0x4=6JOaH(OPUYA{+iTq8lAByNaB5aa$uSdEcu0ROmlNzcCuPUbhHP9K_QojZ;75s zVBHXNC7V@#UPG?;dSgIizucwtHhpjR-#X#!4B2E&)au=ASp_00Cj8dndj*Re!rn+?v|wZ-I=0?(w0Lmbo7Mr z-%amM@}raLZpRy48s$Z+9`#>5+1-xH^uJ@+?twcxPh73gP;Y3+EGH*qyBV|j=+5Wp z<0Dn7UV0hhL}qS4XO@-)A4n-b-6AMAU{;QVbC?ELipS%ZrZ>lJg{-^cS<{$%sM+Q^ z2#J$3{esR7l7{`BAfKLg`+X=a-CFTrW4tYDEAA#A{q!{N%=R@XAmQx6!D@|fxtD{4 z8hwcYy@Adm9! zzAk!fUMBCeiL}k0P2wGn9?IWuKl+r%GQqkv!a0GxI>ITTmEq_2%w(cG-Ys1$8C-+^ zs&=75`k)y{`mU>M_qM|?;nmf=D=Qn9hUx{;bZ?=$-+l`Ab3>6wBdY%eP@$1_rno!P zv=>r_4ZsV)NqfWwS@5z48w=>rh^r0>vt~E=@<3^EVIdc)`}jpQ z#d(~ zMXw_pi+#5A*WMZ>?*3Jyp}|h%GQZEp8AV?_vN55)IbApsMN=mhl##)+P!@hwO|1h0 z(fl&|E`Go2(Mz-;5sc!kK7Yn6Tv`g9|ZLKK zv~gLd+%6{Rl8!Nk4%3BLVzP@4NJ7gd0l- ze-3^BFHQ{rHP%fh9+fESmvGGIn+B_07C)g71ue{rv)*Sj?S9?rTO*6FBL(+(nUD-X z!XeNEQ2va)P-<^hNX4$S-Y7YT4uVd~NAtWHIKHEeivA&UaL-G^pWuR!fsKfyl^_Mj zYXAo_;0f|MP8U+O=Am1e*It%5BP%s9tUSkS1~+fYlRna_t5x0QGtrB8s`D6uqAHh=-O$(w&oSK_VfI3E&1eq05j2kvsaSI^=45i_~g@Io5cSwWZ z`cG$^HhlOHcS-i#Pi%@!HY)^GfcI@x%DFBaX zW@dJcn))^Ps9S&hAOb+wJt?pH=H0uS`j9+;Bmlz3{zn=RHkJtzg5GQTXax>hSh^}Y zc#L(fI_=dimjlwM^;jfOPvi(St#Nq|-kGDby?#OW-`{vyNBM|A#i@HS+2QM%p!z?08YJBfS;@S_HE4eAn;(q!MHh40^N@DjLP;~ zq(w6EL9}k#r9U4X9i48DB0fSMaL^8z`mc-yKmw`T*$@O6e>Fet!mXr~3 z7WOZe+x6&!E&HBjI<%wc9sbbw-5p}h2TDfx3v$Hwo%uF&R7O&ZsQdaUiZTWV%@vl0 z9Pfp8s&eK^I3;a;^2k1*5I{hO6OY9eMHNi6xhTw8EmP9l4K`-D%ii8z+k9L2{QCNv z1!9T`k(<>aUB9rfI`7Z#Eko%ax;k9!iAjV)@LI_~O2$AlP>ef zX9GgSwQJWxpvwp!AnwX^L(S4kg!8?@9KH5(OF66gI}?Abk9RBUNr1mH9{}P5TzXR5 zi0zhADe7_&P`{3VWk9HM%K8$1CP48ymfNeT!NJ;<)mG(%8GLTnXkM80g0cP`w?Vvz z?MH18KAhvAaSocuoB6I8?5ReOk2Y4JsKkFAfi;=rHdbK@lD3vVDVuAf(I8u_hNRI5 z-5TOP8^&wn{D>)`dk;ljUAIT3V@k~Go;~{c*%~+=zY}~PF0oY2h{(tng@sOGymLTv z=YTc_+A|8;{&ruqAmapk)36&)KKD}nYNk7?5lB|LrASB_>poZEkRL0dYe5BN4_dbY zKJNkO<9=Ip%K|}XM`lloAU1R0Mg@x`rREJ`zzEH+e#{O7;ebs$E5m>D=ff~n)0PJd`6fvddC2Ok*%-IfK#641Xl(Oq;H zdhj7MheW{_-lP3{V8VS;)--N52kB5~-zm@r&JPMI^o)Ry35#QDPOR+9T zD^n6w4q&(5C+cwliT1P9a@P59dvP%z3Wc0Ry)^*;=xw_O*&MzIM9xRBo|eFu85wU^ zxz1Yfnv^SY=IfQ}suw`R&S&Vb`xrzlucWNZl|N+EnkHcV3|(C6sTVk8KQ%l@_v*LT%YNGu@BT zdY2be#ykqW&v1t9?_^8kyG>ejb8}uVgWi?MxjCyuE&~EFmnngDn}1u=G=PclK&t_u zgY@9IpbFr~0qiGN5sQKVS!u|Hi4KG+_hF=l# zocYjS^-1}%VYmynu|X8I$Ox>n0VKW=*f)uK#J;yJL9bF$QGvw&`puhr(Ccy!cGInn zd$(;3-QCrXPc?l1)y#s)#No;<{GPt6VBGkSmhR+gl~aUn(ZayMxJE*P)<|fft80vY zJ=1sQD}a1==nm#FEa+?GxL*U=5J zdrW1gubq zks_1fqJCtY1a!IZn6fD(m9|`U{*@<{vvI3eh((^lG=>)c?3n%CLv62eK}(SRF19Z( zh_|-33i8?SvXS-OS2fqC_@@|lTpzv{TsqJr7U@j5ii0`Rr1M%s-d>A1~j-bRkx>55mzC!K8`nz zeV65d4N^{St`&Q3?lx-7$XD_5hd@uPUZpb#kEcHGjQFPqW2+_`eEDH+!vX%u3F9;d zUk3e%BhmE{mjI7DGKw0wbOe}*6?vIKpTxD*?Gol(=_ z3?^FGSB!D^Bxr@;u%zGFjptl!U!!Gr`m?zB{f~yN5}S5X$qF!%9_~u-O(^-0>6-Fm zCEy)y58mzEg>=RM;ITEHRRc7c&m+$xcUPwlHLc15HE83r4asJ^6ffpz8sRm2=)A$%jsh z#4k=`EHQ~(tm$Wz?st;r*{qR6MCYx9C|rh4=atc7a2buV-Ml&XMb6<^iK)l%Gx<)- zWmgIa@kq4qk3&YGIs`e_OEp*UF(lanBk01!SJ?Kko)2?(M3*hlcQddq7^_~0oaAE%gwI~F`bUmuhQ!jBLj&3sI3NJJkqe)nFYhsEf8@iMODAc`kAI=GJ zNy%2|Oh)X0Je>nM&%~b=T7WvzrA?BUc}*~+%Z*<7fS`K*F6jIZSugb7F*9~&0X4J$ zC5m{!0S|P&$E*&2M0*=jEn58kK0qfBC=`Eq?6T%u9<V>g2tkVAc z2G0N;zU~2!MI$AMVlSaV5^Bh>nWg|65G2r!FNv)!)VtfzIMi(L69*@sB|_WKPK z5s@Qc1{i($;svUwhkHNZe+WTa|MNHe&3KlUmRIPdDFJ9aAz_O9K`9{Lr+j+Fc?IhV zm}vtWof|c6$zg9lOHVfqL#Mt9Z%eTFD?-A&${>3Md94lj-+av-c#=^cH%?2(BxBjeq@_+O;I4@iIK-@o3S zW<8hwWPS$a82Tvi@!6f!LKA_Kqod;*s4vblmXVzVshUE0RMZ3;GsRMA!eQDdK0duP zk5eBL&AYbvS-}@idb4C`)YR0_>>~xgMaKM}&nYRCkks>oTHNOE!0fXVGqaWx0sS(e zIz0dvKnS>GWXK&Wy3#6|h(MyzFTQ^r5b+(zQi1?+jxHK*uY$!6ZR$tJ`}v6jUH%Gs z23p6)Za{&Jf<5LHre*s!@M-9ypCNJ=2vSln73M2VSC4KNn_^1&Aa36-w;?5QrxVci z0d=8>(4yw5-xAgIps^|;C1S>(P*ok{gZ3C5KH3qZmHFrFaMpi8)mjk0)_{A$`FJ@y zzf%;PVm|tXY?IgNB|sI0&&F-z4c*LWcfQ~FAFEMBNebW84B%W7T}NbGeb(Oc`hWf;wZWYBluoBOd`g6JB*M%* z^l%n;YkK&<3%|}$3dL0~bF%q@U#m)D)lEJ(#A@|R_&M{nu5YY-61!Tc zielC1mW_G;9&*sie;&AvKDyLSC!y7-HZD>Dcs;=DM9R}MPsk+yJ*;j%i`8@y8**~8 z=S9&sMXgSFNbvP9KMNxYWmE_$Hif3A{|sTux#VtpA1?5XL*BAl$-nj>=f;VoAWw4`v`6I;OPnb*pLmcI3tZG-> znWsi*k6GTEI5sP!Xlw`)M5iaMa%Vbh_V8MgO_K`czPssbQOqyZI43_*dCx!dk^=1w z9Pc0;Mn|l4J@NCqDJ-n-OQ{%^9E(WgBTD4L&JceuMQu&SYlYbPiv-e?>)pRq=1VGY zq|sD6s|8$&5u~f35Cg?D0xq;=4#bd$(J`IVSne2?5tSJ7_yeJ&(j5%6VZ@ie?7>SG zJ0=b23Cg+jxombeHLVkJn+y5R)(H`cJ^tnf=Jz+4n7G~J@E#SD(*1QiTo&f4AS8_@ zDnt{NCTDq};QtSiljEfV^+6p-Vt=LzlSc)HzI0(-LG(*A_ryojVM=;qJb3WmHxY{y}zQ7maEHo9PVux3_tjCoz_M5t{MlmysW`^8ln@i9RAz`+C z?O$qPmIWi^<+H#Fx}0^W~)U6IV0ay#C&OXM?`6wyuBWb^a)hqn|cdfF-`amre-jY>*l z%mz74jq;Dj3bJoYG&*#bu$ye1*eAKpH& z{L2QiFx9P);g6v;vp8IaBXmC&Cd_zOHvV%s;`U{|b)QeR0DrAX8t^AK;4KE|_eb11 zJBA6>1$uj`-kb3MbaJNgP`B+Lp0OkmmE9C>%P_KzLUtnCMD{JWr5ReR*(+O0++-P( zp#_yuvX3=Or0gORCXp;rGKuWU|D5~P|Hbp>d0t~aznQsQ=XssiaeTSBxXze8glQQA zZI|`>JRVn_mpFK~aj$Ke0;?JmQ$C*$-Uq3Bs*6a~8686jVp$xihGB+yUzn^xAE?`# zt1J4iItHT?JZAHdl`sXiyBL5ghUKQE-D2b?<=~S2{4i%-)RB$PZ0<|$@YxQ41I!A5 zBO~V`k8~XXKN#oTggYlsm;f_^Wf%i^gdU_8FizBr8#|M9@hk|_xfU5&`Agjg$&(1c z35ZSte;eO6b^Fk=hrIMAELEEIGg7hQr7`}EpT?V( z&0&@dW1_|sbAj`LI`Y~Q@@>IwdII$pyZXI-0(*vwkz4EJ)mA8^YJT$!qhsyb`h)L_ z6BG_;`M##0x3gk`#G<3zC$u)XcjrX&OnI{ZKqNuLbZ&Iaz+|dz3 zE*9LqJ-zoaJP2X6JzOIHKHh3l0wO0`q`a2A{IayPUZPtFJt=+cB5!#x=7118NX)Co zi3u`r+C_{v0BXoED620)i#eAS^Ck~0j~~sHfDUs-q=d1Vwl!RTL+glkLjSv%xPmZWeGZRQoZSvzeYJ zn&K-!WE+8k4u=QvpP!oFvH|pq;IW^iC*77#$Jl9xuvk{XVud;ucd`Nq^d#%C620_>Efki%7k;f2{R; z;Qa^ahvDI+5Am^Ttt9(kMoUoTzNj-*Pho(^27c4>3NrvH6XDFGO{k}K99b&2c&ZW- z5Mq*s`-FYR_Q0^n_PMO%nK0YuutZW%oPeUp?(>1At`2cB9zujT&Ni2VIVK*NB66o< z0&Y0^bu!*dtgY2Q?skQJ9B6u!@%kc1@mY3YZ;I@{!jh8t;X8@|WBp?zM&&`r?aGvp z7rQsv9Unt00&2+V{OM^z~B~xnz)udZ=a-A z#gEmnMs1n4$B&eaz{fwmX?J-0CNT*jGw1mKRn!I5X4C#Zu(nfIQ<0e zXIw((T^2TGu*q|yWP6g==&aA|-ygA?ILD-V0Cx525!j0ew=f zV9CaSgR^zup@%CZ0;X7&qIcQA?w*!VZ00mHWXNPP3oyn6+w*Q8;C~${T}t;#;91nA zr5U(9(f*z)oc0)vL8@*yzbiOk6yBwkeyZD6p-qdiC=#UxaPLA&uV7Y;yy0y3a;s~j z<31v{DA!P#;=8rPgk-cFF7zf!OE4gaIrMwl8@}SEx>KRxksrt~9qt6}isL<~dK7ct zF|$N-aq)3r*lCrqPjZOQ<@&Xy?Mm++1E2CI{C=LeQNHaMt+FLak;$b7vHH!_u4H8{ zgds@+WkNgeHL65wI^VVrjGGwGwqRo~9Il1Gw})e6)nPN3R>)I+K3&d5`1roP+#^Sh z9HjkIr=DG8U6ffo9KLENw6ZvS8UUOT@DC%xDu{GUY{H z6%#{*Z~KlZJWJ;R1-1L7{y+EGSds4vOdWnbwZi)C{Mn{13LLbuZ)-Dkf-8Icq4TTX zsAZd5t5h73n#w-f%?AzNk7zxUgybG|&7RTnCr_%9rbLe5T(y@`OQa6Y@=<0^M%+`i9`zpA_~JmSbq=5zXjqHc^a&j_HllRfBkM*n|$jX@>KEAIm$oQF~Ydy=gRlW@Wzde}>aFpKrI-#6^we2g; z)m0oHqL`Z(g)i9C&3(8O0o{ZeuN=PQ4!!F<*RA3+CVK&im($;A-p!CoRPi>OdVn?3 z3AdSmSK7s6yR2`BMx|-%L~pW&Z(YdN9nP0df~HuvCO#! zef>cu1zVFaQcV&F{O7#;nRIvMG_kG?=mn;+T5`pdf~#XD7h)oE-4zb*+M%2q`rt7< zh31j&6)3Pj1!;4t_0_C@(3+3Xr{mf9>+iFaFRNw;8=D|pT7I#}I_%N;<5*t)lf61?uZ3m>Dzlf4|N^l@j@3ydBf6nEhryeMO1Y@8H_xyo#eMe*{lT%aI zohrQ^0`<=5wix*mj9VYLEQCMMPA8FAD7*~2?!ANCOU)z|k5Q(Apt%@em#3$Uo|lAN za^DD`rINL++S^!g&kZm%>EH=1P;;F=uyk(Nm|;sD`c;X6ex6J3_3${Ou&uQEadGyZe?u&nPjSFT?#l%m%7p!KSg^^=tgvC zwHMn6hf<*riWC>eTTfF7*g{!lE9V+Uz(V!au&;jT9+>&X2Y$14#_ELP{CaXl&wsG> z@~`pd9xCn%oMr_o@Zjrs7Qess|**X@ptSPpJB& zspW64&#qZh@JG&VuTg_C8X6|lLm=D)r>tykL@#T`k32Ld&x9HqNBHWl-!GcrKJELVwSHZ!;pLTronAcASJR~`?XiKZ6JG|NOp4i^nX|=?bhI~mvKJ$@ZOgW&J8;eC!-#-lH_HoNpmp!a zVx7K0mSda>39}AqtAuyAQN(1ML(5$m%U_}vowqKzy1pY)YioO3qn5%4S$umyE)|nC zYu^ynz8*KbJ3}A8wR`%-wdH7_QV+v7`KZKxzswoE4uAccWXKM~(I@Wsy~z_RoLQX= zoHc9TZSTTFS}WL`sy|^)N;7klGBXkHm$7oW#FUbl&VB6j=gUz`bytqd59r)=M@Hmy zlaR6w7UoqLH$YstxFUA94-jsEB4Q!Z=1D2Q1*v&ev39|Jqt|>mi7iz=>+< zZiSpZ>-?xGT6b~b`->v=6J3t=4Glxv0NeC&i(qQ`j(RoH<_%B4%EiZeo|EzzDP4>` ze#rn9s>s!kO-E669UbO_$*KK2CO8s{x3~28^Hfbu4YTFo%S7cNQkkgMK7P`0eNoY2 z?kK3uiR9@re3H7b0Y286crPxl*a0ox^D5==e@JZu7oHjYpW@v9n;%f!`}+DIiRaN_ tEO4fDF__5t?00E_8Y}$2Ci5=s?iU#siwh9G4{^f?QzHw*QUmwv{|Bv@hQI&- diff --git a/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf b/dev/_downloads/7bfa6a992ea402720a120fd5093741a4/plotting-11.pdf index e722a2ffb554b4588bfb0870e1c284f730b4e2a0..5a969fcf844894c0be5849ca9e702f3545606251 100644 GIT binary patch delta 17 YcmaFj{KR=fjXaC7nW^dK2Kf{w06}^NDF6Tf delta 17 YcmaFj{KR=fjXaByv5Cp%2Kf{w06|O!BLDyZ diff --git a/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf b/dev/_downloads/7d4a2d083d96719b05ab2f759c57874a/matrices-6.pdf index 7bf6275fae3d051ae5b2f8d2ad45d25b14a6f5d9..d21eb4e820e984aefc4528847ea5bdcfa4099088 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXF2ACfg+wS)`Z&miY*L delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJlV#hTA0*S)`Z&mcIyf diff --git a/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf b/dev/_downloads/7eed1bf07a4dacbb97d209dac2614e9a/matrices-19.pdf index abee93a122ba14722a6f1114fcab928379d12595..54ce491bfb11d4f5c702f73e7e73ec3c4a258d50 100644 GIT binary patch delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EXJnBrrTAOS)7;wpSTFI delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EJj8~7TZ;oS)7;wpP&e@ diff --git a/dev/_downloads/80381e15163e7b0ece9149eadb09772b/control_plots-7.pdf b/dev/_downloads/80381e15163e7b0ece9149eadb09772b/control_plots-7.pdf index 7913f59ba121cff0f564ff57ff2eed8d762be980..9c0ab4c793ad5f6fc153cf688f1ed17fbc1f78b7 100644 GIT binary patch delta 17 ZcmbPMJ*|4fOA8ibGZVwjZ!K1`002hi2TK3| delta 17 ZcmbPMJ*|4fOA8hwV`HPuZ!K1`002hA2S)$^ diff --git a/dev/_downloads/81a43cb7598cbbe880e19146241abe5f/plotting-26.png b/dev/_downloads/81a43cb7598cbbe880e19146241abe5f/plotting-26.png index 99f0dafc6b6a825fc097540f01a50c5d46ebe2e7..0e238cd0202808143792777716045855bb767ffe 100644 GIT binary patch literal 9350 zcmdUVc|4Tg-}jlZhO!h&LY9iM6WJ@Wg|csBNk(>s@wH{7qEciVLrC^*WZxO3uP~aB zb&4sni|kqN#lUa#kV{+#(VE^p~K9Y3P#r7Fbn z`f}2D&(f?-Ih#zO-+1MdqB;a?4dk9ZIdSgB!+W9&;Yot4S6ua7$r~H(E_pwV^(3cW zkuQyrS6;rV%u~f}WJa!phN=%@rvlRfz?$@WaKiy|#J~$Sf)QR7qyBTZn_t{Zn{qV- zUK^xd9G0Nd;1C2r&D7q$RDI_=t9AM9Ckw_vSQH7UvM+TsH^#zR(nHs+oYCkJ2?mY0 zgSJPR9{KIA4Z8pS@u6BD5!-fVNCIfg&yQ5;FE*~cQ2R3x@953V^ynDVBYMKd`g&nb zj>zawgpMGByrM$U0#VPo?f$ylvb*5Tkg}JWnwprAQF=E0uPdyotDi*{xmoBrk3=3d zJA)P003c+3du+dXfPgA8D>6SEtPDrR_cxp_Rlpj6&qz3TF8Cj>CcF?Y)BaDqm21Ty zz%BRTa%VR$FLP__l;!2+O2_x~;?|WPF;*as1p$`uEqiOFViztX2sdqv2G>ue2e1Cb z*^h`bY4m0?!>^}X?c+u$6i!Ckc}^Mu*B&I;{EQ0tmJ_zOk`b59s=o92o;--VNnBAO zW7xru@wGwwL5g=v=uJk(M^~60U7;CNR#xsG7)YYdf+4t;Ari{UHs5_LwY0QwjRsQ3 zO%-_!9n64-6APdUd3t&(1+7jK*P#0pZeJg&W(HDfFQfdnD!&Yi(jg}~ zp0MnxsiI~Vac6cG!-DNI{tQ2g>FK?_w$qLG5228_zYf2h2^z>(rTP=_9VL{+49n z1M{Z=(EYJ_cZP(2#`??3%2?`7P4)Ne99=D~_hWyrWKW`xvZ#>1p5;L=ujDi~ZVn!z zhQJ?d-P$(r4YnV1I9flYYm&EBb3&D^){j}sCiTmZ;&CPwqt5QcGe(AYo?v|$fyS$< zD!kg(9e&t0Cnq9wnQ;Ds9M0Dtqo@6X<%L2N=Jf5`!u3kTmQ6UI{wr`l2b7uNV z6653U`F8)b?d~@AUZk#-%eek%Ya5{3JcIzp^G59o3S8eVHow*=%ztYW&!3o-9@bRQ zu|o+?KXLZ%_eBH?OjXgB;edJ^>8qU4DKz)xz|fbzzAXOTY3;(25;F{@`suT0YwwsP z^9u_*F|N`9zmgxwx@13o+&awAm)oNRYz>JkZ=CKTSn_hTW`A9Dc|}LpaY?5nFHf64 zY^ThtY0aDtiBR46>N`?O5+A)d6(1Bt!oG8e4S%R{3tDzR^|tNDgWU63gj6P32l5~pcuLSMWV7YSVFq!<|#7a-W@(?PKAg-FX;uWz*cd)Nk|c zCF*twp8v_q3~vclRb$jQ>Kh|0KO3MbH#JR0hyBoW{lrV@C$g58lY&KgXv@p*uxrc; z0iwdz)^+}{p!!SWE-w^rEqoPt8&G;ev-6sfju|b;Rw2h9IVEF%X-SB^ygWN_g>;d; zy^gn{{qUi>2zf0MU=z5Gq_Tdus@Rc@dkwl?p6hcnTu8fN%~$!gnC-11I{A zoj{_&t2wYIGf$M@)pCv1QHR`bKHK1WUJuPLhw=$J#)(={WiW73LOK0K`58j3YFvr6~ zdZ)(BCH0QqtD{R6g{rDD4sKX*qw*j@@oyE^4X+A6F`8X!;i_NXa{q{%IXf-KBLL0^ z1!boxce~v$PCJq;5gyG_kq2TKX@Rh)8{xl`rQfqKu|#@WAk|L;0SOgy^ld_+OhgKZHnPH>IH|#?QOpL|xa~uow zNy)?FfvF}S);@YaNhGU;3H&ZBB)ul4^Br{02BailmJ$sU5rK>HRX(hF=7AH<>1cWc za2n_nI;DIj5l11=YWUHdcF1M~$B&X_U3e`}&J7$O&Whh*^7;%B0sAq7{hSG2PnJCb zI)o(2(e0NoB#ej-9W98qz8Zm#RB?Q;peL0O$$#H6F)@*e7CBPp6uEFO)*&ay7$)t0 z*q<=OUDtko5iKY+N|E`15vfh+FS3~HGg9x5J|XLYL+Vd<%i8$Jo@0A|8aSB347Q%F zW2Z3sSJs2p*9$TZ!>=x#p#``rfEcy#?R2g63+p)>!~J8 zw{;|1q*y5vA2EX3;?V8nMb_-XCr5L3LS$uuA~yoOhf!~^fBldCDffZmoBx2Bf#siF zW@cv24Z@ZeL+ghnfuaR*CHdR~eM*(S^;;r_Gpgo}12)V*AeGQ~kU}5azRV0H3Nl++ z1d*{@0&T|wfIY1xXzY?VqfAR>U75s7t74%!Mdm3kY8Sw!{{3dS=`}D3 z(;$IF@8H>-9Nn22XiGNtpFfKag9w0q_N5>1tclp{o9MXCOp5^A(+lz@dq`+E5QQt3 zkre`7LV&8ma75?&NroNo&SUF`d`=+%4czrx)Lr(m`-w?bHwdx}5VOo&iVAJ{WEs74Dl#$7nb@8x3oMZ$yoU%-@YcXV_r}_7U;x`wWWX^XF)99}s(;@wM6KQ?wwG4(YK&<8VXjk6ciX#a90&F_wSzbVKWJV7{)$hf$5*d5TH}uF3&e}Df>!`Loi z@>5#T9HGImAz-l@#bL~radb}`_^@@1zOb+ll|N0cKzH+~E)i))YP>TBN^J6if7P8m zO=b@J?)z?k^C-=srIyoQ!!rbq1NkxT8U0q#u*YU)?y|R+Ew5O&1DnHhORLLgV z+L1v)L8g|L`K04sB%k$pt2C8BV-XP%8g+M9*PE9ww+52?hKCDG@(d5##%KzrsD%cR zW_2(UO}O?g>-Mcnj;Z=#HoCJ53ugNIUCF;ruHe&8oH)T0`M&J_P&OwEy~(e&i*h=g zoLMdQV$B1;qt@o0YYJ{HcS)`dyJXB%kk$Is_kOdkt*yC!c*+^H_h-s!IkUgF_f27; zSpVRl`@4sSmQ{@4JhxW+j9@zO@7T`C%Uh{gD=2FoD7$YsG}$|5E>jv%3~38T_UqRg zu(y~h-zmcq+d5-q%=`^^_aZ{WFQpQ@CZ#jvo3^&a-l20gLF3OAgmn*y@Pk(BTj+6K zw@S`3l(EI0VqoR_@}=@3%Uee4QhU#y~+Wz6s zK5P^O&GApe74!7d4{GVLNl9FZ2?=-l3(bCq@XV!$?FEY4*4`Mj3ohZhVEOv+$%{i0 zu9o97tHW;{BMzQCV&*QauMcvlth4tVZM1sEEoqKM=R)G{-tek6zo@A1_jr5SkTUgq zB)_?{a}F{bi1thI*g9` z^$~af_lFhkY_Bg=>+40qaTq|yOugvIvzykWXkF!&7%&#P5eU(^jY`Jf_0`qY;foXs zrD=Kj-eSxCZs~`oj{}ydLyHa0T}k1Cl+T~3(5VBrHx^@VI(N7%jy8?HIHlZZzqgDV zCEs6{rTlFB(5)~wZ;-As3`z4gWo&OU6ke-sZ|>|sMPi-jRwy|Mo4%_$^&@?;i7W_f@W9HS!#*`Eu z?~XW;(cr}zIX&i+!OH4{CEGv_K+%JNg9`2*fsE)k0aU@yJHBNYc@stnr!x!$~6HMb06LUDv zo1a^1QEL&=Ps(p@9`(9;7lx(cQfP4SHgRsfNJse1_F{`YS#5hh+2ZJPeW2(!9cvfz zTT2ycIluqf%&xpUeyux0-5vsjp!u@)$~!%R6cJSKL`Sc}SoHqgYL8)=x3PzfP5c(I z=hlxbm9EVV&Q(*qPWE`3_#ehL{HoXg`Sa%%yPg!?IF~(F+F}R&gm1+u zdZscrH}{&qzyH-eFKFWW#pdnRufAkaW#wSfBa!&7ri1CiII}LYC^ZiaZSrc_#T-Q8 z%4D~`PmWN05@seGD->7~R|&)O8(h+$?S-1e`1qrx#^YYurQABsMyhKG>x*NhB{nrL zrq>JV>4_QpJ1)Ata1aFlxq+GYtm>7vH$(oTh;>)>Q!z-KgY(a&biII`L=9|mYLZ3^J{5~A=>;QOP71;f$mey$9sQt?A$#)OUwzj1u%7+ zjct!^+_JU0^&Hd6+af9{X<=d#zr3;{f`9&$hlj`X<}qV)k978W>RXv$P*sDn*{KXkPxFm&SmCCqg(i5K3evVnnt+$`;wBer9e zuJKQwK9zIsJoe1&1NkbeYBn@x`1pLBi2f=}#xb*0$ue$@>&1{QQ>r~pu3dYqLhc)> za*yAmCgVldR&}hbvKq#q0gBhxG0;ASkRHbitM0D$SvQ9S@)lNl!w2;+-SzkMoF=av z_~P!^{%*$or3n5Z330St(2R(gg@yaCuXW91$`0Kr@*|Cb6)CByRUv=wLBIQhAv!7Y z4rIls6d;@Hi_YKO7U98uCF)_12yG#1+0J(Vf+!+-e;R!9|M765 z&&!u398ljDU+5cS0C8VN+y)MXL+o@U^`e223-tnM?-8HoLSo+|5n-f1bW-={!89Kd zJKoy|^_1+bAlJ$36f=RBjNnD;B@?B;K4UlmR#ONlN{AcG&Q+l3JnHuMw%4B7?_7!d z^7-@YB0{|$T-OR)PL2iAiIja*+ZBx)S0m*73n${6Ql*#-3=HZgQ{0a+(wf38YHasc zfOWM8exW?pVS8QIcT!4zNWK!lJ>J+UYeCH6s+AS~z~8DWE2p2FO{Y>9rH<_VIt?^9 zXb`A1m=mXWH^wZit$CDzQelqP^7qGq#}P;%tlKK!j;zgXYC@eiFaA6pqfU760I9k) zomH*>fX>sC7Fe(Y0bM9YjZi!-!Zl}RXL~yn&#w__Sf@WJFMi3^jsMcqllhM#efUrt zRlP=_Rb!cF!QeC&;e{=m6FJWz_IyBp0apJ=Lzo#FYKw2*nIS?55zHz!eB> zDUdvTT%GBCDO6nq*jPhD(G%*-`&bC?Il1)C8V(VV8pZwnx)o4ALUtTHPE5qRhJ&5) zFQT%aam`^6+OlN5xuO&@1g&-J=aS>fK2I#-Gyi`SD=vIV5;2A3&&diCGYn;(&481G7yb%uiF*`j_Ko78Tt0Dmu@8(gMV{ zy}jAz39&EuYfy(IT%f}rSXM6l!?(NPO~F>n+}w~Xl)urZt#Fo#4SI1(wqaL#iIw|@ zcsP6AmRmj2qo|;uhttAVdLpN+?5=4H=l|wf#ryO6ySr#5Z`~&gda=<%huMS%dT&`H z^zudOB{8i_fd>99AI zLr01^KHht?cbOa860(+Pih>kISlJp#xm~(sjHy0>ViBmD9~DRWCqgO#<(uR2u6?BX zA1r(faoV9xRtw%gG$GsNglrdWX4V@{Q_Kp4Ba*m$sgf5eQHP8n0UtL;iHH8lfk?il zsz(3Rsp7Sm9!OYikqB9GZS?>~1e+QZoFk-t{TZ(m52VL7=-gv0dj9?g?7Mf&``t#r z1+-&96u>5bB;%ld5)lj9GNz=zv5sGbtp6A%ekMH2Hi?gTeEzGbxFu09?6~r%QdB`4 zhwD4q3Kmi9=H~4A3bC_&yHb3#pv~3_pO7vAr8=kwgkcuqCO^qLd1HSIK#8KWlVo9y z#10MD^+m6fJIkS@0iCWEf3aKcCZC!|1BXDB7Q;?=T30K78T@J6!~~uAGk8uKM6{iK zMx|4vT$oz-UX(Zz{P3DJtq`9XZGv+!)(@zGKIXSjg|sv01`hNX-FVW)9OZzNpZW-vk~%9lPiGtZHpr(B$vZx{ly%967(zrS z+J`m`J64qUVnmjpM!+G#CgpN5&rsTcEoxb%g0Mf)fu=uvKzS@pZaO9%8Lf%Ai}10r zz|HWaDv+ab2oA`rkkslof})Z}|L8R)oluQskG0f}(Nk6Rn2l(I`s9G~?PLRkl$7iw zE=oUmVq)RK)s-UOg%R;#M*!Wd!cITB`EU9-uv3!tesu$fOZArlC#R7b#-gIq&*=LH z^jZaWGnXboVmZ4wRm|V<2ugER#TQmGhx?uBuWJcbpGRIJRP@mfohLZF=8t2A z>fE8eT)b?4=r*YqTP{Q4MBpX^&%8yu_zuKOXhGpn#|TGg?7eWhF`#rt@MCusiqoeV ziW=wkFZm9&vUWU&s-9%^?S?SmVJ+wv+CazbA6K%-c-zIJs}^&xu5 z$T`tdas_`wf4v%+y%SQAAQ>wL8@PsJtu*rU+M`)Nc8$+7Kj|5hJf(8Se0iK019c{> z>-WCA?oI5wD;4={Z0;~Eme;h5Jv6dTi!EdXONp;|kJ2hBk3wOw!)4K0sBlhcF|Y)se;K+%9|}p! z`s-G4o9g_kDziaUK-z+FoMBkYaGE5WREhe8Q0-Fyc8mn1YK?*|2B};GIy&Ql2VhK1Tf<8z`%0@+b~-Ull2S)@-%PoKrR=zULD4X(WPfvIU{xhqR)bGu`>0_~GG zg}=Y++NU^8gM*u_)HPLAD4s+N>g$n)5H?8?s6xr+%`38K((%n(DdxNo%zeAOdu_-w|p6-+L>iNQix9TZ351@wW5pYXYG)@J}!Gor+2BPzm!vWg=GK!-pyR7)_G( z%FC!jH0dtQXqWAMEccUSjW1)~%{Y?#)I6UKFA_ND`Xy{Vs;|%X8RBKjY843Desa{n z;))o{y}5k$QrAhiL zVp@bNJhPO{OEOC1nU9H4+W3=I1#{QiI5C>j2q<=8kIAHnJPi&a6+e9OqLp(=*mtRU z={2usoVvv-rl)iYVrxUuPKp!F&v~GXH=MN<}2c>cifo7_Wu{Ww%G=u zbSYE-W=Gsh`ybFTAJnfYA_$#Z|El;OZ-L03^Vl(+I3*>eN{3eD?(SmP;2W)H62W8t zl<9aEIS|6^u%w?6#kV6evpUnK6ue&i!3`WJ&s3q43SM7!{;Zf;SrxSN1$$_^?1Qhc zjvOoK=H_N*@DvDF98`wcPR5VRp0GoEK*sbO zvRKy!7NGkAfX$EROB>(dWnE?;pY(c*V!{e*!{Y)!K4)GHf(6vIiFl(Cc%pTcMu#L>|}lx`-N>ug5*s{H$b5U7=k kA1Jf`$pbO}*AUs`$5d$kW#?FYAd&%HEkjMh6^94^24_U48~^|S literal 9365 zcmdUVXH-;8v}JWm#*d(a0m+~ON@^r05eX7Rf@A>^kR-X0+=7S*2!iA&lB47dt)NKG z5?Y`Y$+YAksi*kfTQl>1&YC~(tp(k;>(;HRTXoK>C3NrYGW1DD!Uy|;34BT~`tld2=T&;kHg}bwZle>fMBQ~^^tDCLUQxw0DAiv;s zwkPiH&Tf(d0*?Q?2EUW5jlers16SAzrL&5m8vv&@PyP`Bp5dGTa3NF`Z|OcuAx!!> zjBFpZuaDZQ3G_4RdOsi1&cIOUUPOIxTM9>Tu%AVRt5rV>qt{?m9u7`)>@dj;4VAi> zCnu0BDR$Q5ww01P<0r>VL-lU?I?7q?2?aI!1)l61O)0CZk$n?^@{6-6n}5?*=l`l` zP7I|DZOT@rtSyTo9;w@36DsDdk9 zW|VN*V2vFK=;S>-JoZ~zk2Ai6oyYN$V(!rc3?}r;qx#k6gRO2<-!(qIF0=&jeGLGK zI@g&2k5SXyJ7J9Duxg~$7(b9dT=`L_B3X&2r)ObyHuu0R zV(o3zyjL251GKeo_Q{n_AMezhx=rlq>FMn28=Z-iDa8Q4c2z)WH zud&@0qF=FLg%Y2B$>j|+3Bbw}!FR^q3J1WP1Wo{48zBA)eqe$q{wH2uYegf#FZ;#8 zY`dpV9~c=WZES2*`X71UFsbcF8v@^#a1y%Bi2M2sjEr}qr~GzJC;fIO_kV>6tT2*d zJrj@snM1@2s17{QeXsTHp%Cy5qX%r5KaHE3N1N%ycU*pJpUC415qM?xzD;S|9iS3E z`p`$iscHK=DLdPl&}(NxPn$S7IqBQm+ea6kGCzv|6tyWSmv4%S7UbnEMAuOM$AUc4 z0}ht|06Mnf;$lhftp)6M1d|x7p%QaNquhW2$UQo_2}e;g?cX3NB^4VNm(vk*b@^y_ z+J>DCLoG-OFg$SG)Zyyk*-l)Sh68^5H@fWnXbLc8p!#sDit>8JQ0Kjgsop z)?0{#rY3Fg{b0Ed*|UeG+uMl;Tic201EV&7Mn}b-C2M{2E&Zs~*{%L<=u{LNG}3uV z$*h>GJ)cH5yGIq+HwWOCn`>5i`GA~~QIf8Sbp653&fS5$;Yk?-W3y><@daACFJI1+ z(SjX10Mf<%O(cDGJ_q@rtIyHkiXE?Ayr_MDpuc8aI=^l_T;y3ACCQP+6*;rcE;Zj& z(5nnUbWv&F>6+ag8k%vRG!d`zcd=Ft^=%Zv{4xpy6TCM?PQOI<#kjgw_*Upf%8H(8PA5l?f z=j#;5#zeci^~{>|^aL%R=0ar(J~eS&Mh3nBApE{(&G4{@xTl#Go1X4iG0&^JYJDwJ z!;g;%GJQocdvm*p(-E+mf_H^guv#Ml<*%dD9a80nQVxSiTUvB*CQF? z;buWWLAj~XkJN@7{EA_I^VFfN0=sSJIVEyT7p2!jqLB%>ZEGtukMl|MieGKNV`pk= zy1(!t(!J|O&9!q>i{m!wBQO79+A0k=vj27v+-d=h`AY6Ll1=Hwh5PxrHqK3VG~W;k z0FfPl+u~k>-SZ&|*0IMgD69D{CHBb?O$r|rYnz%*M%7SjgS{Nf_N)^AiVVTa*6i&4 zkvss;Bq`N%i<1#ress>g8qf^ZQpj}YsDGFg2?&-jJe+2e$2gahnF zm^|dG63QVZhEwmsM9GttG~W$X!gPz7akWDo-si1~;#-x+cyAvcA7Ql$j&ql!nLgwy z7Zjq*y1E*CIXT&0B_J_Fn(3l$2k)c2lrOvsw!9~IR5|6lso^-)Xc#;#-EqtjC{5}t z0T(s&Y|bdQ(sqs$k5mHqtPjdPS^-Z>MBH)+cE9+}gf2vgOL~+m&1Q zA`Qh=d>)Z7a{}j=^NAMI2HhzNqW+D9*S|{3%I?q3&L#<2zT7zWBu~g+=8%EP1f{0Ofu|x^dM?O`ktiwH{ajb$j9G$A23Nu>dr2BU7>*wI1J^;hThITn#qA8q25z9OuR@s){-6^xF&}L z+F##tTGtXg`4ZTi3~V$pv@a!bfuZu4f*z;$Qx^P3BH zIeg~5%UN4qp7nRL$F?Yh7FR;X&k3;SCnmb1h>c!3g_r2uV`B%iRIhB6%hQR{0drHo zCfgNMfGpqP&$vcu)JT<2&AEt)60#C@fW6cggC+liMO>u2XCzb)0tRX=}=&5#0o z%q&!!C~I}!{NO2RoPbV&3)6up_u^vfbsdkJM}yDZ7#LI;7zX3b%K1U4GLYA1 zmUx5&euvM)x;lh(kW%P`A&cjV?10UdhFSQZ`@DRP`p7+F@A`}EQoadao~yv175#|l z@8)ghQbxFo8FrbCg|!nF;}t>Qrf+D1xDt;fliUsyH_6X9E$QYr;8Lzogp(nFi_2PuM0>zz64=h41koM`j^Xdt z4QH~TAAKz<8@RkD(Z{ON3`chDV<8-c%1sgw-q8`Geck%f5%_31C5<9&CsVjUi3Cc; zg=&)M?v;mR*plOaUSNK50CQdGzQ&mZsZlgH;2L5z-*;ccB5<*6dUQaLw*j5#c^MpX z3iK7VOQ5@9+oZ5<1HUE-QXbA$GT!0qwteC7fJMWZ zJ!S;pbltBU#&x|8kTb5biaN?Xb+m_^t^*>)S zoudhHj7M}?_Xx9tT6piJV;_s{jss2)TzHdmc_{i|mp3PgGzlHcJv zb6@;2OKoLM4UV6ZQtSSwolmtQNWjm>81sfDHb=e8l=9c?&k)uJmX{o1Q#5y#kB0^BLthl#%6Z4C{7Pc zO95)-ol4)uUCGYHm5|6c#>NjZ0ca8DVMK6LM34-%g{Cl4AVKqcXe=A&sm5WYOlX5B zBwiE=dfo7tHrpBbHI1Y;SwsmZFqbz=Pu!iKl%w;_&K@kYtS-c8kbu)LJb4l^YF{Jc zdsE6xN#PD;E`ROu1L7&?+joN9f4?H|no|qxMm^qtQGsK{rx~bcvNtAEfPV`(ujA7$ zqO$5G;c&^2V0fIz%6g&%iTNinad5l>cJL1g$a{aQps3Q66d1d@8J=E%W(&mmFIx*` zgi(Mu_KvYs)Q>T6nhsGU} zD#K@GgM+=W_EU7r9M&^`?>FBeBL^KXfD-BCE#Pc$t?jEEAPa7FIJ(O-ZAlw_-j#62dWnwZf@~I0m+h6o6)lV0B;y;^WeuHXyl9A+Wb1B60{< zfywDyiiYP9vG&CX3p>C!Djgh5xZ;k0fYv$fhsk31MVubn0DM04NC5NR#3guZd$hVx zK9e3?ZsWlK{t(;G_!%uc8~On0ERjNW!IuP(3n2mC^;s%~tp699U+2=z3yX_KJX;P- zd(vc#Axtku6DF)0xU$$DUJZ8TUK*(<9v@UWP0JRWHazg0_Vd(c zIsfVNvf|o0A6fM8R$94XxYOsAHt+LVL=FrNW}e_0xxXFvxK!m1f6|Wh_h%d(>|R|F zLS$WmaFENXas4HW&x%m7Nu74f{z$3&&dPYLoYL*vL7knQ@77zmf4tXHVPIe=C@qaV zutcahviF6ps^4>QDHCS46PccxD*5rl1ZNelVm7_t?U(z@jX6wF#;k91`1|)0kO$cd zFCQP@Q@MuRT;;3x(sWf-JFufhMn<|?TFz55(9xH-7KcuaT9zf`Xr^AOkv#0pZkZjB z9UW-a9Ge?leGpyW&@eJMC|q#x^+>(1yIUP%x~~WA`_Pd!>*kHk1oU*n5B>A^Oxii7 z`otK+7Q+OZ`*YL%3m{U`CGNG$4dZZyvt9Aab@ORqU11N@)WRUj)YaF|4G%x$~L;A8o+ri(5EBNWvRL`kU+)Q^ON}2e#FF?sXy|J;eR>q&#dC|$MvhOCt zJdwM`zh-bO&FRN^#AhN6^S_vt^sueUOULA)X{xTFZ37k88GA^^pqzlcxqd6vuC?Vwt#Q*y7)G zQbJ12m{(u#ZC>T2$^*aoL}V#8KHi6T zv>I^ZfkdXvwtH?GEM*Z*&qnYY}*c%MUj z44v4ddyJUNFGWb6SDgY5l6MJC0XWw?p_{7#M4bJTCu=zx$#agl>K?QN<;eK>B7EzP zurH6&=Dns+ebO_N&t@W8>sJjPaym$OEDdAlR~t9q=$o24mL_mXxGzNM>*&nfc-T1R zvpeaj>`QzR0U8fCx{_r5>PuRV_Z4McIGsCp?zFG}T=&K8tu2G1xs8*pqphm;my2s?maFq8PT_l{R&~9+>imzE&6WiM{)Q1;&+tM%Qomd>lzAsi=?JB?U7eGY zqf}K@b^d6o+7aiz+O)d_xtyM+W^W$#W=xmN^u~s3u~F6C|KMk-Pa6oL#Rg>xZgbtL zuGy_Iap=WhOsiK(bfslG&7@nOj5q9E#NzV{#n>e0R=;L>ULWYcwt?V8aE^e9Iyyl7P?(fY+wr{y9F@TqL!e=6swrAtbmflGH ziFzz*y|A#*-y=3Hy&@;ua#2+$wzKoD-@MfHz`<(EDh{xzmW_RBkxiMe_t|}VGDaA; zUpMbIt$wL1|9#1}H6?>bKmaa2#3!5Fi4m`tmY4P3zSh9I-2a!^dCfCJX6I#IU~{c( zY>biW;FGE6WHvd=Gx@8UDO&gMza_Z-db<3*xS+6bsK~H_OBL#9C;P$3@NgE?(VWNR zuKv*hq@<*hF27D(>m<&>U}yyWNMk&R=)5x3_+XIHu}LmfxU>Byp@njdTU>C~izgxlIHwlV)YR0wYHC9;N^c(@ ztdje);|&I=#w^HbR8Te$3;E0QnQ!4*%pQSn|F|RFFAUIP#nyAinIVu_XJy9LLCk}c zbbJ%W2E?yR;ktJb7_L-FtNj;P2%SPS5;;;UoEb4Q35@R42&~2X{_Fz;aHf_5^&tRX zyXCF`z~Y((WGoO)BtkruENd$HtRKw)^|!rg84}Q*ovqr`1cBHM7&FrS*Tc+IAR=A9 z>G{V5&g_V*o=SCv&BbF+`Up(MzPIhhV;(jiF$)s79PUu}At9q zvtsYqA;ehs{2DeN6+{9(U6p_SIRSZAR#x8l=j6i>Ikd9|qy)9Jitjaq0HAuE#C>Gc zETDLI%IBV~t?dd}$ctm-!7$BPT!09YE4X!w#92e+(#Xba*Y=oYWPV15e5CZoD?+sS zEqgu$R*wXzKoKeX$uNY1ac|zxoH)nsbU@3W+8LS%R=J0cj*b(xE*}VkQHs}(-I&6F zP)6Oj!&!Act=*4I8OhE2ck4IqLTt*Y1OziGbs_nIQxnb3h{{E@njY@Eq*0#D+Cf8h zp;9?vlwZ(^X80HiFq`k&Un- zyh{svV%OD8kok-tY5mzcN4&{K4+LK{O6OPTEG<`aC+wA);&qt`VYPC$iY3`F&>$|xQvn^E^dUn!RE3mMHXN4 zWzDoZ>IZfu%J@{5H1FG4_5Wa={^%)iBftg9`TT_~cLa^ePUX*!2|66GF~U*b1P@YL<1AbW#n4L`Qjr?3IPRtuUZ4D9mX@A#fwz9GULts4SzZtz}TKfC^!FPRe55z3lL1+l!d+m)& zu@e&u+mUY}J5pC*cS~FUGYMswAHz_ol6a)_8}pV8n0G_*#Mz*rxXP3gAJ;5S91?6u2X6b_JW+Z^?$L|hnrd=C5NrkGl;W?8YonJ|FK>ij0S`h@1Ppnx;z z)z`N{j}<{WNE!GB-l7ifmP#JVmC&GDnD@#lCANjmoxXI!i$3OLey*gMs)_VKI2$X6 zBwk8}G&vp-%?>jl&c^rOzKg#~nBdk(=hsLuZ{T37gG9f+er%Y$qn!d2b#;p*CyCrt zy>X+u5D}eQ{avIhNeJo{&h!Y-d|%Hh2f6dd>Mr>7{k!$tL06YX`e`g#4#4wqbLZIh z|C!Vl@AkbGnA<$%+qlHr-~qw`)^l)312?pTwk7)GM!@>O$j#c$mdwxSn}8FnmF4S@ zn~CJAzdd2HB;mb3TeZztSNDGkzz0XmD|*7Ll|u{#8N$X(C@wVbpwF6@)&>UqudynD zs53e0LaP}&1k^IJv(rJJ#3X4x5t|g#+Tg!;9szhbWlUlG8d7++`Ve&|D%rk)7w@Ya znWT4IVOwU1_K;C#;ZsofN%_?yF$SQIkJ6**hZZ3K; zNi@Py=dJJL?jb_V^NohezTz!pp1iK*4ouTa}zPNz?!G-rLs{ zfZ_$zRylm*MiggGP=LLd^6zK_k>!& zJ>2_fd(<)hUGy7Pu>j72Jc%#wg5&~U(*tpCnaRdHpR`5x{t+uBiW6Bu6umjuGju}p z0t1mZMMR$b{2W}6pFaTUkYoIuPg%lvw!n!_pXn&@Lmpsa6xfGUwS=k3Xjw$ka_<>Fx(mh2z7ABhpbp0Tu>0<^*gHi>yscF@lx9v3WB}MW`YY|+P8xYw{AX7u@!k& zAnG(#q?4<;IALE}W%_#6-7}d#`hC>6exNUjKFpjFDTB#&ZC4jBN{=>V$n)}+8z*x? zXqH!9y^}eOgXE>NtBYGz3cb=Vv-{%%%p9nly`o;bK;V4)isS7!?Do#i&ffVI&NMOc zw)DgfIypAg|4iQbfB$|ZRonup@Gwp8Gd3H-IOCchu3^WJ-`aIVbGJ5|{i|zPBKg#s z4b&xF+rk&N?)`nd7Ds*o8$ga1-p{4r8q&wFS!})$zS@4BWvh!P*k@;D;AFENR1=6; zz_W76$XL7N&b#!J^M}v_^LO?2S(fc&rSb0);@YaO8O z!-}7d7YTm3R3n|d4@G{!qjPw+6Uf2LtP9>tTP+N33w3F6){?Y2odp}ZRDeK$s_mRx zA4*5Kt`2RF)TR%zl)wB!VctphT$rkchV`+b@U4uzZ+|Fm6-aswia0J2Yf=O)oXf6Y z24JI!X}e-|Oh(6c0_!HQHxo36zRZ9e3+EWLo>fqQZg%=Bh?Xh97q{n3;nj>=f8heUkwP zE;HS_3cS}{m;b~W8TWJ^R#tvG)%3U|{+-}HVoVVLU+cqXZgmMI{3tuNM031X&=BQ3 zS+GHOk=Q~@8>isbPEyd{#i5|h^`l<*p(97 z|J@pSi}<{@boFzPD>3S@Zr^E?D0J>pN*ex$H{165^aYB%V^1O}X?%;Lk&z%;kwnn9 z8;khwlsNsbd0fQ$54S$sPl2TMb4m6h(5s8hTBgvd!1wxZuQZzm3SfCYLP<|ci%r$e z-hSxt@8&j4@tabg=Wkr`YyJ805);!|Qx3oiQzI0wj)PjbQYGA!WMpI*VG7%m1hC2f zR}#ALaq8%l^I07r|2i)}|GuLm;Z949BTf`Dep-`K$c`LqCUeB5eRUv5ti$j8pG;eW zk+Jd2Llhvw(Id98r)Zx*k;41;TV;M9NBJR2$F( zxvrBu@t#4=)70vxlLb(Tg6h#t`|nSn|5bM(@j6f@GN*!CiVjp%{>Pq7kjGY5R_0}8 zDZ+CXm8MjH6*?ZG!h72e!u8MSi@^5{JeTmTOQ5A_aVU3rf4Q^x89+1uYGY2nZz~)ky+>=!D1xD51rOKK+pg4FEi9smEXJlLX4@qbS)`Z&mmmm% delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJjAgmfIy0S)`Z&mk0=d diff --git a/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf b/dev/_downloads/81f16477713a2ebedd53f1c8ec85b754/plotting-12.pdf index dbc4e77d6a9fd161a1dd803771d27dfed3b370b6..8a1eee3791d1ce5f785934f99c899de7c29afd59 100644 GIT binary patch delta 16 XcmZp%Yq8s~L5A7b%yjc+nLs80GUf$$ delta 16 XcmZp%Yq8s~L5A7L*kto&nLs80GQ$OO diff --git a/dev/_downloads/83ec70596dcaacc88e256e7679fafcee/matrices-12.pdf b/dev/_downloads/83ec70596dcaacc88e256e7679fafcee/matrices-12.pdf index 4fbbbd49d64cdcf5cc9631175c34712ec5a62bce..fafed95d59f7755d7801254c59f47e5aa68a113d 100644 GIT binary patch delta 26 icmezNkMG+*zJ?aY7N#xC276eHO-#+Vo9tnBVg>-B^$Ga^ delta 26 icmezNkMG+*zJ?aY7N#xC276eH3{8!;o9tnBVg>-BtqJe| diff --git a/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf b/dev/_downloads/865dedeca3d1430244910d89d552e5ef/beam-19.pdf index aad5e6082559d3e0f961fe2b3fb89316e1cb349a..f6e371f996504b96ac7bc5b380428e9d33ea6f27 100644 GIT binary patch delta 17 ZcmbQ4Ix}^{0zDREGb5ADOZ2`n0{}oU2Fm~d delta 17 ZcmbQ4Ix}^{0zDQZV?)!;OZ2`n0{}n{2FCyZ diff --git a/dev/_downloads/88f8d6df1485ab9648408b70b7cd4c46/beam_problems-11_00.pdf b/dev/_downloads/88f8d6df1485ab9648408b70b7cd4c46/beam_problems-11_00.pdf index d0698ef7454a17c9b99414aed35fcb63cb3d9cdb..f18e05f17c76aa89257bee052ca0c1fd056bf23d 100644 GIT binary patch delta 17 YcmeD8?)To{t;Aw%W^Az8U&(<{9 delta 17 YcmeD8?)To{t;AwvY-G6EU&(FEi9smEXJmW#@i(mS)`Z&mh%XE delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJj8K=G!F`S)`Z&mf{F{ diff --git a/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf b/dev/_downloads/8f6a7c938e347f134c67566d5aef740d/plotting-29.pdf index 65b5086ad30159d85105d794b4e1b70fefa960a6..4ddbc081bc4d3eac70dce997293afa0380a3d52f 100644 GIT binary patch delta 13078 zcmb_@c|26@`+ud67&EqE#_tS0-`D5+d47NV{`mFRappefzV7R~?)UY+-uLNQ%+BSQoh1=F z0X?i@gJ;GH{k(&tOs{(!t0DfC=_9|gr}q!vw>=wsYW&=uGMn>jE9ZPk4@X;y(lmB! zAC=3fv6$CbR?Zs~J)MtXQs&t#Y$NMCg7xDVZgU)m!1%M7KdlknR2%~UR)rCp*_-P_ zNajWYd!A1;i!ClnSK+N=&l36@bJ2i+G0VArb7>Tzj@hL3kd_c@`FPe3v4j%(<}}a{ z*^dCyH`8<1Hdda!--KB>)G&Jidb|sezngG$+;|5-*B=OL#%Q zCDzLxbCnJYY`-gxg!k^NK%j78?>g3DMqc=t!g3ahd014JeQaWkApQ5C$*Q^k2 z*Mx3wz8!6!1ADhGPOQ^#t*G0)b$|5fkHap>8p`C%>#JvPUN`FnXM2L3xF4^90AIXy zi}Am1y~ahAO@qemTPnYOlod&UWMY)s9^+`d*jor8`%+7AC7g>c5`daJ`~#V#&J>Vf zX%iG8iOIQ(EM_`(Ub#?GP5)24D*PjB(u=F(Phs;XZLO5Ole;zl%yjdu*vYY_I>XZS z66lP>zmO(E91nnQ`nq=moNgQg4&m5Vjk9$9@ZUqGIG)*h=mC%f`eT@M-S0mhk7H+B zCZGkd<(5g%BFP?@E=9m`0$j^V`D_~*S>G%+tY38Di&Rsl#_Mzo^Gi29P9Of^ki^dk z=abn%qdkmm1C0JLz~~_ z#Kze;z{~b|uV+Isj#i>sF<1}FT#oWj9^du8ZRfX52IYB3b+vf zn4|u9XuvN72F&$t`L@BsJHFX-USo>H@7#XPCwcOptKj}9rMeSfHk}dV;|iz0=6w&b zi+C8dYpMXn03mEfkgHvpHoZUkLbu|sWci6M5XrKs8&%ZiLW%0;Q)5FoLU|nd!7! zVj_))Hh$ddtp4tv68g^F8GRBsM1Su(TcOs|bSBkx@jeKFRfyH&ec58ecc5*k?89!2 zvO^hd)m_tm7ac#Z)lMC+bW}a|NVONA+HqFjWZ&Mfe!z8HlPo#*N61q;~V|?3ORT%6dV^-zFX*^OOVX$ zqy%dctABDBpQg9(ix57F@Uvkd>mCGV{`hLd!=>&~iT0A8?dk z;1ekAj`H}b3Yt{Q)HcpB>|~a^Hou=j!{2_T^SLvuNm2IStdNW)gnq;fzes@hAudmXOT=CHa~Fc_iO2!Yk1)Se zu0t!L{R*D!6{Z>o^=YZ}Nkk9vp1cRtZqVf1PLBvzu2zSK20X5x5!ZFk>fB=xsVV3< z-MX=ECjnN8Brc5fmt4KaT+ck9X=(wJk(!qA84tveh8`bohm0@09QPJ-clZ_!&sKD= zY2p+xuj*jvPdSJ`h&;Mnz^XtM3vI=0zPtZePtsCP^`Sam58@~E>%$J3hp_9pxA9_8 z7gbYET;kw;vWP7FVcK;8tis2+NpV=409N&!B@M4Xk}C#<1Rmy{4-Ojf&%`ur3?n$JqKSUA_uY@44<~!ubNL_ul>C#etyv&T^+|>XZ6w18 zNksn-{$VgzW`K2=C6-*B`xo4*MU?tot7t^U8{(fm-ngcaYm3OW3+jkp1&aX>!Xx&t zcrP+~>Zx(if(#e7I$rmJk)^Hh1uIgH=e28G+}Awr#}uijUcE=R#vmCxANBy$f)Kn? zWF7uR81Q3Jas*d*4|HS|7s+2$AqnY|F9ECES0yGv*WVoma+ArS=LDnqRY^6l;8cs$ zs8&#~C`d7%DC!5G=WB9pRdSb{_xm4oj-a!IP9hw9T#~2 z7xtlpw!eDbL*1pxbb{+fMyO9lB1`e725Jt72^EEMJhc-iVvP)3h=3Q zFK{7yA|kVp#OCT>v$xCCa%^?iP41aclm<1$wN;-9xVsCsntQP>rap_3v(Vn=#+hg`*# zB;Ij5)GeC`{OlM14m2x$)9?IT(=};p*=G3S#bl6SWCz)_sDrRH{K&9To$ta&3LifG z)BW0%rIz-*#I=S+ueuCmgK`?5H2r1I^QGL$2cC=_RrCUgJKBbwumG|v)_t?SvrwE+ zdyfnS69OB8o?O5+NO$TiB@*i3-g+9!H38Y1$nr&?Gu<(gHf z;|;QZC$+jh9P2Q7LFp*Bj{ZB(;^xv{{x_l3T__9YM6=HheoZVfM`mO-Z}Fpa0uDyO zlRal5`1(cf45Q%EK{N+eaCDstWRgkOjE4A$gfI%-KV%|DLNywf;$a+zmM7>Z4&fL!!^_m=Xs!69^lmf$LZNCB$=6^Ac3$DeiH#gXYePBkw zmDW2ADsv`}dnyN#C;Y?(vzQ_uKyme@u~qiZe0B=><44y0l!Hn-;C{)Vz!&z}PwwUh z*`^j6-MCuof! zh1II%xUIyQ8=7|FBsnRXL)Wf|K^x0(l2F7bqt88k zsm9BF;fvTX_F%isS8nDOVRRW6sU)JN!CJw8^PU10rwWKMMPKP5Fi%s6{(wbUPbC$T8QeSxuO) z9-U%Q9_t}X%f;=hx)td(EwN#?P5JBC3zhd@v^LBB(C~YE?5cl#I4<;^u=D%MvSvB; zEy(>ac<(B{OMWJ~f#P{SA<_#yxo)LOrAcB08NLtnd<1#HHG2T6Ua?^zHa!CK@^N_N z{y+i7I7O@YYffYs=-J@7gv{MpEv)t@K;q{mb;S$oUUx*#Y{8&%(P{C6y4uJ#@;V&i z+-ju2L$U7fc1$v%x%h~K8%q!~M)YX+w{iZ7+=90BLSFk})QQ3NB5R9o+N|Ne;)#>W zJPbULhaX?E6eN6td+365&df>(C)BYMK?Du+?2@nR)t2g)=czv$hX!l+UXfm`q{zX{ zn5)%-3z(Z9ei~H@g)e-X#a&k zUz=UokJSJ<3BuT;@)^=*l0D z0f=AdDMUkq8sis!0=z}9ywR`BtY#*+h!z*p?E7&|k`ix^T!Q#FU+;(zSB6D~AayPF zL*EgQ7l27Qh&hJ89fICaYS?48GK*=W7}XC#=?}wf-l1L`!{}by74`{4hYaadu6ygx zw2&US&Or4aR^$?5KB}B=A7(HT5W@PM(IOwRg}|VWbd=eleMt-lSrQ{mNU}<#6Qa!%)vGnu<(R2*^6mf*xcn z^#~su%D&Fb@;gpMO?pR-TDbjK4s^XvNAWktr@cbI^;R@+1K=ftdL--xz;fJ@omHyL z%WSTup;$?HPgy?UW1I@Xbc~L0{bk4Mk{EFnEmzORhDqj?&E45oMSCcJV!V$_mF|_o zz3zY96U~pUJCLcmTPUJGz)_f={-FybS=q%nl<9qf_^h7Up@M#K5w5mFA8QNxdGd+* zt2ynHdcfM!;CB6f&qLWWZ|=U4wY^^^S965b($x88zE7(64{3vioGNEnJ?U?9dJDnE z*p+%XL2kG}hy9tk*{(hch$x#+ivDnsx=DH}`bRlD?3%~vnD^4mb&H_zXuF=-(rBzb z_NpW)pIE{F4GdH3wK+E*4HrNPDxLJVM$lKKZ`_+Ub}8ui(cu&IyzBK*{q}@r#I)}OI$4ReX&)W6d(~j1@<-v_`VlHUc_&BJ(&a4|afc1qG7+^<9OtWg_+)$;9~4#9~$#1l(lr9r0Zu>l6KQ5%reqmn^_o zW3Akic!8j@2cG1e(P16a(`A^iFl#F$;(ESn zKucIktqb39$iC2M@TPXnHYezqhI80jva&MT4&hOqO{$vBfB$n4p1yWzV~U!fI|K zI~^y*c0^zOu9%`wxO6L=lO?3ZGoYSSg6lq}zbJOg4gMUt^Op>KBP-_TrTMc! zDXV@U)zE3-!>Qh%5-OHegQN)|WHfp>%X?0rrzF8ujEj)1zW~@H0A$ zQzU@ZFMo5Ik?e6~3Jla~2J~klG!YIA8)3E2w#Fo?5xm`;q9qk7|NZ$66J1Jj*a13+@1E!S{FIM%9}-aE$WK9zN21rXp9)wrCs%LsBV z!s?^Q_%qb=<~wF15)FRI{VC)xr+8Fbk1_^=1eKrU?`$sMZv!Q|?&opW5ZK|o+uS)4 z-}DcBDv8+?@H}GcQdP%szyISb^&9%{tg*@7S;2vc&-**T3_PuO9vw5~ zbB<^Rkhhg7f|$hbe{Fz;Id0J~&?W1nyLs!4idp^K&O8T>2qPhI z<#H$I0=PJNSl)|MIqPuFe+};z+J73LJvr?Q=E%v*!|_YJMw_VyAz`2lX?$6j1y=WQ z%;a;W4i2UL$dY<+p zc<@sNhi!L`>hm4+#f1ie{x1pOpX5>GeSMYhnNtu5yS2bl0NP8;Gs-JXV-_g8U6g`I!WII-f|ZujD^swOT{zU2bEUTUIev{jYs;&>@%>pN;u{K|md z?cEO*_JWlUcNQR+8&xmd7xOoW5THd=Wxy&RL-)PIV=iL8(U%<(DJlDTFLal1^#^FP z7>O$SN?WzC`DCF&>lHl}`I#g{V!VRst)>>AcNlGxvNsYecP^;7PXv~nmRMCMZZ<)? z;XOzHa>{}|CKnUio#4?7~-8{%{!nAcdRkCF1a@bi__ti8L z8u6lZK&?{wP~fOKm^lot75X!82+HcGAgROWC6W3*sSV)xGFNmp?vEGQ`VtMwNmkPX zfxYN%u-?ls15)1q`Rm&uD(B$^pbRQN*uw>^9wL6DRcpEM^9N`a0{-j!h=naAon zNb{85m$nF-M4KhfZ;ZRM!)2VMtj=|vbGvI5rGE5-qp87-_4D&^u(1HegIjR?v_LTc z_xnMIPd|0kU*mA{{D(|G;CL~7o~=W!P9_M;kb|jTi$?XmEeZ;D%#zTMS+SP25eLDQ zVg(Cnpk&1ZauHYmO6nqvY?3hNFp${7>>yaN)92gvuX4$k}Q+T*sg2M)Ep@CnAT20jUgm32p zlp?6b&)q0bl#Oo@Mb>l%efGCQi$8g|c7CML_RHAVAY;G1NRmOq%lkK#i*`0Q8$BF! zX0Ym-($}}Jm#5L$*SJHD7l6!P4G8*73JbMxH;)!Cc4pabNn^o1kB<~sgwopEsCuGD z7jykY>)4-2xH6Eoc@32mTjPYX-*Z5q2cVZ#obK@3bms&k6*DGYu_D_rWG@WAb>osd zU$^gfdsKC}($iBfp^;hm*^OBnJ?gV5^)rvfKv}d@6 z5fg~16!#VIEG$$MHJA!@>%Vi3(*ehXjxN;wh5jl{#u5_gT{0LID~hihI~-_RwgF%O z$WyHe2U$pn;q}kdOkkT}$IIMfrTCl>s*-pAsLof%mIsp7&~(X+1d(lJ%mSBMb*{Kr z?#fnQ%Ckb;uAY{MOFNuNvbDlq|Qk0c)SP6X;v15FxgAhQ>rd?k=z+3bz?i--inpJ)viZ` zsY}e!^DcBy#w2UABZYJvXrexP7jPWemd8)W7bJ(nqK`*>=ZF}f(8+UcR&%kJ?O)sM zVUJ#6`@H)SFcrMZ9@I8we&i`j861mZIMTBCmb; z;LvoLf$1jB5MVWd5=*u{P-5*K;r%7u-JE#DPrFZrwBElC1-tp|WI;~9|9!F0qWQ<4 z=)X9~huy1uZjWZfK(KvZvV4$4w$>jXt!Z`Ywwo}p>}9&%YcF_*d!p!a5GPUWBdto)$N>PW8ayw4s4wsE50QLmq;vT&7v8benc zgp3t{0mIXEDTxKij*XHM=z;5L2Liqb;G?!DMYlJ}aS)ivy3fA{t?>yUlqb0a+?5RM zMKx?hoA6)6n$S#-J>l28>;|_lT(2oY;O_pSvdkC9K%MwbyB+_YU?Gw@M3Gu7l}lDC zq*^`=v+lx(TF#RUjbo#DtbRd@67iqysDV+GL&k5IW`elnR8Fwwq<_Cr| zZTp1U{8+a@bODbIjFaL#$u+a*a^=hb7wcjl5tppeY6;)%wtM4cG65p>yIL5w$MYk^ zSzTDYc@@U{g-DqIQs#jhf*mq6jdhQkUJWlnxdEj`hFdba{;U2uB^i1z&w; zY*3T%@Vd+sVr62>qso{01Z!HF)s^DTG-mPcstd)}MGx8-NGI6DCp(pr%S5cnPrw1U z9`dU+E2Gjo4xzE$=>E ziJ5-EsBd>HJh&&IKAdFlIaM)mXqNkku-Oyh&NRtS1rI#+k+B(uCat%*t7>_1Dqym& z$7a(ghk1@#EI*ihUIbybq${%%;}5`?!et#bfb_>XnxxfGKR5La1h#KWtufo_h!@p6 zH+jeRrWAcG|L)3$<;8xo(S}9hHMgOaVx}~r9VED(3UHXJ4H< z&5p_=0)_4sjT!y9p_j5jg!MvCG z1lfd<+dQ!(_^o&CO!WnH#r~sXxr-InZK;eFiW7n zU2q(2kdx@Bv?Wbocqqk$9eDUw-yN$xm1=He*9I@+(c$>3-1_QCJPD(B&$VasrI~14 z1Od#{_`6J8^zjSU#dAGIBY~tIIZM(GP!P~dd1!3>Jsz;-##+7gLOZQX$w(cGs=gu0 z(b*`&+GyX&Y3-qxe(J=BU%S=%W?&{~*XqNOlnyj{nGizhAeK*8thToxP=|dfnyuv{ z6UOw9-TbbT*|{plHo$5BHAJF9;=OvNR}-;sV)^}ShGg?e29dYX7?KcPM zX+i*&kRzim)oev;qfc?VE0xm@tiHS3=LoiIE8#+%0VAtexp_+iDp>R&N$*!n<^o%~ z$X=Xgr@_8t;W6uqL!ne+)H1>IXRI;`v@ zEM?hs7PpkK2=fm1? z{)yK2274PvW-tP~qtX%|g1O-iUj>$K+e7-jPmc@3{g1p&`egu&zy-k&gdrc9*>%Ic zoP@*FooC~Sx7GI6fQQS37dfZrVaBczUgX18JkNyO0&4 zmu7b-HBR9A_eQ9@PTzhJcRD=;32DpC^DKfq0mUXV7pW}XPfT2qkBSGfpsx&T4BtRD zwtmQ1B!9MBV}V+Veb!2;iJ>L0VkwNLVvgDBKI`m%0Bv*l$6jXrqpAyX5XLQkauX1r zbKYASDK z{j;Vv^y`>V2n=XHWt+cS^XRx&$o&4ox3}?WLGhgr#1PRHF6pkGz4gsG`t;yYnZQ?@!aQpyTF&LFPZ^1hj@HLEOj(IRsiQ}@*sDTA+492n># z>^ko7F7gHKC6<$&%!e^mL1>@7FsB{Oj8u{}4OmeyZ_SKbDRV1rZ7NS+%LZdKePb08=8SX zZ8svrSR92wX8#F-!Ho=CJM=>N8a~Tsu7R3)`kfBFX7{_6w8UEN=kVjps>h+6(-9F` z!`dsSc-qUjZXrGli*ds|si75|(ANvxs$qIZpC(<4({Te2YV;5b0dX3jZJcg~HY}_Z zbR4mD{5ArtlDNMH4GRvVAkk^J0ul?A8*AQQ0ezS5#IL{^)FmIC5!9=hd5+rZc7+CtVQH#G7H;AxcR4w~ z8r-aY5Iq0hicJIQmD4{>vn?h>z{wlj9&mp$Lv<7mPQyeE5g!tG7C0B|8FU`0RZrJ@V^tJPBRSiq+y~%B9 z;T2DZ5>2wOdoE_bmiGnq3I)c8lXe+hpdb9jztEAD0wWd{8drb3`>0c>*kDEmPZbRL zHacyM6^R@c<_sSdE>8x9ssS;*%?@0)Q?A+LW~&?4@ESQo5GeGV2l7{m^5^j@UM9gHR9O!7Zi*wQNa2nB(h zuj4=o2iVa5^FgXOY%Yh3wK=@#JeYUrC@v$hIXT+KpXoa*5OrqeKq z$e65sv8E{W&pHK=;D!M+i>J{LZv<*6Ag6uI4a+W($KabWH$WX))L*3cpdbOiXmgfA zy(h$@v3Ou)$zh@W7XdtxNn|zoMb(3F0}Q3s-nLuA-zp}37U0%<<7Q=S)tUPx;}6hp z&iI7Kl!zNd=d``sO}?-bep~NihuQI{GUVOV)+|hG>>MxCJo$O}cP>$tbscXKy2d#A zLi7ACYoqdi0=eh?Z+Xh&EGIzQJ01L1GXXFN=K=M=%pIwq!_P|j8awun*GgS~xxG~^ zO$+{Kt7MiWZ)<(f4e5u*6~yWp(tG!u&iZqI&(I|y2lNta8TJ$-vrpGRDhJA*f2AsH z%bua5Mxyz?0^2Ltc(eWh6pcZ+{ctO!dq98>V4k(?x^8teS{FSkB&_%-GZqJ;qF)L; z$Up7R~#jZM#97sny$R9j`a|sI4i)|BRk_04#3r2${MZ zykol|WqVh^d1l(AtUy~i&AdlLZqe+rTaxEOyT5?djaPp!E+a$99;F1&e&iMbEIo94y!8hYT5m+0^6Uo2)&Hm&i`+>jzRIaGvCjWbLH!Jzx6DeSsiK@M|LgAFM{IHp{$V+Yj>{hqGp1H;P0wv{wr?E?;mh^ zpD2HiSOY9?>BrCw(>{BDsLn;xXj?rMgAN>}(r={dr~i~!O_WSkKH8%57{d?}Rx?~Y zm(GbQvC2NRv*Ofmq{4Ee1#^S+`d>zK@&Y``wMcvFkQ&Z9t{}Wc`Mcy zN0?od#B|Z@n5oClI%E7A1_5iq?NrZ5bcQ-_S14)JqhkAxul_|#a@%?Kfv7scP;3gp z;G^=Slv0QXSc^wK)5|Q5p+TBMjK#VKPQUn;e7D*atr(stl(dp_?uDZ)So5{S^jIC< zW+{xIw~sQwBWth>7T!@L&2R69DC(4<8Ng)tct80EGe|0Iku-Kw4Q+>YXNy{o;(gQx zzjfa}%brjsA+@cgsC66stiv>L4%pvf-@?y=gc{e1E#ihdV zWEZKLHjR37?4F2BURkO+4(Oj1wiM+p z!aILk3rdWV=N-G3QjfDDL#X5x(MI+Lk*bdXzdv7{rLL}pkr-=v`VDS@Y`smU(Miz= zcKi)|Ej-?OxZgTo{c_?a`gDw!7#ig+4#kxVcdb{y@NPuBKrdA8_MO3FCkbWA!D( z=AaC)k_W8mZ!VKI7paYGUG^#!Sf8cJY!ax&2n@?}c~z_fefEvw`&uST;-_rUeI5bOCFWL^ zT;uDX;jFdM#fV{d2dNzG#O^L_(e9$oO#omv0W2px>z9K{&yYeu3LgFW`}YlC!LU)q zpH1Fp4N?$y%X$cDSI_Q`c8} z^Kt0g8wHT}z>ofZk1ZK=$TLQsepxg1zjw$;h`3WG@$ATEQN` z=QySo%gloRae;}hmFB1JnXt3M&wp7YsVOV(aUBVhQ#^5z^Y4V)i33{~vQR~3xqsbL zlK=NOsJz0z#z7VTFXNy}ac{0Gb15q*#!;?|1Ilvp|NWdiO!;5$l2?K%|7)DQg3^EA zQ&3ib{`WmOWu<@FAulVxwJzX47ptW3?@5&8p#O4!qO$zIjDad{zwkfbr=Se`*EmJl s|K$`}j+9A}WfwL(=QCf%OQrkt%HaPc6vj zc7D&Aj8o()zBF4-IV!}6l^dO2^$T{rN$?cAUa%J`=SX(0X;!e?@S4fblbW**B=`}M z91++pJ!U2RXGM+Ioykd?&J%9&IJAS40$C-br?D{o2CD@t_hgk?DgSDfNiZ_!MUvCd z864}TUiuqENe8xco^8(3^x%TjoOj?xU(6^`N_jXkQlQ31^rODNaY*Q)T@#AC-O$Ei zhr*y;6T(bh=o{|QC(_?7MQNA)IbTAwxu?xU8izgmY}z3yp0L3;f|T9+oVEovXcu+W z$4?uiRCcX$ttd%KkHre?+6>*`<2t$6a%2}0?Hdt#$kXkJ$7U$2$K%HhQuVu}HS%mC zBX?s%cR#embv68YX&H3(mz37`f)?UB6onx?1$PUU7yTPi?!2!vcA_TVfz4X2>e`l0 zs-x#+?L6>5%X*QigUh0Ij82jb{-}pTr+p3xs_gvAQL={qtJU-M!c?iNv$l@=lxnN4 ze@Q%?{ZX*Dphq$oJQ-Zzk4?yn=1o&q5mTVkt`+&{e zI{7~CLpWZecQFRR$2eZ4`X$jw=i?oqsoRQWpPwf<>7Mzmm2=?~xW<8^C}ySxE_a!$ zvtwR+oarJ7|A?I55eYfCBVzE6$UC?*+BfXB_r~2lc1LG!K!F*J!-uWWN+GvlW#P}` zojPJ1MS2b@1>>xv+;g~`P~Dy^Ho;UAxb@Lg3Jm(5q2B_xa$uz(gpq23x~-Y@-Bi6h zBFY1I%#?F_*peo~d~ip^V9$<7!apJxs3H(prnw1k=~HtCr=27EOQbgE`j-S_!enTz|)bo>+({fZKA_WImVMs=^4Xbg7sxmszGvB5`U`sRf@D~pNlY_7q) zvw6oqoBvA$`nOCe9EoOx*KLh0?rA+bV-VQXSF~>?wEX0VmsTAlzm_NMv)_**N>i;tEG&oD?=#-LrK_wraP zla8ahZPZnFPYBbz@BjKK^w92Q4dN;n)j&rcR&mhWOLhM)QsOQ}e2!|6>Mn?Md>_rG z+JvOj6DlEQvCCxK=#{nSYN}dno4t9oe3fu&H8wdB1fPoK0m{KU*wR0bPo{k|9hQO) zOunmbCJw&qAC*PT*q!SwIuOI4oGvOt#5JpOtw?vYBNAqtEpQ%7^GC=*O5+Zbuvw>w z6_X&4bGYdp`pIPZCl^4_gXn1nel4a>96HKoKgnFC@un*(G$Lv5FC zlLO+TBg$rd__G6CQ zRv=T7L5f?M20^vVIA~Lke-=+#X?N12P#O#t6r%kbKF03uB)0{$A4An zynsikDtIl2ueVc6|S&gwXAcrfx6DRr&$fbHg3nRVD zaOSF8!F<}^qb!O&*dUXbUn%NPBlU*ct$3a^e5m)Ax4y+7BovUtXa5L}qZy+3E|adH0XLwbWd;>h_L)h7B$BVAFnLeSzk> zoRx+h8h0U0I(CRiXw3sg4%~<&sLWTqAP9A=a#6(^`ZPK4Q#aNtJ~CD(df9NLeHkLm zT9-72c)Yz4?c8$)7hx3avt=^lJ#9%<^chU7h;04O^(cR2WBq$YwB}`*yjRL~g;pC~ zg}fl*OSfum9|b#UpTSXv?fS`uI4JsVTWLC*J#;Bn?#zjE8_&YrQuvc9)rbs3X8xKv!K7_V7!Vv5R42 zC!2hFS+~1m@qv^}_V8>9GeT^l7XJuGZqP&Y8HwPh+SBvcSt@U^P9{J%2}&8gHL~Ah zQz9Ro(NDWI5YYu)dlC}AYJnoXS9pKy6M#(Mp5d`C8-H9RM8qm3kd(%XMaQ#7;|uz* za6)?hkMC{XQ;ti!N(x?!4w7nY&y0X{zTWul+Z}u561&%4eO+dSA7t!_r4?Sx8c(1fh`=pX%I$e&v~q*5XFM?h0R!&?Y?oX-?%Y?_h=C^rL={nV!J67c?ZxB~7DJlCk ze2C)O6TfArEC-6hvrXG>J`j1c>7hSUk~Fs&R5gSRRL{x}Po<1yj!jX`uhq>2uu@4B zB*~%8!Fd~KbB)#guHB&iOx|=#m@*ENUEkhmBy#FZ$jKSw*UCoYHg8QVPVg_NW3U{G zm&-#_7k^j19v#H`{_}dh0CY3L!Ep{( zf#c9Fl2@~{Oo7Z}koc%};6@mR?ZIYsE;-v#5+yRs+ry!a^j_9s4#e1}Aro-@3N1veSnHkvDvm!-8I2Lg^l4dPOLNUwo| z=Nm<&6NXt+&wX@-TI-xTY6Z~)49vYJs8?jLWS%{trv3Yh59{Rp7RyF#+CXJqdSl3{ z{IqZXYDKr-)a?amRjkUe>A8%5_8wFo|9(*~Kp#;(H+bsA`2d&IT5c5kOF z0abwDZ0o)zX%ByMf2;xezGWf_1S=Y^?%6WKc^GWPv^hzz@^Athpx3R!L$Z`Cw)!Tl zx}Ch*tQZ%&M6*bh(V0I(R()?yx}hxo9&7>%fi`O*;GOR?vrfNDVeAQQ)6omh6CXd> zDYuR8>AwnHP}45h?tqC+_{n4i0**z)Cl5Z5)wX*FoLeL;-)ZXn3c3Eh=SYbM8@79u zR%{q^Oe4?DSdIhNQ^&C49*+pv#92X0$^_ifu>Su2noZh6^hxGwXfjUj4!C=nWO ztg`l$#-m9hO>Hir13hn7_ZPQ6nU#4KFeggh*qA+dKliy4;XrT`1bAe8t95?h#;jUiCBhReOj+DE1}f9Kn@5wd2qlK0ED-{23JI5BB0$T~u=g&WWjyeb3ha}AV+I!5Ud zDE|)20!n`bdi72waw0Xa?Fs%-njRS`7RT^tpg`SnY58=kC6Y;h(XhwWWd3X%P)@p! zoOHV65dS!uG_%ydc(|>Yb0D8@Gi;tYpzV^qbatD@J0#=%_!Ax2$>dgzOrl%*-;5T2*<1qx`;NdO{ARI`o47XaPL< zW}aYVzF3^f>GH!jOc$H_?S`aGNi*?-B$I4#@T5f%6Vyo|We6z1AvE`@2CT4J5Rb65;i|ZmngaJ>9V!bBBt4aiPP~x;&?O*hw{4Bmip9N}4F`WpV7_ z$5~a6$FAeG)Cb0f6ckBh+&OdBQgKips(U7~ z78d91Th;$ITm&?R0AS!<+$V?Ph{^ZBYkLW@;UAD0ONoW0p+CzNNzC?eQ7U49Gzaq2 z?)}dnxOOvzqs~*m=wTGCWQ!Q*^BSXrj3=irloBE8*WA^ELOBDT#?oB$#RZxDlhJo{ zh~{CsNej#7%9+)&j)l@vLh6F`dmMRY=cdao3>B%_4J&yC@Ys?h03sxn0f=}5+v6}E zw`nLC5HMIb`7_X>>f|t*;nk6awxSo+M0S?uLTq!HD6hTroBg}z`Qw2glvpSGqV#W~ zW-zz5aI1f4s%cI7{4=|Z6FZUv+@gitKdg5KkdsoLOD(74=xn$k3-%Gffix-{ z5RTf5^LP%`pS6kSBwq5((0wKJSzayNIK)wL(Q^IhtleK&V5U`Hx|-Id<=oWj1=0}Kx&>jL#kBxu2v7*^PDQ^Y5MH2jj+ZWV?Et?Yj{o4L z?I^u4XZ&s!#RRGW66^0I{c=~*kKm(2I~Efu>$mk2d0F4~b<_eLc zxYb>$4`Y;{akM9y_*YkOOYo>g&}vwHn;G>>;JZh8{gbHuhvN#z>q0zwVOc42g{{q= zOLPm{j>;hEnbho9E)|9W7J2Xj=o-=1M@BasEhS#Qc)fQFH<9=wQedn{py%WRfG8Xh z&b?P{flmMe9PNK}D>R;R*;!5fN%zEc_}PQaeNgu;ae{X+^(^{ICJPW9)v(;C3#FQX z7oo9y5OC`B_nUVC;TE`|r&axIjMLPR{=qj*(A%QcOBSnwf8@VYXpEmk@vt6mUYmhVb#W$agKPut7C6+ivar8 zDcx+q8Y&FCmo{!>3a%6ra+}Cv>hoGXiZIg(o{8VY!~ZZ`t$3m4kiFw zw{Tut0#DyUU-=Q;wq(fuE~2)m=~(N|$LTGL;sumzN(Yx-EftdY_gB0|U<+|Kf>A9c zN^>5WZndO|wb`+>5^I}SC0>?OhYEy`*7IUKzCTf{+zfXxb6F2f!q>^(3d zt30M#Msl`%Rr|OaV94p!!##@Ou+;CyXkP6uNX+9o;Y>|rxZ;(=>oo4efbqeJXv@t; z?9YaE-A%kvK5^YAZmHc}JFKPG4j7-nIM|lgT87W)mqE$(2splSLfoY0qVLGzHv$P3 z?1Ecm4>+;}c*Nsj6@DR8p9NbMW0U(IZ`wanJB_n*RE(FO^u5(}@hRB0$?FGH)Is;C z@Wx;Ii_iM`E9H~aUN^;f8Z6x_lTw!TJPyrZd?GeJ6vnw=bc&eyhRtr8DMw$tAxCFA zw@rVpa*4y|&ki>i5=1)<&K-tGr>oS(w&z&!FVg3#pM{5bwh$$$svDrfpSLpw6r-VW zm&zg5pD+il_mFJPr-2M2Y~CjG!4(Fd_`68mZ_!?Ka@#@OI-%yBkHk5I(pY^@bI%9iA-AJ1)$ue}0=| z!4C6n@MLX0Y;8_@w0#bT<@#WYa>AT83STugEqEH`^s7)g=P%w@S!~Q}z&Q=;eS7l+ zjlb1cCGUH1q0ZyMxJ^Il8)M~4L%Gg8!WIy$HPlFN2PZV?V~K;v>OI>No_3JlJZHuf zH8J(D`XIV3915G|Jx&Ez4RQziDrfpLQDN?$gTMGeYUtYj>v3y4cGA}f+=`1}>0~r} zl`RW#dzVTQc8SX)n<=mYXo?95uRmCe?l|Gol+1+YJMAa%3h@3j#?p*Gm{56bXDdZo zHC|c>K<_xjM@dqsL3uf*_(E#I9a?bnW8YB`LG45LY{5%Ep_YybYND=Bu3;8FP`_R< zrPSc`HvoC(c`Ar5DTl^vrUpk^crYY%$(qrK58N^}G>M#~IsNYZvPj+d{u07BN6OR1 za@R@+mY$nv-&-RET^uD45ypr?w%k_=mt7X^$Y;QEV<%EF3$B8RRrsF;_ddsgi?tCy zIlk#H22j3cI=J93t_$e}_>OF5Te(##+?!Hte@IT?AoEE6R&lvJ>#sD6%2M!Z-AHrS z@!XnDMxabn?W|3H6kJuLd4L}wWs#!a{iD0i>Jj#|k-cL%bd6>5i{Hg7o(-@ngKW>^ z4w+1q<@II6-+yw$Ilg1zX^YzNR4ogB75TA-Z|Cl_J8W6n$$>eSwsBuCN|*R%;zO#R zERJ|@)}PU%$}3R=M+-)fmC~4wehvSzer#z}Zr*d-!^GyZY4)0y!yhU?;&iZI5k8+) zSXT_9K6J{Ql}{n_ei1%OrF~DjN$P{qm~|jk>0)@H8U${yv+P za|ni6-3)KvVyup1l7>xO#cS-qi->QK8~e|PexEMGB=kOD3C6wv$fv#T?c{C(ezx)V zY4S!3>7J0a`Os;V%0jj4H!~vJrozx1q_2N6>kL{$Rx6MmuUyD|)D!~pl9=>Qm`6@Y zmKn?hW-;;Igb*6Ia2oZVjn*JAtO|B5GcD}}%?UnKp z8uJZGGo}_NT;1Jh`;^}Nd)fZ`<%LeD<>l7|+PB?3p&a84I-m|r*eedyv@@UTa<3&o zO(V}d!@zFk?Yq8|eS7$uBcqaLC31UFGCsx=8waVq*{nCU7hj%|Lsjr7j|&Bi_p4Rq ztjyR^b^C@VqhRHsdEcVSWb{|NaWaJR{+(kC_}lRzu?P&z<2ibitR^TBmf^^((+mFT&?ON`|(4bX%x*B z=;m{9ru>O>&w?JBXOxT0JbzioCx|!J=zClMrR50<@4dPHiT^=Wb!n9*rieU~^9!^v zHa#7<6q{HR0bnxT=ENHAEnai6iO9atKUPI8gSYeF-Iui3YS%FB*P$F8U`iJ?`AIMz zn9Q^`WP4Ao7@&$}IbXn|%`bj|+N==shGXY*N0avmEd{$Q6t0UW;vezpuoZzw3nfS0 zHyYoZ6>55oepljDndzL8RPj34+TQC$7g6?y7$fV#r)ZPb4ODuA$+2<{E`o*Az19w7 zYui{H$3WW9w8wiPSol(`^v6a!c(kIx@h5gl26xG9 zS*bMq!e1)X)NH-VLKd9j6gDp5xHU*X_^c-cq?3EzwwXqH<{faNZ&Z$!z&L2++9t-0nA=kC4mAF6mMw=Xyu5z4LomDcf+0Hhg!47-(19!}wkmi1#~Y10@F&WjzG z6g;VXVD!FE`E9Am;r97{&*SRP{nf5|98cRqit_?&DNfH{%YzOWiaDc^Zh~A0U zCEi|$J^oUb2fqIM6KC4En6#4kz<22Q#~jb&tS>TdBwID}YyT22P=5K>uG=-Bd@8%f zSh3{iSC20T6Wkk3-8+?7_=eM-IE1Xg)7+eBJAp3J1F2ZDn)aM8q@~+BLTc)IJ9l+R z)E;kl#o@s&9Qz?g>|5OvR`VunwH{rT(dEAksj<5tFLXAXM`>kX(?uzFPdMf%ehVh& z$%eIl3Yt$|?FOUK%-Hcb`I8bu+Sf%vy}ml0^&IAiuf?QR1V1^L`z>!xa1L%%8(af> zYQP`&Oj&b6Vjt8vKpR!)*SfUvvm(nnp4ofN>l~MbNQ0;Hw1p<_weZq;eb$1!cml;E zZ@~k3-04U8Z>=Z@zpvwclA)Mo@5qbv2}urz&8*=vp*Jjim3_@*p>Kj(HWfL#S3TI~ zIWCIRy9AssFaebGtf<4Fy``u6=}-UEK1f_zhSnSi8T@3L^EZW&zMK86<$nefNuI4L zS>H(y&8;4Cy>e@=;pCB_O(t?z>TjqKGB?2uX|suDEGOu}8lgv-x63ep#aT-8?os!6 zy|Pa(j@Gg0X-t*%QuE(bjdotbHUA`=<(1}JEuQ9cc=*7VsUbpmT!-5k z-){KVqH<6*(}sT=mG5j1Zz2ghklw2F zmxdxu-k+^hG|rXQQ(}p;=(pTzh#7r<2Y>_Y*W}OGr~#RQUi`2=xgM);@mh`A#vw+^ zrV_S#$TwdD{@JeBUOKVYZ@Ik+6b_%)_mF>U11syp1Ra)oa$k5Fumf(I@K!SzN%7Wt zT~7ySmP}|cN9ok&3S->%6tz%jDtpje+xa?1f>lev&I^iNsY;@a6(aHX*w?w_w%Rw^ z6Ht!|qMGgO@lIDI1Q(cy@}!Tg;MGAm1O|CRk9N2VgmvTq1JflPReabsykzT;u|3?i zBGmJt7u@nxM}#A@8jXhf)jz8w0+$D@(KrP4_(>C${(ZRHawD?CxZyc<-cUUB1Z>L5jY@X*fzFBnpyVNxDNJ5laN@cx=`>$D`-(ocM5%gcggSySq@YGc z`Ym_>=GxRGJ#kw-FmfF}!`0Zhu=HyE!pi3pRO&3ZS!wwhjC<&1AP))#{Ds~jN{Xq$ z8uo)(`ty2JhHUQW(7=6X$+|c0A!sowVj14eGH{tqMTF%~CWcFvSz+>!txe3%k-{Xww2k-~uF5CSo8U_| zrOU|p-avtIcTV0JJu1)RksL{;4+kK}hUQ=||FG-9S#P@QAA24H?%sfn_C&_V9b=|G zw;(W5-iu{FjUEP_19nl<6W>yk6CP@xR$Ad!8I|okkJsX~xX|C=(t-N8Lg5WRd5og9 z*-LG;+-te7N#1M`dI6&jvA8K(U-Uq8i0(-03r{ygQzjE!^Kejjh468ggd)&BE30=V z|NauOALg)YoJMwr%IaU!(JHWgSqrc|zFl~@__Ia6KHEUWYsivfxEN2e2sfN^rg{@9 z*nAEFrc~b4{!GS!TOg=FBXPAZi8ZLBj(9^r_)$olUW4=p8{(W(yo;Ad6K}|EIp~-B z_qeRwKp-qa++dH#YyRYyL8C#1^{ zLOrz6U;JKn!p^Ghyx6DY1=9pPyG!JwaHUtz#)7IfJo;1*x{2KX`f)dlOvP<&DlO!d zzsIhkRBOU-akjs-M<_R4Gz7(E4;C)f2i|*IdM2|fhjVn(=rTQ7y0_>3PbN}nzeI2T zIjoky)NdEVr$LC|{XakTT2Q~dCaD`g)KfS{3Ih)-z(nN2X)Aiu>oCOW0usxPrr2Gi zcRGW~rJw(aW<>6VUy8+ev5inn1tn?@>$|DATEXPevmvGmRw1H?4K zr379kl|r~-_d8Xe?x6WwVdIsZo(8-jq62B=l|v{5rjXz=b5wzv z?i^O#+N=f${{(*3cy7a_h7x`HEVrp?SZbQk@5aT5h1r?uugt(mnV-lm3ARq$N%MKn zE|<4& zR;+0|cyqz(P9LUl*eyF~{% zh7C=^kM(qD(L%xl>B)8VB6%;jhDpRnhC+iyg>D(q6&E`ILV}gkgTzsjzwY%@o1Z-% zKvhlg5$E31e0U3Ts2aO2Y?wuJ^mV`awfuY#7CV9_YepRgpesompj7{T<8Cr33SK|K z$H!0gWH}wvZJ$)gUD^Ab^3BS!qi>wvRdmql$5(#npQ86NhjN=jS8ko6cQ(0^Q`4?P zdx7@o^%OZZE&|O6fRlu&scBX&>?e;|6qDY5Wn~($1Ns|cV@lpPD)?+5aSxC^bU!xB@xpj5EYd5^|_K}!lbDwi7=__v9;L2 zj3zj&53I!coK*^O7R$D15*(Oxh*yTBC!p=}h=uh5j42tK>~VOq)nn5Z{i$a>!3QR; z^g(WGT5WCh4=exBmWs!VHFABDa`CQA!8`SY&kC6&*Wcy+^#{*}apI6tLJ}WR=0no`==7htrdCmF%eI5) zc%#4Pdtl;GNVzq#Fv8P$ZpgEu@p!z5vZzv_YwOVS1TXS~F~ptkW9!)Jjo|Ul75D9p zc~iuu|5nxZN!XPEf)unhxuro8mzwP76mpmTThRMwZTsUf3Ms3s#*CfMTXhf%yjd1nLs80Gnxg5 delta 16 XcmeCM>#*CfMTXhP*kto|nLs80Gj|1o diff --git a/dev/_downloads/912e64195566ca0058bfdb868fabd27b/beam_problems-16.pdf b/dev/_downloads/912e64195566ca0058bfdb868fabd27b/beam_problems-16.pdf index d9e7af19d30f34d3c64f02b2e769efeb11566014..3ca323e07564126103fff639dff355e3d7c3720d 100644 GIT binary patch delta 16 XcmX@*dCGIcEJbExGvm#36?K^bI`Re5 delta 16 XcmX@*dCGIcEJbD`W24P;6?K^bI?n~o diff --git a/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf b/dev/_downloads/945e2a45816629e69cae83f93476425f/biomechanics-14.pdf index 023e40116d0c6d3d3d8e699ea0244bd0ff797b48..d07b61ff6121e7b2c19086085e26c78fccd31dcc 100644 GIT binary patch delta 17 ZcmaD5^dM-%4pkOoV?&G0dsLS&0{}-a2LJ#7 delta 17 ZcmaD5^dM-%4pkN-14FaTdsLS&0{}+?2KoR1 diff --git a/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png b/dev/_downloads/950e4c42a3beff8bac74d47e0f8d8516/plotting-24.png index db907d560df71bcfe5ba7094555e613fd0af5d36..47c3026a8b86e254a3481cb73731dffbd38414bf 100644 GIT binary patch literal 8391 zcmeHsXIN8BxAsnG8Xgn{MJa+P0wT@Ok)nbS5Tt{2Dbdg+bSXhpiU^AIu7dR5q=O&` z29VGRO^_fZ(m^1=8J_p~-s?L*&pCh2k8@p+y|X8?X6>0Zv+ny|p<0?M3P1VIca zRV5t=f`eNa?iek&5V=Mh!9~VR*~m@T8SUozz||Jgc;M#Z;OyprvEuTub;V+wosdGJ zB0?h9xE{H=xnO04g&qI>3n6FMhr-dWMy|lhaTnG5SP1${^XMNI;2C}ig1C?ecw7k&Mw?W>bW*j*@yi@HroU6Ik&qLuI1-Mf8Um&$KhS9K14y*_$ENK9tjL(*8w z*h;Ve0n_(NN4?kxV=0X{A-EIIpI*EFT3IRd%xNx0Z|d)toe!i+`AoQ%>#>t^llNlu zsV8RkuXT6q&yGFmVR&}y-D?QK=?ax{0N<22X}~9)Hu!L1{IA`*42ut$TFb&Abv_8! z^0Yafd{9+(BJcF z071beaOl&^GvF(`5)6WxZZiMh?SFY5{$4nd=5#$HueHUx8}qfxx!V(KuJfFSQiqFn zL$RZkay#y7VR}X8U9RwzSVcZ&#K;NQ)Kb{X%uY3|Sd3-?9L(;U4|nuBO{})%+w=+AMyCHj;rhDb*MN94tcfq zejps|>u5$Wa|Wz6)p!>5zYAhMrdsdwd>ff(0_EDzs_`>NNjOHaO3LpXYH450%u;{F ziej-~uZ*N}fq~#vR*zL>lTdXWRh9Kn<&aeyuR(PsD$lLAm_gkivsHIDbTKn`a%|Nx z-_GXf^3HD&FCFwk-B00=Qb!;aLE#YNPdFs8t-pPoXMnCg;8u^DxswM`^z>t-3yK|+ z?(=-2xRzaC$+Ou1qeqMT3U>LawE;uI7MVcmLSq`;?dNwFyY4luK4_q9{p$Ttv)(PM zucej#>>0HA&eC173HK|I}r6Cj54J`!CyfeveI0bD8 zCo)>2-`N#2SR_eTc(9-Og5grY7Yf*bo6U5b*%pod2x_>`d}dtvqh4;mKR<%!eA5gO zP4{SmbTBy^2YVk?-RHS0>>sKz<5tokh$Z`zQD=870)db6j}sy#`2s-=%>bukQIVdKqqKv;l zGRqjYN6v1z_?@}ekLTD1p|fD@*}0_8`a0a>zGeL%g7vBj$$E-QV15Sl^lf9eC;d&- z?nb|0c&nr9m?bmbpQF1u@no5wmsce;G*n@?43EDHj)~MiGUxtU08VLZo|6|aRO9rs zkr3P6Eb79*O<45cB`@Gma=YZDs&l>V?{;UR!7kakOK!(p%yCq#eutFQ+1+grM9a{< zw`*hylX|Q5b?H%j+`}!-b29y7_o1mJKB(!w!{}u}3#Sv5lk$&Zck3yAVAPKjUNa1~ z4<9ZP>?YLb;@~c(V70|p#;_lc+1SKuL_^6DVBG1w<*ukTqO-c+Zaj96fo)XN-T(RX z=V}@n`s<`F{YHO3lnyu;%RR`W*oGcwFrAs1B;&v{0{HpB3vwC86%JYOIuPR&%U

z6SL(BlI3d4 zS!zL=on7LQ4+||Ue5PQM_l`FUGDCliAD7(!ec0ukvEfF<)CI#`YLeM8&2X$SZjPa; z2Uy9p)JnWD;!DLTfp?e=>eGh0^D~roiIaB&Dc>x{8Z@a7lwr8#pCq+}1VU>lX;40y zgJxCCj#=l#2iKHk*wO@-{~2fG2>vytqTaprFwlH6OwYx@JyqE z^+yMLO3>vlPu-kvJWy9ti%Rtg3sU&ZE7}{LlW`f@X7%SsXj5b{92Z~ZQ6Tm(Vq@}9 zP~6!`R>R=|O*-1+cl1ZinBVn=3lrlWtW%%0AjYz*S2GfjUAHZ+Xhxqt?Z6u*$Bavq zb!|0e`Cj}^%!$2Z{YH9oV{cMDMV6>Z)&G|O6vDr=L&z&qE2{h4%(*3Q zf2Awc(Mh(erz(Xu`#b`&YFipXV`C3@I8!HRm$UWN6J>|OyGF_!vtYTA;H5E1)RFAQr^QH)Y#&<=wI_H9=g>A@P*Vfyd}`L}~hkJHx)Fp5~0o68~5u%Zu8Q&|KD za?XJ1bcXhaPveLQ7Eb3jyIW7s*S1HDXi|fffKv6eA5?BS_N&$`%M&rU#Oh^vq{m#3 zr1kj~ZUl6LmpLjmV8WM*Lw*d*+uV8ivG5;rX_D5gD*$lbczEE8z2N?pk%+?4BW*&? ze_Nj;YQm4U+r9hcs=Fk%vM*Ps=w{jyMC%{DAzyBa)P|(9hJ{sdWk`H~1@hwLSsC1kV4ee!@KZs2l$FG&(O5~mGWD&J2S5#IM~EK8v-p7Cr% zV$<{S9;ZKr!ExC~Vd*#MOXV;&?7`X;(e|o~JzlcspT@nPOgY}z97ACu3aa(lye49W1oTS(zOHymH z^bN6Ny~;4f{(N&m@`$xl5Zpy)`#0Jt-`r95xalpJqMn|CTEHILwmj9tbvzOsp=U6v z2{!~$eMUV_P40yF1XO1H$AmG9}y`G_IasqO> z&RX_3CE{NV^AWNRS&-E?4o}eA8(77&ImbKORM>;rY>geQ=o<5$VIZQW9v(H-xa$lR z9u1gdZ-@-WslJ1_xGNpru!=`Ty>;Y;S?Ri#Cfqiu9M*(4z6VY6`+BT5hCL8ml?)dg zNT(T(GeghJY%}lI+|{T^p$>7($w3R1$cbyq5tFj}Cyyy3he3lRghRrU1;^&8h(mLga@6=KDMFf?Uab(6J;f)m#e; zHMPXkTfFjd{U2wt5RxUJz-sFxQD=3ikT*OqjSQ3yO6s2Cd6g#IvL>3`gTDGpyV z<*UG0%hF8Ui!8{H+&lgaX;Ewn_U>li<3X3tcUn( zqEMlO1twXw%MB(`ZtWbNkG6l0kCs@gC@HWgE&<+js@$>}F1Iyo%_{cj^}$A#!u)WF z^{JiY@mkNk`(@~`$jG?MfV`MJ{&Hq_cd_Wwnm1%+!Nr_AvYuI3O=6`9YF3>M4YL%< z_Ssw*iTEK96GQNvOc;mqS}Fp9wD>Zd8}|)VA}{Cz)S#E8nNobPKN)aXucodZlbq~3 zy{)FE79AbE@u3Gn8zkfQ>w9QXUT&`2&TL$;IK5qA&H9h8r*b?T`GtfK@7QO8mr{JF8=QEm&Hi6?(R>f`EJ>~Z6Ct}hTPoTa!lV9Kgw$R?w^^+3Wt&F z&u?8E_aHj@0K+X?3|Sc&N`fYpdKgU3^vui|#Pk0A`$)fyUKP8M(%JiyEG#Tpot>S< zHcdT-<2x&)B*Ny9dRLOl#b|5Oom980nlR`Ta5|&*ca3^=bv3JqB~HR=ESrk%M7Bwl z6YC8xmtpxV)Y~fyW7TB`2iuM6QD=qC^Fa^n1q$qw;DiU%)Z_7cET`=iTiVv%_GCaK zU}>iYdlJR%WAB8YdzYh|wGgE))Jxe}Z`s|ZT4CX(Z@PU_&PMj>y6KLjRA2MqCm!|K zXPaflRZa!s_JjSui9I^=m!I z{SAJ5Ooqjm)*=)n(?5NRpQAN$-T0-=z$&I%U|gXSe1aqT&6~#)DQs*KVpxVBlK&s+ zJuTkNf-A9Zw`;<|Dy^mFYZeRp+BpOA$Hq(r&1&?RuH603V&VHhHkJw4=8~390Jg=@ z_;ZfqHTp>sj)bN_Dsi8UN5nVD<@Q5DT?t4P$uXB8GN1OW8!TSdv#_vc;p*nnNS_C@ zg_NsOZpW&uoSYd7g^J4P@7EJ|9M!A!T#nF^VQCb88P2t)3zs; zmX?^~%NjnWE7nYh@x5?WG&fH@iY@&-gOLcU=g#y^)e=hl0s?)ct|W1{ zUs@>AMaJ3LS+#rj6y~T~t1Ikz>$fL5it@_%HE!Mvr2Xq$y7xLM2W-z%cY|lZ(E56M z8DU`v6zQh2MZkVV;nXjyFJLQ`+jN`;=v_cmbTz+d@8Aitol!o|uxPN*tk!LFz)(GE zYiZPPqrLvZETd}xh}7cLBbt)eE(A#`skFD0$K*ve=n?evn=36R7XcSq=*x)vy!GfdoRP3IYpsV;v8)EdBpC^n~5Pq~&zJ*H2 zD-V!ygg%hXIFFhDYac2+UAqfsL2o-DmpLEdStRDOv!g&!r>kVk!Y zMjI`z3RQxPtMTOv`ovL^I!*y_C}e(A-?*yV1CiVT*z)GD50Pq74F|jS6_~y|U=1si z5m}%af00XP_}H;i;&#zu*pGU(mE_A(`r6uWz>%D;$d!IYBk|YB!?Xcm|5bWo$x6_2 z!`rr3Z%JJMefhT`Aa1)UMa-%dk$*+ED^a}f)8iRE9i8_bZ+WpR+wossc8$TfLxCr( zQd&NTemSKCkJHI^lMQ}8+vA?@y~-@B%!-jY`C`}?aGWYg`_sD{Zw&H_Q{e3}F)=v- zhX+1OCGAJ&ZLqgXP*%Rt1JYlNm?LDAt$q4r()x?FHCKjnB8t{+;l1DA-HwTm&jvXs zR^`Eyuaq5hH}s}W85a`fIT>?;{q>8JRVmb2(-_>u+NeE{Pt>Z$(ExijA)xougC>~+ zc{~eOT+r`cCtRwU_ z(BTPeieg~7-G?lM$z%KlrWo1dmP4H}q^7jkBiEDw#N@f6c2eP5SBe06++LQ!vVEc+ zeZr+j!2wXyu#C&|Z&dJ-icQMcxkTwE!rxC5x5$}*InL`GA!_5A{_y=RG6<`00Bze% zE6vw$XVl#|YBH)d*qx%^D$sR~Q+6=iyGa6&jEjOAAPe|xXal2Py*9LwZPl|U&2PeR4{dBz z$7|K^$%D6IGzXV9k2@~_%Rn(hUY%3TgxR>H0&SQ=ymVjqd~*`xT~t`P0-E{dCn){p z0gW4L-vHGRUtjx%UW#DHv|XQ41|u4z$PjLyM5#omu9Ff{`XJ%FY!U0tucwe6)kB=- zcVM_VxwR1K$lXB`9X=abhND0@|Diekd>L*CtPs-$FGU&O;W2f;rFgPfQzVBhx{dUs z1)UEs!2$XwiVhcZh~G#%?1%_liRe^AUI}JES~G{7VTM|x7YpCs34eVjGBzyCAuDh( zEDUeNF8VoKgDcj>@2Zt%PpVFm1R?FGh@hXVEM5#I3wws9kXo|nT~OgqMd$87L%`)~(T(RPZ+&AKb=_Nja_GUYcfxtPFhX z+z$73CL0LL0U)+8vZp9cbDGG(-7RtJ$RGu)^DQi*MNd3)fTGqD5bLuU_4`wc2lt=e z=`V!Nn4>rdq6L%45^)Clb1R6JKrgInYfJLTUvnjfPO;3+qVLAUB#5>(bNYjYcBY0C zvb70jo~Z3{-ZRX@n$L_3wJh7fgM^YVsRt`eLhxt8G(m))9XiBHl2G6k4F}$}D?;!a zWl^WGF#+bO8*z=Q06=O|KLb^QhS)S=x$WeQq)FBJ`N}@8lQdIq($a*dG=!j&uFeXS zS8!-DFZ=b!dvPZ?qMRDd?1s8MxR=wRnh@ z&8I%e_^9E?TN(-HB9B}GI*+&S@=T<<`{Jl3wGtip=}4{N?hI#UxftdvV^z;`jVbi> zCg#U2OcyJrlR4+HH4qbiz5iPdB2+pO`tBv2{$5p-qz<$>9N29m*Rd;UVko--wXm0E zDTokx1e9!GF66hHvr!a)8Zx)nWcbut0bki&Bn>uL9Ox_zYN*{UPdQc`{4d2ym)2)H z)@MV6C1@vwo@VO%#rY4B89=e3+dtYF@VdZ%6td=Na#g0hUxta3=t;lT()qqDdysyC zSPA}iTR0EW0o1QGUf#sQ_yl80%QDXhWLO-IM%VmX9!vi6QG>8HOL`A;4649+e$_j=Noy8X&(uY8r0>l-(PJG#3ESAMiqI1(iW3fdURB@OUm z*Gy?!U2~_{9b&~g=_Yj%9$um*Z7Vns8SenWxsQ5rNZrt!e{>ayWy_y*gjk0~BljhH9(B>6e)n`)V~CgzR=0(0ZV2 z#-&Q5#m%P3V(Z}kk`E&Vh4;&T`TCb56t&-s*gl@QQwA@!eF;Lv`vwvMY9&sEUCvJP z%+H_ky3{*6=orgo^D@qxT#N_A6QDF;P$;(j(|Oe9ce}#Dzsd?pnfot=PY~N-pCC|u znhAT^6|>^)O=$2VZAWk#@#N&=lhvf$=j*U@3;W{(f>4^D$J!9xiTKRDe<~Xz*Z74Z z@-|>a*1U>MGZCDshvdm_%3O20+k)r~;d{H3b=53+)2pq0>n^F1i!6j)z6Qg=#T zUSSQ;zP8FaXcWUi(M0t3f8th9>uWC}3`#aJHcqT`p7d{1AQnFey7P(^&?Fz!@#Dwm z_G>{gG$tXzdwS7QW^yeW8!lrNg@uI;ff-j<*Y3T8=xF9M zXV2b|xdNTE0$b|=poXK30f(VQ7Ji%hpezd*(>HTINHowMNH#8vS)kqtbY&M70q|8S z1k~zrL45z~Z>93h>wPLOLB*FD5zlW`-UeR(0&n}@sknbXqzaOwbjovHKdP=nC}mBh J!dsS4{{s~lfja;I literal 8368 zcmeHsXH-*Nx9(1;f)o)%5CJLD1Vp-_sUQR-KAFQW`w1m`U ziOZLG@A&$9`COHhbpPL9NO<0LmQ1*7b{AMV;iYBn13@QI$3IwjKoma&@p2*6uNmD- zCr<==85w7PT(wPuE?$b}rObSi6v@knh%{in7i+JkeYUfWgN-sa*Eb}J@nJKEvpS77 z{Zf8GryQhMj3dQ7b!7@2Fl zN;@=9kKgOA+sZr_sSa8|P`;G|0*ozE^>_gov%xn7=rn;G)hMax2W}cO%{ffqTtZ>rhhv6glnih_D`B}IHVB8 z2DMth{U7Yy|8T?qUu>pbeI9DP)Di>iAZyE^uaD6H~A*{ z2V_M_2ibjlKt)KEML#=3sCGvatI_!=^pCF9o&7uPI3JNq2`Wcc77ZpYV@6|@NS9$$ z{d(`qa2cEr=-c})3Aa%io|3iEaxk=id;D#Rc}YtLVWxIf6jC)Yut$lxjXIc|D5?GM z_T>J8sj5;UjMrZnQi}>%kFNA9t_*83AM>2Fs$adie%kA9f@F)b|I*9fb#vS^b8}*X zf*K6xNrSd714tjAMm(==i$6}~hg6}s_Fb77*P27VuB6F9?$Pm|Z<3Ey80oSI97uQ+}$ zs|;`1_#Tm`<@bxX%Ed{W7559wjlHly>q~Fa+B!ZiEP`=1Jq#V!bgQnej`Ok|&VOmd zdvZ9i3Q8|*9Ji7#3#w9d@;cZgxYu|m!@SCcq1HaHpOG7%g$Qdi==R66INvoB1u_{5NtjoYx5FWjIDlKd{Y4Vh337c8{Ksxs?f<}=E-e0s80Ss-;;-wn~{gyo# z&rI=XhT{9ENIC5hx`lh&juqY0I9T;**rXZ^*RQREzjicrBv+F>5#B;pU!A!QQ|M3g zOeM;O@8}p(hxtYekXY%UbR!#&-y-3Mf%Cr`a&4NjTM)K|W1Qc*{URELr_eofU){Ya*s|j@0M{Er`gmJpeOVX?lMJyLQ`0Y9u2d74KlD523od zrJp;OSX%~d7|83LXcK3Jwk-@|&3_-^J#*e(B4QgO;46lTiiC8<*-EJI94^ZMBI$fD zlkrI3p;o!`Vzh%sRRgBb0DLG~{?`5dMcavH6y>1?47dDq2KoAh3?{0sifQg9Ord2z z1Us!hU;a_SkMig>)GE(+3j4>+CwR*C@PqPX;x$-p838??;@m@iaO3g4Ek$NE z*TJ6Zl}oi}^2J*(xP!D7#z*}*Nz?k!i?T0YataOcH*CA2V$ogw>KSh0=sN8AFG+;S|T;Kr?|~;gGTqfY?$Sgrr!Epl|j25Xa-aJurp0R zKa-3{yZz{@?iY|Vfh17&uN5~p8m5qBA`wMl#2^M~37?ZswcO9snemmE*I^m91S0z6H%1u=cu4eBNI&Z<~v*4ply317FQIwZ7=Qb+$ZPAvBF0ODG9N} z+Jt-yp*XKJ0+wu!Lun-HJG-rnBj*Z0no7=Kx41WdH@FMIBzh+T(#n;BtH}bbdcYw> z)@PAZVXoC?RQq;6wWRar@D&-9+ZRA1$ImS5c3JtE?=vVPOY$?XI0k=aAtG`8U><)Z zise3{$2Se&c$Bx&Iev(lj-lXZSs}B4?J^nn)W8oG=s2>Bnwx-Nij<0bD#tp`9aQ@5 z*KTa|6ABE#(R5s!o0nRCxY56K3fdEf%3OelsU8^~?>P&v%GCfl$FOO2B9e5K4ti_e zGP#uQzelc)hgSXe$e5*4TTjFZtD7(!o1h@3WrK#NGJ~@0M;i^EOIV~lgR&$WYJF;6 z(IekV&EO^kTe|bLwdcNhg`3d*Vqqw}zDrA?ALpb!2i_OQv0!(7 zu^V@YNXYZ7@>tIa6cz6zs7TXNPnBwSi?*mKAE*TpZooGo9%kaRvq6e$O?661lDbIog3dfncm&;1QU~xOhmy=^&w{VXJ?Ss4chl{ zWC5H!6&w?D$>KJc%r%&rRZoT(1GgK3isb%~Can(MK|uvc$-5@W+>Ru(syUp!@>dg# znFp92C*-1^b5|QePhM*>Nju}r-ax#0lfilm{ShDc;faX}w`Y5Tm%;p6{;8;6lpu=W zI_?fzgVx-@>iUr7>^bwz1+bz|a)bP&115vI{aLm-KvjI2nBUSJ1l5a|SN&ytXd~I^ zAP0y3i-lpKBI0vqw0V`L7sSPA1r{#7> zodoXEkrZn`%R;2!KLZxBKAmgbD<0fcLNFFfd@4p_=I00su9^+;E;R3IyG)Mz)3x%X z%FFxEMat1Z*(J4RF2teZcVpGE|GabAbSX3u7f}RW(#jJTk59K~8Uq7opn?pHtuFcf zvIDCpdH!k{9qt#Hdr^{j{8&{*27D#ipWHJJ&wc{O6+BVT8LP^*`wA@Bg43u5pkpLS zh!s-TwaGMkmr7>EsTvn!X3sK%6IFe1bC`&Nwom)ef4d1Lwm)@*^jjD~!L|)Eu3}!p~OH+~)LB+@IK#}68Rtbm+jI8U>t&FRFgs$jw?wW9tJ%A{WG5A!rnm$e`hrb>( z@sx;LR^M3~DGwsur5Ex3ysK1vu|>+Z3&5Nq;1|Z3wX_lK;1*6IpKV6lNQ7=>B*dZXh8zBP zGCxuG{q^<2d4&Hhzr`WrXinMe-K{JI@9TS8%cd38E1ZsZ_?MqdQ(31x8Kv2??wb`Z25RTR9e0F2>lZ@-I}aOoaY^V|{%)#N$%8 zDT&ZODZYKmiNQ@`N7TTAMU6*>%E5+V=;RqJkUm=OaxdA00-LqERW(Zr`d#$mVXVf<R|Ld>DYP1MjNX*#e^y-OB~yjb!NCsx(C7V4(SEsR#oQ3ZIsHSOz>Ri6T*XQQR8^!k3CXfWNi1HbIhK?{~@ z*#D$ZmD?yfD{QxLZEdac&Nseej%gdZnMgK6DeR2nDl26&&)I!j`QBa?xQ=;eS%W&* z-305|?xuN{@Ly7IL@%KD%@>W6fxeNXI&w*D9%;%+f9NX;O*`4VwZvOI^zPO;^E9h$jM2}`@ z1gg}h8VWhs98SIJSJd^K#}o0?b3CL1ICWpJr@#N7LWaA{mP+!iX*NOgf}4xO%jw}^ zzh0y`MwaLc=U95wX`H|6TXtUXcSr-18U~YB?J*HFq-t4#iGIv@zR1)jP(#GZ;I#41 z4&k%3DEqGbr%#_=2+YjPU_ZUMkctQ>aT$8cQCfg=z6CsjSnY0zLiH-z#%D=d2Rd=x zP_%1*%#f-Y-kfCWG*8eBv4nbSE@&f>PlifuOMx?LUtzj0EG}+rVlosc#M@hHEH?j; z2^DUgqKjQyUmvXTw8f{&>R8wNKC!==e!NZ}K3q>sOhjH`5*@4a$uIf&%b_y|8DDAF z26u9H76Ysyy%gd7p+`!+?tJ$KT+T#8fa~_kchO6i27rukDgT-B)EV6R z3F?PqHJ($2rMAIjS#hh{uZ6{`ju)6;F!Cg6Yv(NMk+X(D2oB`y@#to$SSttri3(NI zny!P{u+Tk{aqi^;T^4&x)X#-jBcG&LPT5M}ggF4(XJXs{{SE*6_9mlFtY;Ls`MHUD zr0bB;@2cl2y9L_X+A{u2W>xM)6L824PIo?YJjWc@<3j=Z%FE8?Q{Ec)0o(Q9!2`JR z;r5TK_f}p7ZTxy&?M^K6nd@~9C8x?_JYe5COj;w028(l_t0r-WkNdM2QCq@<9<$rL zs1HcyYD6(eb%2|x=mw1lS5mWT(@7FvVq%J7XB*Go*MqE^@H^|{@M3ZuPF18*2f)oB z051zT=kbwW7FdyDs8(qJG5eXD6N-!pvHZvPFZt6c>E!qC0XpG1u0kTg4Z+f|3ukv8 zmXJ=4i~FbIbjDTW`s^qQCQu!?-eU!KxDUs@yz}k)SdE^jC;(|%w=^^`j8%8+5hwPa zf~xrugD?2147jtj+sI|*)sE9~IT?t6B8_KfEXo}o%@`>ddX%KxPzEFkjzj`5x99Neuvo4+oITe~2rP@*Ct23abh8$aXqM9-dF@a7&TiRdJ!DpGWC z9s?rZf{ymt#@CgVMxlFu2Ekb&>qSz_&C6T(`uc_v9q|UHPtJ!rQdR=4Zq<0y>`TJQ z+$#fJpVp(;NE)_HmT0(D|AP@+`EU~e#%iV{-kDu6kiTE?OudJz?!X^Z(9uEDd?H9r z87)rfE`So!x}v0f{&EjLB?-`z?r;hE&CS{G7a^2o)t8>=5^Hy%`#Q%cQB5uA*M$nH zuWb*j`=Lp%l~*aJnUrtO(lQ@6Grla$z$4MLoqde@8n?4kPPe@x3wQzC;+>p=Z5|c3 z#2`-C4ZnB7NZiH%G|g@R*>!$>P3TD>WGVwM@n0HsoQ1ab+s^EQ3T*a-_!vG_CM$AG<5<5|y$=LCR8wLoGl2DC|KH`0>gdyH{$&r4^$lOq5- z8_T+A>8XnArtl>ujiD$yOt6I_F;U}r)G@~v% za+gKJA-zvM3AbI4B2-C~uFQhXC7>IFy66GY~p`Dz1nV%+{dj^6$$8qt8EP z8Whx8rdIaVHv!XF07Q`HWZ6GV!}$|4h^EQVVSg6VbmLwLNB51#02l7F0@`z$R_l$X z&fXtnX^RJfVP(DXu%4s+jpq6bo_k=BnF;A`VJ;v7f;Nr+W<{IE(*6-ArT$?>#WxuM zYt4D1nG483FBX>!VzoSIqkyAfe33~K(605v6&fFIzu#6OEae&03JqEvQQy2qqRd-? zIrkLO(iANMEF3 zxZ=pF#R_O*LXtSXZt#11?uY9{EUEs(b?Gxa!97vBys?ygr+SO{R+lEk4tDy`En(>8 zNx(x({w2VU#KgWh+zQX#nv6gEBR{{^?Vb-SiUGvZ*aYKmPHdS{x-BT!>7U(k16EKE z=Jn)sZqQ~B%!gNXzW=X9E9ot)?Jk%U(uhXaiY&rGZSun=KA@M=3KNYTZ6* zE6~`RkvogeZQ0jY7}7mv22V(u>vKBYNyzw%NWVqk3RX%c5Q*MzQCqS}ATi-3v0Pin zUFd;rLQ<-fG1{T)EKT?}6&2KcidO4Jg!a~?nDTyELY61u6pM9OGl$OBq-)oi;N5n; zT3Y62Rz{s4T}Ui;_HgMjgS*h$MG3glza)p8Y`*!@@I;rv_ZhU2Ds)iDy8^A<{;Zs- z{hMFDywB(g7KT(4dfIWdxTFvgF`}z$vT$RT79aX+G?dX z9uhnCW)P4hI-lX&!k5f|{3;^y*W-HS}zbftxnDcNU-ACBXadrVpR@DxHgW1gLZ|Q4)S_@ zTBxUOIwK&5TRDg5Ax`#uXWKD~!MjhPoBij=Q{+~WvoAt6nG&W!+?JqG+G)`)i&RocT= zK6t9B#TvN2fxX=7PS%kW`{w47NEOx*!A8<$wE076gi4c}ZSibLJlxSUr1Yr0woCSG zsuFY?;y`dY-M$TQz|AoL$a3j$w(5MdQ+L{_eMsRO2J=tF-16a#(QMGGI8o6ajMQ?Y zqXhRNp;IaJs}4{EW$&%nxsSfrkQMX35u9BLU9!ZWMuEpU9h$srtkb5rcZv$y=7`~v zqRE`;#uwfvdc<2)N8z2FFc_D`p?A&)6@W7x3xshA$;tUDp}Ti_(-jv8x!vZrJpWbi zEO3s=jXsC3JNR2Y)jj37&i!fuXoVW0qE~2g_CtL10wWlKq`lfyqok^8+Z4PtG<9?s zunABtVOi%dHr(1>Z2v{@xbi2 zTrK!?^Y?^hf1a*ksZCSShE3@ioY#m|=h62Fg8bA=^k7lqKw};GHZEKrFtVN5bJ#@_ z>_JdPU_AzEHrH|=J?a9gHwu&BJesj0Q!VBu8o;m(|xF?A#Q*azK-IejY9f<g=HJge)N7l7RmV#J~bSI`xEO5%l^v!)NhFH&}TAvv%krm@j zlS7inQa(ykls$w)_d3cQfuN3xQPe2&eq$~;Qt@#~lbKfisJa~_0i3#fly??~QubE$ z4*!)vz+jIEI&c1XLlST*Xr(rr&qr|oF#}<;X?6?6Z6;Wl(~+*N;4|O&cPb-M9I_4Z z-W{f4e3`pvw~}uz(K7Cql#tM2yo(zyKg~<>7GladTIF#*TK6)$x_-9V{^7<2nj&Pc}xDAQTkKOq3$1{7rY>C$kdarXlQC1T2=2)c0thLD6hdFmhoZR@OOoV z`7S_i00~bm-p|z(kU~pO&np>0I_ z_ktP97iRESEdd7vB`zyJCrAB1G6E?SL0D|z6=~_j_;{bTt^EA_;#aSDhooTln8hG9 zIQ@TPCHnO25|!+9YS&4ezzMiIM4(ptbT~BL`R}Ep{|{#;8H jzuD{`w*PM?!#9rFsVHY}2CEl<^?;BXDD{%-b`Sm+Nqk+U diff --git a/dev/_downloads/95feb1999af91b22f624aa3ce3c6b1c4/solve-ode-1.pdf b/dev/_downloads/95feb1999af91b22f624aa3ce3c6b1c4/solve-ode-1.pdf index 1a15606b2b2a755cf3e5cf17fd457b4698bd14eb..58bf33725bc90263247cd336e0163b0d87d2353d 100644 GIT binary patch delta 17 YcmZokZb{y7T$jbz*vN46Y2BU706!E4rvLx| delta 17 YcmZokZb{y7T$jbjz|eB@Y2BU706!cCssI20 diff --git a/dev/_downloads/9659cd876877dfc4002fae48de3c98ae/beam-4.pdf b/dev/_downloads/9659cd876877dfc4002fae48de3c98ae/beam-4.pdf index 15975759d885511f6169f7a9406646b56adecca0..5b66eb45fc0334ab04f439ab51a160fabda12e9f 100644 GIT binary patch delta 16 Xcmez4`^R@fjWV;bnc?Po}Q delta 16 Xcmez4`^R@fjWV;5vBBngpa1{> diff --git a/dev/_downloads/9ae786c847d9ecd9aa665dd52ee79f4e/biomechanics-34.pdf b/dev/_downloads/9ae786c847d9ecd9aa665dd52ee79f4e/biomechanics-34.pdf index a4b0549da578185d81086f99b018705faa6166d9..afce1d090ad386cbee3727a2aa16ae93da19a2e3 100644 GIT binary patch delta 19 bcmX@TlJWFP#to1BS&WShEjK^&f64*?ShEOm delta 19 bcmX@TlJWFP#to1BS&R$}%{M>uf64*?ScV8| diff --git a/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf b/dev/_downloads/9ba0a373644e3b8e75cb2f2d1a46ac33/plotting-35.pdf index b111cc44039a7e996d5a97b12834e97434e1fb6a..0ead6bfbf7f3ddaa7e17228bd5fda46b5363bf45 100644 GIT binary patch delta 28 kcmbQcMPTk0frb{w7N!>FEiA9aSd1+U&9}c7W6@&<0GRU$RsaA1 delta 28 kcmbQcMPTk0frb{w7N!>FEiA9aSd2^!Ot!xlW6@&<0GP1}P5=M^ diff --git a/dev/_downloads/9ffeab016a6116f06235179bb36783a3/control_plots-6.pdf b/dev/_downloads/9ffeab016a6116f06235179bb36783a3/control_plots-6.pdf index 2c152b18f708cd16c2da5551f0840a3ed7a49c27..3b2e5a77704a0aed71f8279f585b13187f8f8e44 100644 GIT binary patch delta 4052 zcmZuvc{tR6+sziCj5XO6SyJXZ`vNs!+~>Z}eV?ykEUjTI&!SmCvQV4wJNkCzjDCgN zq>Kt zdoNW~Q=_iJ*JAlWa++w(n=QVa=dZ?gR$TTHD+t&dZ|XLG`{lMV@T#`rnxe}OTvBc* z1sXf9*$mrki#SzZw3+;vMN{kXN}Up~S?yZM$#rbt>Q0+YHKK+H9ei3Ji2aniif^2MefoZ=5#!DmAYrI+IV@__ch)YoG6jEqi-2B1W$Hn{4wz= zAbCvYHIlb+g0$O%$9UYks8v-yuDx?a9GrW0+De~V8WMw}y?t*-*NHz7GS^%B$Anlx zIvx3?)vdI6yUvMrRzZ0D=9$8f$=<(mL~}-8YY?ULTUvmRNLKajlAfET??1Q`vLgup z1FsI*8_EO+BdhsxG()OG|In?iX?hyN!dJxwX=Ty+!I-Lv%&p#BC)aQ1wTB~46h`^C zCcTkYR%)NVT)mg$c{md(p^3j+2Wx&;I9-{$JKxG@N_TLm4_RMm9om{HS?|agY#=z- zwG|HPcYQV?dVdj&*JJmJT(l}_U7YlNQ5z5FD2;$ua?=<5abm&{m5qeXC%=|)JD$xN zUY$RF4fx{lMW^Fl5RINE%==7lA`ZF6)1JqG?|*26w1_e+Vz^sE39$} zc3o{lWJ+Jfk?>?zFplu2OWUrT%q4RwQo%Q=JkzeI5+mUYjZ>nu5FQ2Pf*Uk`cL^86!f?2GKjy)3fvuVmXyg#eAEit~Y}9 zIbHGZ-lsm;y=cL9P?f)kGes#&s+y}dDn8FPA;91c8;_CR1qgIY{Rn!{w8CDzSQ~-c z1~QsIa(}K634cV0m1ZsSba^R$kGd=Y2hrVUN9p4R<;(Wfs4~jaxw3;cZj6vMlU{(h zg%Ya3r@=Q3Y{a{4s#yJoUWKz_J0}dKEac9O7;Oa6!UMx>Pcu#yRL2)zt~?X{!OFNm zq^c_^F^WfC2d7dT{k`e<1B#4w!Pt9-{*Bl zA&(Q!i(jV|$?5%iqhwxKGE-+1|9LCm(+C71q{SV~OAVY-6ufu-aY5d7c@O1CJ$2%X z4k+1WE<^;M2fRHt;M6Daku(>5OSpWjTX_tk{Wr_qCHtKWYRycu(Z(9{dAG+bTc7SN~QNo1_l4S457W0+U!Y4eVD#c>vz2P zil7K7LBcQN`h#R7$CuGt=OCLDQC;?AU6S|@Hy@18Llfy|V|F#E%kQ)2F2&4Dc9!|F z?ELKV2Sx2|Q%vmG*oo=jwH(p(@w$vg@`AQ#sA6f7c)|E*URJpAjWPRr<>z&}O($Ax z519UT`}1|6Lr(EgOjAIMLp;QqHb^^ti%hXPEnECzoJaHiaiR4D2yS#)J6-Tn+`B$w ztXVPj8E3bzjmZ}e@5mtm(+IE2vgytK(@yT(GHVSS{e9YUhYs1qfIE6p9DU!;W5!%7 z%hV)~sJQ{t){<@9_55Zmcc^fA-o=xn4_Xxan_b<@f-p(8wRv1Iz&xQtE#-^}cmCmD z#i(od5~sA-(}ixT258(gCs`#PG$e%YcD8nr>mz)cK*E}LVcY7J)UzK4h@Sbc`Od~U zN(rA*a-k)ijn;Pm3M%<`Vki?7Ny+B?_BI8_D_I-tlgYsGP;*xTrswkqf~Bv*#zn~l zOIc4oBX-0!|EEmU4hpf%x;f8n>~9VGH!m9>-(iGvpb9fR`|sh*06_a%k`oIV{J*QIyT6h z70KdWzZ=tec9d)ne}xLuu{7yah1o?F+pmTj!rRFzeoehhvD(%AbP zhj0K-0z>enyob*7q*?h70tVSm5~VX??6U*dR_|ZO+=6~Uo!K`DW}wHJ^UpJNjtZ03 z?n|hv-~PjJNU~NUK_AORT#P*sPBM>YYjlFX(mAYs@?slkqvrC;hrfxJi)Y8cT-f*C zsW?UKiDyRaVhbC)mzFQ}OIi!t4@AwTQSdco*5qWcR)#J)16bQW; zDgMWzJk74ZqasqJ^dMX2EP6`^|K8On+&U{WURCR!q5iUx{3DtW=hbWIi^`{>Y$$|q zWuqD0pWHs6{_bzLG_nCQ>2;Xdn6=RE$I|tWhgvC5u0hQnShlz~7$g;J4PvKdsa=?2{!RHpXAZCHA|e4$FBeKgurLcsZBx!tm%P+inTuupGxl9SPjZ zC4Vz_*_xT<%mS7e!+@Qq&Grr*_$<{&1{r2)uO4f=f_c98YswrxsrVWm%rkl_kn!aA zLWC@oZ^AmWyb<$5ccxR#oue@}-m>fIQN^2&VkS{602(LD!sA5pKNu7++It%lHDT`_ zX|y<%y)AE5sv=d6UG(PNa`upNU@=8qCKhX6nI6@xwp;Xq)nFZcD=SX0Ql zAm2}pE8TwNprh3g%WT!rtgBOsN6qp(^kWN}s9=&gN&nt;2#No&qL+w73g5eDXZ*z? z4vrVIj_T;n+_Y%pcToyS!6!!}4wJM_ z6(cYzqPtrBg0JBonnuj;o-+^TdRl9DN#w&?&Y%_?qE%h4Nf3!PkvkBN$YxK!pFF>n z|C;d#`{Rhu+)6%)Klox#MAoso;5;cmt-&(L?2=AG@K?zF+`*13-l{l>&6ryY!l%_2 zCFG^c5W2o~&UP6~92=as^8>rXb`MP?^09*jwQ5Bl29z44CUs?b8CCjGeY^gf3AYw3 z76$fK)91bOF1agw_G$+FI*Tnb`roloCldG+HXJkzr0>tB2~2-zsvKhA_(Je+hQ5x? z5>M=&{JxgmJ}$nfmr5L|)H+hBv2j$ngy_F5soZRl&#CvsHjqGb z&dRbI>Uh<-9mXSDzlk?HcfLqxERdykrpnh>*1xf+j-b=|Lj7*}T*uqd7l*~B8)jaF zVr*mwgAk40J_1wTJH{g$r)buGBmJ8j*Y;@RjzwlVv-;b$eS?Jy<_|X-7rK6;noZs} zZoaM6od50!br5?=uU#l%1XlIkYbgU)1(qyUg+3phZOu8<)NbLZVeT!jkbUlm1%7Av zX`8)dJ%{QBVCecND9hwRC`y`>`orR?s)kf>`Y*n_$F#iFvnW*)<4Wzht?xS2e>X75 zyHPytinAtXer&F@R%LeWg)IIuZTA|#yQ2A9oOQBi&SX5XC}40sdqg$+L55Qw4-W`m za^93i*zrS?(hp0rq7c=z!*XZX;3!1W7o5H;6pN98{_Dwj%5eYt10XOcBol^(GVzd5 zD0)8+35ESXJOnl=4v%F+V4+Fv_>&+CyRQt2Kp;^}7z_dI$KY6i2}2^GOnPu60Nqy$ zz!7M~zcKK?yux89CJ!()_CLh`;vtZ*{X8fV$vhwu4c%W0MPmM03;t`(NGzJkF$xAS zIYA*|OoAvZa}zWS#-xWv!1o^#ibf+rCMOsG&9qhw9AGNOAmB{HV9-oyfnu<5rXE-T z4gb$c!2gRH6pKJH31U&qTfm|buzmOZ8(i%E0RbqCDIdV!aQ(B#-~9tn4069?;O{g{ z7yuylI{^SBiYZ(G2J_D*e|x|HIFlX>hJ`8aa{|DS(EYaqkN^^s1kutz1OVLf@@GxY GasMw7SHesH delta 4067 zcmZuzc|6qX+cws4vX*6vWNR3s*_UK#tVuKWZPH|^kYgEpVW?z_EZGKGk0rZ?DY8T= z*+qn8UmBGVBD|gR`+VN_cg*|z_5Ix6>$p=wx%}ZNG7}8kBYAWw=l*T4fPs5IMmu? ze#tsXUr`&+UlhpXEfV&0f<4Kj~TXo}>D%%g=X9t4?02DOBfRrku`BSE}4jd5;eN zn1Szou?vk27%%?e#_IUGafioCBN=i#UncI?B#%I9Q%rw}`MV#At8EH*Km~p6vDhj9 zYRylQkYhY@*y8qIE?g{dAYCk32wLt**tPUGogY@G8zk3yP!>RE^uH4_hD^)LV6o+? zi5Irsx)Z-u;;4T<4fr;<=Fb$|5A+VvUUancsvEjuBK+W~Cv-gRXOD;D^)aJ!B7&`n z+rFCHDZpgN0}rD;9vaGd*mG;D{li=CQx7gT1@EoBzTW#OJ3F&6aQ}Ny@H%sQ_RZYo zx(RLRnSq5nbACl?O5aLoK(&wEODkEKaqsJd@XRj*OmHD}>|>nXo;EOn=pXI7u2q@#ORJHkd(x#0Pn z@I4bTFJ=k{GCJ87m|kalxbm$tJQ2st<-Ct{W~5N_@q~H(lXa!lRy>oXt~rB;Ly7T6 zbUPY9$BQN(`*D_5)}%{xO&NX4n}aKsv-ei{sw?MRa&_a$00Zs1u{u!h?1sOJ6frth zqxH=HmloHN1$9D)?oAhZtjG278_6x4hhAHV`Xuz5D)W!&VVJhDvy=1T4@PiL+RH#n zAB-)i7Do?P4NMomBb*w2)rq?V$ET-2?;i|%^ZBagj`#aau$DF~DD^eFjonw+Q%v`~#s z;5lUe#;%(O(P^|aXvu$xAWrE!beYEcKDUQ2SDsAb%(&*rPzgM$W%NTBb%x0G0%VnY zFAS&)o!scz03q;3$x3$yE5}OW-;Yv_8L+@vxTK<2a>5gx>M5wCbOl_*s`Abmd-aag zr0yhq!D8uS(pt10@UyIl2tkKrK zu3-bgmCq&y%AtK=-sr)eoNXqRE-D2KcWPIZ7o2~Y6J0L%a9L*%P#$73nIeh}ZxkM` z5Hr(eQ#JTe0MKJk4)OG7OOPn;p663y@;|BEqJ$~YHA;L&Rk{nH@pk3ngaOSEyFz^s z_{QuDX>TsQ@t!?-gKOBD*H;2PsBhcDZ2+Ya1yN)9X2SBPZaJUa{>nxbQoHx6q-ubz zfii9q(L{6_O+9AV28$JuoaKpJ`I2s_D9mc)AUuuQHQP#QKem2hWA4MM({4{*M2pC`LI3`D5T7|i=gSmYU&UjA zdKHk7^IH|qkZXkDwHWg>8NWKiycEkJx|Zg)PaR}N7Bz^h(UUplecLf|7Eo1q3gJ3` zcFmTSFOdw6>p|W072;bR0=NK0H+Th7wCH|vMb4r(icQ7g1*z2jP^mr`t~=lkKT>=& zSRteM{yb-7-6Tk_yEXtkW`5#siW-0uOo@imj4ND}!b*@Qr(@W=HM$JjwD1GHrmico z{!+kncA$;%5c7zJ-t4>D>bwq9v5iVi)3l^IojXXPq38a6OOu zgEKv|H+oUtU@qo4U~5Un;NizBo|wx`s#0sWq`{3}lc$7lZJb{{>`{^*EL{m3KR z&fCICzl@$;3V4^qX342LvW#bwESSFH1Ppi%{wtNLgZM+W71R+bsT#^QX?jtnrsI^E z)`ywooGX2L#`+QPkW0>o9_x1_KUhsp7`zR~$e>4RY5(FlKiX9~`7HU&Jq~RAH8Y~Al|u)*$R_DH zjZ2A|j9K?2(X@4>MpgNW{m!@yt=#1gtYp5l4xfLhXKx+#X6l2KmVyeXdk|R^r^JhV za1!@4`IR=a82gfAixE z^m}7GP%;hQanrd7+h0&X0=43MJI0gBNa3 z`>rYMRPg9*O|2enhYjyI*8Swx(UhL>TKU+CQP{gY^Z8iflN%leDVwRMbyP3kU9PmE zR%o=1F|ar9`G3jGPlYfZ&2G{v$#yHMcuL#uMP^-&|W>2u>82lu&B99->^{M zaC47BRS#|uYC&iF?}!%OYHp~-3r{OC zd;8|<&*_-p{i@V+T>7m;$P_g-g+Mo}?3hn3`-{!kbJBe;a;ln|A4Ljw?(cpD`4ivl z`)$rPuVA<**Om$9&kKwl4ZdD(_EEhypJugJIN7mEmU=7dkaX*?6gv*_gmze7l>?4I zB)w46KMI3mWT1Z^8Fv}Je?DMHY?7C{s3s1<@&^S)pbw%^P}Ki}!(fv<&f+*wFkDjU zSw$)idw>Q-BC#lz8XN;XSVQ2DEHxAg!O{?MM4}(M_ z4{|XWES1Fx7XCZ&f8ze%+@V+ml7);#qFIK)VsNZD9GXP~2ZzG{qe1;Y5gZc7(h!Gc z-2x7SfgKzWhl3v!hC$&h_X7q+V*ai1d;c&f7JJY!42omP69$7}4myFsP*|4B1;fGq sE%I9f4nwnOz!7j5=ztR#9ECWT9SjA-Vv^Q0^?8v{J_Q9`q8{J>09LoX!~g&Q diff --git a/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf b/dev/_downloads/a11367bb58b03bf09a75c9657b4e223a/matrices-16.pdf index 200fc784e2ae2c9d86c1706fbc403c4eb15f70fa..e07aa8bf68162d3ab7d8b1bcdb868ca95247b2b7 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXJmWmfIy0S)`Z&mmLU! delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJj9##@i(mS)`Z&md*%w diff --git a/dev/_downloads/a1fd2d341cd81043a2e4702f43ad98bc/generate_plots_q3_5_1.pdf b/dev/_downloads/a1fd2d341cd81043a2e4702f43ad98bc/generate_plots_q3_5_1.pdf index 0261bab3a4a1fe07966a0560bdef1e51a44437ed..b627934ceef6a147224c27c6bece9165db359ba5 100644 GIT binary patch delta 19 bcmaFe$oRUEal<=n7Gp~TgUz3;f3g4oSFQ+Q delta 19 bcmaFe$oRUEal<=n79&#=v(2BZf3g4oSH%cs diff --git a/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf b/dev/_downloads/a3a06dbcaf4cb9dbce7fe53c37ec22a8/plotting-30.pdf index 5f6984c7a9ccdf010eea78c3b69b34b7de4f8fb3..b0071ea3710693c57a550c813b93aa2b2f18148e 100644 GIT binary patch delta 20909 zcmaI7cRZEx`#)Y$l2D3lNkUeX?NBKrNm0Zxvga`~j&)nvIp!g|h-9yG?2(z7c{uha z+i~piy$`)VpU>~{`F?-@y&k;o`+mKy>v^r`bshYl^Qg}A`9bG_s=D0OO1pHCarFYf zQKF>)D)tvL60aB*z6{F>UKTV>V3ZJ66SHCYC{cFs_Kk(2^eBAmClwwW4+UKn$Z{0R3;5KX^fVy0kFK3~hf#3degZ*a?mZpE zW0Hi#Ng}j^uL>L`b~?P+8&TCS<-a}`3UF}>q(eS!`BaQJd~OU5105e%Kn@>GdKJ(YpX=GK*!O)p>(OD ze<-IkBQwgadTonjhgYy~y_8|2`^E^m<#o}tRlS_D&G;Re&!H8hERZ_);HyGnt2Ay~ z!~nRnXJQw+K5#?wLwNXH)2O%dSAi9A!?a9Wr*SrpQtt4t$R?qSh{TCfzP7@@8`ky( zf<%AyG5vqt2ZFy@s-ng^WNn*S+h1zldhl?p=yG%<>f#7N41Yq((=X1Pu7b*u|5gFz ze*ac}<&K0EAk<_1)V+SQg>KEl7dwr-*m}2=<9hnNoGU-*)-=+_4fifljD$p%m!>0% zp=q{aoeFEa_FXr3?h5vJm!r~prtFK5}+E*EAaND|H)FX!p6SrD`txuU=f(JQ~`#d(G z$oc<*N>!NGByJLGx(kJsso@CM!J|e z35IZe)r9gU!Q?>mm1~^_g#;Qj^ZiqseJ$qt%`GV!=eG&2-fFCd|DO);#} zc_hC^*-E(6_G9>A2&FT4UABv@MuZn~AgKS`AY3Uj<4OzZs)BF%(2Y~<`~vXHUKdeA6SMMn{v(M+f3Hqm=Yy%4t zJ8xGiI4RQ^lYrSD zAZ9;D~IM3~Ia@9p?wl4YFkY2w&6Hjwd?%nx1wfh$F%$^ug8H$AJG{{$EyR z`tGT?T{@O^5K_h@LF}a#*YBIaC{BG}ngUMg_Sq-d%=+ak?2~#cXV}(GT|;%bFc?EX zC)D?={2s}fYiIyhXRhIYu7Lmb$DW3L+4)o7u*%W#|8fn}@gZJF66;1GUe$s|auU!C zt_ne%xxbwnejIZpbvHqEGD?(VK?`TToy7V%AtbfP_fA{MuAfGtbP{Vh;MDYG>6v4c z&Z0-(X6eh66qAIv%|dj`Y8guPg~}RvG47LR0YZqJpa?>!`2SgfK|_T6KS3iG=K22& z8t6Z@02tpoB$eB;fy(5jT2MFT)T7@?Pj&O(t1{}N#yx@>TENi9r+lh;S*vGGFmHk> z`mH{5%JL*&AK;=Kp<1OH$~~B_T4e+Su?*U`;@PQjv!Q)!m5MbNV zLOu!PUe6~u-9Jo|d>RC&JI!z8NLr|9$lq(lg`^?~b`*T&sbz+YP#xbnHEqKgq)iOz zsoQ1~@vV@p?Q~XWlX3E`FnmJr2{mb#_>`P}hCa$+w_dvmYXPrS_UP!h3&Cg%XL>$n zkP)C19!}P44XACLqG_RZivcD{@N$QlE4p`%TS$P=-- zerz1SGXr~J1~;kq;JoiCg@K(L0uU8@*GAOj(fZEUh$P4xOJcjYSoQ--R!svm5=E+f zF@^1)-ejD+$_op~Bo?8(Q_2zUb)_l(u;Edzf0dKY4*S}62c)5R;Q87gcMYJoGe7cn z6O-4ScJ_SWS{)>Ci@U{fFHj&W@Oz#{+dg)CA-#COU)WGif77pr9XO-7$)*>)unX`WHJ&AS1Z^)18F#&? z`BbaobV@7<1#%--&hPJUR0^Os0{@^(ZqdKBJ*)$LeeT3+*-0h6l7CTDbccB&wu5(u zoYHEl))~VlgEx%ld9W%OW}tPzux~jU>f#}D-0^V48ZM6aI@Z|?8i9w&1l3*^;R&0F zn@D=*_ftON^^IkoF!Vzv%=Cn!{>#F7&0j^0Pmz%ZQMVo8_t?h%Jk|tWc)QZjWwQNd zRCw^B(>)GRXricY|9-k4M+j}yqAl4GEL*zs*x}>Vw=D8`ZVt5!(sX_Pw)3P*{9C25 z%}o5$+K8+Dkw)GIBbfPw(BcJJ95>T@^q+BPFgfQ32|l(~!@vA@QC;plj}r z`syrv5CYy0gsUsyu3ECnFyDEjQ~$;<-HktAb@3xP+dUE@pf*Oj(vQI?=>aj~9NQbZ zd1s>YMpIiD$@qorvX@2My$G5$m$XR}oD694M=q_eB@ZrlmEwH0z-s`>8Fn|10Q*%* z(ZF*$!25>EjSXG0;RvZ$>Ya%sHM>%IHBU$Ot+XV_vFcNdLX#LVx;?)Io&7m6rR~+3 zL59ku>wh_PTVE^N)F1_Ku5ERbh@^~d(DAr`I_L{WnMuD;kn?fkc{)4O%UB9Z?v3Bn z!T6@66Z4@k3CpDZ*ltq>VlYjlufS%tdTy}__%7|DlwR->>&e(wGOgq3UOaq(>+o&> z?Onwl=!gC{1p{fOz14X`*!pV+rawgXasz1D#s3U%H+Ft8G+^fFq#w9bdcZ&oHAbb?jk z^fUj<_M{2=grp(!_Lr0=59HS^fVftVWg~Z`3#9^IzNa|HcdGIuK!cK`0b$YlouIV z-8nRdTUH(5-p?L4mN^b`Dsr6C07OH5Ncgkdd)^;3@Cc;en$(anmT113O8nqu2dO}G zDXCD%&LcsU=fYV5w%IS^INW{bhKv&z)|FUjb?k{G6g`dZV$0g1 zwhde}M(sw-m{;%3_*PEV1uFQ0rO8`m>AFCr0DZhypzQDR9H`jXjWDaud%%mKXQ@Nw zxp2T*J&+Mn>!4*~l3N`ZXw!C~H~uoA#EUpiX|d!}W0G7vC^k=?a9O*#+4Q{7R53++ z1a56Je}2`tl?HgjqD@*kM5sxmR8)j}l;Sq?Y{JsWaahfiEoffi%aG0O zq@_Xxp1Q5AJrE|sN5y2kDC3;bC&nD2`kAer-T4>Ynweo*kYU85I!>_|v+?bI zsoJFpz_iOkp~Uve9(R(`ccT$_r4BmoPb0qePzA~L$8J0 z5~OBt?lZ%AfVipq#<6M7uD}-(kC#mq%yd~C@yQ*c&Pa`eY&mRD$IGOZcBWbEZ_%kd zXLPdYm%R{1h~vXq$t9M7?ZJvjmv@ba)Rd9_z;9yn2Geenr*S(4Ke(ztztg4Wll}QNBVnD~in+BC93^VZ*uF5~1DRMavsahIgw!DJ7eBuJx-RDT_s^gyQxY5f@C+D!u_?IZ|-$=stu zOZerew$nXphn8PS0h{^2DWi6xD(eF+r)4<}MIS=cGlXCHOS(Fs(ljNpq@hF0TWWW) zX-mL5`(yXEPV&#~4uqbGS2Q0qQQWyQf|kgH+t_lbNgweJCeFYpX|+dE`6(D~5ZED> zv+oI^2nFN2MvV`DTtebTk}SOoO7PNFh*K7q!NzFxBYq$>DXi^%C2mbsTm?H`Lu5Da z6)nELDLMB!8sakC4jD6k0pzNexR%B-ap^OwQzsI`M`V?eM{ z(v06h@q1k&339To@_TI2tQ+d8GEiaC?51hrZ?`pJCl#wsiyPRi5ln<@ql>_6FP(gt z(r*7P__Q8XYbw#%UQkpk_%wEh0oPP0LypCNMUL&who_R*NBt@uj0Nra(y|M4uQ5?V zNnHiA*{)vVotGtGElUKhhss}ap23It(9%6)dLnQdRQkiUB7oxE)*Ji5%_psdM}~r4 zgQadxMo43GmOPy!^0ua|+K(xEt|J-OS8#WJN+PgQE@>wFQ1H^b;$2jMb6@k4>2(Rk zYkV>^=nt*T;`5Su8Xr! z)cx#$e?r!^{#|UzQkEJnq1-@tYDtg@K8o3Kv6@+^!w==hiOpFiqBn}Fqm|`+Qb{oI z`d=%t=z&ib^&U1TPsD6`4$=t?2CmoY@j? z<(lyk(1*Z*$z*9~A`d`#-A$ZUj0QH?3eQ{8a{0g%-Dq2^#mvcRBT(K!I@;F79egg5 zdPVqJp`uJP10xv7_^d<0aQM^YG>m^p*i6uidVI+XE*_-Ap#Bp`KL_+aBE~*#$F^yU z%KrAzuJ!_h{tR(|t@<4zYD2TjmoJg>k?3+TEgXMzWn<*GMBme@_;ql+s(k+W#ShD* zU~-e>uqd#?WtiroSAB5p+c`Uqg_6pJPbaT3Z44qjCl4^f7CSpH?dNFk2G~9!q#tUL zH%1~`=Us|^!I-Q%~C9MiJ6*4ajvwBNV&}A|y#DlrY12ZpF z5B4wLTJ{x@dt$UVW4L(DTx-mpgizJSMzQ_Uy0CcT@+xqeehia&Kk+7&rdTolTQd%S zZ1u9xk5k9tnK1+s`sM;H=0q-5@%G+%us8~N`(PyBM?Y+04WfKtr#0Ggt(Qzc*&(2c zQIQBtucR^*!TW9I`ktm&WHHXYhlXtu;L(6W09oNlCN_XbXL zD+T;h@VvcE;+e1eh=v$g&4p$AfK`y}eOjwg8P59?=mF!#CfHgc z!m6GB5(NG|VK(vF5PO^0UC z^aPa98Uaeiw}T$UJhpfS(u{1>cLM`KY@~nENVk_#bsu8XkC>G$*sfE=c10URooo8| z`1%}`{2Q6Gz43b2L#X6`7;@8YT>#i2E)RaUZXGGET?Lq0I}|5DXb1o=LDBWhUps@w zQ88^(@)eJ@AszLu-=TsHhu(jfH!26OvORrcs~YowJEiX&SC0OOy*%2A=MzocL@mje z?b^-CBu9JSSSb_A_=^(O!svLtu-i?R8sIrhLoS~tns)TY-I#R%6K^%f`;+%f=` zROU4{+9qJg*c09?vLrVfHuH&jSQBI`V>O#5_7v?uyu?k$AO>{^3T%NrtE-1AQf77t)Fb&%kz{o%`x z6~xSw9y#EmwpgLkB_vz%Cgnx!za9S6i)k`1Kg2$-{OaXvFR%)L?S#-rZA{ZCb&~pu zM?G$^tF)VIvdqP>`|xp|6Y|+kq7nA)VCOa>cn9s8i(z(>$_ZXb>P7m57>m~2kg zlR1r};>qrUKN1S#GKtf5`R4Z<$Vq1|8dhe6hu@#t2-EUSyT2RXC9GhQt7@P>RxbRp z^mS`NaVbuc@rEEETdG$V66gzZb#E2oeuUf3do{u1iys#0h&4YQbN1y4h7{g{-jFZD zopU0kV;kFiT;F(>=myf$$#wl?>VrvGT&QbImmRW`XFa4w1YXAUu7e1>BsPNI(UgUR_-6?ek+kjM}xh@hHsVYgTv(0Rd3HCQP} zJon`aE6`}*{dUE(E1rT!5sWfoX<-5IHr$K_fvhUfEKdz8YKUm9wYDz$1``-?tvT>V z=Z3jsW9+Qfo)y$qk(4S%Gi)G9I>pXNiF@5fT%O%NDn?ks9Wu#2S* zYIs&WssfYl+wKI~Bc%TZC3h!%ySWeCQ!z38ovudnVf;L~&dR5)%Ie6n3yw4sd`0FB zQ05k%wo~ah)ZZb6DZnPsXwsdwa259vze?LrKondPJv%5>$RQ2#HwJ&_&!Ks2nh2@- zkBCR?kJ?ODB$c;E8`E#_wn;o$|Lk7e=4`33=?K-R7c&p5xY|xQ4#R`fMw#Y=hjnsMb)c!5j#v_4&>hC7fn4oJN# zOK6se+^dIT6q4pt{;G>Kfx>JvWF`m`>C&}o%x%WkNE(S7 zw?!TrvC56*;Q<~2pi#!^eZ&%@z(3kMVlEPfR+rKPXH74roX>8vmR0~AJor@Sjce<9sXfk zx}A|U8c;K(UHuWM%T$UR)FiFq;NjngD`l1C{tP&929hy}GiD^Kl3Yqyp|*IV_v1_L z2=Pqexjg5WeXn}Ti5!vH>U$c-SxUL8(&iix@b587Ni+U(tCHAY$b4^4d4~9tuP9Y8 z-{BLJRJ=#YD5MxiaU>l-t1i9dKU+@0J|{KCk!+%{$g&EFPc&)kjI(qM`1~&S;>L9l z?#zHQvWdA2w=gK1ca15PBYxwXa$t@z4JBBQrB!jz^1dm(s*%5%MUjACmE69xW|sEV zgzMl5SY*Tr(ySfw;HA&%2cMX^p9o3!B&=%qW-eF>q2AR_n^fv5(*^B#6waQrSp$oV zmg%^pcLx?&XzLo19FAclmmbzX4>nSqmcUwIp$lsvsU8n+6LYa4BXOhnbXZY9?dup( zLKd#-BSC3-$xC@O48TFyw-j=TTJ7g)dGj57mkfNtZ5JEAF=aZ8QO%DLL0^AJzCSbm zIfrMPD+iu9?#?^YNd$fIK^a2$BY&s(0Ngr!Mil(S6Ijl$zI0D`m>&- z4@+xo#z&YawsZhu&Li8(4;1<5#y`W-EZUshMe zF?ivHA1c#3P~(0D6{^@-nN6!p*z+l5depr2y_-}0kN=ck7SdY7d-t4}2c56n%WMX9 z?DekOSf3w-CY$ZVS-$-gi846u5UJGcDdzj`fdmXk;5PN#?+>rx)|#3$#BYvu_JNpj zeLowwzEj%zdDqDxHK%@Te^wlx2*yUGybliV+iMo@X<%P3@281THA8|!EJ^&xQvMKH zAmEX(zx3(W)WEuNs7WhCLir}Y0rPv#vRrZT-X;$&@>669(-28dkGiyiwPG^>jT-F} zlQQ^j?b&a%WRBR@didb=Sixn7=J+pOUpB1Bjd+q^K$ED;FAxoq!TtERN+vx5)IhUVSbhHhe-ZYW~fJuBX-oFJz4`&=v*TzimTmwy!y-6UAF!KN?mKwe5R0 zDVXkMNs|Ss-!l7Poyoc80)Q;>@D$i)Bv1=rvE~YySs*3UhGrksV1qFlBnaL!Ync9b zW;dsU>i>w^x;JUb-wb4pQRjWNo)Of=@nhPRNhGFkVxbO3#G3Q2y@p|!k`Mo`z@dr@ zREftmL8(SiC7&mS7kLGThiO{@@L_J>t4|0IyPEC=@-n%Ckrxf|9dRN2DftJ9{pxms zAILW-QL!Frf$xjw{mZG?L7?8eI%rs*8xZ~^{MXY-BDXjrB$Y(O#JAFh@aX0bqA`0N zDMy%Feo^f`L>N+dZrm+TzA6-HXcoccNHa)9MTKqxz|)kZg`R^kb$5e@&S7Uo+k$U| zzWp1p(1K^b0wyKU=TD{jV*wFV@rXqea8RvShN~Tj2pfRRjeq2Bm9)TRh|K-6#oYP) znNN>Mp~c{Mfs{G_a!Jt&Pr+MnR|l{yfWom)zd9vsP{My?KVVCI(7b0*a0FI~|AU1h zrpI1qfN5b!o)=_anP4hAb048!|G5ti*AS{@o+rg2@-|sXX&sfk+|Fx`zLgo*%{eMk zza?x~v7hoo!dWee96>Rxh~Z<7MbEnJi9xY7S5VQeMNiAl+^waEdJ|!b0Du_AWxvGw z1<&l?ce4 zAzSk+tlMk$2HM5UL`t7@dkyo~-)kalnoh`&k@G&lPLzfh@ZKuqdW-5Vq`qHF-iUEA!)s#jm~V8|{F?zg>fo(;-P`*j(znAUO*6`M)jsvuj2qW|`EZU0FI z|0DIs5MzpN-eMcV`?oZklUQ3%&*5L#QR}gM&hWE@kkhg^7xUVqZkH-E18&!!G51rGVZ5aZN*`2VP;nQmxqV;(V!Og5`M^>)l53l) zw(H&;SlFQpBg~1wAks_}*Q|l1=s{%2lsxNJzn|y-V zx0xwQNo4~qqL7u^kn(G|dzP83Z9TsbU}NHtOdv+`GgX~-;MKQ(m_oTDCgd(KKrMPB zwsBP}+t&L^!qc6aE&9E`xZJNMNv);bdC8PtCY-9&SW)@IZr6niz(Nwug0Jq z9Z9XE*FxErQ#Z7~ZttKitH^^u`aw4pJh<>dUyb1l*DG|H%*^enp(n$jbZ8H=^S2jKaqS)*R4du~x7s zJ@iPKMj7QZsPj|mh3lv zAf7Ba2!J*2?(9Rbt(6gbN=aPy_W=*(t>muh0XX&qbGq|bx-=QPet*tI@A2cHhwinx zGd-KPE5+hK2a`WHVq$o*neDfoxfZVELc1LQ_KTmE2Lrzl#Ot_8-fz5(qZMqW(_!J* zJp(T)(rWf$b6A(T^<@)iTR~b}BM+EFr^75AFQXnH45CEcy39xgVk}*Jur6LSR*GZK z0YB=7`tu@noLnx8=_@9(J^Ju{i}33na^tvA;dpW9+<~D)$+zZ~diH zBEeZSSKgb2^l%KT2Q8j|7aa1S=C&iX<~Ml)VPu^632gb@JY%`eB)JX8qGt1-o6HMD zKaVG?aC^F(swX&=lnx{qA0)^LykM+0G4qR6{40V?h%e=Z-=b5yMoBV4ocgS}u(?EH zpiFtO7+$Dm2%6c>OAJJr{=?8L{ciX7^ zB2iBzBK+XRxpC?!TJ+r=t~2x6uP+-V_5o(hTvqm_x?o&*1uDH`OHq6p%>LV;B4c&N zEC1LRZmG{sP2fk0L_)JteoX0`@yh5;SLdC;JzCrDao3@NdmeW^_3m2-lo5-25N6_3 z!1kQ_-8!@(CQAgCm18Cb)-rE(H~m10<-VUb3As@TX69yU!=$Ui^MJBv62OLd`tZrel#@2aEj-t5Eoonl zb&Lnf^mRF9mQ$1QP@^o4R^d?go7A3q>>2^k2%Je54Pk;QGesf}%B1@CX4OpBtVzeH z*1-2yd1MT-wTTxlG%^-5Mp9BiT)PkA-2tCTF$>*WD$DVN__01Y>9pI<_}U?($I#@j|0!%4J66MQc^puFvgVgfXuGwVXtmD zt$pCq#`XW<0G`;rzmg9xdh3ehewdLJ&#ccvu9!`|biI!Uh`;Lk`?Fq^6Q~T=wc#Wl z);skCn)3{Oca@=l=D!i!-_`E=$N+1s#>TRD>9m~dJaJ#+Q{%w;9{LUzQjTk`&7WD@K$Oh%u}K#~v}ykt-o!oHyW;nMTO_S~4#9uh zn##LT3@VUSH6ZliM`!yquo*4tmca{xBpch8?D~TDf68G>dE;Bx_j-^}-15%PmFuPe z2FHG(i8uaBAOEcmkDnQ%{Yw>t*$pnbva!;%K}p3q)syUl3XI2P-|seQdBap*4hK1T zy}^&vjr@)McEMi{MVx8rP^A{IDEcP2z^TFlq`a9=w$#DRQ!Z}AX!f-`^`Ndj<3EI% znrsiEOLQ8ahHW@UO8P?k0}QuEgxTX{7T=?Bu4f&Eb=NldD6K7rs6m!9^AMVE_+I_FDAWgPt=#ocYHtWPJe1++GgSFc`> z4Xl^u^#>CGFI3C~YDU}e{S!bG4GJnvBTuN!HQqv}ZC0xop{Z=zAU(Av87r=mh_aVj zW>@p^nJ<1PhlIQ9rVrg~>buxXaNP>hsy$LIl_rXvqZ5dxd)Z5$jUf7My`^1p+Ha^q zPV26^kVjO}`&QvrU4VI_=3$p#sgZ^SJudara0Ehd`hK~L%QCSj)&!_Xc7u`*IuVpTG9oU7JgY@J73UxL>JfJQn=vdlK&8>XL1Pj?d4 z)WF26n58vn?~Ikcq_FT(dzDDEk+>q+phTKr(=;6C^i_}gXk*06J8{NJS{R1y;_crn zVx3b;aJ;saWcq>sJjItz1CS++C$OY4_>cbh1yV<(QGv;cKJ=?4mZ_)L7V<#`)aBZv zFq+|Sc0eLRn1s@15MZ6-MQmFQXdHY3D}$EzkWt$*J310Xs06NB!^tB)!#(HAd*5|+ z$>o@E!7e4lJcq zu>^LCpK{&xBq|myxmx*fY{M;z0n^I_+}fpcN>W`5w&TI9N?^Oj^Yn=huOGQaCKmst zF0!g{Y+~3&-u4^y*B|R+oY!oY0b8zuZ{>hzukY0%p80QLZ3Y?qEmJq@?RH5gSvGbY zmCX8YLt=9}>QW6-_lhTN#>^=a_x%LHG+;Z_E?RHI>{~0q$n!P{K9NG;vw`fS)zVsU zHmO!@+`>F{G!{(nQ0BBtaT4xo#lb2LGZzgiLYV2i~U*;HGE6) z3*uYt9XQuu{+U-qyF*DlAocwyjM#|~2LVY$f^CM^q;k^c&#u6wK<1662QUTf4PLxG z8(7vcZg&L1+W;bn`swsQh6LaG!_XwWCYiatY0=89(nG^!vOT%OD)@&&CI*~kyd_%H z`3_&|MklZ^I4Jzg+-AN^%<>y84w+#}R+u=Tn(>d;w3`*ANb02*92T(u?Gl{!NH_EN z>2Z+15?ADg4cSg5b=c#lIg{+1W&)L1t_ zG5#x(tGF3*HWdVb#*)V zlrY@`#Q8X5Y}XU8tCm^3VQ9(L%(U`3*15c0lddg8>wZgoW0QcUr0!Pw&$eX!u}xEc z>}K5eduz^8t)G_y{V%$BCmQt&n~dk=S!*OvDgru+pt+CDSu8ndcTF1W;_XqR#9ZLC z3e?YJ_~FlO4Vkg+h1j8Vo7dnZ@N39;vjY&*24Zi`da=!+^6mJ5f2Bh-j{~)eI6Wx8 zlgx~3W1FR5ccB^g#!5^1OazWq+^uF^f^C?pSv$xQILCx0PiS*w7a0#aE}(X$Q3V|g zKXxz~vjMgm3fg}zSrsYKS5EJ7isb%-nESxNl$Ir3BKtW^XcvGld^p3hfefq2^?Z=~ zx!Y2e82q$V60GD{r!(138s26=jae8UK7tQ+dI;VyH!nFQ#h*ea@lvc7-rY^(8$d4Us0Q~YaVVCVxpoOIGlnkZIDh|y zfVUM5-9irCyCw2Zh>|>iz@gBCk9=n6p-Q9=;F_GLR0;++YdXxf1qUiPTq~?+kjyaYM|CJ=SmAo{_Ye?dD zVs%{|ktFn$=Stj1rcIV(X zRi7G3k(wngUjQv>Gj`VPBKSd3mvs%>zK`|}Z&cf%T}W}LJ&Ia53iR|C7>9t>dpEKs zXDIHCxt4+?XWzrsp9U88B8pe4-#49%qExduM8H`msF58r=4qJS`~76YH64(2Yn~V4 z$BcM}p&|1>F)CzEJS^XvO5B+Gts!8K#2A1%I}Ts5ESMP=?kyC4%X$)kE;hh5;seF! zD>Lqqbk)zRo|GkE!o+8IyYw-cymT4h=*Cx<{b|t69Xn6VDKA~W8>Jz7Izb4zNCugIdWiCe<`aN2U9cll3Bv((4f=f+}BM{raO1av9y^;`i%j6!La(dm6Atd z&Yt7=o4=sUqQLlBFYuqHC<9aHv?|i^{+0OG-6Si59Pz3OWjN7e`x??oUW7#r?V0CU z3?(}RxkfqetnVL&^WObswf_8bYX-(XY$)HF*u0Tk9Y$~*q3r)3cb!nAsM zxrzIIdj`}MX*7Vynud`YDYqeeL3V2d8NQIC2F!z)N4dG`&LdndoHjzwLS%L?@-Kbd z_jFur*OI$+i}ch^CGxFYxJlAhve3MNkB>>w#aiJ;<&*3C zt|OcwZJ1SA#}H^?&P)1T)Zki`xtuUe*O7*2UJVv!a2zzw!`0>j3x`Sk$c9^gFzFs! zDVt#fhD!9|bfFgLRj~7AueA1BHJ={iwezz|ud{Ai{C3uNn*A^CESs|Y3Jejz-h0b% z=J|z~icI2p0#bM?1Z2P+2P`{HrUN z_s#KKLhP@rg{u*}a+Tj{${%ejJq1R-f2#ZD-fe)scyE9y31OehVAXucHYP~cUtC`@ z{q2^GSUjU7{DsS8qFS<+{e}LmMjPJDE3Wz4u0<+BhkiH9y0+zg9Vwp73O!3?N>*r9hpz# zJvU}{24(fBI89Se>2JJ8O7026XrTkENW{Gwp&(_&Uq5R+t3rq7r(K9YjWk249y599 zD2+yJrSWb*0=|#979)(>3agjD#~eSvY|nw6L=z?8wFt7HYakxh9L+Fdwl(=+J z#S)0EE)>$LqH{o88J<+)G&phEmhi#rmJ}I(Awiy|02e83cE#Q(+n|wxG>HA@{3SVz z63v~bly#nByrcHO%Crl~4Z1^G=6mm)t>;{4ZDP#snrQn_??FuXkdCFeB-Mh<3m*l!v;}t!k#}k%Ur;fxl_X zN)34?fj)LQ__m_sBcViS_bl^d%OxrdH88cwWv0MOm&zrxV72F7e9}>WXzEQ|NnFV+6<@SBgUC zEVY}4CJ4Q|P-!-DUB2l=msV5B-6hRw2MrKq*JHY!*OwOhQ9gkEX!fBhXvmOhQ4w zmn|N5-s9e7aA3BEWLccJ_&`ud)Wwmha_H$=KX5Y;yv7l}p6bppN^E{$W};hmYou#- zoy7~ZZGQv=d9=5CDC}Em5$-n%Y>eyXyL}aaNk|2`-SwP=(zlXYVU#cFCyFXRr>xUS zd>xA9)RKL)>XT*!8*fcmk%3GS1}d3qq{FJgVP92cy3Zsv6#mO(wcRtPFp13mQic4f z(RnhPFUQbGXsU#cCu7_*iP1}(2Hg`<=Bx2WW_Ev0+pYZj0E)U8ICrA<-M}{sSt!T*8i}D?gZqoi=yg8cd5fXv`6QQ?ghi_A>h8+0d)=e9fgEX;o!| zf77u+=_@{Hvzh}_T=E&a$83cEQph2RJQ&&hLfZ%7m~_so{iR-$A?ri=cUfR_E;&&?ms z?h&?SvlO|145o-d3KJqU=on)4SN@F_bk@9zpS>vwrq!pH>9ZQ%6ELYV944fAw*bjn zy`N=Z%bzgxDsiGlIcI5m)-fmh;qX#?sI8`~k==)ehusXr4r!H=mHhoY7$+Z}pTB#Nb&YV$l|Gsr#nBR^nyFK5TDzmPV;bdSO za}8uwQoWg4DATlK$fy06_O^yLG-G< zji9Y|)}lK1Z%WM+-RP=^gxBIETAKTrL5`WSK%CFWe5RfAF3;={Xw5(yjE zA{iZ+0R}o|IGvbR_RZxcIF4ThFcU_uq;zvmikauD!RDf=DtvX8<9JNvHh3y|pZ{*K5nlr^2a4W4! zqE1>hC8A58%M$)f?PoiDKJRy;oU1diZ}Wo@6-)3~RnhG~wF4k44*hOEK5_@n>=?+1 zEm2u4&@k?rwrDMFrfO}k0%Fcz$*f4s&`P<4F!H^W|Bhu2i_v@m@)2VAo$)2^3nLah z;8_RNEVWnM$2I*Wqf(obeu=*|c9Qkvm392xxWMt~@{n|t!-q@i#z zkvgV8n;jopbpf!D&-xbf%(cwXAOFB|`FCkAI5?12rzEfL`Xf=ezr;%diBNe$#E81^ z98y;$-YQ>gZ-LfzomMon$vFKrK?QaLGu2+f5R;Rn({iy_s$JE zZg-;PcR=>7n6Y06)vM%$p$DR>9jt3~i*tq_!Cf)b&&36x>*`KB=i9r`67@7hala1s z^_eT!X8eyI+On{={9@8pStoWnCSfW39gsZoFc~s+xoh-lsr5_l+(wqrE z{Zf7r@uZ-knC1B?$13|C565a6K|8|C`&wzoY9`A&okqd2%=C~ZA0VrKe)A1W^Xc(3 z=DtqlgKM)}o^7JiAks`~_aFI|2C*v5B0E9)f$5{+D=0E~us2DU3u4|AKm zXc~1vAUTgpX7FeH78^?j1^Z?hGp^!7l5_<4lMqP@?S1tc=Ui;nz{wC`;5nK5oZhin znd!lIeCk{8VTY&!QyYHls{}Fkw~e-^aq2g!b>sa~^bhw@IKMDH@$`WSsJ1=4WHg1N zR9%iP(4%Zc6q#~g1Td2-1N|tFWGS;#OfVk~0Zd6IjrG#gCB{S$uRG<{Tl12T5Mo{({S>4^~7zCP_a(p;s%y-6#JY?b7za2auSA z1uFtpeyV`$!G)0-bQArFjBAYevtihsUkQ25W-ab+U-BBiiC_1^KqtDZwi<~bUDBm`?Htu&`y`{0?Rzlfg^h~a}0Z< z*k4Lc-K>KC3oi3w12H~m zCvwcq@#(l<*EbQ)iVcoRN?Ze5Fd$y&F36>?jL$ig^wlG;Jy|PIVF(EW8j^8ea-F#M zZ~PP(x>i(Imzp!+*mn~xjDN&Yg#}q<@Dj_>TDc}edb$^OR5~xoA($(xw9)u;$Qycm z(kumFVu(hxir@UvY(!GTH>6Sp@?uyc(G?lrj)sI1*0O5Ivt1_bt!@B%3r#yvpT8{3 zOF^IIb!oEzL0QjGMGV~A#l4S5`<@~M@jXZs#f13JMk z@2i;5w`Zwu*y8%2p_=xK}h&N8rUIDFTW=H%t=6UblfHq(>3y z@WEkxGIVI=fPS{KXt)n)X+OS|yjX0IIV%fB*7v=3RW~6(3FU_yK2Ta7EKz=0mm>_x zWwCRx|L4Z0`r-d6**+`@7%#e&2riQX=t8eH+tfIh8@!CsPuxh&i?DycnJG$ZmTPbVxaN zOCjoM`1&_hecpO6iD9rNW6GBKb|Sx%usv|=te@zEt#bG;qkb}c+?X9~zJJG>6S-}8jl!Ee$2G@Z3BvmR5)$1YLd`aG56Y2r0V&}IFLWSVx#MmAhn<+SMpuQ9zy2wfuA-%CSOu zQiC2yOxN6v4j1o9bC??`3RYJE=Xu=-M9sr@c<~-l0gWd)@M9vJU=X&;eY}w2has92 zT=Jc6zD35`qKLakQ@sn`a?vLqx|#I9%^ z*6JYH3bGeAa-wzeKXM_+rGqAQW0PkOK;F`LylQfxT4C;xU0l<%Y2{lIKqw)wpc@}p zaSdL%VK}gY7A?zi0n^Hs%pp^4{_T_=0-yIAG*L6k<9L;0-UhT_MK(A@v*mJ zd~k5y8QDriZt`!Xuy#fIW!1mp>Q(LL(LJ`jwWt4p{hFcA`f^$>yU1!XCx1t<@m%(a zH(9?bn}1KF9}TNd*XdT!KlY?zPj?n?Mrx$s{v|!AJ}uj%O5he2DenT#-x3`js)j-2 z1JUyD5CJ}RGFB=-;T$Vo&I|hIUxy{;G=k3$VAkC)T{_DyF+Txeu<^5Q6mq=NvQIkx zuKSz@L~^fDg3e`o5?8(3J2S+?O9VW~M`B_9CZ_n8s5smo^64W18(fUFn)4qP+W&Ms zW*jIr<;YbHagAXIacN#x4Xu2#&pL2%*RfVuYub+Q%;(e9TJNJQN}caZ1>fSofUK#3 z4|vHeh2qR~)80;3zi9bzeMsE*W0DLX8Mz#)>wOGsITyJ^T01zwCqgRq)uO{0jhxiX zzROf;_4%|QkIx~3KzklB(f!_h6YAs zFx%@};q}%7F=E$fesH%)xfN&&I4KwgpqOflw1ro{?P@uwZDr7*o)!m}LV% z2^+BBN3YHJ^?qCiqo|+Amo_(1hlMznu|*49;Api^!{`DCV`3OJ!WbT2QkQ@+=jO!B zZYgR6X0?FLh}mJg7GBn1PmJ(afK7_oj3A7{ZKzdiK(A5Juji)}5sbux4#&27ZhS`K zW2~?{7-JrQfT^Y&t;HA;-@jv2t%7QI8mN~mHle}yY;PlRBh$>(3p91a_09OmLIF-J2cpgpTy4qFT3rkzgdo=&+7Zpx;wvKkz1o>6twd454IX4PWe;HwSy ziYNB_dfKvFo}^}@ijSqLM$2MHsEx@Cq!3wK)#mAvBcS$||Y#m$Z!{(spDb>^Q;A<^Ad gO`$Mc>3Y^7l}2V12ONv`rqaX7UI78o``+{VA4pc$>Hq)$ delta 21192 zcmbrmcRbbaA3t0vQlThiCrQJ|9>-`J$!_2nWh8q$j`b#@GESjGX0npKj$@N?Y$5A7 z4mvpY!LjH4KKOj^-|x@+asPMWI_Da%{d~SIsE*^Se~#yUIu69&?^%#_Laq~ER;cRM zn+_svgqTj~GzglVVZIpr_b!WwtIV_LcQw`NP#=VMNn#c6rBj;MUGaBz4a0W_3d~fq zM|M`Z_Am-Ndkp&vCBW)x?%o>4KB3xYpU5>mtFfg3?8H>>rRYs$Qw?Ag^{Nt|rcw^#U(f zW)WK>`#t^SMB7G#%!C>Fns>O9+U^EeQ>($-j3do%4v48(ZP~!XjrtihT>);QRL{CpFHVbTP^pb!bdeuf3TvZw_AD?ESOZ1i_sFhL6=mep8b-xEhH;@3BN)cp7}5`KG&ii4(sBj~)N z7x%lUrLadH{pe~&E@6UU@JfyoaO=Ux5MZ6ZyRvQg@v%3Jp3Kum#08U+qJ)$isz%m3 z70_?o>r3YG9lV_u*`>@VL1~U}#B#3e_d;$*S(*vURUA%b6T((EDFJzf+&9K}#C zimJ~PW@YwT7-tWhmSpvn(|{-RuMYDa$M>G@FWlx@30apD`HL^z=Gr+LF&{e`y=FV+ z@vfYi#d6+&3OMH0SkB5~xv;alKgGhe*re=9Bmp<0D4WDWVEg_D+r>iqIsFnHwG(-> zdz=!8TCpLYw>QiyJD`z85x&YqlyKV!rl5OJe9kI-?&b|vwn$AcXp z)><)p=xZA3cZb(F^r!*eZH)U^NP$1Z}>u4D4z@%RH^&q)Tm;Pg!d+T47vUk3Lq=G zsHEc8B{F@%n?fgw&rnqIOHvTE#N45}qz77K4}@vZsSo=DitY4zAvGsO0>5{<MBT z6n(QK0tcdh)}il_2W}RWT;pDssQl=K1&evP$W~Anah>{l6sdzBe*uazVk^bDIM^0H z+jDh1w9h*}eO0#AP4nOb*^r|TU}1+Jh+yViISCVZFp&kPfe;Ks9ptQs?^E;}{LZ5( zg}@re;hs|7)5z5t25U-NDzcFL=1(1x>+&?OG2X7zM5~L1NS*?k`5+{Xma@ z@j|STs0T3M!t|R)R%BU>{Qqemz<(S0|FsXgEsaYfEtB3db5Byy_Fs}LK3SV{$<=xX zpOe$d`|3R>JTGH5ZuyUOKuH~RlLj67{TOwM26kY9zC&H?z#a|Mv3-~$oy`1CCo}%j zNv*^qo%Gx~(#hGqL!BJ4V_INE$*I9RBi$~E{P8f&bc=mBz@%I~=$1Vw5N6qVl}Zg| zjj?m4xX!mZhD>gmrr76A_W;#-Y%Y|eC+ERWX}bzL=hL1iUh8+i9sU=+cJ4t#O6it) zn58lI->3S&%4?$CEZ`BK&kI^BR66;pVoDeH?m$?uMY%OzS$Ioz$=^HhrokIO>u zO6Xj@fhK%5Vw+>VwJ3uBqFi#xE%f3C7Ls1d5PkWJGi@QD+qL~*`0x}!@w=}V^0H3| z*HRocPTP;-sH0`g^wi;Gbo+si&MBTQ(On3X@3b^pxhc^B zdJ!u$&XCT7;%Tj_ag}rjKG&)NCr5ucYF#us(6Nvriv_m>jSLY3toIUtl@JDZvlLe{ zO#VQFAKJ#1?;pBffp}{~O{Y`_!d`@0pR?jpf6-Ic!g1;Yhg%E1uzTRzRz}-D9IoIo z>h_4D#UWy{?m|D}mvR&p^(j90$XPGEsQ=Gd>mB)bKn#_y_J=6G!_cVc(tqP9 zG_FKV9)`w}AJt+>hoSKjFq{gWo)RT54QHRA+`~?)tb^*Px%OJdRQ~w^@usHs(Hz7O zMMD)AP6C!Y;TV@1Zk`gqYW@WgQ!K3MkHDzl$05$1s)vDs01S>_iw+cbjMCUX;ZoiH zC9U@wo&z?@@o^F!h_sr_T@c&lhWS z_*+&M8okV9j=bf@So7yhQ1larYL<7Nj4VH|4l)J4ik$NxMVgm%CJ>9>7M5WzuYEAF zseqoTo04iNV&5VeZe!C8uWaTO0<0#NIqc^y=sXM1rT#H2K}R<8e+N&x!W&j@d*>Q{ z88>85Uo`tUNhXj@JKzsXw-wz;+2CcW%8RYqPVE^Nowz#J7+>Mw3)o0g8AN599gODt ziot!gD==i<Vr%sV}tei64f>_h*q*raFm{goe#q5_PkAg^DO1vZI z5yyVT-{y|%2fFMAk|bBOZvt>%Q+?mhlCsflflE0`iZdz^?dR2Jo#)nEu=wfAzLGP! z>#1v3SN-Zr$yfUm)w#4%)kV(0>!_w#ZysF7^-!vb-L2EPe8B2l&yQ^HLAHYxw+J3! zG@QNlaH*rS`|UAU!d;_4*@dbma_@7`5uv7X&M_ZU&GwS0yru@rM_`li^`E4V-n+Nc zs$NXSD3wG)ssk?Kv};5|BqDay?v(je86)Y7I_alhQqhj(x=$tX6Gc)BY z#*}GG9KiTg*{n^;x?> zT01=Ay3d;M;uxN(vGoI{5{91?o9?Z&hx)_h9_-HXa8m4zvNff<;MNq<#*~nsOXOQJ zp0QP%6Dckb;j_Wp_O%r}EuF&ll?^aErc93q1R{)V$evW3;~h*+0Lv$skM|VsY$``w zd1qX#1Qph0sAT*xMm&iA=gghHW7}^_JT*76FA6Io#oE(R3TvqvLE6rx1vx(VxM*E( za6vC9oZ)bsD7djbSfqo>_Wb1^c6$4*q^YO=>Nk|v({Z1>$`AN?y6j?bE-5^~(}eO{ zx9w)+MQ9>fM_ZjkJOTRYzIKhl)735!R--}V<}p25i8dE_6T$p@i{$EQPw#()oxxSj zE8rWIf^<+(`e&aBoRanOM@Sa+UJh1Gb|uWnxQEg1Y3@4#wTbA?^(c7#)%zhmjMv(D z7YU5Gh$iJz%`Ru&-Pg7fg~cItzCXppbX%5~eDD@?$w&|)Uj+P5@=>KsOBG`hjhs)~ zJ-s3PO6?}KimrW9(8KF@_pjD_e_XjU#lV+fe&6cdx>Y{rcSTzN#R#?@2!v=E+v>&1 zo_zAIy70%lQ8gM*9W<`-T)M7fdYW3L>oqoJ*@`DgY<^;3*0b~c_S-mh#!fl-&6{ho z@x(M!fJ2&jH@j6EAhl5bHpkd$eE(dy>9;TgRGD<11b-|&Ijf)DglqSlEumRZSu2Ty z+jiLYqCuM1b+!#vWkVZ#lMu|P16etoz7~-@zP=M4TPS_Ev0r67P3EbU0}+l+BwbiS z5))_{yTQmXGljU7kipb@U3UJr58c{O@8?aqej4E?$ACKi)blzYx8qqzmS!oRY~EcW z=(2df;j`rkSJS-J^J_S8B8$oL+TJHjhLX(_MyD0osF&X)INlmCrJQ&o)F5VU9o6Y= z=}>ePrt=kamo*o88p}CZGWlYy8l*g2q>?mP<|U`TX}GrO5sy9ExD?71K5+8J_;)>v zS&6vjG+ZPgvy7W*^x*~?2wr>=3};Hob3Hko5YOVc83)S@wbudOVjX7-u6Uaymey)9 zIk5!8d^k2zVV_=q?^p`nvV4^o$@a?X$`}~Htci$#r;4WHwQ!^6K&zoW;r-c3v+$TP z)9$XZFQS-^Wd}*2TjO*L9Ua#w#^DjpG0&oS7TCi|Z1WikC7R&TGAolKVsGJ{sSm?A z$EA|))(D*4`4_S-Ch|f>f-T%}o4Wj?V%El- zG~LOKsTqX(wkFmLu};L}3uzY>D<=Fhd_!PzA}=%~c)_ok+hXtIREy`59J-n5 z1(5VPmtIy3S-9tOiASZ@b{(COlxRJu>JRCx+vRWhP$Jv8(sBhX74cvq+8G;~e$*VO0<1jIMb?DbQE1muomJbg|SL-Bn=P^xAU!V7)oPT&6XN0obC3B?OVmD<^cT`R*xI zjMaXu2mmYRXBsm3(T*#lyI<#rAKcE}J>@64fH6-f(uix>_E7@mWA_98e=hJt7F=LN zZU`!}3*^#{FxVUL$xL-=`Qqd0@T+3}P_|M#C?6^Fp#Ji<*0P?(Lo6~Y*@HaJB zrrXJx^KiG30M-DtR=eR)7q=ZDbys7lrf95w`)4xOAe=P@eU?;!db~1pJKU=b%7A&ovc)#6ygL69X#Xv@fI4zu4DWuy0_ZU_^sO^xg&| zn$aoq>#V~|F;PK3u6_8LbKJO$A1nQhSinh#FFfsvvG(}>sIgp}axjG(91d^hrJce! zafH)-X&4+vXq63`Gh!H3SCy7(HuC)n$rIdOX2N&i=q^?Ydv%(+z(5mCV?-y^_c?LZ zpP6Wg5Zke-yaWc0KApyY&1VE!;`u&B7MJ7vVVvl96%^EfMt2bV0 zT>AI*^*I{i2yK%i6iqaPU{O<^}7QF}-F175U@Z7{gdO zUMa=1g6IGiZDEVElA)xY7*!x%SWVi)VeH1!Hz9EAB%*|6dPbZlXn2)>nI<{IU+<2zPTSgLkyIENOE{jmgpWsdF+M7@HjToRRsS4O;_y`zo zp{LJ+)k1c9NCQLxs(BU%|KZL;uG#wdJoPd3dpscrL~8`9Ps!C*0x~ViE*08Q&gm2# zp!AWB1L2Yx)eI^Vjp*|fO?6<#|meRyS@9P&`3;EfWTxuV7v^*Cx4pUK_VC-4e zZ${JMI8kM^cZ+B;ePYge$F04Y?kA!FnAkB}Qh4PsHD7oMs$(f+@kUPA^@R65L;gOg z4o=@I9N3@%1`hYBW_g!$aUD)-<7e{_jpt5WA365w^VGa0UHzMv6&$r*=JaRs5k3V> z0k_T``*BaG$`&8Ydqy{1&AP~N#Qwxw@~}Ma^*gHit9}42il&wevsa2JG6oe~@|=HvJ|)W9!%WAJoVLm$0G^K7}o$t%3RNkdGUIlf{i zPQutlv>^pAscLWfMPBw0wyx2FZ~zx>z(sxbnhMuMX1C}+-G6uGa*9&4>ML=15FHD7 zb{B8@?zQZ5hbp3FXJ$KRN@A_|p6SOxEC!4i0zq@ZTLK~J{b*3F_TSBd(8uBx^fnCJ$ z#g+Qe8ml%Py){v&A9ortqfMt{t7t@uy4l~mAo{d3?R6JgN8@X|XS&%%P7*TSy^+_L zi0j{Cl&#;9F4Avmym|((`(SAz&%NC_M$e1R{%lmN+;QdIeXTXi!l62&v$;K4p*m?YGGx!dBvHeH=f2h{l9Iv_07OMZZi6#Xs7JOOEM;SM7G`S6e^+lzP>>T z?zOIH_rR2l<00XOL;f;fag(=gJtk+5U9FdA6(!V{+MV|w&m#>0GS3QfEn8hWh%bUL z;AcM1-B1sqx_D{p^Iw8^ok7rgVSMk0GTo;?9y-k)Q^dT^Bpzy?Ad;0WAAJ*{@#52WhJ9}$akEll!=n|X*|8Ogro^qx`RDP2YS+us2WBOV;_%)&C6N2_rwBLzAbZj3FN+ zo(p!aS`QdG*97cbLcst0t9bJv{xKvIdlql&HfyBtq1TM#g3sgftT+5;Ssngld62L) zVnZZ{!cLPBNt-6)B|%G8)ii1xyhUu53+VfbM{e29RkVa|+~Fkqd|9#f?OGm}7@BYG z@|oZ}H>D9n)2<(Aiz-%#gq(GVV!QKCfML9iQXuDhgtsf)f+g??4SV!4sJOa1wRu-` z?!9^VX9DNeQAvYteRCPi!1sDhv93*;94cw$QV=egyYT}iiILqqUwq~!72qO(*t~SY zs$}wjo^N@D(*=9@)lwFMAtIzV!sdi(Ug14t)o_*IM5gVT%{%zit?oX#p>w`q0CbA- z;0HI7^2+pZBb8>iV8nUpeF@>~LdXim)AokE=C@nFWO+8A*N?#lS-?!MhD1s99n@A$)4z(K47=YP+`FIRJ3!eiK(3}67=G~${$K%>8^D|>Y zapw{#+&4TW0nDleR$nM^88W;(R+7NyVbwV(ujd%XS|iwFQP0MTM$ssQ5fgbUwU)f&!uzPK3v!zRQ_E$>*{RfIW*cq zg)=t`ac?C9DOT6f)?f1V8zCj4bNm`6e>aOd!^vK}Vxefn`YojrOFSY{UL-~y=jmJi z=ocuUQAvvftfKp3CjWhYkGlx-0#c-9hOJW*AhGOV*JGuC$5XzaS3K0cl?pC?m;o=K zbvdSt2lICd+6#CRL|%T z_|=bW$7eshZauBi2JOelbC8`T-!DhepjFSXgJ$mINU@p>J`Lu!aE@e}nA!G8t*nXo ziyMtQUz|GD7M!3+Y9%_SsEbmdvWOWS79mLfXvamgSyqNmST!T?=>3ib&$l@(&sq#b zkBw5YgkMksOP2Ax!`Uzceip$Dh8qyUHP^kLg}tVrq}ky;9lye|!zhWqAlw?v!u~oBK!pxofax(3-WKMWwS_M0DDdJV+G1uvAsy2>AXC~YiZl^hiMTy}Cllqz~{zf+K zm;zh#=N=dSE%!}jyK^|WZ~1ulf%Sl(IcPl~?x;H1Hbd21)@qi#FQayIGS@vSay$BB zXKF({jnoY|J-p7p`5Oxfpp+-qEk!3f$ZRsG1z}n4bKd^*`%UZF8gR>)ls;~I_dJe6t1K9w4@suUCAUvr zw0vI`u-LeZ7L@tjGTZ&HgG%M^(jMJrry|hp>V4Wa)ytp+M7JzA{0OTb!NLO^=`F8; z6-#x3$VH8aN~Q%lt%`GSoU^T5nzO=WwitLNbPB33Kv4Fel36KCSwG6&hy1MFx+O{u zCxrhu0r@P^ky6F9`4dV7G_Z7oI>9ix?!`hi;P_F6LfWx$K0ZoG9iwRiVX=Ed%*V3X zLE2%$hUXoo!#y`lgi#G9aFt#BH9ExhlP?Ka7MUmiLaZMaI?t#Hoh8}DyCpyvXsCPitkq4}SmloNLD2}M_xo?|VBh1TyL>v1dUPXp?Zhnn)!`R%fRlXW z%x@;xg+4;BKUxw&tuj8HLY)&AFC7C(SxV(*%?I)nhc(F1wKHfkIB60-DJ?{l&n~QF zpF~?+5VQb>RQ%$X)H%#=#>~q#NLl@GVCkvpzSSCDZ10@E#|#$3nhHZQt(%7>V7vnU zUF)GDQK_c$o4zb)tM>%qNQx$vb1D#aJz6wnhbMy_NT9AY`Kt={!xLL71p9JRL6;er zIHyAm65qvOh59#QxZ@b5P6Qq@>n5f#0JEHLR68Dnf-&esDLy=^6o;OK9xXOIB9K1y zqF|UK?qIR((f?O#Ri%%#wyzfI)0=$5HwpCTf$_HYV6(IfeOlB%Dr4tf)8MSZ3T*k+ zuX7wq>U~bx>@b1f^EMdyKL8UhGdbiDWL>6x$b+Bj`SAs@JeI3wPd{#UHm1E(+U>B- z&AAEV9C)^*O#w{gM6Ww_vh7%lyfMDIjuQ};2l&M3 zeVe%tZw(7=Q2}g`$uuSM0Z+As_Xh_a2&<*b>rHlp;Q@M6UZwECP9czg!4&0&(q-mt z(W2TGm~otncNEv)1}B$j3GqN>DkY^nUJ(?VRGGoW*Olh44(@~(*Tz$$-~s1eP`*=8 zMB_1r4}}hMBKpl=OOy@e-Wwcn(N;1oU(3<<_orS*2H@UPCMG*&*xSvorGRxY;z`p6 z3pp{gQqUC`FSA2Y(GfeGN!GN@CwaCa7D6oHInH<||KwBajb7n@12-&8gVf|c6tbfh zqMiQMD8_vLBsrs$m@TO?)kj@dbl3*Lr za;Ug|DKnV~^*S0!yb?(V%4AChTS*SRU&OA-@nqgl$P2VKlixX_RfI}R+OJL=xB>&_ zBUfM}so!|umO6`1y5)AVp50Qnc>wPRKtDR9c6lcRHhbVNP!rx1f6*Og;n$u?H9z;3N7*m-5NZ!nKw&^FkIYb>$+xc1{AD7RCRz+5{kx$gzO9Ho$I zlTjN_gDMDYS2gWGoh;#yil}@V*Ml9MqAeLi=4bzYojhvW%O##T`-Q^R1S;Ue*g$5# zPpk1?Y%Hw$r?c#~V;yrB_hhVxy$ToJa%7}Dj7N!XVT2Cy8WT6qVCNNE)GO0NNshLC z71(@&K*f>-mg=y6(oxhwYSp%5({>{o0y5K=+$LN;Ekd>iHR9&v7Z!QC#{N}d#o!PD zq5;e-^2+wxpKcZY(wfiAY)d<&jfv%1yxA|GOoB`Wu3i?u#12yeF3M=emKf61XJ%)Q z5VHmO>GBbc^Igq3)4p0i9;TTaA+&RsQmU-|gH8k0$t1|Tx%`DCfv!N!AQ;)zlWX={ z-<|C?KG%FS2V^jn*L<`pTy0d*?}S#KTpS)eD;y;o+a-#9QE~QM zW)Kber|G9pCY{Jqx8T+k#GmXp4?xJI5%B&Agzt1R9J|2;VTj{vFrmAQHa^+ zCLl9VVbf*ggYR44zWV*=v5;JEkn|b6p_#Hp#dJXYjJ>_bq4TV!6a`nY%v9Ze*d|0B zo9U)|+215m%Bxr7LCd8D48V(?cE5b3j~;RA@5$sxLFTCG8ExY}t8__YNi%SXDwEzW zY!c6CglVMIPK9^a-KePnJLu{st1;BLp_%S|S#}4ebKy2UWiwUR*M5&I7yQjo8t`{&EmxMdV%KBes9g22jI(|1K2ibPn$sUZovSKe-|7-Y@SL|7>z?# zIDpv8hULxQ&)z8rABupUX82@sz4(gdx1QB8f!{m%-wFFp37GBVPjxpp-w*R8opx^S zxp@Kiwdvle;W6|z+A3b3d*S>kVOM$Df`r!8twxryzY(B17=O7^a-B%t?-%-4cqIdA`MD<Vc4GDw9iYpCB3V~C>Cv=`9}~7y=OprX z_;q9u)*O}}M!MFE9zykP&&SFH6V}g^Ou&fq)YlPf=*2|h z3mrwL9pxgw&S~A;Q}+wiF6A#MQZ8{h$-5uu=ijBQPc@3!iitVz?$YG=h7wvC(TuE4WiKMPL1@y7cHz@X@MztaRFF*Bxs-}y| zXiqh|t}5pW`UBGEaBDWR(3jYLnF|!;urJNZ-nInhMF$#co~8t-g$(V>x3v%4&5}cn z+TABBw4O-qeEHUu-%W0!6yVatbUr>ciw;!w`Z3Q5=MNc=5M~8Dvx}%n!?(JR0jaBe z7VP2+7V21F*cN@k#7FC`l9gPT1gJ_R)+ZsQCw<;fx>_=>a)#XrABFx9C^y=6MMVjq z`qNBvLp|CQ{*f9sn*%quKFl~Q9s{&b1)$Bl*fgP~H$Xx+D}3R*L4Jro-%#e4(q$X2 zZ0F$;Ua%ByD*yauUW0dbm=Ty^zehTE{(>z_jzMOm1YLLT;Oxz+N?}*(b#e#h+sq%? z$i4xLc5;%>gGf>?rKiAjwZ6`&f$uESVYpW-lhN)ztRf+*@Z{(c?b-I;a1G2l7422u>3s^a*N1i3Y}PX0e;EjiFYh7xq6? zGbN^)LCUiGSe?!xf6z_a1lg$!brcA=0`mso${PB`k#2IdL6x@Y1A6q3MH`_t{-Ef} zW92?WAcD$W9JfS32Y!u&AS!kAnOkklJ+-p?6n;^_GKP%VA|3Hd-jiHP{>jAYDr|S% zZd@nHZYg#-tk|u$&%ChH9|SHJ%P(F24drydO=$$ul^b>hyNOr$RfI^uZk7u5OK7)6 zE9Ctmc(E!!)}C8oej7zfO1azUaB_^|Fqe+fPwX92AOT2gVT=y)A>aLgLU2fsH$>{6RaH_Q#pT zZB%~D_i)s8{CF4;XCs_B?~+l8GpN2=58iEQ z^qWdM@rB~qtSM1FUt-y1U3~^D%g@;$ecbe{mhsU*{YWWb9g!N{_j~R+%->&0V+%fz zkcsT;M;`C9g`0o}#-S~HCHSK}wrJguJvqLnh1T^F*>Q+Wb9#{d4`<+`)1SZ2PGQHR zqopSW5X^5j`3_nadwaMpN4BEL1F*u0B9{{DcsgV?Lh>JIc|WpGSz4gweWYNV7!o@H z5VnWA@Iy(LoNN$7I1>7wkxV1;e{vN8nv7gS4HM6<*XVvJ}hTGu=Uhi1B=an8ms zDvDq7ie&3Q=*oj}_L~f{0_7x#_`hss^&m%7z;$tHci%d@W5V{H3(UbF)z>()DI<6@ z%5ib(<}b7PhCTuLtf+{bSc!kR8y3!CW^!HT+0DZ&iowKn6fflpoy|!`#!nd{9=XBc2G1p-*YF4JGK%+?uTg zsndt6UR?c#f`kq#;)qj63aKQE8^p3@5)2S^+OFCQvSA}o`i6=L$7%?Hqf@EW@lchC zU0(=J16YHhe=~WdRIX3YFTa$vQA>U3w(I}E!hN*T^yRT>z%FxiRi;@DAFiBhvT*)h ztJITEVNU_uJNRO|FDSv0Ti;DVMYPX&V*rh7*JhSPlW{wP_JZ{S!F1nqGQ1-X`aocs zIl7Hp3<+Mbo<9(ccM^5#q5XmKa>SzQb(k}VLe}kh2-~|aDpA0~e2;&QNg(Xz$nd_X z?Im?^bP4A*JwRzbpI?ohb2P8o2o%X%AnVFOhr|Nfpfp5*Q-QOayS@e+UWe zm&Jqa5wQxM)$h^fesnELZ>j>tR6C5%p=CBy>y=v8bu_E%MA^%csI`C?kqLO&Xb zfQ1}p$+NIGxl66juLf6N z$ZBjqvDl35h|3{SfmnUri<*q7dv?RKaSSc-G#w9q-60|G^cdGetC{0Yfkm~9HJ8O; zyu{?Ds|@8iNER|Tc`Fr^{EW-VZ86i*Fr=t4x#k*}f@oNKv#MM78QrsV_&aB*Z?jdl z3yhj$TRi&ssVF!YC*HEZ);ojc6lfeAwu0gp0_MH#&K|RVFi5dg&(w79;^vWP7xh`bt;w2u=M3UKBa<;O0bASt)eASqLvyBntP}OC zPdlGu9?fHN1@GNm`R;)uTmte8@=q!tE2qSLu6thBe-~SjK1)v_ThgvtLg0>2RmXXS z`=w-d6lXIYonqFCMUihy)W~~eSQC)O8wNdZJpHv7#I|<&e+|%IL|Q&zNV!oI0=gZe zFeh&XnKzX+>w{GWk{blt(vU`fjfF zO%(*;!2Y7cNaeO$+0n4}vG8#TYJSqS0t`PRL=oeWm-L?4g+gy{doWKJvFRQ2@aCX} z1FgyauWVr&Ao9SHnF_hh|MgWKdIV=QWhkWi0AHr~L=E~zNQ#wRwuWSNW=w!#XYxN< zAjhDwmdbYEHMyzBXZYa-`(pUkU+Bt(NU#x!eZPtbMt@B4>kybM*F@v03+9whW0!M> z1YN@$tPl!m(IfntWBdKiC3}Dgg(9)=qqKKrnLWQe0x|TGL8#34pM>zwC9)EJMQy7d zhhTac;e-OABiYooe5$xpyWg+PGskrMGf>}uL2v#_!eH9ZH*CEUQtoyM{1J^+#^r|f z6%+ZL-TjIk0SCQMxd(xnbG=-se67J6CO4ivYZmWR5CB9{j1eaH9!yqzU{EOqJl7lG zzJ_0m8?wypfL0JTZ%XD6XVG>Fgi-kJs48}H_LP0o^eGd`e^%w9n(l1A_|=HdPEHrN*3F)2$v_0D3@Wz&*Jd{#W?HC;d)#zDA8=RQgr?Ia=`nFR>0A<)k!N@_L2;ev{xVH*| zLqpv{o~cPxWLG)s(hEStkW6Q|)wOS1?*-;F{NhjL8`+jtiJf+Qs6EpX>yhY;@2faV zmpMg$dOQRYx?M>mNX=gU9$k{dAQvt@NKYqlq*W;5UgaSJm`ix)!~)0;=yD-u?Yx5=$r5jYt6FgBBojW8^!_}3(S3j|J!B#6^g2!%I ziE1ECF|pM{Zsl5scx%>rfy7BV09Ocd(@USdl0p=|s$ivNeU&}2YlG!&{Wp??*O!oT z%Lc8kvHZb!9Sb8ioF}^mNCDHGH^DCtyvQwAJ8N~YeqO>J8btr`1fLan{x^|g+y_ZP z#)$k6HHSdc1QfQNURF zSFAiXi&!yO-U)J&7z=MR_I`Mnd!4Cja7PSJX#*qy;Y2tJ$A09*S%CtZk!lj3y&)g4 zl`Pm0F6RJd7QjI!j{|A)|1<6XJ}hrjHdWlC)duanJpcFY=gKOuwaj;9Jsz~KdyvM1 zO6btP`4fKk7Bm@b4>nYYyAQAK3>nN(7*bdXMONQ~n*YzK^UX50ne!4Rz(in0*Fv@m zfboXt2ucAq5e+b-~}jh z>IN|lgxN9MCIUSY_Haw^j#+(1-4lQO#~>ApzNYE%LqU0cyQ zJKDiW;U}w4+BB4@l=cN392b))#8hR_2w9Ena$mG&kh$ENHuP`wfb2A;mz>YJKE#)G zKt6B)RX!Ww1Ejw?iiBD~J$PQTNCJ>{r?lpcMn&0Vd|Msd-}~iH;n$StNBlH397>QP z%%oNE`+FAVb~^=L0j-};@wtqrz+6x%>;m{cugEhoLFMpE-z_SP)mT2Q@0nvQhJ@pt z57;llq_dfK7*fohv?+YR?Q#HCJ;Qx-Nf_tn{AGXyDo_UT}W?Xj>5y@VNNlDmA%DFz4K2c!RyEY)hB`g3#_ z>N*%7sRG9Tkh_EGr{VpA?dou29$eUlk>~pD$R%}Nb1}}H$FZMG^KHuM=s{AoQ8sU~ z(@mi#J=G}vpzo2iQAxe@T#yj&(ehSygF!XTCr98M@~Xb#^}MG867sROe8H8qo~&bQ zG)y2LqLW)X8{eqTJ{D($%0|#g6~()3Tuc zL8J`EB5Q^2Gk2YY#&F++tg}Cb8NNqizmy9;qWY@|>XJRn*CLC!81@4JU6l-+pNK-$ zp{6G(EXl|cAj#Tj-QA z*iOgUwcAlk>T>2{drMrbk^N?+a;!(@>*W@#23%K0&9XHZg1x3S+~u4zhs2ZdLb3sL zS!=J`i_#EWaB=3!efz0!flV!cNn~!M0kfzoo4Kg9?76ThafRxL5Sa@_f z$@_7|hPPb-;g-YBX6;Wx7BPMBJ5al2FefrtJQj2jApTF-t&uGSz1zVDjB}I!EyCq( z+0wS)VPo)(WA`G&hffOt-_lUrAZZ5`G*BvDNE|CTRD@kyjs)E>??(=nc#jd9anKREve z$NpE`?sNXyc>R{QJIM;g!h;>o*01wUj)|E0?Z$_2ZF%YUQIjlFGH8743s-Iyr3k^j>q6Q;!eb(C({VMqJ` zlU;njr5g0tkclIudOQo(tnpv}H(4Te*p1ERs3T(NZT1@c5wx@LpfRPIu#PgyJ#w`1 z#<|buO(YI3>od*zqyf={Nl;>FCJ=nL4TdTpPbuxrVH-Vub6&KeY#{2=L6^BO!(4l5 zhetlL>>}zQe%Dg5ubpxIPwNzl<+>be29K!!wH3qp;$5SesISx%cjGPFlo+}gmoRE4 z0CwlEHXE4_rC5K82OoHGpPj3;*pafX67KM1wVd%A0iegLK7pOlYAm5N)%1|%it+5` z1BXl;Z1z#h#CKwf_hoA3f*qt^4LrjSf(EY@_#@t{hxz&t;l1*-OZ_9#rb`Wbx>Q7A5c5GTgLP7}5ZKCU>7#P-;*I4F}pZ;c2u-9lE$ve9~#t;3&- zm8ZyYbCI?Y^b=vp5?b8A{s)DU&6v;%!7cV)Rh-)sD~CmPadH3lNu167T93*XVPNq) z(1)3Q0ZDAlph*^31!e9$qwzev(z9#BwD`gk0Sc@J^^dUn9qU?Lsy%Dj6Msc9m`+lF zloEeR?tHf1uGx7qV#E8nrCh8`3YI_jt(DVamd9G|?oSEmTR_BqHNv~i+bba*jwj>+pfQ)_L{bY7P)5 zAkf`6K3e+DCU>3 zm6q4E=4+XqtRRCBV>P}pNpxZch9W9zxe$iE7`t23whhnqX5`f$pb;Y$s)&NW?>#f| z;*V*<*Brk&lJsWS;hq6j6?<#W@!8DemtF;4+)8TWMKkYzxfWa&j)QcjrSIQd>u@R2 z%^(95g&Q&0_YzR_jCcnT)_w6P1{U(NM`BMIJ>G}$Gpmi zOJMU0W5@CY=Y8a;AM6326l}9Ss5TVUB zwD}7_sps)VrQ$qSrmNZAz>I;V+kiB98hCV>W7=r9Xc#N!Jz%T0_jaYLI^!wHtkwJH zK045dd;defQnQ`u(RBJD9q^xM9A=7=mCv6T^7M^TY6PIo zd4RQf*8@G>p#O>f)=~PcU>lmkvDNxt8o1R2WoD~#`hUu}(x@h~G&;wP7RRksIHH0M zooQ`Z60#5$!D&SW2C>@(S(5ZLvL~P*YCuw>BHAv*0S%x69yKB)CM_g|N=QUe4up^v z7y@C5CUMz@NFTD~?}e1+ zU8_fDh|9wr9RqgrJyS?Y7T>Cc!HHCYDZF1k>t*2>%=^`X!McXSbE;B*f z($C)rx-u!*14JT+aTO6*@ozITrw3@bjv}BzTi`d_MJ9SlF9|aEs3Q}A$OG0D#%Ts^ z^)sA`LM30#xEDKx;5vqy8%J0%#SJ{i#@5M(#Haj>EdCKJuq|8cWQ9n+Q^!_lF6aVu zcFeiMYv6LqLIPWl-AwSjE_y(>wPslrr~0eMzg_`e8DnYYe63Q`%cR-b1y;dpT_cMs zTpXu4r~ zx=^uGi!2nVqZYo|_hdRc5cekqnxww?hDHdr%if^Q0%?yO$H2HHQgwAb+@= z_;)cpFQxk9wy`NjA~6mWWs7hVQq5}DZT8{kgpG=qS>fediUpi&zyt`u{7Lyxgw?wl z*jK~9Tx{P+2i4`MF{ZOK|J#n7hPPGq=O;EZ9ft>|PbnAS(_eQn;CvPY@?(o2?4Sldp^;lb4Zy_9W9q2hK z>h~FCD>hc{uj)-{=xm<+^<*bFXq8^C|Ic@6r+eeDIpI^JGnuq?Ps~Fq?1CMJFPxg> zS#>nNEY;vN#r^D!o^D+gK1XLBDChk4hE&SCuV@g7XE-~h8l{t-j>2_<@SULBS*y7@ z+-vtduXnC=7cO5&iS4|4D4_5Sw}s5BIJ78mFf((R;oTkH?#Fs(n9Ad_em$SkO7%ad zjjJT{QGY3@Oz?VdS%v;hsYbX1hh7)@0Lbjav~V)5+RACeOP{3F6)j+y_mZHZA4?Xj zsSLSK@Vwnc7yMpeD?PX;O?M;$?VN0BB*0)=lU%jONB1t~*=v|5!i$p0Ax!g8C8{TE0ya(< z93ahjFh!!1_75>3GX!2vH*rmD9%GwM^Px5gBcbnH5QQQZEWi1o{*x&$h$=+Pe8ycq zWF8IHO9uFo{BcPSwfs@g#YRfK`m~&oHc@Sy;HXR!GKoJW&aCfNAw;U1Iur@k{|+v4 zkeFX+T_xrg#fW*B37M)Kkg=#WE$@&hhIuqy2Q?!`SF;}YpsOH6g=k02qjG2i@`;I< z8h;_ndT z{b@uTAMeBGTrYJw7u)vZ8g1Nao*Fq5Xex^}ZRVCOM&Pht_8p&Z%~6V4`E#5l-#=a? zG7qkd)x~F%Pt}}dtU3tog}djIp>b<(+U>}ar;4b=3lekzO*1yMQ)tTc%+n!hE}H%! z)gXj$*ocgR^g_nxBgm%_h9QI^K{OdZ{G)201M1jD$ne%3D&Xz(%h+mc|7_gcYNlJ6 z-!duks}y;T1O7vz^#_R|b>Yc_3Ge##pUg5Qve@Uyc13RKo^^Ba?(P-!d%9N4bHm{< zxuu78*bs@t^=Qjyed2oS$uDkr0zUUu^a>x3*=O86+-F4-F|*@{SdZKTQN(!|G@6*3 z6NQ32h=eaM#CYIm4Tf>Yxy_2hp*_AlhDBr0UmnAt-DV|%0XMP4L4TYd4nO-QI4pKD z@K14Q^sHp?_^AQ^7>7mUXT@RN{ssN KLiq*nu>Kzs$fG&{ diff --git a/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf b/dev/_downloads/a45cb86364a3602f7138b4466beb1097/beam-3.pdf index 5861b863ef1e9a6be84df13a5e608380cfd0701a..03140a96c91fa2a75343c83e35546f88a5d99bce 100644 GIT binary patch delta 17 YcmeB6>Py-XsLNt(W@xrKRCgyc067H()Bpeg delta 17 YcmeB6>Py-XsLNtxY+$}QRCgyc0660X&;S4c diff --git a/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf b/dev/_downloads/a6ba697f4fd41244d4a03ae13c871d77/matrices-20.pdf index bb60a373e48af0158ae0e51393105ec7ab9a718f..a89f3d4b4ce61f80ac2ee06604b23956b90a9bf6 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXJlLhTA0*S)`Z&mi-8P delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJjAg#@i(mS)`Z&mfi?? diff --git a/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf b/dev/_downloads/a892d8f10080acfce9914123b164dd0e/matrices-11.pdf index 6784c4df44b4ca6af1523a657bc3953e4f539a43..b81923991393a6e4a55f3214197a9ef19397595b 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXF3LhTA0*S)`Z&mi!2O delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJlVV=G!F`S)`Z&miY*M diff --git a/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf b/dev/_downloads/aa497c934ec12bc50f842dac34beeab7/plotting-32_02.pdf index 3efd360709c4f91d9465c8660bc8526dcba9d109..363c7a6dd5218789e32435640d5377814ba3af93 100644 GIT binary patch delta 17 YcmeBi?Qz|(MxMpk+|+FI2KhTo06Me=R{#J2 delta 17 YcmeBi?Qz|(MxMpU#Kd^>2KhTo06KaGPXGV_ diff --git a/dev/_downloads/ac472fec5b32a66f329e9328277c64b3/plotting-34.pdf b/dev/_downloads/ac472fec5b32a66f329e9328277c64b3/plotting-34.pdf index 04c871bb7f6f70b41e3a0c1e52709df142ec8135..4f94eb361a7d94cd5c14b9f4e4f5fdf5bcc7b6c6 100644 GIT binary patch delta 28 kcmdnLRAB#7frb{w7N!>FEi4Q9S&S_VEVnP^XOUtC0GB!l#{d8T delta 28 kcmdnLRAB#7frb{w7N!>FEi4Q9S&U3f&9^V*XOUtC0GB2R#Q*>R diff --git a/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf b/dev/_downloads/b0f2a5ef738f9e96458a670bdb264732/beam-18.pdf index bf95e230ad0a6da42192ec12ab86cfba49303539..b2a015260fae4a04f35f8bf4285c1d3d01189cb5 100644 GIT binary patch delta 17 YcmZoqZcpCOr^{k&W@Nm1lI~Y#06c&Od;kCd delta 17 YcmZoqZcpCOr^{kwY-qB1lI~Y#06bm>cmMzZ diff --git a/dev/_downloads/b78b32e3870f0d0ffa753084ae625ec7/plotting-9.pdf b/dev/_downloads/b78b32e3870f0d0ffa753084ae625ec7/plotting-9.pdf index cc0577807d8c67e63c6347d28e04211bbd81a3b8..17bd94a57e3cf318f3b9c4d296c3fb77060e839f 100644 GIT binary patch delta 16 XcmZ4Cw8Ck_6**>OGtn6E_wBHHQUQ delta 16 XcmbPIIHhodw+XY6vC(Ef6E_wBHDm=- diff --git a/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf b/dev/_downloads/c1adee8d5f4e9aedd715240ee2abc6e5/matrices-9.pdf index f6a66082e1914b3352a06557677b745426ba8b46..72c5686b43af96e788223cd779a446fd7ce0cb63 100644 GIT binary patch delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EXF1#2HRDYS)7;wpOgr! delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EJlXL=G#@3S)7;wpO^@) diff --git a/dev/_downloads/c81702617d9f2a52fd8723b47976d6ff/generate_plots_q5.pdf b/dev/_downloads/c81702617d9f2a52fd8723b47976d6ff/generate_plots_q5.pdf index b5a381d2d12cf3141dcc531891cfff23fb703fe6..7617ba2ab57460bb4156ca6b66400e1f53dd347b 100644 GIT binary patch delta 19 acmccKz<9lZaYLRpi?OAF(dHuSrz`+WwFe~t delta 19 acmccKz<9lZaYLRpi;<~`#pWXGrz`+W%m*p} diff --git a/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf b/dev/_downloads/ca52fc8f0db47908fb8d38cc335d5c1a/plotting-22.pdf index 9982138bd055a90874d2674b3835b53ecd81d03b..7b2f5de46b754304b41fe73cfd55980ab7eedf56 100644 GIT binary patch delta 26 icmaF3fcN17-i8*&7N#xC=Y3g>%}q?VU-o70V*&t@TM4`X delta 26 icmaF3fcN17-i8*&7N#xC=Y3g>OpJ}UU-o70V*&t@APKbq diff --git a/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png b/dev/_downloads/cb44a32b25833934efb3a9d4adfe400c/plotting-29.png index ddb426198d1566025ee637fe2f23af84b67beee3..56f1d09cb847fcad9812df9a6c2acb67d0b57aaa 100644 GIT binary patch literal 6885 zcmdUTc|6qL_y3(iF%m^8qDgjHB89PxQf3lmFA6R8NXV3RR3x&E?Vaq#R-|NKhRPCU zNwyefkbRkyeaZLwR^RXA`*?gm-^cIw*Z24P!^=GGJ@?+{Ip=xKJ@-7mpr_4&;zI!d zIPf?v0|1clCxXbj4gTvx_g2GyD(Slk- zSwZHgoQ&KNw4J-Vi<^q9tkZu;$lP+Zm5p}2=n8jXbHQD517L^V)*r%;@Z>N6eEN7T zO{2RBGyPsJ#v@hrbGBlUj%a*{aO7pcq{S9TG(sAG%iNvL7Myb2&|fIB<)T@8a8Xvv zxRDtqA}n}s;qJt%4zFY6ixShF+<9tstWi8V8T6WnLaXR!nK*OnWDSe6;U7f&tClLd zR(&)STK1hRNSl;Ljat@MFcr z0>2N$;b)%~0)QIye~OB~CjhMmjuSX3(^WnHFo~G?Fb0=h)_w(Y@+Osl(qiET!k@Y+ zqA@WmaN7Q-0GKf{8C^Vz))xo3e;T7QhOW^hh<1`P9&7s|#Qz+LPUV%2ZTjew1=2Dq zsWawSA$<^WAtS?}HHl&fKDWQg>MJ2?{e{MM!j&BTbOOV|#W6C{&hQ<>u%rbci4V;S zwD^vFAfV8E?d@c}MDHvt&mZlGOZz3SkmwRj@Pzfx==no$v)HgZ^C~rYq1hcMZ`Fx`o#jpnX7tC4ey(|VZR_Rqf z+W0Ozkhs14s-pec@gk1F^XmRz`0~oi?Y%`1?b||+ygqHBQ7S-Nw}0uM@ke-D zXd;%Hu?|p41ABX_0GE=5O=jN-qS3X+Lm9!r?IwK<#L#<9de7FwZjPmy07trC{*ymf58>@IujcLqj9)ZYX+U*ZWDqb!3 z7d@A+mYfGUXAnRrU91Q(JA+>MMA(@mVjoQ|%Pp16eHbc?U}$uaDwfaRJD;-Ic!)UkU73?BWtAhOpy?enG}UQMK5+I~QS5~hP#n_r{pM2W8G zAzu6gK&0IHcIUDOfY2nsy!?;e#t>(XJPK5neLp!-+z0uyUOIEUgcDFM0DAMiF+8{E zvfeIZS)J!|35YEDtM~i11Is^QLo^+3(9u}-hs1H%pl^4cVN%xzbYqiPqs!A6mI$-D zy5B>;!;j(Mn4v8QeTNIx7QF2!_&xMbNHV|MTP;2^wx)*=Hua^LPhq((04~;UOIhiQ zbhyoBcHYvWoy>?o0n7U2?SqV~?;%jq^&YvBdjFIZfR@WV7wO=zHI|-PpLZKAE)H0u ze{E#EI|(DPR`Q6uBR}hI6hMx=u#Cw(5B-PBo%qtYi=> z1=|KOD4AMH8yhV{TxU)P{2u#vRfyPl#SjVbEqEwUXoh?+z z!ylav&~0a)M0hShR*(N6@Xmx8`C`3=L; zrk+jKsE{ zQhiBDc$m`bG@+6+{;!}#kIBoEFMcAR=(X35{uwf|@G)*`SxiJO=T6@&Iqok9W5x)D zBG0=+Be$MCPjKXBw7e%dZp>VtA+$x9| zM{eVQHZs}4_pR#ymj@5fI*ET=Xcx)g2`WDwLN#MbBO-~o4=u5hk}xlK7#q1v9!z`i z$8B1WK^;91aoY3OkrLc#0Z8J9aq6YX&X4dyG0wMe4n^o|BCzBq0#f~M;c&}%ui4v< z>_L#ULLy??d~!8Vu9=9q?1K7y3W5CwR8eSB?;=Y9@I7G(P z5fuar03rK%yPV8=0_x!v-B5F#t;>Q7Z*ARPdYfX1o~{pdb7Tt=f?|%ftoEPw(ImJ` zuGg0;GHXGaM&6moXpfeFa=Dr3ZacCDNkX}qckCJM22k#JMuzhY&_4qaU-8N_x-x@d zd6!w_>K`)yO&nm)QYZVOU@JKY*kohYC3 z&cX$hk&4gu3g?)$AE>^4aSp^Y~YA zu*3wgivzjA%AdJcK5qDyNdOfgv4*@oHAocrl$~GVs=IXBm9e?`ojKVt!sz?vFGroL zFRl17U3t4|P*7x_eC@lp#1N4@(tI_kJdysBUASnydQ;wTuQdI~4=NubHwDy0o8Jok zvC_{$N{XHL!hiKmfA}e2Z+Q{o;z9Scuk;!2(^UJ|`5AKgh$yIGyGa#~iCfc)M14*MH+$%_>#X!Q5Ukh*6H&FL1X!_{ zx2la5ix6AW;b27MA#2+;J^wc`iOoKO#Hds_cGSDH&^-qV8tTN!uWr{1K!OAkZctDcz( zSZ#eMS3bBcr=XpHTGzG~N%y0l+gd9r74@?GY*Xt}BJ;|Mv$;!^U&=5v{Ql+D?x#p* zP3w$4UZAptKJ|2nI6~dnq}&P6Kf#p>9Tg?+!=VP%zLcn*FZsz{vtCP!iOj6BDB!{i zukBrj$;TGS(RdxV)_YEQ3}I|(-S6TOJuOpl&U0iBO`=81pUg`;q;i9*G%*qfdHOD# zW=>>Y9#|q%e0;KkC={Q5HxByrQ3TliEj^rS=eg!V!>b6XauZ3rC&K-rJ?FnCG6!uF z1=#!ZoNcHa^d6p)#=!$KhKQ3;$`9+Ay(Yne+FT5nNqP>Tb*!`VQD@FUJggS?$a<+QZXhR>K96kz81%%nw=9V=!t7; zUP!D>re0n;(9yBAruGsbYCCq}2m=y%=3`R+$!|b?SPZW;Nv7)92qy)kK9lqe7Z^|5-wC!(l`XWx5fO1|{#*I8Q!2Um^5L@PQPizX)BJF~i2k}*1Z zL&Lz86M5uFG<+Uqo=+-zy~z4>moaVr^dcjva>f5Ha1kolEEdWnvXI`ag*X=b#7 z;cD|O^6lZ>i_!>THg14st`Cjcc_88?r5C!lV$~ro5_;kQ^wFUo`F>@F6CMl?Q!Z66 zTMfj;LR?cTA#3SUdCIP>n;-p9eMQT2N_xVaMp|UV{aWo-*wC{z0o!&)ySkE-*J~4d z<05ZohI7{J9YBJU;)hQ?&yEO?OwNs+kN1kW#{UGLJ@%>duRE(4{1Q9*)+))8SzxY+8SR% z6*4x}sjHhU@dJbK2|*gK=fBlK+x$h4HZMMxk&%J-O6ck`iHVN3qfvaCK743L--&L%sD%kz#pl|m3N1Rd^3}#S- z4i70=oaxJ=QmNPdx_Wz`=jP_Ns+yRaKT}^FPrrWfpt7r$&+0thj@Lb*XyZ^&+A9uu z1%-tc45M(3@ywe&B_#zbE!|l0OIfeA>9~^Xx1i%rz2rMnUH1LucRU9J_VR=`+-X+q z9#4HFc(zAFsiB&ME4(2lIXU0d(#KdNtF+a{)3aP%ci>LoXFZd}N9Z@D97^mkALQm9 z@fne_{5;zH%-GmCBb5Jy!{)CIK1GM#sJhleNO zN8Lf9(>Xv7h;jPB>slVJ$Um=Mx2Qt*rf6vzG)KKd5?S-c&jSaN53Kai&W^)`TU`JSBmC?`PHd>!nmX7 z{CH&B4kd*@aL>V(j1sTk6oT%uqTa-cd_%RSkhpDa`MZ8uH-T)filw1R>HVSGS9K-0&MhHh?e#*999 zL(VKrb-ySsHX*t9-|5aND|<>)H_X+ElYv|^I>H+z94e@0h9S((^Eag&)(*3S$9aB# zyFJSF=`32o9C%Fkq-r1ZFc-6(0BWZ2C5q zX!(27>ODh>@m}uk(MUZ+IZ8f^6qPsJhP0sh&4dGn zT`#Y^NW>5vYKRCDS0|pmtKHbp!@sa`-OMxvddxC?+UCx7T)|SUj-ep`Z?T}Twi~N z7Wv8E-d^9wr)uW`rIfkh2FK;^gXPOZAwCWF4_!v>lY63rVDf-<#(!z*{j2^TQPXYo z(`Nw!^$@mFM8()CtMm9HOz+Sd<%oz^UGr@3-Ly)9>xQ*cx#Zu=@1&!FJ*m!KH5wX*I<3Vuf883 zD&Xz#KQ=D^m5%>SkMn<5lo;Vf_up=0Vv>32RG{5>TdLV>_}s>UlW5p_1-7=|>2J+S zoD*SScTlOhKYq9x8yStS|7=|n;J^~0XHPmqu0tb|g!l0BO3KQfZ*Fc*GDNV#mnGLB zU0vPYYQJijyhbo6B5@cN3UoH4py`8$xIhK~dUFoR>qZ}y~oePio5(Vj8cTQp@~ZF=g|13o^!Fdu4HSL~|<@J@s`ykVFEt5}8Y zoPtKMI_ON-=ETpkY_z4qA~3rxM3!>5H(&NQe+sT6S<&#(5M*s_ZO<5}YEbuu3A)I0 z!6DD0su#9dQ)`YwdhDw;2gIwDETE^3`TrNT1X|nJtcHP_s6S0W01QI@G~fU4m^Ho$ Y6lw=_jgJK{LEQoVw4T<>lUDct4gW)5u>b%7 literal 6913 zcmd5>2T)UOvwjn*G^2uw2n0WR7eq<~g90Xip-Yjbd?-bb9zg=(69q&%Qly9)q$vm@ z2q^HOf*?(LH7HF45~NA@zF6)*|IEE}|2y;FnafPh3GdmnXW!jtpWU;GFeIGfWIMnH z0N}*qw2T2j!mkK2D>FO|q6cc=NzF&w!pG$D1s~!$FGq0toR7z)%RZN!&!hbuy}X?- zyDQ2bmY0>6MmzcVczCPH$+`WfgzROni*kux7G6-x4iB8AHvk-j?GGZDcs>c|$Z&FhgREVKW1oNY*TmsrzZL?3TJ%3e#a|JDR)cRZUdnup5V9;0w-`-FIX&Q2q}XlL5!tku6ag+J z%{^XMkCcO5FJ0pzAC;8xUEd!o&JBc{DR^VgVmdeW2+zJM5(kd^m)=;z$bEW_j@2gM zz44ieWf^pwIKbt`@6NkQq)L#TralbMp2Z&eWhyz8Ps6&Yc`*YSexpQTs=Q_?18Jm% zz}CrF9^%|Tf?+~&Iy)POaaEh3Z~oc>*0`$+r>Y9|e@sdkT^2#}p8tB~7!AXCKaZj{ zP}xmnOScZ8T%ZbhAQ_l(^e4uO@u9pwy@7TP+HjD-3=-MU=_OBxH5i52!$7Pl6H^Cu zYXZYWxOEa}b{8afH9yqceVE~=8->jr{)j{(W^boXE%T#O;a>9NcT1=bLmk!~otEo@ zji-KjHJ;WaMG^yb*GbHIwPpYpaf@T>X~azK{IxTap5yC>x2-wPbh4A;Cw_^UILx_3Hi6}BCTqA0rPn1L;I`q`0^r< zS1SZ4%`Aeri+5)+Owsj1WVHWxQr@YZR0(?+xgYVyHjRzpTzl6D2*%EVXYPUsF1#Z#;o@V*5l1701 z);X3tp>)8T3ux*fuuZulmkp4{8j+|fe7a}enu>-AsErN%{=0p52fdmD3ijQZ4%Xm zw(d(c-#463d&#CZcjdX;fk1l+`zxJ&;-~M7VYE$;Nl&?Ne((A&fFBka7IFT77ici9 z)!3vFJ6=aro775P0AyT>m~;6Mo{SkMAOlUsf)`lqd6~cmYmX40>BkU0K|=urgDk*K z9L!CmdsDuSl5)cHse1X#=?F2!pcg+c{qQ2$e6${ad?f^e-DPux#eIfB!w8I+ok=pa zp20B1TD^JmbLnUH(Oq09VS>vUNL*Bypr3=lT-2|OWUNcBkshC1Cm@8)gR1$au_!}; zV(qn+lCgkDkF{ps`@EQo5%DWuS#O0fWDA`P%mMKZZ&AwiAz4`fEiY=2lwUxCYY!?1 zqCC;!;(#?#gG8x2L6rdLweA0kNT=^;Y{Roy_N8g%CpHL}2Qb^vjW>2C>qNs$Q-S^u zQS^Isncv!pN5PbL|I-pkptzoZkyRn!{BElopii z(B4;}hYXRQ?rey1M2G**O#98bu#V@RP(#keAr<8tAzAkU`Ux9*HfC#N(==*YH7W@rxRiR%k($!bIx2bGG}jA09= zI`XeLgx1$b85_mXxof}j@KhXT3uR&g_u}G&-kgV)H|&f2y)@q>W$af5#oj}*=wqx4 zMUo9A#A7=;;bx+fGHLaqC{b<@%B9SDqFr8emrn7OV*=m!kxoT~3`+1;C-J7Zcx=}U zMl08MMx0-53~nK)8K&hnBi}2%7(-_yzp~J>fTruFrdIC(Tn@X=!CVy2&e1EXp<$RF zUETC8)YZJQEl`}&RZ|1mpfEUiZ_bJBC6^)5{nhfzC_iYy8NaecS`~zSK9TBZrW?xl z8$!=E0;jsoNjYStqUta80;mg6*eakhF<}&{Z*2TH6C5fCjUm!1I&Sj7`)~3{4W%&D zMI*`W(_Q!j^0h=Zi^KM0K5uLveB=(&x^Cp&RYFMa+0wUBN@zB55FR>nDeuJ)tQ9u? zs>xeIYA|f=%nK96Yr^*-)4UazOFnQQFb8XDW{R6khfj@F;Raed4bjFi0?^r56_^1M z4^HV3sgT0%PtdA{`;hmcpK*DEE-^ zI*K3N1T85oC`!uDhui8iHLECQ(1NrQXKpP$KE6tbyA&pDruRk8Ih=xzFI(r}w(|FP zZw5vXwPP)5Vm97UbnZNP^Nut4G+{IRol#{14zBSjV!MoheH}j$XYz1`5T~CZY=*l@ z+WLyaV_s(OD3CB2vOq{@f!a{-*5b0Hb&}Up;1rX7(0!F1BM#&r6t*_qp+$~GfB!zG zamBEavonGyjet%ZCKqv;#9bogjyKraAaHmgKCkPvdP@dCK_e|kcMte?0AfNM4M^bV=1F30b zs)Zn*hWbn`oo7q12Mq|(eC%Xxm^!U5g!B)nnGTdT64|J1W37TuoZq6HM|B{v9Zx}! zEvI|+NNXzugx%VrrvrF$6A7LwC{QeBy6nQ7ZoV1X4<6kIwWZYWwqM@ABC=7eVg%d= z8Iqt^tu#Z91Z&jnu!@iSSmv)8LKi06r8BbPnwk^0zQSS|_=LFIzPHd=svHYa5J1?u zo`bq0R`QZ-?Kx(!lHRfhIokr}_U!b47d6VSmeUz=Ws!2ruyk|5D%19?On0~v2HvIY z0?^p%%b+7*$sP%pwV^1vLWq<+vK%ct48o8gP*$czhV$xZRCNOSz59#zZi7dHJ|Rwd zumY9(%r~r2Q&7y@eg2J7D``B&zQ*2&o7f5$!OlllQ2Z zc+)g|i=*}iC#^LGMAvfwkAvCS9Sdy``ie^%3+`u;D-io02YGpau$YQTfB(=VLS+|R zL!J!N)k}swU*|I)36t-&jfQ}{=WTN$tQdDx-V=A1_P&mAA1wa7)8jlh7!hXXN_26B zE#TGeo=P{Ck=Np&Rzg2bRO!eHA*9U3$zzbCwh{IRM`5-B1^;FOHQ*F>}miFtW0+fp(o<8?lzVbl7 zc1^`e+FXgyhegR~IhWr8tKV~O6cryXsY-S1#_@0|<|3y%RpBrRl=;~!l z6(!Cuki;~Dst5Nz`nIza@|y~$-FLO8K-19ZV;K{9`2heq&hHQDk_~ux-1&ftI^5!s zr5OpE;Fn!h<#gfYMcS z#X(u=C8>%oJZpr`>nDaEofTezF;J{%~9xF5m`(3+LL3Dui!AF|>@diUavL6kA_ zsT!|!-lcfVSpIz%5&ni!6sWy6DhN%4Gz)|^{mOhs$aHSET^q>Q+aj}6=v0*YK_rMD z>A#r$v~@n?&_=6Tq~cb{pAgfy_>*CE9+3m~Z6I)dN4Xty{B`(HJj|xG0IEb?LG_21 zH$eO~xE8TYCq^>9TuPz~i|uaaC3hG*&sq^>naE?Xi^biax%5rv=w%q$kB2V{T;9S; z$}<2;EryPJpo3puUL|-vvTp&f0WGSQyq&m0Kxzpp0xVl%BJT1FAsf%@bm6~!-|*0s zKD7wqIN3n#p~(!f?rzvoTKoFal#sCpxB>cleN1xCqc~>H`3zwdW=^l7#+9$t37`xD zmRncP+nj00FAeJP9CV{8;YV|J#Tw6eky*OCJFe~2t*EF@SV>5mw!QYng^CAh&)LA7 zQ_F#=Xbi=7I#6WJo2T~k`;PnC9U{q;jXXqPG%u)qpeGv_wB^0c0eIt_lPq~9@yfxq z%4}f7(kSkT1`&t@EEw{*mbPQR`T#M0j8}bNQ}FWhzlpoS zZYIEbYu6u?dL8GFbxtzZ(lTbZ45FfF-&xW7Rd%3QvvTexRWHfp!{{d6$&*=pvqgz!?z5R%PsDGp@SV)u@vhM^FG|IGHK+ za-#&o%(x-Cy0g@#AzF6fo!r92PDWnnZq|*DJ82yiJv~~%ldoIBpBHp%ww@jFyHr;# zLKcQ#U=1mD$lhGfE-0MO7<*k<+2lCZBFM@DF^5|1tr^PpsUlYKFt!b)wgG7?;ql3; zck60CI4x0-hed!BpF0h*l|RI~SKUJ%z5zZgmh$ywo=l>@K~9`=suDxx|wGNbmxz(*v>*%kIb zy(qTnzdV~DTNC)ARdv$UswU{6#>Si_znV`GMVavRt;s%ev%Z9sUgheAynJ0rS-+Z1 z238oZSgl^W;Fnul-)da@OB^L7B=7?ZrKP30m#NhQRm36%1%*-9&v6ZM;N?}lWSfbtpw)3mTaCJ0wfmxn5ctI|6N9Pi`)mz;eV;u%o%WDUqF?=z z5*oRdcIQsw-MdA%+IH64k$m;Dv$ZQ%Cv5TyrVG@sMt^^vs+cX7x$>!IavZHzPYA=LFN0gM5EOr+KnWZUT zKI7<^ebjv@m$bg@{5pKsouh76b(uLA+cFOvy_9n1k%bUGfL1YSYG~-up&Sg#;7hgK zqf6JmQG@L+-X$%29#{4l!ETPr1>^g?-G(d86fd@Rg$V}b(uS)F?%mV8#>}ZU<&c74 zWtLh$8EZMjENXzXeqtX&XPvO@XBG=sNT!$-oDo^9VCLAL)oXk8u}#cW&*QTv6h{^< ze%dRq$^dGMSI+JPVQ_x)dpI(|j@8qP^z!yLv$2`Q+*F13)adHzDLJ*HIR%cbyycz2 zRl5zAId|n61<+r9J97SYcxdLW@G@1O&$0Oh1>H5l!JNDbS_z`3JCqc()$8FaVXhZmMLt1XuoTP_Eg(5u%A=@z10Jv}b8 zp^B!KmhQUi>`LAf`qVi6I~ZbNnfq}5>9nJH`T4ru6U|@w8z~tW;+NtEfzG#ae~?b$ zB|4c#zBUM&(?7gay3o9zYNUTh{@h}{?c@B!NZ3- z@jfj|y}5aL5mXJ6MAeZCSyna15NV5iO6Jt|l z0LE{o{g0Sq_pj0_8i?FDmrIw9m0-Ezr~B5KU!OnB!^7j;TWFJ+(CEap>KEg%)Kchk6b?O%%nlQ=lt!$DTgKo?My8j!XR|+P81twyF-SkgZ<%#7#MI z?%X{;`iI8`$2U#mtBl?k+EkgEnvSWao{ron*OPBn(AC$MD{E7^67A45@XYm@_ap(j z&mg|^Vw*rq2FARKNbh;!zi=!^FGS@NCnx9E{Cr93;burMdM}Tuv#T|g}RHqbjDk>~} zeSHUNf@|ud_;T)@4Eu6FQg)u7{l*h+dHel(2nN63L#+RC7I zLAX`XDkEXRghNLAb{4_FEW6Dw<}kHJWyxeCZcv-Tz`~V#|NaT;YAZ4E_U-J-N;PU6 zxB@E#hw7ENEJ-OTB_hqbCFSr*n@XServyoq?gI1mXlC>qSTN;pRUwf7`ksDg`@b{_ z{a;K?|81ftXj|)ab7$u~X3hhYzpt^lzJV{{e;`;xIH(Aao(i$xGF<7~)YN1Q(;1#j zZEXt|S}|?JBLD&0eU#T8QGLTRXOe{To;)%1_xE>kahXqN+a89HS)DIk>Z&HKL+WCs z8Uec4QI<&Kh`lzE{k%;cE$CHR+LRCIja)791W z69WV5_3c6PIu~N3c{`gD#0+{2g4aw=-#L=k5+fxpZs_gpy*mNHD#?WaLf@7LFBibz z#%QcLRejh%^!+e$nIa1IMVem)~q{U~SC_l!m~ufryZYNZA+m4{rW{8?Aqu zod4S}@PDWkwM#}u1{N1H*t5{Z!3jA2($aEsdkm9|)BsSsVUvXv2;T5qq79#QsK51< zp9zbDZFTHmu|t@E|Jbf!?>6=72Y@y12OO>a{VO1N{D#`x`krV$z1Y^%k*(KV;XP>* zRJ67h(B0cBxcdCrGo^E?h)_LgftUtT81M+-I;fJRL0Zc_Tkak|#J2`PZU#Y|Y#T6@ z7$f%+J|zxFR`hne`L3y{0~Y@)W20i3S5ClM+ViEmVDmZ>#g_hK77t%%I7U$rEx%^l z|NL9V|Hp{PODigN5*b0}>rY>=3=vrYh_(7X0sQZNlliarv9f>5%Sjlu$xIEE)u)yA(l0N<}~fQIL?7 z{AT;U>#Xmb^ZVmF$F*F#c=mJeJLbM-=9+7W)7R4=A!H;(5QIcaQ`Hbbu;IU0p#*sF z&u8{e?eLF`mzt5+Rabj2Uu%zB$YpCUHy2kgm)kb%KDRtPZ@b9>6%~e?-^geYuCH* zHhi`Hd0KV-F_hS0O3L_`u!#7v<1eVCURNY?wx0AZFI{;#RrQ!CHe8cNA6J00m0Ky4 zT-#sdN$OYorQi^D<5U~$!Q4ji_4Rvy_C-AzzOF>&_^!$CF-LK0QO3r`4wUh$;j?pc za(3Hd!9QXuf{3cBs(mab6h0%aM#w2BayV!actE@dTS-;bF4_ozuMLqCArus83^xCd zFAXHBsjJ5)E2)N8A>=vLpFWw4Qp9SK|DO-=KfTpXHQ)c204^S$a-lxEv~=Un=Brm1 zw%2Fb=I7^Q6B4>#Tz&Rwo0(#C2j0n$cDUZo7O=ObrlizClcKmgWt%M@aB(^*EcP1TzkjcI?0JEaX?NtK4GolD|3VkJW#OxveC0U5kBgEw#AMl>`?esq#R zlnV7bW@p(N8yh79lVcM{vYN$H@0)YT;2~TBNW!lDeEGX)27ZN?yr?-dE{2>0I$n4< z!B&B%X(xrDW89b+aj5dM%v|P25}zPn=t{%5u~ssOR5dunWP*c(VS3>=N->CLdgPZc zX8VVSvm1@hIkLXOFfY@P)!)BK>e*D6?jBbs6u9s0d?3*CNHd@g<(OY{tFG;7D#pyE z;uf8|=jX?M@gnWpOd%Yk%)FVFF$u4*u<+kxW4N`9d@ryG`()Bn&I`+sqEpUv;#rH^ zyySmdNRRefT(S!HkZp?mgpBBVvh14UF}vk!Hx621v)GLdx1+<^)4p^b9g~oeq8E!|G&zGNU&7j z)pRgu#^C*+?bFv5ZQ&VagU<;=D{Dz8!_BMZ>!`2q2*KniC}z@MM$@{;nuqUO(e2B8 zj!pK&6rV*pdZn=*dix)F)#$@Hau%8X*&5`$;Jou%WI}4~xIK52Ce*;dqN-Zodd5JH z5H8i9`ZY&|vX9z{$$uzW7SF2RL{`f`zAkR&Oa6Y1v$;&qiy20Flx}K~(zB}lWpsv! zbb_{M!K`~`N1o17x8#q8n8k^-0fF&Vu(R_um{k}sQvi;Qt(A8p>U6fEb? zhbQCn{R?Wb8(vD1t{S866>lAh5ai3}w{#LoCN7HRoHB$I6b6r0<*vrV{(WIualUr- z^d!xIE;PXZK&j-Kn;yVQdXj|3pTcWqN0iP(iA{)~l##7lHj_`DY|56z<^Syd`@au) zSLFg&Bf4kie>w`u43jW;VECvQ)^MWpq`upUIFanK%b@EUEIp$GSTuBZ9Vk3E1Q->xtyP zvM!p!N*S5|HqQO_#II_OMx>B+H+EDiE_sZ%h94n}!lpXdFRW?9$m(UqC#$HcdPP}| z+%JM3?Cnj^@3fv~WvF2xp@(3bCD*LH4fB`zVUusBzC}N|jJ4tRs_(s<@2ZS1Ywz`> ze;b4K+G{=Jg&=BcF5s+mmlyC`am!@;Izz##nZJ9jpDx;6N1`?SJ9>vHOEdm(Xr-eE zXSej-=RY3_j%%Z*Wqiw9D*dW}3@JdpbmPonh_o>cf@Ht{@l7D}Iy14Rs%p47W43Ts zz^MpdGdB6p#aLEGJ{K8-$R^(Me*->cH1#qnFpG7&^7jjTd-~tEO(UA@S%MXexlt>~ zc~Sm?=ed((XOBW~P2=9FM~xt|*R$VcSl;6#Ob+V|FVh~1h|&%_v{{rmIHfeEMfgmK z&^r)Qdp6bl2H(HQ<+Q~6uU;1E9=MwiU`EaI4Rp~f9=G#u2 zg}Y&AiX6ne?(83AbWZ-R^6W=0_%%Cvnbt@Nt$Q0jHGOlUzN7AUAG#2QYQN|>Zk6D# zxZCq}TMWgG0o_#{5f$s}Tx;v)VcG)iogrBR^$2p>yq^B=fD6lxj>R3qiPvH0%ZNhT zONG8gm{L+^#z{O1$pR5c| z-3{_U5kxmWW3M5k1DCL4ncsEF^hNanfd~#cg~5+B?lb48w&twL`=0ZQz+`h)i9(Y~ z2z~qgxJn)~zK9w}%^)pK##lc}yjOyLa_puL(WzO&DiP9w+Q7%ZH+U_M5_9+$;N%=A zG3*nw4D~ zeI`BCVpR7ujiyLB1$wh|Reg+ENbPUT?XKl7bB;xYRP@?`)yhpxvLSx75N*f|?X{Dg zG;cH5p4EMcY?F9gs%mDLV11{Nkr{y%7rQ(G*lOg-O@>ubuSwuT!}3fe=Ni^)Df;(h z4|at17q7*kw#e=I`AXK~vU&!xp1&#r3+P*(z*`bi#ygZtI^tCti;7{(hRUUKiFVdY zM;)by}^R1#}dDfj{2A6X%3lE3)4~oJw zxev7H6jgNZY|QfT8YAE^=GSc!>NNh0mW}^20kN^7G282g3Kz^>L`6{$*0WB>D80Bg z7uFWcUwWr+ckJKI`dz!=B``dBVZO8NspS4TWriT^ZHOz$M{Udv=A~O;(@q66F`k8n zXGJ@4@lVZdYA_w$os3*f{x(-k82+3^{oyZi#nU5k8(Z7aT8AsDYHHR$Ka?P$A3hi+ zGD;9yTU*D*$9JvGG-LR9(ksy$q$iv5nNxml9-vh3+4*U3h-BNXuk98}c$nk9>!x$- z=7?b|LyjfVGcq>Et|-n|_p_>8zD%<8?orJCzTcCQ66?Wqo@}{$VkRagsv5lMCF5H6 zQn}|kgP%&HD-cE^y1vY>xI|pny7&H<6n*OVE8v;CqKJ^tU%#AQH#K#=c|%xwqr59u z8e(5}clV9W&CUw*W?WvLbiQ)Elm~D>z3V&w-A@_VW#oZjn3j7mfBEgMN(XINZxauI z>A9N~JwbajF`=OdF|!o8PL{A5%n@cZx41aobjQky-NRG*Bbo;C-@kvi>Q83LmhnFO%H+-?OWTv9zwaF{ zlq=TN)#YVpYX;w79*#1^(p|P~iZ~TM{}+31(JpB|jdjXQZp4}yiDETDlPnJV} z<;s=7zl&MfQtq7hwRyJv$cd zPF#D>w@96(3}Im8lu5pn{qE*`T+oqKq2b(T9O-|TGR@dW6hHGU5AVZHfbXHF$m?lS zYp?r~q_?iKmp@TQLl!a0+dL9d_pgVIj#{|YNw(e!sqFvf`YykgsDl+v?k2N2m!g zPkRoFpK2u}4MzQgRVzh^FE1C!iTj5+ISPKb()qqvd_*rr>z|1*m%VfS zN?dym={Uvn7nB`9p?b+_x-+36>PnpCZ*)z9L`pYZHMU8Y!wdANi)t#2|1G}i#}K$bIws4E8z~YRQbddtX^qC7D7gFU{&cWtI58h~AwqqMS9M*- z9~J5ME7J6-u>)q1IV{F_%-Pw7$p-i(By%NB(<079G`xL(IhtEo55?Z7qA@nkbe2W( z(3W@hl*WGop|0#Z0D&svOg;a^t&MYPQGLv0BE143OL0#!A0@nE^(9f-?x z$NRo3n>}~!d=&{FE=jDP)@295l+OfRsH(d*zj8cn#ugeofD4fzWEtHPhEbcX5=9I2 z7+M5Lo}hg#vit1-(eOA65W`tS>T{ui@`c(sMDujX_EIob6>@afUzr`5gMpMiVOITz z{-?cRU$efh#9IlolgpHBB2d^tGmud zkazNpIt@)d+GKNy$}PGs1Ru6z6Ls7|W3`c9yjhkvY8jagxRexw=CwCc;IL3Qr7)LQ z?LU835XmwSpvk6Xi~ZANf8^DoiP}b!nyDVmLf~a8*7&^`lirk;x0|PZY`Uup_)J7J znXGd{VXCSgd+$zMj9xzQV;{EkqAu>n-oV$Zr+qCsLC5!})J|D<@#IogyetkBLb&da_Bi{?;6!?)1ua&24;A%#;{aWo&$-xo-~zf2&py&#qnKd zr!(NktegUovX5s+-R&YUk6C#4h(aHj#Hj^{NuP(vDb1)wk_hMkuroRqwHvUsPDm~m z0-W9C+6gtJ&_~=fJkO<M&hU%@ zG9o3}DE}#2qe$8Mr?gxREf%OT*FLyv5hEnfOHVtW>~;koCK7|0;~iqACvL?RoF1u# zh_guW(<4kP?hxaU>#1Y}d+LJ7t8$2F1?3|nwXICCppA{f8XiNSVDr#gJA$P-- z3p>g#bv}2Vu>M=fjE28M!!;4ojxM9NyL04vN1hq*(1)4x3TSqa9yARf0M(&tcM;8Q z{Mnh>hA%=$3+r*IM!sZtQK}52{T7~8PEe>ZMphpZo5NOHE$J0s?rw_Ee?6S%wN-w z?Uo?NT!tF;_ZA|l-0K|Z#0HzT6=cEj$gz~e;mgy8l8OeniBc0<&9CW>8VvMENJz{N z@)f8W8POLN7oWfNh8j^aF=0H|TTcN-r>D1f{^N_Q;Te?PEtSC`DS5rOLu7G99(#qd zOUfqxT8nxo&?{wX7C|7Qr=^u=`?cjBFfCHPYs}zM;}b-LFCS0YrdaQ;PG_ID#hWNI zj$jbCXFq@5z|Ev6Ipba%t>QCkYdHT|TUmk;#4B~W{fb(nn{V_Sx82KMzkXFYj&dHY zSe`oN?f1NWOH@))qN%OzB+n!oeB}3iagjq_-rUZth_ue_CNK9Hzd)ns%ly1xwh`NZ z*29A@2~TC4#dZ;q6fLBlc{4B&nvg*B)qh23`{x*b1RhCOGK*|#Ru;aitLyV|x+}{9 z)Pz8%aY;(vbh9Z+Hn=t(>fQf`f^G`q9wuD0kWCC5cfrAt;FbTGgguWm_FsM`<+Re$ z(#sR&OzG+A8=L)XwjZ8oy?3g+6P)yS>xWA5=&O^D6B9l*Fxuv`)K zI?{zNENEonE=6~J$Ba8xCbPX=5uz|w|78wDsnVjAoSHf^H2o*2p927{ zvRxw|KAi3JW3s}p)fYJLsW19MZLP9a;-}%`y`ysEWFz%wY$|#T)dvia-1_DL2B1ssC7Dp&Ln6@HWk!<6eq@&z0qwMS0&awdV_{XRvml_bW4&rR<|H9Ua1XnEgbQlrw2RRum7PJt0YgpZfpx?R+dM=^|$l zyIS*)>4=oRYL*0}(T|Qt%${JZu*l~ItqURSbZAFe)tt&JK4yVrfd}<&omxXwM4`xW zxcR8$dyI1mE&G4nQiLp^T*1|NQMnH|qm03abYU2!R0s9wOV6@41}k$}-hYHYb3Y0~ z`m!v8<6PU1Y5DYW$ywqCmIIHR83COha-Bw5W05}ziDf##G+ND6V<%%oDF8vT6@p}x zm6bP64%clbE6k1BgXLNM=CD-N)onJv^%ikaGDN*fXFLk5A?W7(LV+^l$IY{K7%t^W$jpsnu*-5MV>-GX0&RQODGR0udR! zoV4u^jEP59l6WzVwm-Ro)cVgm%i*w3)pB(gW`$k}USz>~Y6IXt1uv&bx%1_Vq)*^=c=LlabN5Edm41O&N9a-Lkec?2=8G|#|`YMMQU!|xDoyRyIsrfC+Dg9J4{~# z*5w6_YgA#1g$iHt@#Nc&nP_McE{c^|j0)G6>YsKL!?at1p}9dj<2N_{{J}d;>5J{`G@o|GdX{O;`i&ix)5WMMN|%UBU`J z-nrSb(M6=Gsi~x;6}OzNipQlz`So~__&%Z4nr85!!3wLZtM7|7$P(EUSr2!AN95(@p(ECcv@+w1 zpM%gEk0bZz$7Q(Vg%0YGP(O(Bb6qhm%gN|49k45EY-CVSP>4-V?gK-DG?en!hlUWM z2iRBKdlid&bP#p^j&ahAZ%1z2&nRU_GJ!|Gvke4D(Uk%P%_~>>zYk_?!X;X0ma>w64P?{R(g5ItWt{rw1y_=-|QU*DciKGuK8g-LK^8 z>)S_9w+EY@O1lI*glUH6or(OC>!L@es+}AdryyE-3-Y?j{~))?Oc>s4XO+zafH5EQ z9s9q<90I;SB39^?OK{UT)t7|%vA}coUzatJj&{icirmQ9p*$#+O+FpdKO5Sf^z*C? zX&qqykk_7jSF3zbHD5V#z}P=FM0|H8$B_BW%MPet5bSxusy@YGl%kiuvXbgNpmcRr zco!8Ot4RQfR)b_gSW*bv+r~ zDh6(aSUP(SDA#QN{q0N+aLQfcTwT^90wK2&FiL$-d2qXcN+?*>)VOyCyrrrgo;Dom z;+k&c>(BFHQi`MQ%d}OnjWY1ADC6%T2Yj{?6fX zR%lkASCn$6K*(Y;rUO^?uZ*>_E6Hw2mTmt}L$Cp=cLj=UIC#WL>t9<<+0Fq5>gW)) zw6vJ85dnbRy;~6*YgZI3YZ?#Lxo`ROY(4wZu*oc;m=0Ar-vHcI!Rz~zBhUUr^XIYi z@L<5t_9~uirabz;NBvgHV%MQcZE-34q6rEq7BY$8n#CL_HMX7$HQ+5~Xm)$-eHtWw!h0o?Q5#9_aRXn}SZK@JO z+ABUH7va9pXWf^`0D#?7TGj|MPs=6;!tg}l={YCHx_v8ISE37i>n&TPyX&(lRaK%x+2?UU zT5vc<7E)9X@GkxFg45=QJoCTvt~P#n9X&um#u1UtY3lJ@RFtQuurMo3s7P@@meqlK za@z}UU1nMiUw7#D{N5fn&wx;QZq|3KwFsrg-i_nd@;mOo#*egk`1%I#KVqjvsHn@` zyY`JpcAsWhn>wL2AZ`_i?C0HlFlbbLS0TA*L7xwT0Rxf5_|Vn|jFqSNN_X$Iq8OnnHauxF zzecR;FKwlMssvYA3EmnRr5!i97IzS&G$(-KmnIxw$X(4#33^@aYf0e`aZZQuQeH7= z5xDmPeKOUF6{fn~oYYTL4NgA;ir&7V5X0Fi2_p7OCA0XrZ8e+JzaG`0d!aO*B;@Bg zb{l1=TSn6$PY8>SgWXyxY4#$>G9ERnC@RyUs9?Ap3`8e1&74gI1iL zMUy&yw}S|Qr8x0+y>MS!c*i*z)_U!JC6zrXaaY{YS;3hCA;>%!-tWcTlLG!;`~bhG zR5I&8;wG$QHHX3)^@jnbBSmw{5$NV2CF4nc0b95IWK8CbVYmqxF1x&h(e*1+)PX&V z#dIpR*0&Ob^XlFR$us@2=e$MlaeB1z$9!gP&5B2clmVgzYy_C%n6@xs zqhNkI$RAgzuMU#uRE2}KZa#;!AT7@`u&kxJ<>R12c1`Vk9` zGrM687s?=hD_Su39FE%ncA93f$zi~HCCOii!T{<8}0IvIn z7qb|rAmSA@9T84Z?A~=VK+OF@1FBDH!t{HbtM;>`_5UktYoh!ZEXd9XStfLPK)HT7 zHq7Kjk7sGhmLZa+E8)E3=l=VQ5&whzk$qNu_a@5&99pDFJNw72EbMyp5$2#>Q<>oh zAHT&}7ZPlt?mH3mYvxy1NPJ>7l=i;DKUiKNMWl(@Y)dA;BIh2gj3 zGw1b7_jmOq``S6Sp9!~9Z>)(pfYBE@`>p&K8z_I?55xz>FKZDQ(m^=sx+X>f}*k&_OEEIOXaii5q0onyOm zrMvnIQMSAkJqU=O)mti6Qm)8v_v8CIZ82kBwF z3+L(x+2r370ep;<>8f9b+oq|?TV7PbFjAo#4PhRe;#30B@q3~9S=J^VNRa$)>)!l+ zf714=%vVOukH*|uT|~}$kDoN1sZ2>yPJINIh1(OX{VhaiR$lk%F6Qxf)j&Z6HtWeP ze9x+5uQPqS+nxJHmVmstRmgjxtNhe{KTe=@R^7{__>>a`Id0AjkEgF0U0q~I6zP~+ zq=n-fjtpYpY)R)G?}T09>&Hg&_t*GeO0$MOR{?#;#>aTu_bWVsM@k}6My9dJs=RQK zWprQloe`P2=PuVVJK-URjFzW!pAk8Bqx_-mbbfEw4fs<|8Oj_GZvN6Aqr?{F{X~R% z)z1;qFxkORFli&-G6ZA@R>O1TFxj3eL_fxmpL&09KVbpu>(S2(dP|-#>^sfj=FrIy zIZOzhX^UbZ-_5_pr2W`REXfO4v3D;+?T*#b2Uj}^yWmP(REALH;njXytjBs3;L{b? ze#L)@_iuTqt`{`@`bOiilKpCh%_$knns!A-$n!DXB(jdY(XUX(NEGq8 z1wh43#O5L!)B5w4Usa_d@Af7*0bMvv?}s{DIFSLL78KiaJBMpains<%Y;C#vl9*yp zn!BgR>ia+%WRdvD{me|8kIxMVh=^3KU8D9{|0*OUG?U2kOsC4~NAJB8%f{wMfJWco z$5vqZvS!W2fL)hd`2gDf6t;d~M9|n38~LB)6H>d%dLD0A zHdo)+Nqsh%tBtX-{ug5DGQ)J6kejlC*=MwCG-*vtOwfzl>#hj8ZEkK3 z3=iWWWhQlmo=Zbm2+;JMki0hg{HCON@aaXhT8#AD38_M;q%Vn(ntYW zlKR-eRnxaRVnsq<^5VQTh*0|M3JDn;$`An&!jK46na_J_=*44O*X+)`&pDcA_p^2H zYj>0PO4YqB`>9W#y2i(8oaz{Rdwa`2+c`LN&(5B{oR$6GgJCh5k5T?c&`)Rs@1lZqb?dIi<-QGr^{)-h5R zg8Nc1@+CjK(8wByVSlPrFRv}c?lt6ff8vs3x%~7ts9jrH{}Ok}t!{2cv_Ae88-hkB zk+ltmwlG&91?GC|_^L!&b-lQYNWJ-MnXgppMwjN%(2m4LaA_Q6P*`EH7tj54OyVKy z@9Z;-lAdMlMAOGKknO@b$sJs#6uhn-c@QDoC$^G0NH(yDp6#j^--wCH;x2mq z(g21wHS{aQ8lz)Vw@o0m)cu)+R-DsfO{$SpgP&~QqJ7s>E*V_svKN#dii*&z2Zf&P z!MAQy>=!^~BPu#{8HPAlg`|!$OunTXnWYE=C7oa3Ujratinu81bYRrlHZ5h7+d>wM zV>Gq_5DBSz0qG~EokB*^84)BhOtAq@yKv!G7&jGE37)kpMuU7;PDYfV77srG9=@E5 zADWmBX3k{WTnxHErWCraKIN!}^@JrG0lSZIz0NUR-FW+g@(a~Mcfj%B^G#xeL8wkU zE`@b94s_c_Irn2GL$nuN!t7qb!_Dovy)_Yy^yI(defhSnta*z2U~Aq1>q2+czZlZ+ zwyyM5=peIn-+T)#Qll+AS6t1=;7!aVE}e!p?3Cz zng(Z6mqUBWLig|6vAf<~A2bd;Zd;~9MIap$a84pqfjLG~1pmn4t?|FWn34jSYY!0H zED&;___-MB>aZJ?L85r1#cG6TUWCHV=I^0k0-xIMb4*vPuY;OZ({2fLk##s}XHv-t!@W7i9z>RX4Mh^Gl8OXc!mB!ieDuC$zkHGN@=X+OfwyFNw=rEF%u z%OO;7qJs&sxbiUxhP-0?m#e+8%Rj>&VVZY8CTpTVHMCTy?GX(b8NM?*coGaQ0Gwed zs}3scwlMOBladfWdDnwyd} zJmYvXNr6tdfvWv)#u0o)3#vd}@y46w8JJ_|vD=wQ(=C%cR*^FKFrLF2PzYdV-^KrM z3=v}hqFF50MX1Wf-m(Yd13Gbg>$R5)juRdN)=kovO<2&tV1jwDe?yZja7)ut$|G7) zj03)8$Xq70@s8^lR2F|@rY5(ittL(qthAS_F;p#=#VSeoLjdfuw z@%F=&1!T3=Zc#+Zm2Y(T`q#$UWoQR`K&~yfJ*zVH$RaxC;O|0&mb`W0H&dP*){}DH zj3;;<^lDc^J`;4Xu!Z19X0pP-9X=6%Tmk$rdNYz zX<`>}Ar_-r^uC{N7dKG6&3@m1#Y?bA?^&u}C3Q|*ZLdUj z^>@+umyG9uLp`}DL+K>mUSEo$wQF0{bK}x}Mad^~hdpwUAY2&TRv>VzgNY2VgL5rI zXR&!p164nqa8wwHO4ADaEHy`#O4EhD0kO`lzZA?vWgSqN3Ovvkblu{rwfSlpGO!AK z@B)}%HsyNCF~j2P!;Dr&Z~&9K;$r_C1^31w*7GNb0mnPIf}p zWI?#$nHKRje25xpSO({YHiv%VKZ2=r)+zpo@P5!5Vkngjq?&Y;WK%(|taZ#V<0 z8(eGPL5*I%`_YpvO%r-xFJxg6LI|?B?zf|i5Y-X|MVO)GlxR%o(AUKU?4qE&4M2JF z@Aj-XokJx^u24lM)hvq|u$a;6uWe6y^6lk!BM1P}u@QjIeYZpDz+F>37r|?Ozw_6i zF4^~e9Y=Bpn_Y|Y2G8RBgQREgi!wI4SSYe3`02Iv)>NRm$gA;~;Z}C@A1UCT-60c( zy!^fv8L9Xpw*KcQy^6t7aXW)i8}2oId>OWo>?AB3sj5d{LYK)v?XlVQiE1j-1RE7O zZYzmo9M6f4V?&hyd!$?;49GSpCdTdYZim(iUHMC8o($h&1S|zHlHbC!YmPgV_9TRT zV+~QAeIH)kh!n5G29-@OinNo5wNP{Y)@zXFXQ%Xd(DDsO6I?P?Nw%KtHT%x6pFAYffuUO_A1&0CbJu?V||97}&!A=Zzy4iVd&(r;GHQ zDgcsAn8AB=8++b-X(rc5=wx-|6fWRGsA6@8Bc&Ph-4JYnihvrsS*kF^vr|wz~HlMlBv)oWOn$ zX(iO7_E#H-pJYvRfj+Q5CVCE(N;T5W%66-;3o=Hq3uulVvS(LVua&T-ki7r)Jvpdg zZh1N2CYB?>5mX&$D$uUIQ3}3=^IuU9TsEL$w7ujwGXOY0YC(t6=Jc>vprGowRP`c5xm3DUHU{n0!*xkJ}ieX;}6hd#>VfQ`INrXKsra?_S zBIwwfuU7VK?02}>14^*#XjK{QNVB^{gIKw}mSs)c>aNlx z+>6(+5mc2qHAkMf{+sBWMCB$G12z$o76x)ks63+LI#a{=!Yl;;oW$MrwJ5+|5I&Au z* zP#~oboWgL{jR4*@+_3yy}3Nz{7N;r5d*4%T!D(tpIuHLFWfe5*mAE?pJj(Sy=Omc zm7iO1Fee&Za*IP(BJ?kYE!?{g5C^85ke^2#}i@6(vhHdeRly2#=r zMxPr_Q%280*9~1vbJOl;{9I>(!67(0juuvEB|sn8wTT8)x>+)Qng7Mz$QvPxpCcn4 zFhT>$=*%RA{BiCm-+K&5?V^unl~fy^&tTZa#3(_4AJS$mJ3cYd_4R98x82q* zJ(M5lcg4h{~Mr!@SK ze?Ql6AeLI|Frp1V`Jf}x$}NAqJ$6&B!Rx2t?fs4U^c$rQpzoIlnkEEzcorX4in~mS z-iG#=bZ)H=zs5^T6oL-CJpPzoy>^Y;*wj=Gj_Q<&mL<#n;!H2&~^S5?))j|D3Nkvs1bm#+j6@R_` zv@P`h?}mWAySY;C*cvIUQI8%mfrk{9F^n;N9Pa*sCl_S&6f6%`dhwtA^_ynfg>|Iwp>cXwp3n(ldz7OA01w`*s|y&E>S zws73485I70&+vou*SD}By?JwzbkJY?lcyj)F@2~-t3QW;z|Z(yLi&--CNtArAqfc@ z-x+T@S`mxHFdTdfUs+gF$j1rWx%Kss-no}6$4nR0*IV~kC(2D@et&N0o|xEu`J=q7 z3;-4jadUU?;d;+h)YLFHD$L?w$Ia_z7PsrSuZErjcDn~<= zLXDR}R*-V8GSddqR{tF_t2d9X-n5$A0C|?5}LHdH)B4f0f-zJ7;sh) znY8uQ3iyf>#oVvQV&j(syQS0C)|MU-5n<=*D)RT>K%42J3;cqF^j9Y3+xrVCI+re8 zGIVpR+MbVLt3PQYVY;X(?lA0fyptpD@C14S1q20kf6X*Eczx?Rqw-t18Jv_pqnzKy z^%Oo{UhQIyluQ`Q$=SK&YiocGcu~U?R{1CM-7z|_7tzU|?v6dZoYCaFF5KJGqgh>D zjUuOMLB`5vlU+|NMS5**Ej1O@*g@^Bx3pU6-vd@Fe2MLca|Ifkn(FWFEoND2cXoFE zo8ACdisrj_?}|7Zv@9(0ag_*3N$<+v2s+$-0PnX5{(I{usQ(_D)|%i@Any*nAFr=GoZKb1^hAyLocsaV8uK$o+I*x0HNGkbSX0>dsnp5XRDjJ zIXEtvwD@h(qzvv%y~~$3{j;<4;M&;--{G8fSJu#k(p2x?pJ+feLXjIEOB_dqMUhho zy@61`m;>Qy=d0UesE~AF_p>Von@g%yI1}JC%-3PF>)9tDGl=N2_B8I)D)# zNc=cCxlqx()&;n6{`QA|Eu-V(yL-OJDYh6Bef=bOGayga2uCB#L=g*mSK`FZ=w ziHUjqA5VyS-Ml9D;HKG47=_4N%iI@1NDa{cu)+coxe-LYSsSBzIq=D^ser)CSK9G6 z_XqTX&Jw*$SJT3w!j3>VIkYG-xVV(GcrxSDvk)JfywOseTCa0S@rJ&WKxd?a(oBVoXj&+F&K=C`dK-I zl9G~#`cg_A!jHlvpMMyE-o&q_t+{JjMF_cBsMm- z|IGjOLoUL?!g_wVTvSnb;XR38Mn+KG^Y#Cc+s5EogcubI4Z_-RHTdV3=>GwIJU zks&Jgc@F;k;gpv@dNfFxw)Mx!mT6w9PrVzl83_0V_|yj@sW)A1&H{4Y;i>$5_9|uIsMeE(LE~%hllxjd5ByNIl|E= z`MSD#Zh1N2fM}FE_3bC9@N{sdRd=taoN_oGiHcb-b+nAb9^*&+V$a~ z&_w89O)fXrg16vXsvBo(vZz+cNNS9p1SKtthDSXi);rqdSR$in)ipVcOTOqt7f6q! z**Cpe6joAx5GP{TmH%$k+>Zs(xQT}#Tr~!SKX1frP;U=S=F_vr#Ksouo?G1+zn_)D z5fF?ykcmqk?z&DK&ZC`0S*ULALA__qPx+t6el}ma`}-TOUdrzX9_{>vHxiG)mrV!) zagYnSvr}N;PD~ead!l);hVc(#lW#H>2qNFuY8mKO?y@c?Tr!^#mLsR69MXST>ef}h z-5E>d7yY(6X+kx8~W zBB3N=WE`6(YT(Q+ ztdYs}r=;#swD&5cWL+lKFhvl%pv!BRxQ)7V;xNugm+hc^0NJ_n-mpvtXDkNB@A%Te zLLmW?nYuXClxg!luM;;6mfEMIwA)6JX~Cb^?vJ;U0+W#89cC7))r$gQ4kz^ze184 z=>GHZ=g;c#l%EJ*S4_Dr7n|&RMZ*%|(Qe=2XTLlu?HFKOwIT!IgZ1@x2<0ngKM&K_ zNe_qU5G3ouCjvpD@z%nKxL7St*!xI}v-Te<`X-o#3PcgMNxM80G_q*@RxHj)QYgg9haYqr;T`yW7hK$m=>M_nHJ#Tk?(py6H&s?mp zZI`58HcOJ{ZnpP$M#s9`kl2DCt^KMkNVtEuFD@S(kn2pt!Km+uV&ok>zEuWwn(z|~ zzNo-)N0`AFF2v1(;bOP8rS~DYjT79)YdmrWG5q<6*8QkPf*VHWGl@CNb-WN{88dU1 z z$v+!Z>a^h!_UqnN)$bb?WUZ(nut%lC&ZI22e;J^1Y@bx`UZqi|MRb#h!9}>6pVRTZ z7W!wEQUMBUT#`C&5*~RJ!Xxo=g@Ppra{7+9HRzwIw2htwZJhSEb-ml!*bpd3c6M)J zl)W^MQ_aE;|8qhPBj;BucQ0cdy5*c%TIH8BD1yh3GG^Q>(mytbzp9}g)T8GiZyo#X z1zkVO^QM5)a5a+F5iF(3OTOqrsIFOukPDv|)Qh`3(0ux?um^kA;aZ%}9R+XxGSYhb zwf{^r{mRvZ0>(x3_@B6oz(I4y3nMCPQD^|ooqdG*yBRDO`_eQz#yGaOuD9WiUuFB@ zLj9+;`hN$bkzmtxZ=rtk=IgFl4(TBu&n$<3-m?>-)FWEaF_d@{HUAzx79An=P-h$$ z%#CMP1soTi?(x^cmV~V?e!i0hhCk(D9kRA~+DI#RbV{X8AC3kpf}PgdVZ7o}H#*eX z^sJn%rD~swyiY~waqGUuCHtDtSc9iueZ$V=ALOnx>!iZP^~1)}V6i~E$n^V%uy;iV z*x~~1)Z|y0N|iD`lHG+kXn7}CnE6(Qt6uyj73<;)ffi)k!d2WqPx?M_iH}@`u^$WA zfKidJkk5s8#3uL$tphsTas&D%Az&xL1%DA_rprf?gObue<%`c(B>dE!YIsVNP-IjFTcIk+xs}mr>F5e%2tDrwa~&D$}0sTu4S0I~Jg+Gd zBxh!C#ZCcEr*3fj-@ZJ*bmQ!KnGB=kxVhXF`)dO5BB^@FGW#cTMvkm+iFmp4nf+FE zemC=8Kt~rwxFdtxCwiIO7JQ$%4gFgy@i63(jx8(Px^G;(pRV{l@wC5>r&4xb+_zGU zxP+;4Uo8$jf#>4#1GLXdYl*7!^}Wz_n^2Xis(mELn|mrYF_d+(oRxZuuUY;0V4b5Un9?DX$-Pft45Y^^lCJLu%C z5sm1&j_$AcGhK^$+38rlxDX}dxoug~q#vF$7)sgU(mFt1Q!Hyf# z&DiNw0_o-IDG-lm7u+M$+7uybU4_v`1c~-Fj`HgoC>sapVO#x7ARRqA?oZh z##XvAs(O5QJ!6F*BduOEJom-awzDgVIql)YXzRvXb8Q6dQ3ge8oBL)BegbbSJSI%_ z_4TEBd5v?wbiaOfKRh^JKLA~-Ei%bkCUG+M5UaYcPLe~wR80;0_x83=pU7L}dhQv-_W1F{p0k&iSLHFLOSGto91c=~x1ZI< z;6na_pM1I)gf}OZJb(RbT!p`Pchyx@u?C(hQy^OU`sx-IOllV|O8746g&c2nBjI&* zGT#>$?MI4@xE81c27WkxO?9^06Av3QB30v-3+H^lcPsK;iO6W@vfb9f88g@Z{QcCp ztg+)ZFT)zmKnVH2V>pf@C zms1?=T5cWd#4pebfepAX-1mCr%)QO6>2t?N-8@ZUGb)pet0HpbX-1!1YkEF@q-BlN zsuPL(6Bx9sEnKfinxL^u$J))&zf`u_uWDgde72la3lO`RKMzTUE3M0;O^AlqF5tC( znI?W46Flb~#Auu#yPX{yYhlg*s;esTCd9+2lIGR&! zyXwsi;H=w)mS&lA!%J9rvi~uV454hZ}KAJVxvn;uNB8%h{!dQ4INzeklD1 zFBM1FY5hNr-)c}n11pugu7lDmW`A&q8K<{@o0+Q7(7~-k0+_EP+1nZ7w=Zv>WQ*Jr zJbB&o>r5-$a>;Gk)>z)JYg!*@c|GYVZ_RGfLDPv=YPu|~jOnH5#{3XFFK4>Gd8@9U zP=NNw5g|y3f0ij06k1;drE-n~;>_v73CpPQ59Azu9oPhaJo=aUa2m}fqSy^+?JC14 zVAk=;+)?JJtIAKZlYI;-O;{GZj=?Os{N1tw;Oug=&Mv-y<`Rl2b<{p=WViCSL6F%%k{IAMnBXL zkxLeLu>|lU!hVH{4~L2}JN=60YYy$!pPWmSw9;F7c_`zUg7L6o_9@+X?chkT->j* z@Zh~@i)aGJW24JoVm*pT(8J1qywmX#`@z_Sxiu*%OcXWJd&134x@t6`__${zPhd?h=cX?|Rr2boZdi*P<&4pF$_xSZ( z;~lDgECuhey=f^r_wE{q`DTK*;2j=n(fI{2`Z{7`G$kyA5mPkOg^Jc5ESX&hAmZUN zPSvm`LG!T(1#{xB1x~r-AqT8FVt~n$b6ETp9_<;p>r`5p=QI-r^m%Vy5cxVBKU*pb zGwsCoCX*s?v%mJT3+n30v#GIKSg`2dIAw27raCN7%j587nOMq1(1eR3C!S_2)WI8) z0ZhuIn??gl_pYs>fjzE5th(V{sXTUzZKNn_U6E6oc#5U%n$x2{)`jiOikhQavHYzk zVru^d2!6DyXU~s6yc`8+^;6$R16X%A_9rZgPJES&(=g>5fY6l6wrj#QH8!WhG%FFm zRsfz*J~)D<1CT=9WoW~y)B{DS0KD2$ZA9}I__0Y;2q0m`Xzr-_N0PfO-28XgGdHZO z)l)Pz_U`g*jlN5^!&=FMLu>_j-$&u3GWMV9IrIyZC~)9&i%v<}lr}IJJ`84VSuDZF zi`=H&9S^O&gf9Q^%YGal|4YyJO>@!s?EW@ zqK*OMq~Mr?xa0zUVI&8|=1}mYWm(2KGNO-Zy}5Y9Sxd0AOL3?Lyy^_ArjZ#UcjF}1 zCY5J)`0sxnfnhG5#iAfvE(^=)#Qvlmq4-OpC57Ntu9%vIHdNif3klWKF*T;^ia&e$ zpQvHPLKn`wxgrvQgf9{V(uT)sJ zx|*`#LBsfL3Ag!wGewX4xpQyf`|M4h+P0`rHrPr!l2$U~5}y8)U(rB3z>9TLevh&&Er;Z?6IP`q~r7fze<3k2PxxMWX$>}61UHIdXhP^jYhWmvH$!Zv< z-%8)o@kwf;{(!^3fI)ZyG~M)AXCoc67qxm`ob#b*VCEwGf^0J)GaWWJ9&8ei zjrD7T_?ZgqO95`~?(fqLmEvY+?Vy^OjUZq{kmt{z+Z}Aq5fTxp`uUw3$W;`Q5ilA% z3iM*)Au^K@yyQodo=3^rN)r_%XLni4@Hp@V0%QiEcQrL@oZiU&v$}x3MXl;!uP>R6 zH=N&Xk0z|(s zl%#dCW>VpWE65MtnwlE3mJr#K-HNapk&yY-)wub2hxgsxZ>`C)BpmT?-n^Om=#ikL zs8Oaxtr!_ndHu3io3~_h(6T-pdeif<$rpL~MMTI%MMVRD)r^S;ZrUZX z$Wk@l`lV)IK;G2UlsELo=2JQkQD|sr&%glPldNL5?>40!8BrncaT^>sGXMUP6h^Eu z_jwd9$Pq&P_N2m0sTB=#3JHmr@UjvarJW{ARZ6f^XDgr z?kCP%gQFkr3v@p>^EcouUAXAE3;nE|YD$Cr4S9_^Z)dnGOXchvzvomEFI$@#Y{5{DlZ!6Dirlv5&-3N8G2Bso`C zSF@DElyr1;pBca0+<$keZRnhy zK!q85XMtYktC`){yph%ZyM(O^t)ec^uG+VWL>zQyRGTqBjjTrz0T(qD14HaoV}R{e z;PvbLO;md_)A%E zczMkA@)nL=93loTrn6c>^=M$y*w6}E8~qVL@fjFC3qO|hF6>Vq>5_<}bg-4ibGQIK zqzwh1X3`X2p`x2^7YS=*hWTs<)N}xuB9motZ^4`%MMjbqKG};h53b(3ffF*j@xkK@ zJQt3o;Ny0N=Vi@TDoUfH>4}Hf4{;TIgrxsU;L;&Dgg4)IKPMFXsV&;}a`GP=+~3%SDeQ+;#3POC?Y7+ys!NhtlAEd;8hRgdLOxQLKcVD+M3J6OlrP_0+YPm z>af|BPqp1mn~qT9*1D;MAcKArwFNiS}Yp{cL0U?H+*&YBZS6-X|%k`sK&jwdPV}n0ysOq@VzZa;>1;_wOZ!WcBCuddxlET6WyOq*6Lov6 zGfsgUqb10i;dic*L|-gD)vH(OmIiVXrkjHoe!ZRPg0EFKhIuE0H<}4aNIK$ag)o{t zlEg1Nzl;YpAaC#OVZzF);l&AfDrX><1%?m;A38nJS%SPki?sKNj8dsjpQfNy>srOT zF7Ryc^+{RxnHE+70fB?rND53h57m04tubd`S%7+)%zsL@CHK8+n%**Hr1JDB^M_-+ z^RsP{u}Mj^tOXa}ScpKpQSauEx^H6~>7%>Pb)kpM_9MHXT(bEBEz))(BZ?dJ=X4|b z>|*fFkY<(JSa~1Y#B1k-ymOeY#mK3bpZdzS^R$HNkT!gRy4j4>-0>$_gI}=p-vj%w z)vbI&`B>VkD~_5^JZR^7)A8@Vd`C*6OmmBbk3@fB$!>PeBJ@K({cI%Rlm`oSqhGLQ zzV^aeTL%XzY(xK?U2oh_n)K;r4g8*_d4`=`OpY$idt+Tk70A8eri~c@_Y4scp^D-F zFD(t}IbNp9;|WgLp8TfQdm=+QsJPFfpr{B01fKSNOg9(R4>hCn7tVgScdBH*hu;7; zV}~Wq6vjf2ZH_;^cm?Sc5)n~{lHMltk28c*9IxhGx~t_@0`SsHUZ+n;&GB;|pAnQJ z{u__is)f0pBi>R$5UOAjTm9!@{=z5y1L$nct*#Ow-oCyaK&13ztGI|r6k#jpcvx>g z-T%u>L5Fbv?ynmi?3AHzeIp|)J6H5HlnP4bthb>C_js@dr@I19yQ1(~V|TW1wf~yS z9rr0GEb_fgt8ycmO)==pvb($cC0pAR-{k>Damuv7nBfnV%7rumWSgq7F~B76Fbg9Z zOW8i0fNEEhora8x(``bw)Dzj2*@R5X-`D#tU%GnrUQ?3-oPt>3$)9CPYU;@Re6Ash zI8rE^ns$99&j}I@CXzt$9IDAJhgge_3}dAq1uq=E4|#trW820YPe4qpTa*1xR8|%P zE-o&Iv^4##Tentb-YL8EXGKI3P_z#W82IUNMSe}Ux(g9XBDk3SUs?EU#vV&tEulNc z4*D!jRf)UGKhqD-GR9@893Gp}dItyyo2W$3(L9oS;JI(Mb}OGPbxH zfN^o5Z}dLd^i_QI7(bRDdCI4M1{o9r#f?o&d`|!F|MRU}#o$XtV*;&xwP4}$Fs6KS)onjGMJkLyMYo?KSo~i3k$y&s%XLv3k$;~ z*k(PGO<|qDrW;@to>Rz_l0*(9WBFZnECvA>us?yU^>y>=!O3N%7v!6itZ{NGg~oF$ zLj~TqZgrKKSASzO)SfHLaZyzjWt-DtFN@tiLq`tdcg0^{uIW@)5M?|K^dKMk zp_?%g+_!-9xjb_I z--yv44qb#N9+N}y)*rtIky9=lPX!A|eT864LTC~lT=#l}W;oM>>xN8%Ymc}3>wtv{ zbTz_GzOOd9k?zoe_K(waj-f z->9ftUS16F9cETm#sZ2FK~d{+8exR^Ce&y5c5b$PJ7BTme}!UdLP#K6&>5Yi z`b-VZMD|Q~oeV#e5^g|UfoC+^_piU{XWg$gZlr00b_s)PAT>!*+d#*b<68_=R zxA-z=Rdim$0-U;T@zE~;DFsY|dR7r6lo4%s?M~5zn*B?oIopYWf@o$u$~2^bPSIu} z1J{j&mM(>YmNmu`AqmI+(=a~&Y#ezaR@@%Iw~a1T>dgfu`j?&O&BP^BC;kf3kc6u# zD#;O|-P}>b-eNCTl(g#C@+crj&F*pYS-Qj@kQb*o=#c1}07QlzBaO_ygwqm8{TuDI zyRDp#8`DHTx!t)aV$ zq`7WbOZedu-SOg{`1KKmXnsab!#Uoa?e})4Y-V?a30`(uvGlMwxwy;^8!C5J+IM_o zvwZDD1R3fc^!Q7y>Z$f;!jvC9evJ2m$K=6fvuI#`#f3lN{p(jfd;A_d&l^3bfE_fr zyG=mAe&+dNY;CKDJ7xCo{!GlnhgT*RAp3OYt0y4H(9qE4-X5Ax)jN5pcMofMR-9+y zkk#(jeXsajg=B@JY2oZ==65`_j)pg(i#d{%A!;2zK5j3@efGt5qQ%wKwLzRS`_&Q{#K{RusmSGnVO-HeM?o`0FY0YI85=um z)Xsg2klQjQ5XA70_BS+LTzKzBMp6QU&8?Yi*LD}rtnrozC=ZB9NG6g$_V-6UeL6!s z-FR`XUD zvy9)$8CZ#g*R(>ZMa_=}zOek{!0jR)^s)KxN(z4-Gr)%>UJEa@7^ci#*O0AMkhq)f zzw#&$FTDIL&{M-o3bErHrlpURA4r|*lU5*E4BGcMQ{<0Su{VG3Uuz51#7L`EWNv-V zsJ>JZ`Zv2h{ar6471cXUERbfD=c`2>bRAm2Z=b6$8!mCeh`>LcnV;j3BlpLlL#S&2 zOg(WI-UM5LE+*tlXDgvS=Igu4iwSaF2n85_A-tr+Wn=+HFm=X7I0DCzBt$=NS)tnXd> z00*B1J^PuBp9#D2qKSzArMX_;0a zFk-+}ErbPsPBphcxems(C%@6eL5w~16ABrzA)g)na1-3gBey`xpQ zus_LdZA9x|`}C=_Te&E@!?8u5di2o zRNYe_!yHv$j!PBk?Xymf5vDE5F+c9PK+w|4i*Mj<`u*2@r?RG%Bwz<(Dk&_xzwVo* zeeW-O{&LUvpIPbABaArt>qw>J_Gq)6_0F6FbnVC)8A!qzADthkHwqm%052K%eg&-# zuvzrQI^O!oqL>qS&mkWzblJ~=XZE+ig$@(R;{lb5d0_%Io4h))v1LS#0NK2uyFlLNU-DVXiZM_}#4{;r>Uv>Vi< z)U3SmN7|R=j+C^-BsDZg941!P+?7pGF@=8tgidea0u~7NKGp0X^O{|J`FHkuS=)^C zQ&nfhF?VI?eXvZi4Dy)7 z%ojV61vSxdAh>1-AtLUZO2>V7a?`_#oV+jt-9GEPo%3KRMB2lIU$<_ti1QFNo2FcDo(I)s&peT-Vc z)w!=VasSXB2J@@f^?H}@8nwOK%PvbP?q~C*VGZOkY&k~&fr2t8O}4ZD!Qh?~3|q`v z5fVm@_mC`bF1cmXzY1K8CLAwZ?mKKg1J&%^K?>)a6$lr1^@0`UDEnY%acV9|0V-Bx zo}YombHdI`U)zf*D`XlhQ;vRx@5!v^MEb$)@n&XH5o(FdQir}}VL!y_kRRei6*l2bQ z^b?^|cZT}tw!;s^3mn(p3@JvN!ps5tF^`*RZ4TB+!HCdGTo+jHK%Zg8x^L$5wgEnm zZGR}h1kQn~s_Bj)5489KUG%a2CdFfW^87@Cj_r4~FP~r8eA;-_@nu@akH;90Rs&~& zT95+}+NgMIrbXU5L|&}a%Wl?kc`oe74x8(T%% zWABo3;>KD8?2=i4f+?7F`kQ$>{5_sbJB0FUT$Ok6vM1j3cy5%6w0x6f%~NnJF4$e&oyzL>1l0w3na&C)yF{0Ll@O!MVn~)I zC5CEuqxLu03FU>7RH5Fn2RT@`LUqw5loYuZxCa>v_)+fblRWPFOo7&cx>H?soa}N%2(LSmsm+=Eg zAHr6&DRj+=6xTGL#pD#iT<^ldEYZqZ$mEc-BA+c`j90Ba^v4rvhj6N;{)qM|q?C8-v=Q#4&&*EIAxJ3F&ve7I29$HtZn z{4$Y&uC&A0AFigiLU?mZ$p_2lJhybG67a$s9+nm2pFUP3yg=uwu(eC{{lQpV^7HE; zgGD)5Dr#y8{~wnXe)n)A;b(O-?8YnYwY0U{0Lh~@aY22yn*_hM%MFoS^Yn1GTDpUS z2-V8kS-I1ZX4r}ey!wfSsbGTq{1(QPP{x#R8aXRk@lGBdN!sbWHLw;CeMm}4VIlt$ z=2kB>c;)ule$KSpXrj0yc%Lk)Hl_^r7~c%(;pp1kZGGxVq7IQZcky|v=oYXz4rqlf zBy`c&R|+VZiCoa?s@%F&+v+!B1XyU0*?_ygm?`YhnRrwPqRA!IhOL6XeXuf}H912v zF-SMxYztA-=*^f-FxktOF9ZMXj>+#H0iY)?yE?IV#l&P-pXg=5RhItu`*DBJc0)=M zS~_J@(jk&4id>pXg8&~JaO;KLQ8xBa8qI3i+v#?YfNU+KD7TM}(v_E&gHjkc0C#y_ zDJkmEP}2bp+y9-5XUqw`1}X5QW|sv!_}g4rcG{C2P5e%nrnBSAE0^JW>Xq$WpV19ZMh_qN3!tZ{KD(@A@F`!3ZUN{Hv`IX}&p7 zkPa@9-iw4BtmWjwlPzDHifm;s)@=-PZ+gG!%HY#%jTXwWHudxr4Y_lNl7WGcfPerA zfB29VsG)cuaTI|31KvNpu<)$X!7R>X&|2Bp-`xL*oTpfGLW|zKphOWiG;u>@!wB!~ z--2!qD*7hc{#E5J{56oN1KWD@%keYl5Z-<8tO{YU0YK>zc8jJP0$&m%Wftwn&QLAV zllN!s*IDOd>LpHO?%O11);?L>YjgSy0sTH%kvGT->87cA(v^u|XVjVjZ8$_)ZS4-Z z3r}QxW3XtMFiQ5n5GP?BJW zQdq?nVyu)KD1!zL_^RM>8BI5m(hz>8+~mG10h&Tv2IR(ORRF4Zd79=ZN?xo z>Awht5k{O?nsPiUe?Pl!=6cy|^NNBfs!YR-oCWMAewq-dMYZ{LvJG^Cz~c}iBnV@g zl1=i#N(BFibdB9~yd%ho&alROY~LO{fQ3fU{}ESrgm5y1v}rfI3}5YCHxgA1YAQYGO3tKqc)b` zoj&tK#cD}iK{B5nHk}`KtWk#cVd8xr6w}Ixj-HJlsnLJyOez>_I%qRl1Q$e9o$>#JO90|#BGLUi2Le#Cd;9#tguH|!_+OkR{{}p#S zImIqGy=JJ92upbMP$S8ZjU{md)N zNIyu-O)6ySTUO_8?SxsNPAOF%z1c3%l&;C@QA)EwFd%H8kx#s6tY?WGpOa z6JlaG#;4dSJQY*Cl3n1qa1nriawj#v6x0-cZhb81_!MbrnXXoeq&n1%o6oOl-fN%v zLKimS$Mo3X<_to$R{eK1(0}bVZsXhB9emDHkfvpn%ec3g^ zi=H$xrJ5|)HjKC=#m4|)?25->L?QL3#v<01+kViydTu6+JU43*tu?C_$43BX5eqUVcJ)O{u zX`4!eB`QHMBm!x+S)({UrIJA)fSQxqRZ{6Q`Hx??4J}m6dIMN+~ zQ_C^Ofm#zuc7EVE`nuzv>m|_S*S*53&R|9LV9<9D4{#w1FTAHL*t@gobv~Qtp-%e@ z-+t#d^~E%he6OC$1H-~JRMpet{9x4KP%{PCal;wblqUDUBK`(D8zxj;@kFXX8TcAp?fKrPdh{enc2h9^(fqJ%$~h=Sn)V1HC&XR(2&b1`|+G1UR|By!H~=uoExDnT0g5`824t31a>%Yy|8@ zM}KRQue@5K?pglFvv_1OzgyRGV1BLOE1`Ey=QUpf?w%=CKVhy&aQf<-RkcJZVRx`& zhWpM?uf&5tNv{2!_*jpi5}>Lp-9G0ESgKUZ4>nKuWhNeN%-~5XFa6z%={KN|*F^(7 z8_QBk$EtJI;hgF}ax{Td7=*Yc$_nA2g~?)GNEu{jYEM_rW(D`JuKA%wXY=hQ-Bkdn ziUrE+i92+xy|evW#I2A{&0f#ZfRedM@;u8v#V$lzEkZCPH|RcWj{HdHFT3&n@5R5H z`@MJmY3=*$`d=cbn&Kh*z#Pa~y{q506YNvGuT(J|s)~(*gRVBUnhL+xqTl-LjU=dx zW;?zbtxOHu_z6dfXJV&bHIC$KQHlULKgf&b-&Ny#ODjtT!yP6B8evM4Iq?CvY{F}z znNAyoSpK2gFTeVqA?|Y7G4DbHn7}jxU91Rm>&_FpimqRT3r;(hnxFeNcVMDG8Yo8A z1m4h59=CY3&b0Z$3PJ0&+kLX7af1<%G^U#aI2?ku?<)_Th4;NP0lufxjk;<>jp*3g zV+$Yz!{8S9r5#8nP#EL@B>6`ZF;8ymvalgh;P{*YsngL-KEdH2@N6eXM-8 z;H7#>y#y9yy5e4IGVvPhOEV*Pq1l6~m(W(kag=yJGh6HKaojiXH9s;C7zKv@6?lKm zItt`qs0H48^r_#+L=ZufaJ_$=mROnkgQrr{j~L@rq_X?9{kY-sR(XNC*uwV3Y?N&~ zcWzC>t8UebOgtL<63Dq5<;BozO4mmOk5_BY^s`g;#D!wU;AJDKjDZVJtccy zW8wjk_@x8I0=?OJ<%x8l^P+4#Z-Kdpum9Ze*m?VuF&OJp%}Ujl6WjDu_T8rVARtfY zvVGc`CJjgMV4oYb{4Ywu%vwS20egF~I0lDqhVJgfVGzSFjH;su0=rUHL;~aneX5Ny z$u&z7VWuz4KtkF%-cWjcp3jZ+FCnd@nlZ zp-(BNoiJWremRIn7H3O3%%MjV^H3uiD+m%R)&xlxJ}GgS(3(3WkW-84qZr>dOM z-~wG1u$lX0TagtBWuM&hNm@Z18RElF{g~=E5PO=S8}DcP5px8LQ=?73XBW1L6UVN; z$hbEbJt)#R3f|BmXPCdoLx^+$b(NVV!%4LVC0<^=dW!XO!sef6dMw&v1PJM-f7it- ztUAR>k_;y2NmbS7elQvQ7h`?nkB#s8Z^@z^&yOOKaOWpWu9ZLv{|4ntf64LZsuyVy z^Nh4qlL)vFH5X%o2O7b<(H8Bjlr~xN3gK_JDT!LKRd_Dl_Mk?YgBl-MfKm8JpscxL zh%LqB=os}y9BaFwBsXHeYgpHZ`q0{5IY;FE;4*QVi46q;@rQi4;7yjS7D<4n%@Q9~ zG+cQ^6>%o@57E9nJd3$%&Wf~x%nJmt;&N~J9D*8cwtdm-i~TwB^o50m-ZyWyFFy@S z4*h#*y?r|I1uyS;10{ipZWXj>gYPF8U7f&1(Bk{Ox7g(QPXtisX#`vHq{%`=l$3-T zNX>{WRLL^-=^*W#pN;c`Z`=AF#2Y-Ezd?3+Po;o_{bumOu`99diL9?U%CXzNWAkd- z!UqPw{Lg7aHg?`vUyoo#M_g$_>|jIeLI2I?G-GcR*_T$s!9ZtgLvvS_Kc*|CRiW>@ z`GT7k%g~X8>tTe-nq*308~*MG$K1FL@~s_h#4Q%=EHd7Rs;a8# z-)U9>L?nn2@8NEbXvswjZ8GRVc(+tC0hYZqmFFfu02d;Lnytho>-aQq>)VFoGWX*W z8A*_|yRezZAMl?5M5i{V1ubSA^k<82j9A}#qH$K$)-=L~ZGdpcCnllnEKH=b`g3cS zF_~@+G4M>v1_^DJ%oNWcmO^i19@=dy_jPH^y%=xIw=`vcpj0`D%U zFjiDNdr3t5@Qb(KO^|v(I4!7pNhJ7?DF~_i@a}iUw}eX*HBvaX*q86)*6^qn-p{+L z{mJUEqG8v^u_(%?k@3axq28Ywtf~D&kZq+scrY@zkhDY`zJjOS@L1rTl1ZpXxTKA( zkB`LNyLT_y*pMe_;FxF3EiOib6pTZ>QW}`4;#Xc89_i$u@`e@@m?*yT? zVtZm4^|3&OR<%Mn_2Iw!BU>SM?i@`F1^fEQhL5-R%8PUJ0?w135B|HfttO>{Y#bHL zy=%fx)v40ve8$NBx7)>}SCLxJsd&{${I(Ath@l77?>xA=8>Fy1VzM&TC=ENZ3Bneu z-J}1TEOFvvulzSP>E?pt>Y=&QDu_xSZ?0=th)kN zhb@=jf3~}3XA{S~n)j!J2`MNvF&Ny#{f!j3A8Wm9R+wn5*=_gd_ab^h1}>p&trVo> z*Vlh-)s`=M_6%$Ih5kh?EkZ7CZi&$2z~?Vs*!WmMe{RHe*ZGup`15C6p7kc^6-M2= zSG#Ca?V{hYPj-(w#(V5+98wYyt0!`a-x&@i*Pspk52)XnenGj!vl^vnZ3!`zV01s$fw=HUGgva+(KiRPMN`0)&yk=9ssBcIPd67o_o zt9Bt{yR&0d{Kd7duFh_>)ZDB&XqUE|7A|ZnDX~!~Y{J#Ku0+P3-rgH;cbQ>x4zQ_t z^}>sa;I1ux(fchX`CGzIo;*R2mX?;yogIvULGtWn>GA@{%Fw?-dfAeAxw*NiJVXg} zBCh*0c@kB%wO!A()4yF{Wcm-E)p?IfCC+g_xGz(z`}hxBE~pcDJ9(4jjm0nL6#u1b zd9gm{;$@MqU%zhd?|U8j!y&@u>ovP#Bf61|5N~V^U32;9Oqpm*p(9}j%S2rPIc&bj;cZq|G3wwKcP*YpGmv&I- z&QEeyxu^tsF^AvZdw(fae6L#TA5@`S7)ST$^v;T`*Mf1Ipk;_ddhij$^%MivuMf1M1(|&m% zXZ&55@^t8t2bO@m*G$VD8UG(N22W(Lq@|@HO`7^W7kwM@=VpJlRMAvPhYp+k*_GGP z;c|^guh$>AWe;jw2?+_rf-e;A+*|uRsi+VmCMM1sUi~&IKR7Vpxj()>GBnnJjsQ8= zwdU|uH{7GgzV30)Q0WiP$xe~-v(i#hpz^Hm?`rtD2s=7DN_fwzfSlNN)COyTv0~;& zj~loK3$I~rBCXI>JGe_`syM*Vy}mCehY#A|O#SkPZ*V9(qn2Lw3tdU$aA@Fb6@k+b zy4Kg%5rm$eUg3DN<6!Br*XHr|AhVonku?(z2?+_rH7QV3-`Hm;Ot#k7CmSudP5=wP z_0;tDI9ARPBfkSn(mZ!~w$wFLAEB0Zn!F zUWl4*!3HlE{Cn$s7C_-~O%{;WFSnz;U$2FQ0)CcXzz4U=w6?aMNIv?WZuq^mRYg`@ z{1WVZ%;Jj|yhdsAJbZkb_#6cI__ax2QaLZ8@s!>+#OMU_2Ksk6m7c$cyXhe05ZnJX zVH*0omv8ajJ^ZvGc^(lFeKv8sa285RPIRg!FZ9x+Bqg29Jy{!dm6e^%Z#xEP>**yn zIdsPNv6=iB7cr|;+1uJm`{G*jbA4TOe|^d_W6|xDltwYxia4t$F*-Wh-}Tg+OA_Q; zAmw-I;a@_36-S!=|Ce9sv680A)&>fG53_CZHq9|?rk_RYDDt=%!(?eB(8_YNqLG)6%Y zkxux{5wj~R#aU&J(2m^VM!2L*%+2Gr7P=R{UVEwzrj;RPn+&-jK3N@u-z9`#T%MPg zlc)0;cHPAz5qBFER@iLCDSq{;9YiV^O>Qn6(4YPT67cB%^t(jo046Q!3}5Ckbw zrDFplEmEbc^j^M ziecDx?bCmr!!R!RUyh2+o8ZN{v&j!$@Wc})L?aIeqR%Bydrbcl@v5r_(e=vZz1QtM zy{>q;E6N_0mz9^^>qI18^}@@^x&7aF$a;7>%02cp@r0{vxq8~v3&TX;qyO048Qz*0 zW}Bt`=dts?absORQStWino|J{+J9`m&H2YxncJMdTzPs&XfIj1VdtMa&KBAKa_!iX z_Jy7HQh%qBf4`Zs_rxzI78X*QJ|><1<;1ZVHulX8$A7(BGZ`Ma6ZfL7#;Z;(vEDm= zR9)3eVeq6PJuaZEekC_IFE0<>AC{8jp2UIv2NOBPwi&%Dzr;APh0s*6;75lTtPQ(Gd(vY^Qk)}TF*en|owJmOEBVH{5~g6$67LcqvjQ+b)<){B1(@0`roXUN8S z$46OTO6=G|K(KIwzz6y4y8=jx?b~(RY*sX5ecWtF!^^c`@+|)>`gRwmDadO6$X#3RJLzL8< zk;Y`#ggajuT;HXuWgc7<274=VXmDqS=wU7%gX!*QIW5tc6#@s|RS2mXMLXY)tH!!TGR=@@$ zFD>h1z=ro6-Yyz9mS>!2Zcs<$F)9GxDxffV^uh)|fZa8R)>)Ri3>E+(WD>4;1dhszOtDXwBC$ne1BsF5# zV;dfMtfDtuveaLkV-qfDCBmRl)me+}sBTYLvs>kZk<){?Xa#XUW^;BS`l2C|wH3+Z zAs0t~Gk(3bBI5;YVSKuAX5TyRw2qA82m=%{2&X!{TUCS37#~`v$SScNl{5E<2Uk#M zp7-qXMqi3yjD+j$Ql?ju?5O%Wl2U2a793ZD-QVtOyWY_t1>rQt1#a82+9Q~%7j*`I z!q3v5{c6M;TPly->z2e7i<#Bge>@_~chh#Ax}(p{!bQxF=suTcTa>$KnuOoJ38Mw0 zonscve4*QhKQZ`fQq;L`FOO%n4E=eyMB5j?efg1 zbtIf|*4vGhX06TBnXQoqU)A+6*_->rPHQf{>kCt(Op?lpLTC*c{j^&YFoa7VbR@6H zZml?xHCxxbMrPZHy5ze2@qBuSmIeOA>>DoM!*IqkO-3H1v1)6B;2Ej{c!ofjOa(@m z9qv*q987R7ZP0195x8H;`Tg>4`S0Z4Hs~!8H8;2~T2^m3%c>rhpL2tQs3SQ#eSGrfd zxJpl)g`fRDrX6Y@u0cu9*NLz$BU1d0uPmT}!C6v1=5v#@ zy5Dbx4xs>|B*YYQMm6{$?Qo~ROGAN&f~$#w@6}-?rXzb6|29#JE~}tCd>Q`LmkO00 z>5W)M%OOr$Jqgy%uET4uv+QSy;$1r2LpsX~nFd_JOa0E_YH&*g<2O~JUjD!ITMsI* znS5RzH8vvGYsPk7JN3_cMQl6Y+I@bQ%JXzvD<(Z=T&{Dy{S`zon#0_DQ z8V0*sk91=HriQ++1 zBm{Yy*EW$DaHip%H9vPe+~mn@rn?o0i>;XaW7GF1Y{k-wLeny3<8K$Xv3C-Ve4`bW zPZYgytbdU%bHz<&!=!DF`Olp;Gow5)HaODuf+)m#B2%$_?9nMov#}iHxD-BQ)?w3A zAL!0$PYm7_A7=Yj5n*-^9Mn0e)slW+P9PLnwtPp$4X^8pvU%sf9*`z)sgQWXY@yex zAiGvl;U{B+l{V+JzL&8&$u^gwFxOwj)_oN&{oz@!L9ZuSL81ZQxG-K8kUde<%w#$7 zN?@@yCw8fd@5W3lBrrCzxX+I}bk<6w!MkVjY~So84D{Sf-k5n5yD4}%Y-|=`&3iOr zbwH)rza}c%)Px8ZFbNl>$9f?9QsRRZRQw$7)_}W?zxk;-ornqaJP^FV=F2#iL`8e; zO=KLqupn=Hau_GQ#he^#Qcy6`q1AC^tOPm5a{xS{wT|OggT^T^H@-*7o~bDuf`k_1(9A-7**-slFcg&r)Z1D;-en zdx%`mK8I1JhqW}Bxrpx@DsbwSc6o3Tm2q|_Svl{MK=az#LS!vUCQA8-Z7Cu?((rjZo~yN`(=#%K#AtP{Y@4uwD0Nj+_d+m+k&{8u*y}=5>yI8Kk6g2kF~9Y&B1-1YwOPQG z2!rMh(RNKK&ZTn=+C63VvkcXuC%l9~6Nl)&I<>Tp7W2rBQ2#iK+2XZ)!#+YP{%+l6 z_AH*|3T{gCMP1S0qf7mAy2)r&_;zm1hp)^0v*+8BsAq1vVAn5|ui9siW+2!SU!{z( z(b9@WQd2o!xG1oFyA!%6a&>jEdHK1RJ~-$GbfB%xO(w1mooe>)e4A~0pqg{9Hl;t( zFo9Ht_TLuLIynPCQD5PpPBQJ6qnx*K^y7RNxV|TAS>jRr&cbP~4UcHBj`KY+_~UsN zR}_w(U43yO?KP!jP=h`po!f&fY2 zn}X0ud(T&J(4!6~88QCS!xRiTxFtfwtkN?}6#NFFpIw8Cko`<9-LVVTNM%;sIPsiO zp@(G?V%;J-ubU6=#40F?5V^c_hF{VrgN^ZAp>>>ld58_#&7Y2Yyxq6dy`ZzPXS|w6 zqvfCChj$75$@ZDutvtwkeI#uo(mQePaeExN_yN9O+Lg`WY3aP#OoJ}HCYt`&FFe7T z7{dvUne3qA=h={Mo?WAWOr?<_4U1qbGt=A^9VOB-tu*Fq6r1h#!p4MY&x95R2ia26 ztN&!fgbdbM&6mWqvm10Sux-BoUQAHHw7?y0PZxq=LYUL_1)S=0;%1C?W4v%MZsErl zErF0Ngow`q=I2RE>TAS*GCUzCI=b&6E?xUB&M)6p7^6KM%QedW`8R!W8tit=g5%-! z>5d)=bGHj%`%1An6yaz)JxUifa6G+A&6y_)@&ZAzaB0AeJ)k5#*ECh?HdN14B<6HPVEnz|^$V z_^Lk`M$yVdD(CI67w`e*Fm)`)Ft2R*rQP2Pq8QPXN(t0zF0dKIUAZz?uXXvIAshBL zV3IcfQRl8?!>W_%JIW#+ANBl9fco1q%0x#z1N81+H@>)J0|`49k=9Y zrq*El62o*SnV7mzUS3qb>WRLAZcTv`W4388doxD2P15Rlu-uS){8YZ+EaKLp-?{dl z(2I*&9X3RM`wu>+*~UjZ^GrEwzmzDn6Rj^KWiYqD;@zrEv23_@XCKD+3g~I#?Q=7} zg&h3WD_2}xTn>rc%y4^hfnsc(?%tS;qK?Q9GH#dbz+{jT{owfH-g`Bw2kbocwy_hc z0NV`rlox5tn+z)vy&-p#t3-7Z0%TRkvKq9(GigD>*G-sK#!IL6gMrAmm`b(qFefiR|y+!gfN1a z0^8~1dlX+5mCx3_ur7yG9*xffCNi{Jvdo(Ui#d^LrCpyuKc@>uJUh5!N6eSpE3C_0 zf28@B$*)(<%dMd5Vay{3^yhdx0?7$U{}nkeAzYjdnd ze2Au5hd(5!B5NAF1k0F~f@?s4jdi=2zA~RK`w{Qua5?`sSna3g(g5%B`F5{vuRn4| zF5{PZ?2)D>n3K>_x;yOXW6)SiAPzzWk1jFiR7B zovp(R_Wb;?L7Nt&%6Z#tWu=Gu#8?&(kkFmu1k5Jb;OIWp>5mOkv^BUw3sAvj9(8Tm zqLlXEw}C-jkFic7G2h?R$875>#WaKLeT?eOWH(YaFHu7T>Xo=dm*w;DVoMZ&&3~fpE4sn*W+Z4kirK- zPb>o5@>qS6)G9H#SY%r#d|FKDz?S!)iZEagJ;t`#OYo??-}*`#lgxJFIoxSh6acOx zoe(vggpu2xWUll`W|mOm{GB&It@LLzmkX0Wto+1HJxUv{(B4F0w|%}AczA0C`ZB|- zVm%}lx{QzT!<9T#0Oi}A&g(BAt-~7+t8#J*G*rt;R!hVBFzGEJWbBNVV?uP`d`^-P z!4__u=M~V`zxJmxm0NLqS{6t60R0$W|8_}xvO9m}{d;-HgFkMG>1Diq1`xpHJe+Du zc%+r5?|y0N5OT%k#nnOB=x?^Vl3>0=cz}TZa@Rlow&92zwI2j*Ot!_kp6gl|HaY@Z zK`;gul3gVV-#vR4d;jY<_u@XW^^_KubY(|C!-SP3x*=t}ATy(uR~pZ?SNeukDIlH9 z7Te16qmGICfOuSGVM85SA-502H2Z(cQk^U%p8y|sa;y@K4IFoYW2q=P%E?I{c=LWM zVxR_WOgOamwv&6rLqyHuPkYnFH#oRbq<5?Sk?wC>${7iI*dN?W9X%A~79?;DII!;^ zS1x>#lK`aw>_JWfdwT12)*myyV#cFXLj%@w>xR@K)Ha+fc__m~Bx`f796y<{CBIW4 zS_yF-*fc_~|IkxFkYK$D039*Qcm0u)R7qp4uK=iN*Mz7-1my$<76t%oGx&`m#K;2BZ15+-Q|%z z&3lvv-i3!d*asBo0@m&C;(b{jwz4Z|%(l7IW$hTyw9R)!h-W-mORzZ%1IP(~yh_M!b7-m0P;&03|<-<22bDLP|gP2;=L&#k36|}FrG7NR|uKF?>kXwH}xG>>=ew) z#zwOZTpOi-Jq5;4vIlO6bD62j8ZA#{`jp3Zl1Ll;MEk-jb28Dj=*lpzVio*LVio{` zv9%?*O)VXQ_xPyT`e{VMx7r*NW@pzQ7|Wq*u@0+_zD6r0XE>#$r!L?~tF{VPZHAR9 z-e+;`j;Z-_$ao=KD?z&0H81$b9Z!%U$Qe%|dl_er(87^4w#j5?K6ZS&bV1y&JIHq~ zK}fqlIjCiLy(1mI=Nc?S$aj5(3dx_B+i&p)x?6J5(AWKKeuK^$M5i|Cil1--$}>y# zlF5lyu+&f>2iSdwHhU_G1-hY)b~Id~%|3F(U)WG9KJL01%2b4$c3`C(VyBnqAhA2~ zfqma)tq%5SOiIPGlPhh({O@=*ou!jlj>9_%0TASrb4OA^lRH1k!F!rDmyB>eS>oDo z60l?OL$A-^w=fcRlFuC1m3iX&_EMgxQp&Qoi_1*q9(yl{3ZcnK_H`F~7RpqBN4Sd8 z)<8%BAq_+hP~!quIyR_isMGV%)P-$E$p_bI8DP!34hQ;Xf8a&HK9gjLtny4d(8c{H zakiC@4cLiFaLT(H+hgX&AgN>a$m3OkFap7BkRsQC#}`GpcTtQCUbRG8Ms#`^emx5J zEvdHDhmw5f+Xihi@Uz z*ZF2ML(h@h9R^x5^q_|yGyC#`DrcHa@I#6olY5;yGOsyJqPBoe-z*cLp`GmAFZje zG#!o-0Xf5MWjt-NHrdedF0V}dCMOUkZro|farD-*JDojU*}Od8!EgL47e=l-?0nuk zIw7w`$Der+-Y5Xx8gY7^MR&=3V!&4M{@Uivgq-5J2D{8son$NqiTn^@Y&86Fr$kND zTP<>21!$^3fFu6eLLfW9iP8j_qmd=c5Vr}6;2P48s%3$xD5@@W_Qkj$)I(lg1XZ3_ zLut6Xl=v&HO$xgqp518ByawtcQW3m!Mp7?q*_`zP4y^qXM63sb^q>WCbJw$AgtHDj z@&v^wB`H(K_>spwnn7^I5rB3K+2y%c?zgxlCj+dR->lcoe!B$$Zk0K#I7kkEcZ^p|8s!c>$TsKt+^3U!8 z+6zYOx63+iZX*75vHLKNVEkQ(Oh}H#D-XA361S2wYCwAs`s9)+j%05(;%@*wu%a-~ zI}`j~7L6CVpjg2uyx!$qx9~w%<^p~@;|TzLVhkjY&!FS9JJVxaE@~|W{=A38aoYav zVpij~P2KWTd-ynr66WL^&oat2+b)H`%@%D1K}}~daa~)&Ksug%=nGiliS2tLgafbU zv8Kb*MnOv^C#cOeMO^ijc7o1)=->l9q0bi1%n*f@rK88h9P zeG0^(vAbbFg zx352v3i-EI1(YS40i3myAu6VL(mTZV$nO|@Wq!|5mo_r(GTB~OeqL<5$G z?Uv^#ui$1CoX#|qlbEF=pC7?SBUV9^(u;c7>1zurM=hutgn-4b;jXh>G567*TtULn znc5$YE9f>u!OT)$w>qxDqxnL$0~-QWH(q)I;W?!Rbc2usIXUaC|Gb_<4cLXvG$ibp zFA}l1o)xP+%{c}nZUjG43SVP~SZ`M)lE&P6=y5Ik846e~?)Y8Y`r;`t4Ut+nsl08Xaq26s@M}NB zuG60Hx6ns3C0ngxJBdcf>7?(a7Z_acRyB2g1>i#H7WIGv0IVt*|)xAjQ2} zHg;~pQsYRFf14iE>Uv&Jc62Y4*@Y^9abR=$69oaMKV4ow(u=*=RS9$wcFspJcr|Xa z<1q;WAXpY#WvDLfQ9_`?(rh9MQhT*q%nk`2k@l+((2-KMx$2(ZbA7-SrzG~}?7RYUoQ3%G$qbqNit#Yv(v}iCPlWj6GN&J{J zFPOsYEU$pgS70(WhdTqkygRNWBg8f0ksLn|xXxAa3~IGDhg}Qpz1Kg834}t`Q2h1V zpK+7rm`?XuSH|8Cdx&_?1&2?2Y=O4gAVP`6gZ@*cS?N^z;G=m9F#P z+XS!wRHnv8pnHH(7p9(Fq{TeXwHHut`=yXR9&7My8ek?&#BQ>b%4{{X3VdV60eKa$ z^EP12)B?b}Uz3ETnmZFYBl12;Qu!Lh^X&w6$0HoSM#^2f^ zyXhZ)+Z#6-zKIWjC5;89F=Qhnqn)UU$^#?hha{FFfJhXp@f{;+lGQTCL551BEBi5g z0?-LAC^=;hCV-7whC`4vHMV#(_6C`(WjI(cdyC0_)sYnEAn?ftf=JRKJ_d4DANbNt zZHR*gzSSFuAUHaloaS7TzmFPi+mE^PPB&5d)nP3f|6;7ZJKzMcjrp(?dmKEqpKKu{sASgNaDU za0&*f=ooi4y($bc2w8j(Iuew#zZ`6S6^P9a2$3t^oBH+ly{UqIrj;T#N1pfk&jn|K z;xfoZlj5k{{43T@1)Eb=SWUl_0DAJt2fiy+2|-7qHA}%Qu~3g8#*0(oBLRPH5M=T^ z!d<%#|GQ}X*q%pT-h(PxzjW+(j0t>&c0WpfA8^T{g!=RXRE2+>4{CdU$HmdIAjq&A zHIkvrvW2)d$3!?o1vmvSNXedSOfYwbApA-^3~F3lfO{U$8>&k80l42G3vQ9e5B5ZE z+j9|4As)~hVOL9m$IS95d?>z(bMM2|x#W$aGZz;B3YqC+uZ1o;2Omys>GUv;aiKH1 zuMfv>^u(i-I%lYWr&m!s&&dj%aVZTjULVk!BFwNBAQcfDA%M|%%)M$yf+OxiaCn+J_MQieOmUda>3*%&Qj*+zgQkmXFJ_oLDldrY9ug&Hbu=0$P z;(kZzI@+3#?e63DQ%j=z@^Q(MelzKV6VyIQk%#Xj&;HJU>uZpoRVK_#w7hPzSvo@-Z1`pMG`slpM?&O2PI~URttqou%L}L z4SB=SjM&ZqkKvt+W(%raWI;=!_DuS9)+(^ew6~)fc56(?1+=pe+-(xVH1U2Dg?$6D z)I*sN3yS`B8!*$dkmh2)(EL&@Lw#k0kU{c|qGG=c=C{k>s54^gXV<>Fze<9fL^})JT2Yzr zZl!gA0--Ah=?`3JAlBaN*jkOA=ZHmlx65J8Dt?~D#mAo(;|R}3dbF-w(Y|P2dr1td zNkojep?p2g=*B|(AplOMQ4NY~*6u{xk2e$9n<^hmHJ8_8S$m;UCD8U? zD&uFkRV0_*n~(0(E;E4Su-gt$&7y~?0XNvdq=e$P%OicEDip6eZP}76qL34@Uc627 z!crv8F}b%|i`KSH=&^;Dex9h}OIHCbCKi3i;nACYt(K8DQM5{! zqwA4up3s48>Ll!hDN@D~`dSKtgZ`vsKEBVP zbo&O!px)Q|?B$UY&!AxsDMKIJO1)9sHzHgKkSLr0SHC-1!%8F8R#8EW%yOxdom$6A03Wy6IAx0zf4dum3@kK z3(TDy=FK?PT<)jn09pybI0-VtU+!J09UwyYR!L3g=2fq66(Cc%I@7m03#pNON9FRzxN5Tpf<^%QYJjQH zez?9l;Z0g!v-iR(o`K)BU8{mz^?e*vHo^z|&%d01y*kqekk5u?pqjL-GMZ70?hvJA z!iSNzoFb_6XTRIjY)e`(hf**k#R_Sl;n200$1L#Z0nN;&8(qq%&8?s>HBBd(?9dN- zu}8gDqBK;wcVhA+$cjz}#TE(KKxselNkVxZ%#e5@Ej?na$R%$A`uYSglilcDI_0bV zaVpjo@8R3WFSS}ytyed6aVQDF9|09;t^4J%hE9QGClkv}US9dRiyC@F2dN;Om;jP5 zV!CIljR7E`)GvK6EhAO-1eAwfqV$pV0=nxCVp?m%aJMP3_L1qVP(RiZa0#?=pHRU= z-=obwZRNs6?e5tGprU;qq(eem$Py|}XHa>$;)cNz7i|g3^n~%%emVNLH(=NMv$=K) zw2)R$&4hZOCYo`e&sd(~RU4>VG%tTSM1>NG5I0$3<_DiKwLjL~3>+#~49>2p-62-I zpz9)@OKB@VIcqPU`a?K1a08@v!(X)}FYIzJ|8ci3pa-;B^2yvvAv#^scobw+zNQ$IHEB@1-ks@hMzT}=99}(EMAJy@` zzXK#js6zFXNJgf$cdV+SX%KVdjbp+q2@bX)vy0|35S~wl<@WC)X8@nTEL+&Pal5Qc zz&RxN$q&I#qM;B3izSM}Vll#aI&@(4M?mH#2%<&;+We6o^`&=wV5ejS$TLJ!NcOI! z%nmWNE+n> zh64D@9`}^370<&!gC>7c_OxUAEP*ZcR-*E9KkA(Df=XDCwO_y8x2%yDpOX`1W4Dm+ z!WL%Y~IoymAx*2(~pyiD^qeqbx z;6^85Y~WHs7X@^i7PB-!R!(|gj5hlKOw+wvK}FLA=EqdB*8vMbx8Dnng8&}Wcy%3TE?fXn6wbwHG}t`dNs0| zJ?=p0X`)~RemyI2cM4av)})Fn45$8?y&kMWaF6W9^Z&mY@|0P>P_%W?=S)LvzD9 z5&x!w$++?!jGVo3#^*(Yl%TCNOsfoz_><4-baRh=xF(7>@*t97PVzu*Tyyk+iF|!qn=wQ?v%p4PH0u@Ix?o7H| z(dX-U+Vtxp=WJ-`@sG9#WdrMuN8iEz?+P`tiH5TLt|Lo5>)>dZ$qsb-od2~%T~uTn zp8lmAX-v>My&D3D6Z>eoaTj#Rw+Um~GYJbgehCy*rKLgN1fCaX+C_o(1iQ)y*?vw( z^0Ayn5ap}_(#?FJDvgl`fEZ&jpF2H@RJw8xVq$(c=$gtd1bc^;sl4V?_N)*eK8*2r zwUZZ%Y0_5_FJG}laFNKFF-KBoPXA-QLptvU)Y<%O?!DJp`&)Y3J9S-kj7d@=^lo~N zyn zT4wE`Y7EVP(C|f`T`0P8p58ZnaXP&JNVM?0L0koD&x`LE*^kny^%72N_ke>HN0q$auSokMxE}emcmE z!_b1nUNb(|n3h>vEr)tdoRG+d%_`fS-q4OmQk$2*o~rJ@k>TFb`U9$4SC7YG6@NfA z6f?2wDiSZd<#aM1Qz`ye0UB!gK;Pj{|EYM*cmq~h8J-E=Mm_=16}S}FuJa4rA}_Gp zby-l}S}3=MT*!D0X}jXG+IO;DPHpP1Q!dtkLPiFm?eyjP$#7Y;GzWmmnDm>TwT$+J z)6c!OS2%c$reC1*LgU{?KvF7){u97lMYZ^+J5AKnGVp_=S4x>ku^y=ao3XhklXpH( z|FAX`r((Hcnn6#7_WuueYnS~0 zsvG4k zo7Ym#dX+&30v_N8Mo3=yBuDA;fdPy|*<5dL+ehlNmg><;Gim^NF@~Yr>v~t7nRS3$ zL%SJjAVJj{jF!?Lp=;&)l=wGD&o*1os!-JvI}rpFHTO#My%gTfPYv?h4=zE^EL75f zb`(L+2X>|j8nwE#n2*^X`nO&E(C3wS2;vnw4%#ujggEtCy_wJZ>D>X521drCi@&|88(A@X*UO@JDd8Xq1<{3l8aoR9EfkBY2n|Kq+|m5uJKO%!M$ zDe}o=xq^G+(Hk0_+@Rhd9sevk8grF{ZsfVC=R}OA4crrR5`v6MmAFuFk6$1100;WoYOIY$g;EGt{NlW=D0_xN7tD0CeM{ zBR;bSsF3=y)9}vF8qV+U&0ren(J6F?C{VDG+ZSsbDKJD7ywU-Z4y;qqE$;$=ZRj#a zL5vX$j!JM7_OtU|N6o0F>X3u~sXzmjKqs!YGGT664jr|Wpn2$|c9?2Rl&F?Vgr;d! zc^|KbIwiT?f8-S)=LRXEdoEa6tYo6zMKjcELk|0j*e^K@R8a4OQ_#(fI_{1?Zwp>g zC24MypD|i5+KHx%&?lA#qed?2sQNdUXvmr`$SyqK(v)JyppDdjd=1uvd4tr5F_Kot z95-z2EY$I}J)zUVDgeb(h95Fv%P%o566@1q&C4~4Ao^ze4GC-b*Qkp7*D8bBhz&ts zB4D&M(mJ@5PV$hRr4M_Sb$MSibiF~eNBj#aO4m(6f1(!-O0-%S;kS$Y=wZpI&M}}p z0a7RS1@bO%8fa2nXtlOJ!Y$(1d?D>usQny5lW9XUV9}tBOccwtU4|YQ{JGXPcJ(Xg zpdqnYsyt{JC9*RS$Oo%O8dSM{UKLfKag*7Qj*rM41o$l0 zGQGuB2m8PHmp=rA7Orx8v9|i*^wQ~ z-2;bMp)MRm^j;tLIE3x#3ekKVxZH?1Ym2!SNi50eqi>Kg4cI|8vN`-;D$@s!(46(2=`*h6#b$#J{<& zWNfLp^uhJbrhh;c*8Z-b?1DaK73}BPd?Be(sld`lUvu%8bV{x)3Qef_dBS!lHLj*rcC!b9iVg%3pdK2vgYXJm3?pAx zx@zM++9Cs@`^X#Mi{QP{sn?iL?0~9Rq&DcHKfZMy<`DG+AjW?L@5Au)PrD?=)|}{^ z_L*$oavWiTF1ZYR6B!5N3WP{#-A`pc4UtfEjHqoi&F{=Us99XNxD6xx0=|H49cn)0 z*Be?F+^oP)4iSxs^D;;-*$GyM5F(AdGMPCMuBBNx*8nqsU+g2rM_*H=bM%n&TY`!R z@A&#WZROE^>TefQGC~(%AXG6gWTK0TS_9KEH3!T2F|y~z_F)A*39cpAPL=Cad9Vf7 z2Mp+`Kmgi}oK}ep`ABo_sqKfEN0+<601RVN?j-*9m+_uFRwh=0+{Tbmh_&ECR0; zLSwEp$}5;Ys$;TGLF2vJ#L!~vXqzG^YtE(bw~DO$gJqOQ=r2ODn6#=?luUVXui3;xDd@J4rq1{lI<762tf!k z8TbrDJHCVwapHsD!;b#^tAw>Y3UiUCGRj%Y!U1D%+K7$%ikIHsj`QjETdGtkd-UQU z8%$HromlR)UeZClc75%B#Ff>>kp=zOh}Ul_pRHNJZ9{nh8zP<(@jef#-U4Wp83#p@ zjJkqX#-o+4oTES$ov-F)tow4)v0*e+ZF;+|$)!wbGU7({#4kt4`hPku?l{OMq$%l7t2*;N$rn zvM|>T5HmLC-KISoOKmiSxg)cXqW%bT3T|zgS-okG>r_U4hjUuGL#9V5vjy_xEf`l> z?YArF>SiqtYFS&V?EpTB2J7S9!F1}FFx;D#QFQS6$VESE}gw+82EeQQjH_D zBCR(}3$)FGsO{ZTG}J9yJVu!e98{YPViiGMZZMIg>5@_C08-Do&r>VgU~@9H&ycj- zIMx`FS++dV=0_gr?Qu-uv#z%^yeCr;zv8UzKR5Js*f#93GI8k4dg5{YMgNzIbjifHTYQ>FWuSG#RyMak(mHtFf1oCsXVomm zd&d{(pDAWo``n*l7QWwlXwm;}%+#b}Q%I&G9v~LLWG5Gw>a~TQL>}3Zht7wo4ZSi_&sGpt^XE`L7%ha_Y1c2{c)#c zzTHLpXFEs-(r*kB!BV68pN5EjiTCM_R-1Uc-v=gDCtw6vFCOnbUo}{E4yFfmE5k%$ z_Z`0r=+&bxXrU`I9cW32$aRytqrDI2Cc270lHUJr>XM$PaHZkJ>Ns$17njju_qD}p zYnDQQ#`Uppb$@eX1bq<0$OZ*n*E{<8V6@1}e>kZvd~MYJUL;I1xRy*;0UNgnT>;jL#qkXTpsESoUK(IjPvqb=<*qCg?`Ls=4k7yb&>ndv$ZPqFSMyM?Jk-9 z8O0M{D))G(*AI5V`*T`*tHLK=`vM?%jCL@&_{ZHnGe7Uky-ZI>Pg{Tn$AA`V(pumQ zH4(;2EgwVBldlIW%_yC37lv;Jh&=8XNzztu?|h4VUUjl$7J1WZ&-$7*jAg9nd?$T< z4`q`shfFze6hBQzIL^YMXZIPt+UIk=p4?-9Unc)E+#Ix~4-VRb1aPE_*jS)3 zIM--c&jI8ar~31+{S7&e^}n8lg5WP)h-?ZFH&;IU=G|)P)u1ie4>8T9puX)<*;1{C z!|LL+AGC2QUit|=xBO@l`M>WjurF-Llr#I3u0zjuj;=tklIQ)bnZp`soPO*b!`tuyNAL*G*;Y) zs=v>m8a%3E_$bf#bd^}WO8HW)1tf02pZ6qzab!LaQa&iQ%m{&2O%gt6W!`O}6`Cd` z6)u1L3kRwSRWWdJ>N*K7E);m6m!>XYPA|8Ubq6>7AEYFX}Y6dOaK>$Jr?FkAKz>Pej-q4IFX>~ddPA-Q8_Tu8$ z`SzOXcy6PD_ej%CI{D7E!FZp6KB{5e$9w!}{op2QYby)&LtmfIPKT4!3pzb@hyNm| z9UX|W?Ve9qgamd_HOm( zgV_mDqb*>vbQUm6vPVx@j#zmgMb~o*h6lAp1E=1NmCV-p^*=Gz`NTQU`wHe6D6exH zbdY&_f}IV*UDdrKfHUj z)zYWm96Hne7bfBX*d!5!ZT4*!QaWJ0zTB#4|K%}E3u}F0;}(86-CN~&Yx|MU;Odbb z?!_`-mBy4l6c7cWmFMVTqQ)uVYkyji)|e3P_iMrYjf0kE@ap1!hcM?3-&oqM=%9z( zV|8tkR1Y1{PmmFzLjuW}vOip1VF4QLPlk)eoeDlg>H4@A_CXwTGo1S@)!OrK14;1n2(amfJIKK=ya zH^4~v_-e=2!1eAwyp~p=RkAlsO;#KFV+X%g8it&~&UHq^SXA+3nHuu;!)Wf1mjPue zp~v1(chZIdS-xEc9G2DpGir+eWxJDOhigvlSRTpaX<^`qQR0`h%(9qp7{-Ao0i^3x zJ$<>8ypsv3v;Q`~!D$Lip!MiOCg+i4$G?XtMD4Sb+(iyMJbIoHytZ8Hwd@g5*yGv> zSVJU%$BC4~O4nZv;Hm9%gx-&g!hslRaI>ZQ_0{@@Yv{p4Cq#l5e?;TGo#z4l>P0~} zmoSY3WlcZWEsEXzk>fP4n&tLA%FgE@y-#PsB883xN4M=J&X$LdYtnI&7+~D0r7E*&?(9qr*ZdzajoxP?BT#0kc#rQtvK8PY3^YD6?VN>PQ4 z3S`YD*5|;3D?(MekA{HeK75qG?F;aJ<{e+KJRn5~oAf)otfGLiM1*l!R>J)`WbPVJ zdS}}DBM7pLnlwLyg?26Q2aok>$~Hj-T+iBs4;-WbXsLoQh;qE4r6mHng-d4X_2JV* zwylKj3%a`1zxD(#eh@3`o$Us?Q26~O4^%=H;s8bsx73OqA9505GFRP!z(3gt8jvR_ zxa0)?)X~5{BtgxoA7g?a2`sLfa&MN-YdR+qvBk+6kX#~ytjX|Lr=aCIx_zXjgX4Ck z8<}umO8`J<@R*RH zLqcw;y|pX?rwWGWXnm6d-(D=neJZk5G#TR+!Oyvsm(6@RH2eJ)-%H2(1O%&4)+y;- zSY4_oC6tx{4{_9TL=Xv>P|?R|+M$uZG6(&xxVhCLci!Vsa#-7wag4h^x6#1-XX_>b z%S6o}1t$hgeSLK{C;3`WEstD@d@&}BK=wzDhzcV^jVCBr8)`7mo0*wGDRgyj@dV5_ zm{k0MtVYqc^1~5A$S?U0hsbLdAm1Kn4dAc@ybHIs!PCE zSj8g%yS_K-%YXiT$P=ETh0_Ky!45-3T6rQlyoR9*4wA4LK5=kwa!xm`I1@x@tK+VI`&}EM$a=4>Q-B^5gW?(c!;b#05imd2 z^q}HqZPelY5ZeRXfqmkdTStt`W}du%g*i!7Dq<$Cj)_6n4e-M+a4;tI0lH)Y_lH9U z3MAD-26<&eHkd4KU%K6F0;6!(nZyGX(qf-qvRag9NXJ^6N+RLzbCs<%L zcwEfde1{xlteLT@h3E)zM$zAtk8627dmRKGN=gcpe{F$R7|Q47412k(4B!mY#2h zG!s9~Nkrg*9zZ^bfUGN7zBcZmrYZ$`s6GgqXO1J)0+4bn&JWU**N;29fCV6jhTV)s zD5|T-yBa(!4uD~H&T~*0-@%b$%HH2Dh1mCfh6DzftY5^4oVYgTI6IrTuCDD_Dd^Y- zfyXA=-GkJsXmk4s%Rt!7Y@&C2%gVLtYv)zY8nf9NlhCjJV=@doIQE~hg9+( zhqT+HY{>z|5cS3Hw*-&4njm^r5EPggG*3rzPHt}QPMyvFjI~3TBS>)dh??Uj53J|I z0{~X1LbT39d8;XI3jrg?fCy3zBq=dqqR?^P76Kf7lC-`eol~RGe-lJcDI|I}SpY}o z)m;2upmF`{iCt3b&~3OG=o6t<1451}K=6NF-t*r2$$ac^S~q-p`oM?ut+1+o~o zwpakW?D-Tb`sYz)H)i8xX6w`jADt3~$4#xxHo{Xm=Bs3jhMxHdZ-sF%jg1SXKuSa0 z38wCSUY-gUg-*h1kZ4`%S&MLTj)}aWF_&(hL!N?$-1 zDkbnIf8ytRk_kua2gf0LX#=4wgi+sKF||WbB;`Vquk%j?RlL9e#I<31J|qtIb8@*8 zrGI2BNW@Blhg#+Q&W@cS{JY&3j#VR7Td zACuZRI~8OMU97dz5{8VFVKp{}$+Lk;WD8!6!t%t?c27GCT!fV+}o0Sd(S!l-}#?IC}Z9-1g?W{C zvp00Q^Eu84AKbpxb1u&?dydxgj)o&>=6YJgt{(2H>mm5xaCV(ZQiIe_yGRAH^}8k8vx-nU`vbvYvx& z0@|tJ*aQ20Gl*#aq>UzWBWS9Hc{bXp^@Bi8X0cLZDzOuxr|lGlo)3bHq!Jm``#+-Z z`NdL-p_wTt=tjW!1u|gBFcC0Naw`k~4C7H!s161F)Ci#3Z@oM-jbIU7$uHV+pfS1! z9m8_W#KC~V;X2`iv=Q9aSa2L0H1y}xX!*r*FfMMt)gq?T`pAN#y@nbJQ?eb4Z$h~t z`Go_RW``piROvAs$0)tBw*-tQ5EXYrwYPN4j5^~LppTKq{d$OycQHbF?d_{OQir>3 z>1iM(cQCfUyf4X#F@8@m^HgxY@Kq|U2cRkhKUtvY+>Vd7W;<;04;M1ZNIEC!Lh_P9 zcBNQlT~I{-1>n-AZTC}R*lum6OJiI~p{^EtmzbF#+;Q*EHpkSdCJr?fY=52aum&cL z{Tc#&hl+^eD{s02nQ<4KnT++FtTpc+q~8`-ud~^&Rf_Ia*mTQa4Cvgki$M|hw^geG zh>ctDYm{+W0S#suYY>_|Ln4y*0j@-dUc}?D)EiI*bv(Y_(k$Chm@A;9TRHUUd)=*p z{KCP({Yi$cH$f?zKLP~i)&h&GLHsu#bAXSwBo3a%Qc6P#}~A&?!=k87020y{wV|fF)NU zcjqmJn%GMp@&vS_7hI`1ALAb}rzJx4k3Hx+X8)WByw^LRA8e-1K@-*rW`R5G7H(h5K+Xy#@b`ywsIveG96tYT` zsHA?O+F^!@u1)img2StiOW;Vzq};EWf)H$i*tsC!@EH1yH~K7mKq@`^%8l3shp^$qV8Spli$!V4ni>TVpK;Yt-7bbHN-ORlQ7Ybl{ zHz*51p{rD<>qT=z&SDeA$K(*|+=+K%5z2iWZF!^-o@SLdJY)LCX%)UQ!*9BMd}7Hu z`g(FVO^`g`WFvGpTK+JU=>979ijG J^&85Qe*iRrPg?*0 literal 25760 zcmdSBXIN9|yFR)A5fu?f6b4k#F@Oq!g(9KFaTG&UQF>G9RUv@%*k=X-O{BLth^P=i zs51#`(1yXHPjK>B(Vv@ zFd^cZKh9$qKYYtqwP8JcxOO!Mzz3dm%8X>}~q^mx7MMaPQzCyvv+ez_}x0yHGW#iQ|<~|rE`3C*t@oeI z#6M14xSlk+;vZ-2P@%QTqW=E-wlmH*Zr?up`83PJum-JOjz>3&40F^_~S(2=B+Qbp5Z0R#IvNraeMaqI;K>#g;r#{ zSuZhDk}JGOGRKxu=JQP~b>IuegOM$U&*9NGSflTDGWtAwWfK8?K0Cs{2Yoij@oq(* zuKGM1(5LcKY#n@%C5$m%_#{Lezl(N1Zs%zP2o3ch|@zVReATu~vJ7o!z!ma@U~U<9}0 z><8>J)}h45*LjY+UdZeAV?H{-teB56gePEFjc0EJ^#)(&cxFLSBz!gPrLbEqGk@EP zk+Y}%pp>MAQ7N0{;`lLIk7tQ=yI*J1frIa5u>lD!4Ne0$tCh9vIQ1jkVH(}5iel!H z&Sr5dEL58gm`XVE{){*sp(`2qjI;?OmmYx)XpC;P)eiXiy6HgAi%T*XYp{%E@YKji zp{$nwcXS75_j|i2!R&p+%FuMGyxB=nvd_E@cgV;AtPbw~&wYvL(Nede?Or*1i?N25 z9-G|_T8a06J%<;<2>JQ^zhbmw21#+7C6i``FYb$f2w~V zQ4nrKZdJN!r#u;ZA^9SU;V>;9c~=1&un6d5&vj?^0KZ4xXka^cBuiCgKVvNCDC(+(`_r+O?sKLT_eUyX-|`} z;ItFBtbSdG*?rbWxA^M@A2rtIVDjbm+5Nj|$Mlop$`>ws&wNg&qQ7n&jnpa~PLMH_ zPk!Q~G$#5@RpNMVskKwGeOd&i%|;J)z+DDim{7AgA{(+~vil3|MEVy}iiJDRs_A^U z>5dy1R{ro%6^02;$5!I5RL2;8=C~f=S;#T5QRBRmeKBhkO3|3N`gc*3p0=3i&9!G( z7dO#a8M#T)E^F_X?t8j0h+_W;Z<%o}?FL3}Dub~!?FLYNx z(=Ppx;KnFqTV9EHfw@Z`I>z&A&(cKd@}N$-F@}-EM9APJoH{ScMiJeN{W%UYn3#R_ zZYm>$nvtTLU6xIfKsSlG$X#XXXq~6u+k7A~{anG!x^GshT@OYJjEA;kn04K{J=oc> zeW!6z+BW!8S6qfRR+W6XPh@acTvy^7aEj$;RfN%P^c-_4D4O$GGFZSd5iwpc3a|!K1X<7t@GF$W4{rkz78xzWoD)ech_CNF78hMRuLF!FBDYzZ7}bUhp{ zeTDbxfvi_QEVbM33LBYN9*S3%3m8iO?IpUCYnm6!{>~0cU#!vTD23#wC29h8vYbz* z6sJ^r_V&$iMOB{KXzmNQ_~S20lzu1PT&j@7qtOcg!qwTF%rVGc@X(ZvB9v$oU6uAH zB+BB|EmaByOc`b>*9y;%Rawl;^9Ei6tHX)R3-Vn|#6H+i1Ik5Av2rhwTVW ztua|;+2J810e(AGiNkiQ7jMkB%a;83I}fFJOgB!WWSBT8xvA=R7<2+}@LW4PQvF|N z8?(FkcaJgY-9^5$GHl8WVp+m$8zqwXwqpAS-bxvUPEnfU_tr7Yhz>4^ZNq3!g# zb#{Cu{R#H1S?rsFl!>s)H3uT6=YKlLR17nx>qIFe^7GrBj1T&)b|hObaNZD)r_9ae z#iL1xnp#>mWtuishUK-Gq<=YV8r8&eJ@bp9o@2fK>gs$GaqS`&QTAf;hj)LaQ-7Y8 z!FGO~s*zP6yFi~PMJDpkwY6)UN9feh70PU@T=H%HYri~@dD$DutW%AJ7^S2t#=`?) zVP6z(BpX)1t9qRs74oG0o7?P^AWG_L!P<~%EfK#y+!g3tXycNeXKr>}gly0+pnYZw z9wjuIT0Be}->^j;r`ml1&maC4?$Pes#{RG~bJkE@+Nb|f9m=o;F%2OK0rO?l6Ss6_ zFI_u;CDux~UC=piZLt%6OH+>!H@40s_kT_!VKF_m@yyY7=J$KCh6tQAn@34r6gU#( z=Uv5<{w4Q`KBn?gGN-M0Bq#O0R4RnTso2U#b;#kGtG~UzIMJ9tuq=7AzxTI2%2W5W zah6`zXmej#ty_ng9o5g`Kj8bFHS;0&lfK(h4h^82s#z-&nGptX$ab*D@9|A6>f7I@O%sb`Zi-SF+$~iM+Y|A>a6zr6V#? z8kFT9V(DMt0?c}hPwGsorJ}fc5ow#Q^T^=f;Qrk=kA_Z$+ec~YLZ~Zk5Fy^JWTZT@ zH+wCQ5&Rc94Vl{>wA%CL-ig>5yF8Q8vPkBmJU6cCN7KVMka?KGVP^E|2)V>NdHNUy zXYSj=z5~%5ZWROJ-B~&_i=x2|9@?&SQ!<^e@mI*p2Qh69bIqv94wFnHlZi49-5jgc)*kt6y zt-nt{z7dbvKP+mODH$sQ;6iqA0*E>62oA*JGDw>wk~b1WhYG&Dpx*1bdU8seYrK|? zuD<()d3$3^bm*mX+sX1x3S}3HjWZ4+I8FP-{pG2thf$9VPvqzF$GunausG_Vd(_GB zXz;>6Qo@*$1jKt-L1x!??q7$7IdDDux+ODbHp2c*qXd zE>m(UzBj1Kw7=Bfj?unv{`IW&=sx1zE%Z$Uvu#=qW|uVsal+bGyMrdIVPHySL6jtG z{5q_$YOW_}b?IuKl-}EQdur^<#$JR4r-b55#!H)AFj{*p(c7Lfhr319uvFQCHJ


amYdrcCzg$v$pZ6WEjdqqx$*@9Sf5c4w6V88rpwATCInGc_{r-y&)^fUP4tdQaCe z=Q?8zPwbAvo)`laYz6wC3 z;+@5_Skr-4vwdm{-%yZ+b+h}d_0Zmxa*Hy$6*9;JoLu&C?us%=G$ZoKmu^`1kNcRD z)hIGV49gNjDA*N%+j$e0&e!4kewZaot?m(_DJr_6ImsX3bWfx`52ql?v0X`H-^fNjK&+c+ax z@liNpI}dFX2%joi){-TLr?AV<|VO$EK5qTdP|g@ z7|vycJs`yxyoX`$g~TbNudWo1cNRNux3~?DQFT5$)hlH>GGAfDvw@JA5YPUI+f9tr zJ6hzv3!}vusKj%%#7l4SKJc7n8p%j45T-J;rMc7E;IiO==P3e|tZ4Qlg}?}6_`(7k zXG!|(#)pM_gC#m9)@l1|k;M4-bPtD2WO_o|w^*+NP#H2@|WR&s7Mtff4~q zh^fcI(S|4F&SU4_WtYi>t+*9Rsw(^o#|JG2o^jFQa;E zJmiRNir+4B3#!z`8RGiQ&mya(6qE0ov_a6nzC6k13{cY|53WHceDyhE2F<3eu?j#KX1L_f2n$>;%4vOo#VD;JAHVu8rL_shbzWD>;%i0Zs*m1 zTQc9nX06h}Y6m?tWYorHXCsJyqc_`fp*$+>NabcNr%k@vutCV_;{$e*&x=`eCut*% zb887+zBcy~*qG_a-jkmkZ}6YPnyv!yQk(ng8p4!b1LhK)!N!!eh!wfuT28ZYB)v2p1)X2yeTi1~n)n;e;FlQ3L zP7erq_0 zJ=L{4P3QCe+;{)h?BThP*rUP#x5@A3-(!$&n!~QK&2EjgN$3jlS}R$aJ0IVZfvoBN z>e3J{cV;_TDcYuj(h!nu!3xTOPzSYcAuE(wuMXg#=EEt1vxTr$97JmG>fOwjPz>>5 zbycSbfM21qL~%dxtq`R1zdzh?aO8dPRN3`{Z~3BYQ@)cg3*g!@2!M^{9UU(OgJ(u! z-SZ8Glo|u9itj!x{$fZB3i90yzEKUxpz3DucfppRnrcb8;Wy>mQm#&oa6dDuGK|hcjgXjO`#-DD5dYEJ7|QfC5bX7@Fz$W!|miRw#Fws+Hz= z{zn)+i>L**@=iyYgK) zol59E%Co_%G2iK^9idQCU1jKtYyco~rff|=fV*#XDm||Pg;m|ZF3(@9x(Vq<{!Ph% zO!aP4NaCdRkX>k6PxYS{t?-6B@@^Hq^u>UBC6Wj*K;ab)J&N2~*b~THV%gGTEwkN4 zon>UOOGhf8O1^3bfGt-Zitxs+xgPbBsZUJ@Xq-6g_WOe6Ddt7fizCMxNH?J#BaeGG z5t;povM2Aw81mK;c{YSU_n%2qK$V6=8gh8W1BmovatLf6L(qq~rxf$hq75ZCqUIl&MFqyqINiQ)=Ul6+|$M zusbVH7Yft7;TJ7D^6DbwM&Pyf1@y;*$J<>(BVJhT)ut$hJSS~>24#68af?Q7hs1KV zw#~h`rDY+YA(w)lT;Z$nyecTWTC{;E(Zaux5Y1N1bg`1lp|UBltvwL)jRGwOR!C zs05%!u%=h|9d$YHd;A^{t5v~H$rme3OJQA!G-Y5Ste=?X*nb_lwZknZ890)uPjbxZ z2C)dZ^laBBxrVUHbtFv~iI762M!?KxcI`1eS%eoYA~q5RPw&%_5!ii!UddfqE0Ie( zyXH@3&k1(doFdR3NNR4g4Z%o?P^{3Bii+&(lVB^A2)X(9z@G@ zFZ1yJxEIXQ%^3TA?>$M2ZYY*e#HKM+zS^xWNzpc2k{{~|t- z+jl)bC$uoIA#b)7{W*ld#&s!STIL>wU;xgcP_+{V0>?}2TP^}wA)2l;1f(HU{>y!e zEid10Sp)ub_j|khE49UeLy3cDc z^I@f8b+1M3oX=}7ndi0H0CCi41wh+wXk{jYnGzIZ$RjTVoBRag&)nBE3)>)%rXCxV zQ_pHw1WK2UnXJ)9{APi$DC>b#3z&S51{@4zirG;)`lIFPRJdo&r*(UptHdhf%I7Sm z!fkP?EZ7dj@A-Y*%c&BeFham~@V9ukx_$$ewKQb-0HPXlM|(K+>|?11l6eQ^i?EXs z`U#H!=T8l$F&Rscya>H7VVCceEl=5Z`%+s>jqVED&h*~sw}boGFZ>)HWNAaz9cBPi z*t`sT-09+$SlQwa+~JWcfMW5sP=b@|RUP$@h6MTout(cS*w=YEoHHTyDD12eOsT)9 z;~*?(hvaf`Wi%p2mHrk|&GOqCA!&`@*w_N}g2lU2V$xFF>kynC^+DpQ_5Xf{`A`QI zjwApJ_uGdEz53((;x*OR_%Cn}UA2{&Cr%B+n!Jq?`q=N`E?!1~^T2GAkAjy!s7;8T zIl5)tq4%*G1#u~wR7=l*=@5Tba`568L?~g_UTxM?s!?{UW)LJkk~aUIf;jM?P7hYF zE#%-ZO5Dcv7&*|zO|R9gmp;KqZoMRU_@~TBcB00d8H|x61ewdCE<#mCecTMse>Pzw z;hRBG*HLpfy8VxL?8)jiV~n|ws>L+1ytr0G@krd>NU*!XSa{DF*uXQLzrJWf3|$#FOD5JP#V@nC(*7(|o?*>KIX28|)fY#ERQ4zGI~&Si zHw-6-jARE=Z6Wmu!oz9evlFTM$rgD2##&g#yA?2wMF!?&E?DQ*1p!pK;W-greZqT8KS zin}Q8K!YQ6FS2Z+?CLE1?3A_{g&d5n+&+izD2Tl%^BLXG0U zqYQep7EVt+H;OjoA;a92vLXMk&Sb!3OCi~lN+MLVH&p>`A*iq)?XN`jT&FB|&Wm}t zlFC#1U?YLnsh^sHs$G7993-Ab=Xz~z4qFyt)o}f~J&hhQmI^@UxrWrMF(<-o(e6I- zW=a!bJ7p3d8S)nJijWDvNO8`1bNV1$6i5Jd9dWs%;E8P|48a6(NHk^Z>zAf#kLg0} zx2Tp3x}eRcJ*}U&JO#0j{!Y}6_9rxZIv<~;3aLD671mCIz>ZQg>CUCMFMKXRJqY=E zNQoeq$N#JIuW#>48)*UJA|wM@dG-x=)eHD~crd*d274H|PIh`MMSVhloKc1_iCN%( zxMUljI!I@*bwUGzwr5sHDgnhk+XsW~b^uTyn*!;92AIzIc+f;L6wN4W#y6}rRKmTY zG%3O%A9sY__<*i3i_%U(=yyBj3qR5_lY_mz7l&X7J;GIz_xg+)oAQ%}3h|K&-gsbM|KV}8p z!M_9#H(pRE!Kr;CgEc2aLq8;W$a+H8^A%74u`m!qOyiS2P)lH zKc2FAmsz)}hXqQl;GYgN!_nYNbkz>$)rLPYSW6Os+QV1vrkeCxUM`KJY=8FCcv%Ct z4>Kn;dU-O6$s>Svttt=yjXdmBX1fA~3i*Sb;9&x#P9@W`%|Z?=GX9us zymBV$*Tv{h^bn&YTN+4~?$F^R^g;!1$0HehxZUm++NQ)qRfLKaFb3FEV@ydB{7bMg z$2PAQu;Nr13)!eR*y!xB&|vQoI=Tbk zJ}exudOF9#_a z|C(NGa%vCZ3IJJW1r*oIJir|58rJP0$o~3&>rpFZLc?cug_Sw`^SfY}JQfa^l_0xQ z`5@GR$VuP9MlbwViy9k#kAAx}?oS>1LakBIQ((M;Fh}mc`f)EbzbG>!rudD7mHikG zzP)R@dHLTqwG#DQ8pYZlk}WL-W-$2M*jUTtXg>4LU%(!LtL2Mu{_)QK=QpSthB4YS zXJ7{{ymn=;-~aAX(+VI^|5f>9(fqj=3mE!gL&z8J0Xmkf%(Fe6@)vC3-$PLCaLWPa*LB;^1UJ*(O0x6t1s3*vXL@SU1YH62-*(|c;92<<>xCeRpGfi8t9K{obSDG(LpH|vGGFKwlj zLBuO%Ro!6fDI#m?2z&%I>adKVzD@8EwZ%bHG2zHcyLXgI9#9;EPVl-yXqL!te+sZ8TTQgHV)(ahkvIO!J`K}Ku5+)El#sdSt#Ub5V0K;(aM=xym#2WjfvL@2;@vtZ z(fdKVm}P@*g0`J+sVSBcwtB2&b&;*kIsp0lTiq6Q`F3AZ<1j1&t#*}PPf6*@fc6eD zM(7O~P#^GG;ip}LDAl+QL<|2G!{SH&AxY2z;6F)`e~D20V)RU`jv)F=0ux2%BQn^Q zgNNQ#t8Hbe*AyGl4>U5!tw-z#5aJ4LP)m9pO>JiXZjAiC82Z__giRo8qg+@((VUCp z`usU1Oe=wfc0R8@9tT{I#_R>}ZeJAJd}n*+Wlr9cvGlkIi>p_ohVdkH38~_s69&j> z7sN9&Z{Tu{UV>^0LuEN;;8`2TUSj36rgHSB-UuSqMx9smMM{1{HlUwJb-Y!15WUXs zbIY-|juy6i4dEf&>D`}ea2KQH18Yc#=n8b3`g&!J7URW~(ym0&Lt|dew!&r)>ca*% zf6Q&W7jXLi8ED#ebW)kr8b@AC!WahNH*z_kz}G$;SKxQ_P%>~BAm zdF;gz2(>hInCi2a(6@^U$+F<~t1`bB#X=wLk!onLa-XW7I{?FjX1n=qye>V3Wa6sJtv{9b%=I z#(;4-dv_zj`C^S?s(vc6kMy^Yhmtp0yiX3S0=lSD~41c>^I{`4niY`m-Ho2>4tD%|NU`ExX50~#OJx4eOZV7cQc-1h8Ylp} z$8(*E?V(FRECcz}Hn_PEpw{$Or2 zuY?xbkK=sWxmw(E+$SA)_|m-xed7Oav@4ZW%Csvm!-aANn* z&}>Z1_Hvd7GH0Ki13I>`3;wS0z}+ndGGz=*{zk@mgH_FhCx@8xlwDun=Wzb$PnB&1 z+NN~xNlHe_L0EMBAX3oHUaeDRdK60o8HL}dbZdY*N_nxYN16UI+b7j14;}Btl)yS= zs4vfofs;2LPzhVPnGU0!8BZpWaARW*$4*>Hps>4%t8p=^650ttI?Ta;EpRPf@Dh;XJ>EY2A-BKRCk&y5S?u2zQEiQpy>821&(p8=)$bWADjf~4<%@v7`pfc zEbdVzE0?jC`62xJ@}IaUe{%_17W801CW2>4VI*asT&z9Eqi=-$PdaiX}-TE(m% zmH+%5S|zzkCg##=Qy&o*26*u>BzsJv{_akhc^1^H%@2XHbcHfGY{?Q*%1=j#HO|My zY~u72W2^!krjjR6-U|2odWm^Y>k%q*H)7?{;5B#i|1TjxxZBJiTXO=)DonH%<|5IW zW!^H`5GM2Xp5o$U)jv=fBzrVHvG0qf_Eco@VG{6AxTs6j7$Rw+mreKl&$pmp1cI)y zWBnHW(~()Na#;@mivbvt*9EEyvpWa>KVF`X_v?BI@zkO_QoWwb0L35F7`e`9%m<;d zm^WU^1pP=WAS5z7Cg6X}U`VX;43K%GP0lK?VKqMnv~!@Uc2+@m z&;=}^z2Z`+^$n4e06?B)fVx3yHP<3)rzzkM`9qLyl`1Zp8rWQi>d|>U(DOukp6=B0 zG{nuSylcN~#S(f>3SZ>^CaaD1)faXDS(ZpFxeYV(LrymH|J46aX#V&R_<)xAN71H8 zgoKA?2G(59CyavxZpahyQPj@t(bB}4EQ%LHZ6(YV(gAxgEpxWTRJK9GSZNC;C}~?t#wJ^6EScme2;`4+1^e&%$@x{7%m^s{>&G zENKsSUHb!|g>Sko_UsrqLSYfq9b?VUfpqS14?jeS3PwS5Fc8gT+fxI*r~1VHTH+e@ z_!xlkU0l4L9d(gk&K^qB$ zNBECjWTkuBTyu`V8ZCj5ZbH0nwNVGU2en%=c$~F>$*PvJ{g;Hth7rOc{S!1{usX)l z%^(+F;eGI-5Gvecf8e9BStv0u{AZBL0>etzo_oo@ApoVcGf6fjZZzMhDaRH-=viAZ z^ua#>GP)O;7uxu?Jb_+8YnFX~E#P|zgUV2%r6q)zX>K=YewQwzU|YBJaXx5^cY6!#Uln6oAr11%BAkYG+t%Oa?V<<|2R+&n2vSD+MpzYF$9a66Cj z5>$s;#|4`Mf3U;bCa8>81i7~cQwwE%S>)d&zX^!q_pw7UrV60%;{5OShx z#rL~R+KE%Wz~MlBfbrj#xVRgQf7HBN6(}ZsEcv-ns(qpd(0mx>U12dsqb2+4c64T5 zS@?NM8z@&hBIIWB`j>SoOn^>NnlT!y*CFicIgJ%kfvbfWfknKA87ln=Wwz(5y=sFr zh{G{GKr?V-to_Vk!KB_h1p)_&X6@C7 zND$6H`{Q60DH%$#!d8GenAuje$}}{g=|tC+b^vfJYZc)tE7{}=*6#)*lBR_*iCEZp zi3=wi9)9P_=PGAja_IbRK_PIx5?MaVyn{ z8V0Aj1%bht_ume83KY|YjIko`0CMZg#bHo8nDE;vPJm|e09p^3mSV4?AQ;)M1kFzQ zlC&s8FcH82WQXtm*RjSYT1)LuDl|DPt^p#pC1{>oG!Bb{00Phy5iSBaO_rH`uV_-N zSeXS(H!DLcx_mkrLN=BRy(-Mvd%in%xmU`IF~Q<$f)Z9=QX>9Pm3-Hqzf2b|dFC4& zbv_GXFoG-+_ZfIXoBMj&4pVt5zq99mb-CeAbVSe)2A1ARQA}-!jHzhoR5<>O&bh#K z1Z)A;g;}GWYd#Cw>oJgzJWZ4V4FHgaDk6>7ReFvOwdXGuU#=np03>IFr(%t~P&tbq z&n0d8WUkJ>I5YB;tLJtKhB2H7RZpP!FcHXW}hWG>R!PEAG zjrN&z#EO(6iqiRr4{HIUrHVjf#fK=Po_PjZ`)vTA3E>H9`K8CtP(Uy;)#c+b-MCvH zD@p)TZ*{KNwc^L$^$=?4K&D{@&rrp0U1$*{X-!WJQ9)|T60$=vNL`_U+BVyj;{#G( z5bc8^aiX}A{`7XFMjmM!?bxmW`&s3cP8P7#m=e(XSe1sQ`@`VnUUWLcAr^=?`R7r= zI9R7ei}hF>D(=a}*Fg!nGOL$Cn+Cmex8}^*qu%xa#0Y6<2g~1sf&yAPg<2~!?1?a- zZmtLY&sH}NCV^&c_ZS*ZC4DhX2L^Y^U?b3yN*WQy%#I^PtmrVPIf+zCem#hhuBYYK zzhJ23l*4#2+Gk)mF!^Sf)R={v^hlO5T`DNcO48Zar*aDrm*S3pieP4&kt6G6=|sIV z+FJKf^qXT_YYg=MA;>kl!?I#}qqJMl0Q0ZR%>H#Vi4NIwvNsca&W;G#hb-*}8F%da zJvr>L`e^RSsWGoLt*#s-vfSn^TF2WR6JM+Ys!K29#v+2PPr0WfkZ8);5#SjnpATBa zj+8TLK3l3Br^{FurPTpvtra(o%PQSU!0-*n1>HGsH&-ft8k{ybc zr&?6r7<(4z)6t=<|a8D-}(!-Cw(eYfXhOzO*8KH)|+ZJW)5fryj6;A z2xBaEpydRQTsz`I`U^VZA@c?x)d-!-hjQZDScy|phS97tALzo67I*M`gLZ0Gk;TyV z3s&o%{GvH;1%e3VwZ5SAfZwhx$#N^XwuP&$#gwIS03Q;szrJJwk2bQp0wD<-267W? z^w9cwgN-;oXE?C1^Zj_4EP}FN44G$PrMn$}yc_;h1@w>i=*#pk1;6pzxeTNv!f6HH z_pD#`As?^+jVVSbj<>uH$4RmZ&KHJGzV{BGmDR2UOR42`tb(^CqfI+SFVEYSyA+4X zUrLV#!VL8$Y0(hBu)h)2``kD){FcVl8KiP*waiJF+j*FV45nqx=$$=cttiW*PHR1K z-ek81&CG@|Jq75OV9ve}(8+gmm&QR005p%RQ;Ip@iwaQ0Q$U}n!YYT`kpD(UXoUK_ z!t{D3BbyEke^SHB-r8~#kdzC~U4Y^ZRP>La%?gq{{Pr74;V51YjNwO6De}`18KjT{ zr;qB-$hXMJ)14idn}al+S7LVpbmxJyFSJYtLVLgkQ7et`wv^M46m2_Mpe_*|-N|~U zrQ^jYLE|V!l33^KfFmYC{h^05HDU`?2NOGSad5IYjJmcP4pzx@mP7Bc_9f+n1fl4OFk zeMCSK)S(qB(AXG|!U)Hpe~&rqB2C(oI|OxRhPE}{0F<@YU4mCeP{f5sZQ5x>*5|U( zmKnG-KO1)TG6E6W(y|4$UTJ>X725e8#i$)@XAW2mbG-su03<#8=V3f%Wi^sT)mU^! zE1C?=4(#ksOV4;{njO7%d1|3I{Y&G0fKyP&BP0roQQy1hfDt@^6!!jNz`S%11mpSm z(cEF5!6rSVZW+`-Tiem@S;l5l!Iy{-tw|CIuU}Tn0OkuBhbC|Y+SkHaaHIq`IBj$$ ziSOr_2FD(R>1YtvZy|rtil7(;u~Fs~M1(#5?9SjUH$+`DK~(Kp2MKF7`5%q$J0J3g zUrcLjLu&@wlUU<6=-M3Vu|u}P5p9);M|m^)fCIJ<2DSxm=YFkhWmt4?ucj-+VQLWPlW)SKlXgbU-nqmlF8G zT|v|nav?D0pVJ1oTmcX@dF+O-^pnsmeBl+mkJFq1vz0f(iLWjOo~K;m&nKl!HyCMw zR{a15I0@E|eCO-+-WOPsvRuixn@uj))6yb!1LupZcS8M*Y*79#G)-1l^fJs$W)rX^ zl|zUWhjV}*kR#b0kuSFLe!rt-G0BGlaoat`q!6$nQU&zI$bpg4%%QDG z#><%>v;@9giIN6F9+D_w1@Y1tE%L6Ao{V8uB)u4pK3(&um|f;3-&Hn|+6aD&R)%x~ z)UAcBFIu6#G}4ULPfkGWj#b2Ep!#|EUT{77S0~m%U5^yOv_va!BAhRg7EuB&^51s# zWkq4E@jTi@5}@;c8{SQ>m3KYd5^WcidpN&94ypkcBk+K-vo@inJIBJ0H`jjxiXYDq zFk9%7GfFT0D{Q6X|xv8oJf~1 z{jv6tQ;|rmt!cRZ7#zHCtpIr>P@>Zq20AA=HE@4-;__^c^<=HJHqSz&KW@IeZOBLv zt2zoy7}jX_Z@U{w**YY;HUn-2V*zp0DQ!{cDFY>d(M}|X_<1i+CUfpvtMXiLHHQuS z;$kEK_!*=hP+IiNX0w;4QL9kINIu!|HE5zimw`xZSd#1N5D_tnE7QfkqPN3};k$Gfj>=2jebY}-j)pqBA%fp6mT2u$rwmGomFcM(Ma7@JX{RGT z6}H(VKHR6H@Oj!W;gNny5|lE`d)nnR9r@K$ge}MSfN+KihF+&)`45OOl;S|D3CFD{ zWfKhbrSUQ^n@~>Q=3fu*aZ0*&I+VM_8c+o^6nXr|pEzi;X~lK>bsowopZc^-a~>Ks zqLw(&=^$e53mU7;D~fo0c(>;^SD>>AReR)QZ|vwqkH78gJY<9P zKnP6|55TGh{i>zHf&tq2!^tIXz|j8g;kiz)hC|TF#=!x`x1e*htn532F8WX&S{N~1 zudbNySZDFHZI`M-JBTCS3b9s?@Clei!4JbpVGx7D*KVsBIP>wOu;wG-(4V*B4`2Fy zb$LKLHnRB;VA9k&ODPbG3I^*(Nosn3yCEP$vNwa zl35Ku9334q65N0hs6ZoN-Qy`ijmvb0E9f4ksO}mBflZK-3>{?>$=G+_`8!P0FX<@kwaH!sA^1awV`E-5F zqXWiGt*tS8Pu^wwq%K*(Gjf_H@pW#{n})%_gD$LsZycrPRgdjH7l?Ur)w-6;v#LV4%{DBckC9B(j$Kf0wER z=@=-UY(B1sVi0INu4Pu6S+nT3N;nBSovj7&p{=%tPf3cE`dBMivp5CFsj~SN3aoBs zXZ5ZFZXX})UDdvq@N-t*AOEw8Z~A3ai2OiGkf$Mj=t*tdk$qxTS5IV@4!=kWT^v&T z@#j8RP7{3pWlP_div#q5+W7pBIq4;0zk|dvT6Af|lgQA5MfA08I4i=?J{htQ_%st3 ze@y8g>EYoqG&uMX!bxIUlolTCfM*5toF9r= zvKS$7t~3+(y#BB9!-|ZB%TEmwV{rA!n<27~%%O~4A{jXNxGP{FxuiEz9pnK1aKv+* zIWzQSAY?hh>7a|7TTR@ND@U*Y{D!O<5q)Q2F{H!XUg+DHp1CC1>_!z9T8+nHI%8*g~QHM|EORKX5@8sZ| zd{LKojeB8>32-;`yuKJq$M?{4rF31Z-mUiiwg@z=R0nPfDtzn)2`h@EK#7MHulmbB z_bBcLwW7BknpGKa8kR5wUMYXLzQHm|N}Eykg9kfnjFNu$_}!hJAN3R~9>GeINF>nC zra(`)Zfb(NI>C7@9Qr^&D)?}NHa9rCVy+`8c!~)T!@55@jCjlJeTlEHt%;plA+ zD3!u$!?^QdV#|sa8bRYF1Ld>t#ca!~s%t@)#H-`l1S{wEG{0n=f&5U#~Z_ErzHnA+B5myIV-f$^CLY%7}@&dlitMO4ix=yBmtEQ!=! zU3lZd1C>9*=FKK%m+s)0_r;HGk~P;rhNV!sJT+R$U4_0{tWOhBwxaLIf0B{*=B=bk!<~Vdb+~dc)ztkqmr@bK;_WvcD^3fYG5@fOd zw^FND0Y4i(wXF_IkuHEW1XsR?+Vp` zTg2BWl*vP+OuzDbP2%xumkqU7W&*+_)&1N*z>(Ku4I0NFwJXMLHrwUj6X1k?J6bxD zEw18jhQbjK-+KGzXXn(|4^D!jtT-le1L>v+Ow?fFFR#*}r%ex^{q>)BjO-yIgZ2l# zVEplGKgyR3)%vze?@`L78fmGad@VXlhj(^dgTpIw`K=aizQ#wtMP$R7^8eZxv4zQV zX{Y-jTGxGixUWo2Jok7JD|88*>`-`c*9`&5I4&oZ%Y+}>gr1Y@{Tejq(fzy@`#2G* zJ#oAJyIxxDcZEt>^D8MS~lKp$)rB;95 z6Ib=LqJVmE{3CMo=f)YLhMVaF<7E@|jHU6!SldvwmBraae=hh|%)ZFuzY(Xt-4b>z z?)IyJFmV2$Ozu`A&DjeSpdufGnE8r#U$kjIiuB;-Js;4um!XiPHfRy_;!HXXgP#1PQPlUnwMNtw5d&d@+7UVJ9KGmx=2V8n#>4z zu%_aAqqMcIfH;$q1U4D3>}FEzxK4B|wsP44O?GCq-RFjsEo39sg>Ortf^~gT+yxy& zEe;#UbMb$%MTg%ZRaAB^otWZGIJOm z4)NrAl!pfpZlnN*@S4+F%(!^`m)!lwoa$=TeP`aJndeOGQYXHoh=~*@w1GWeuBswSfeSp^E z#M!Y<|DHfV#^J%sU4k3r!5OV%HV#^afs5t0*#x11hb+z2?J%{vmbPvi&k7S_UjP)iwO@(S^lr2Emwql2YIOYj z?KjV9vst-sHchvN=hOW=3S5YyUS)^R_P}K^*8bhf2yda$qpZ>CRT(m5R`nZTB0dhh zm?8+>~e6QTvaHtHGc|7Xey%)aU8>l_jVAbEYKE~=l z7!aY{IMs+HKbzpm_W}Ihetv&jwofv5b4uXw^HBi%&<@T(V1EKU3e8lvnpgC#8q_=S z$DACyecS55b;K4@7EmBBX27_n)?U5k#|rVkvscf6=VPY?M8FK~fv&MrP=kH?MQ7K` zkJTu&lnlSfq~KsLU-E8^Id2-Q$<0*r>1UJqwtQ4>v!deK0oeL{za!?y8R7NvdMl(_ ziweAZQlZy-T3(4kds#BBSn`;ozW*P5F-^#gto_=hqqG*CDXupMA;!ojZ8Ed+VTouj z4yLtxRj!C~7PyN!+=SxL(U;Zm?geG2AO^QXV5=TjS?>dAq(M5?>c_6svtNrq9sH!D zN8R6Y^(KP1)2)yZCZ?>angE~b0_ox3(0ODU>`OXz;hpTJ3|^Y}b*IzC_=Rt`zI^`t zvhm7z>ua1^-y`Gx?y#S)1!4ua$TvG_O~(f>b+Qa8qXl0K;k=4mQ)cX5pZy+?Ws`~- z0N}+I;?Vq27NgiV(oO`lmG!jj{tP@^$l}Z>j0sL4u0F!S3&fTilCJ;w>y9yx-f$3W zspmJANaf_4J*qv|d&`%=pvSyly97c39>W9xlK?I*OU$cN>0GOo0dW`~-|+y4swKE( z8II`>IFjFxCk52dDLL|7^m zSgHs$Q*a0(PJ+S!CHSSWV%zM>)kPe%kwv_rGOifr)u&601x!V+NSt(!64PWG+mpYSp|(1nqLA= z=#O=x-vQaCteGjwQHnE@`%d5g2)VH5J(?D(2%5V9mZSttRH%ZbEtD^rSY3M$T;)Wq zY2{)|SIB%fDzjhThI1_G|AA$2#4GTB15=aZzhGE5YVpF?|Nq{mN0vx{w~v_EhRhZe z7CIm=&oa*!U3i5m`A#^T-_g<0RP4oCo-3{#>wf}kf%JU@q1g$RHX?Q??3dM&HS=&j zw^+lmK1q%970#!Eu^mGE3OE^MteC|pO9LM3J)**teVfneIM54Qbty^LK8Sn8^J+k; zG7Z+QMD&JqGjLLB@ocdZ5MColZ{zyHC{+s%JTe~OP$e@BN>lruYK8KjZ<4}RIYbJ| zQV1pfZIAw<&=-K|qb*P-w8d!#`KfeWeX9X}3QbGpX+W`zp$nGZD??ZX|yAnU#OH zFOdRN$YJE{01(j!063je_5ah}wFX61hT%iZh=J%-7&3rVa|APiSV|xu$kA{k4(NuO z0cl(|WwGvMyAT%z6@=ZMcd?oN zba9$~;PCz72Yb%$e&?L`eV^xf-)AwSrXwH75cfRQ?j3|WSw5i0K|3%67HMIrsj1(M zWVwoj_zvczqBj3XA%%b@KZm#$90mKUQe6LKe3uJ@XE9bR=`R#BjFpDAVvk|iaNn>C zx4<$!h1T9G3)i&vnx&`#`ceE6qotMTZ|fF60s6ZQyH5SVxUjyX)lZR?V@?#vQvy>R zYp{tJi^UW7h!|SVYB$cg5C3q1Ux$Ga2kk_!T1^NM9C^kh8V11!#k8E+)|#aCO#=0V zTD4q+*`FOJ3XWrm=A(bYd!kF8^n;BsYQ5j?eYPGhn<7%8QMwjz+K~t3sS!{_<1|V= z9%kdr8>8C_#0!3Kok2fs%$hf3uJr|_zaI4-E^|lNSmX|Zi-kSq)oh@6FF_vXoVx_? zW)yxbIiJz$(`PTPz`)Y+;wtkO%DOv?h1&W6zsbfavbM>g$Dd+!!$}&KV@ez;xJkt* z=Xj#NhPqrYciXs<^+WioTzUrmFV-kxy+$W(1+6A$51>7w12LsJi-OdL#G3Nq7Nf0# zFqCgGb2=o4B*XMwCqAlkfhTyT4;oL2@c6F~s#0RWSj$;NQ|*(6X+o!;JE(n9Zf)p> z&Fi;hl;dxD513p*WFg2KiXd=*sK^7;6gXxF@>Djxnc91(r_YqJx`V}o*DVi6?H&3p3`I1&sif8eMUY9}pfH`%o?HPe0`r&01IN$H9fP*? z)i?#Ka-Gk$ymwM%i^({mK$oM1CgKvxnQS5~`4D&`p=$ z!GyOQ#<_9U6Uo?>A`BC>g)5+hZ^Yy$Mfhd~W$F0DrXY_)`x(YxMtUOF?64}H3yu#L z9Op7R-P`|x)t);X83SwfVKIDY<8}An297BlfTG8q>hS(`_%f6gG@9*AC%Qpmy4agO zaA>y@0UryYso40ymtr|yNNTa>Q%Wr)lu>jhr1fPdo+|+b-N$0IDkU-Rl*Rc@%7YMJ z4(~_1OAsM0b5Ah6q}K>Zs6gEvSYra^m9U#`kg68QQ#mX#d56HQTX8r}NynXUZ47Ww zf~@V0gjurVn~IQE79v9bLOD8fBPyf@vK{2T)Hpy zh12Ig2A>~89aO*1SR+SPDK$&Jc^eMyWdijg_|eRCP5ZNV1)REAB6DDs%Q&W<5Se|+p zqhRq0uziEhlHLT#{r0kP&#<=2)Fx0?2^{G??FEFE%@Qk5ofm6g z)qi!W@M0)N&cA5m(6f$aL<|+e2H8T6OkxG)a7VMYk o4-GqEeS#trYst(5@jo4C((=~RmE!6x!Sq)AwcMJ*)muOM9lN1`KmY&$ diff --git a/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf b/dev/_downloads/d1eadb36634e8e0276f3d1752e83893e/matrices-14.pdf index 30c752c39c6b1d7c3175a42e677a8f865bf9e451..73e3c3c66386b481d334acf52703e35e5b10ce29 100644 GIT binary patch delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EXJk==G#@3S)7;wpRNe7 delta 28 jcmaEUM&S7wfrb{w7N!>FEi8)4EJj8KM%z`DS)7;wpJoWB diff --git a/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf b/dev/_downloads/d2c03725fdbe7104e13f46e3798a03e1/beam-7.pdf index 3d7981ed1f1a175ebcd96984e82b46d2005279b0..41848cabb7e9c2146c9832cec00eec581f360a96 100644 GIT binary patch delta 19 bcmZ49%ecIkal<}G7GpC*%gu)zpRxb|O+N>a delta 19 bcmZ49%ecIkal<}G79(RrgUyE=pRxb|Oy~!L diff --git a/dev/_downloads/d3453595eb36f834c2ad86d18546535c/matrices-7.pdf b/dev/_downloads/d3453595eb36f834c2ad86d18546535c/matrices-7.pdf index 55827766a35a10035c6e1d4206a326ab03fe5193..2043965b3916d61de8934999ae06005a0f5c6c87 100644 GIT binary patch delta 26 icmezNkMG+*zJ?aY7N#xC276eHO^htJo9tnBVg>-B>k0S( delta 26 icmezNkMG+*zJ?aY7N#xC276eH42{gTo9tnBVg>-Bu?g`2 diff --git a/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf b/dev/_downloads/d4935c2256660a8a33a7af58457af366/beam-6.pdf index da0e74e6d9fa8ec39b8cacd55a0625fe1c8b5789..ac2fca21238ed707c0061fde10e27886331ab254 100644 GIT binary patch delta 17 YcmaFo`Ob60G({F;Gee8bvlK&^0Yw1@aR2}S delta 17 YcmaFo`Ob60G({F8V*|_0vlK&^0Yu*hZ2$lO diff --git a/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf b/dev/_downloads/d8f4bbfa41aeb33459953469d86ea8b1/plotting-32_03.pdf index 9164c2594b4d853f4f39bbe86d4b9d4900c1ffc8..1f50ec4be47700feb8ba5d2574a5fab96d48517f 100644 GIT binary patch delta 28 kcmbQdM_}?Efrb{w7N!>FEiAIqEXEcFM%xvoSw1lV0E?*zeEFEiAIqEJh}#2HO>-Sw1lV0E?9fdjJ3c diff --git a/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf b/dev/_downloads/dac00acb10450bde21ecfc4fd9c34817/matrices-1.pdf index 550ae303151d6846c65202e3ecb2996af424c6af..33b019e11506595110bd7f13141c0fd79dabf678 100644 GIT binary patch delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEXKyB=G!F`S)`Z&mmLU! delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJg;VCfg+wS)`Z&mg5L| diff --git a/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png b/dev/_downloads/db76a3db1d29ef7f72c47b067c360357/plotting-24.hires.png index e1c79986aad18ad3e693d83a08bfd2c17f5e2280..c4c5138fae52e09d64fc1640b81d7b1e2534b93f 100644 GIT binary patch literal 26961 zcmeFZcT|*D*FJm$Dv6*ZF``IIA|*CmLks8M62=nTCRL6j<8 zqzpE27@G7xC<90tdK(6q-##SI^F8nTt@T^$`|o?#dRgmv?jSSweeQGi+56hpzV>-w zVx+rg_o3YwhV9Wi^XqvG+X?^4Rr}R0xLh0P2!M;4&u@n#dTz!15d#lOGdHnkmvR*hBxhUL49NgvW>t`&zF-+tQ z`X7g9tFIP@xmN4_dh)`}r0KzcICG~@T600ztzSEIC_4wlZQ2c@uKy-Qm2PSqIQOff z_v-z-6)|Hq<};tqKg}q6>FoK(>HN5$1gW2$|B(9gtH#;LaVf{6x0@T|RTr5y-8M-9 zw70AwS?`p^p~a*{B_(BLW%Neav&_9_+~_~Bghs`+$VNfMuSKFVCzCU1ZK$I@}@Y6&G z<@pboPSB-Y@c-)bpC8ISHBQxL>tP5(zP)Bg_s@BMXQI_=Khv!_nI zZ7i_%sxF;80~_iO*idP|tkUp!BejW)Y=?jL9O2K#IQhesj56z|hKVtD)q!Th+!!I@ zJnYg7^pbWX>YzU@IdpT~>BFNR&FVR@w5Mpp?!P%xF^>E2<9#u`W{t&0pP7M*&%eS$ zqR~S*gJvpRhJqKHrs4aR_|4^<2(EuNyj9PK$A`U_J1w$wBSlm{{k|_7{izB00;|@X zf|`Vom0n3b+;m~RbNXHW>=WN&m~Z#?-eXW+TzaYohzo1u_pkRQ zENz0T6GX$3aa{WHQFV2|yZyOoR#L!N{8d+1*S7B2_AFykjR=M<4}W(FBk&*do$Qz{ z>-W6s?%o*6V#G#U*j1o8D%s}@uU$fT5~-yYskw47=HitHLVi7$n-)Yy>cSHli~A%D z&ak&O6Gy8#z`3F)Ho;IusB)q655*`GS*aFK%X`xW?Y8cZzASE?B0<&BZHO8?nE_ifJF8~rQ`wDuHHA%nL~#J1qE~Vg1a*}Oi2>*Zk%4NSo@q|Pj(!x?VasTKZTonZ5YeI zhl^@!g{&{>5yJ#kWUGT#J z@*;Q*CbLC*qvD7uk;c|iWzsWrBO^n@k9VChw|XA1(DXb;8XJH2mQQkZi1o3>I3a4f z+(A$Y69m`v0Qs?BSLit7$#*0LI1hRF5~4i&-Wcs5^69h;v}q9tnnL0LI; zZs?BxpqcF9E!rk6v~rqFi~UjV1tIz&2Vwoj*T=Bdr`7A%7KZQ4;-}y6kfid@nA-(( zIY=fw$}Kg2c-qakuTQ+TiP5Z1;^IqM-aN%8ZtWQlK!dev?G)|!dZ)G0Axwva;EP9d zr$y{%xg)D%>N77Lr}AjzmTNiHTGjUJbpl*5YIjHP2q&4@6l1gt zo11{(OE71=nj*4hg4hmO$>y^Cw!WPUA+fTQ^!sJOWo4&1POL^~6iJ^Zit%Zf$Vv_c z&92TazL%4*X9rSUxUe`=2)Aiw0iW*D=ia)6Xb1Wfwf;ict6qgC?@>OpzT!b~^ho8L zYY*6%r*~P?*gfwLNbZxAn95h5Dtyal%x|45PU65CQ-0II2V>3pA3FQ%D`TVkX>mhs$_;_8hPpb!l+y<>xFox>qKjMf_u|wO3)0YwA(JR-;1mnsj+ZoYcZAW zm=Z8Xx$;mZ<`x&XGk`x!mt@}r#%2@dZl~xRWqDh#f=#Dw#Vk!8pJFC@p5?c%N^r+? zSjb~1G<7^L=ASx4{P7e~-ht>jc-C^ES)HQ2CGU2(GeVe}OIEY;s$NzIT>26@=v6Q5 z->5pCL~3rDllz6E2lv#-@Tsv}KY+pDPduY`(ZXtCBuPoGU1HEDJPjg)EbkSUWXfJl^zBzxMf?UY%?jMLhOGQk?M!nOfBn{Iv0UNQ>%tl>U&) zU`epHpF6JM2*t`xTr*IND%=0pISztfEibIGo0HAa>9 zLY<&f^ryQAj8^&!G-}@SJDE#kwON@komz$D4e@|4=|!6}l@#MpBCm*zv%JTPlSRGG zW>4LM@@v*7-BzJ}s75csM0oMM5)3g2o!k9WSHRd{1bsrjR6EYM5jC#NZJ@+K1!aHtiV& z1(>@aOf|ffB@MO?g(@d0=#`|TB$kz8Wvh&(dEmgET#6X*F_ z7UE=nzB`}t;W6b~U9k|B#A36x@2fz8D&GyhcHX+Ao1 z3vO?}aRs-<>~!9NS*d_ydL$OFQ6Wu#93^mis=%Iq?&e|>efW<4w>^ap3ha&Oy4*Yg zMQ3`PLqt4t)7;wQcz1z(=*C*FmiFa0zgL7BT15to8=70^xzoIjnE{&Y4f?Yu4Wnyb zRgc3CMN5}nu)O=yt@~&@Czkgh2>edK(nrTHt@HPUsT6$SV4=5QJ0TQad z=dpHYXI|yFdyzvbGFEH3^l#`;4;{aDL3!xrh(V&VOm*OL!yP`YI6L;>yXGHv{-9T( zGA`^Nl{#N9np&C$8OyBP8V6zJ6oes0<8rs8u~xjsk_qn9-BGP8dJAtwC8Y8$c$BSt z`E*~j`PEc@qJ>=m1RcL7`>lo8-14Eo)GwuD^zVkZHd&JAurh8w?WB$MZl|Dke>i3( z6QeDRVr-Rr9ZA=UIWQT0^o-i5Bj71x7_i|d1}neE249H>%~)P7@nb-W)T}m@OFCe8 z^G9KIzsCI*HjlmVtp28z(2@E`U{6AbKV$ug_M6!@62Y6xl(l)vSYm8FM44(%jx@~| zUwwsj^ptkTSccBlB*Mm{9LW;XW?5E9_GIUnC+CL*!3HXtuM-@ia zGHh4ckkqY zB%Kqn_c&f0Vs+=iK1t`zR`WB12A`&D98||U2 zl`P*D!%HfB7pBCeh;gLt0zzoHv{8YQQy@_<92>k^sW;xN*OFo;N!Ki>Ua_iKDJ^J{ zW=E)w#ql3u50iZvYHppwf?fvT17*n?0?N7H-!j&W_L)90#e=!_t6dPrur+#JxPHpb zzjD`mtAi?X{cD)SLI+ay%282zG(N8$^8IK-l|dzNY4$|0a=zx1+`<=b9PO)2(WDk$ zDX4BJbb#Pcm=Uy!a|aB8%jLlOWMeTd9YMtaoPx7K?~q#oK$#5V)C@10rBrC!I?7xV zJ<2RSUw*nLM$uwTlT3|NGk;Tjxg)M(9;_!)+pdAUSD4stEEmal(1iaRPONV)Y`c;l z!O(1QdX^vk>xD^1$qk!ZyY^(O35dE-Wy%{N>5dl@P;xafQXP#_Qc?=0ZzZey8_{Y) z5|!?7J~IA1mPifZ$THNIef2C?sEScG8hQ)U=}*IU5R`{+^E7Byhy))K&{XRUnguL( z9&1x>%%5f*)0eG4kt<%JDGj5y$0^GI00bU`=-X{*ZkajY?K3x=4Z&5kzJ3?xIvTq6 zmd=Mi(`7B!8@veC+>naN0Ck|iy4h()>bBF*uU3Z8M9;4r2*v&eIVHc8(^58;vWm+h zHIgbXUYdslOD=Gd$=0PQTXW|Wfq?*^kfH#u-tJ(xRAHCSD->g+>b7%vMrgGNK z_b1HN9))q4VTvSaBtoh`);7ky!b!o$wP>ZUbBxpV>r?l{r1GMYyp1f6uhp;`M&8~N zr^;G;C}XaCXmrkgoo194yq(sZov&Gdd#4#Sd_G+~p5sg>_?Lj;TSe8q&Xfb>I9M+y zLCjSP=p7wJHTolkkx}ndeXyU2?t;l*u}(|(LQC?-&AHbA6RGZB(od06H*@>kF%uWz z?7cuiDR@{dq_V{pn=G{GDc(j!j512H|4}x!Wlatp?Rg2dd9kAB%4iQWl^x}91Z(v{ zlklsAkwGY%m0?jpUraUjtdfV-rDu>DZi`}7_TBlT2brHAj>bVs5bN+|7H=Q%9Mfq> zMiPAX$?0gmY?yHypK}YzvtoyJC4|+@lX=q^7Xhp1R}%Bej^^x`ed$mH#`X)3IK(tx zHE<8ooSazd8#%nCbAfc>uNCo|klL_k*=EVRwUU0*ag~bD)`~xtE}gP8;7!?LNoud3 z>wJ!-F_7!iy7gcmb&$0GypVQ?`wDy8n z$!~yfoR^F| zO3fCSEs}>%i|LA3n(q;j|B2b?k_~xFCzKmnXTpUOr)z?6tAnFs3wL&jYX+Go?JfxdAMeIv6_zGC93DS`VT=dp;|`zS(P2izRgBDSk0bx9tDUX3A8TUhY9FoNFtdUONfC57v_~1}s6^ z3dEHte2aE!*ulqusKFU!zxePIb5sN9ci>zRm}3{Cx}d~ebQCe1rDE%lyx{=AK}Cc zAB2C^X@`u~M6gAJB;;?iuv{SNR*^U90=0H9c&&z$>Xm1s zOdB+l0E`WyQV zsakrJqIvJ~C^oeG-tpZZ^m=V0ksxUZz(91sOVmoX|BGghv&OT7m?p~CE-X~i#37tX zmzZ=uPxBSj4h>#knjnb@sCe20uFlxr_{nt;{HSMD;rF*&G-Eetk$hN*sw~H@G(+If z6%LPlx=)%7wP14Vv|GETFYr7CNby0FgTu8FyhzEB0y2u#6u*A)>OgS-+&;KdJXiuC zFiN5q3Z%3xKY=@T_-fd*$NbSZ1OP?{Pgzp}#>FdV5;W#?Iv-%qD(~IPur62F#dzf= zaHnQDZ$T3)*$=zlsu~h*sRHR(d&78QQZSCmNr+h*T2pj7D?rMxDhfM?we~@2!?iOd zNLCd%2&xPDHpbWqb&)8kKgg(_0b;7XlryA%c|vWV)7at<}?8Pf^3WR|nBVOv$r1oZKh- zO2f?X8xAo3;U{Pi(R;N{^m@18yfUplpR0k-dui=?!~upDQ^oP6W7z*~{fmtj}2Rx4mrT=zplQ8AhA2np!>1Bl;%opH<`u3?v@3T*01EbN}c zOMVYidUUn*lv5^6rtD1U+#N^o+i&+kB*MI1-tM6uT)86}CC~WsgnE!0Gn=~Li(v;f z)hd?S=sgZ3_9{Euhzm;{`0HVe{;gO`2~|eP!gzy}1^B;}X2{i#`ZlY=vPSDajlyFc z@7XN8lRFex6uLNcqG9DPIKyP8ZYfQ)ORBP_v)dsUtFfjP>NWv7G;$HL;WeJU`%Ygh z)`lo_^AhCvMU&ZRHlCJFW;=zc&($i7$rSzyv+Y_i!1WD*e;Ei5$X*s(B*D^)#uCtH z$BKtMMV=@Fih0gVY|V z<~T_w9ZN?JMG_faqdnWo`6RDM5~SO01@`dRG^eF0i@KWEcc>TFy2<7cSyp~U_k6jv z4hZ+>Sk3T*kA0>uBFtqetR5r(!hcpl!VVvTMl1*KuT<#}p|?WQX0DPE_?c9~O!D9w z_JB2OUv~y`^@PVJ3@&%aCZ?tWhsYc=%i+g^H4=Ff{_+1n@r5lm^ua8nTCM`zqP><$_y}f6aybJ4#f!KF2kWuPnu#@og zFSr>6?o`xvmNNIrOp=38c6Dt|A;vDqqf-xiwhuOz;T4E{=bjK-@LHA*;b>a=OX?0e zNeds(4$H$@zt835t<73!)2Ap<0l!OviMbc)q49VKDoamv%P}GJz)WbddW)_AK0FUg zp;ZXk$<}!YU>irL?g~BiO~*PLKD`ZA1N{`>NZ~Br_t-HN7;58V0Y##&h@M@ryy~jW>J}Fv#*hBki8plqy@Etb z+&M6$zTN0nKyVYI&5y4BUv;U_0)yQ`TB%3QTcCK%^jp@hNDihGF&b}V=0 zC_|93n98%L`D112(IRdb9ub=&|~3?F8Y@nEQW+)s95C2GKgrf#|m2;CD5M+8U-*@bI25*RoI(Ix%FxOtS5vb%CehbcP%>;74h1OG)1*%2z4lFKt zG*-@G1=bzr+e!+?Fx%b}XLJ3e!qxM*){_*wATtPMJ3#iJ)MpNHI*l>Fsc!a0gOh_k;wT?TC(~GqD&ks8QDghm{KOAOv+(H zz~w^n4nj6W-@d}xU`a@b9IKa!C-0y@rIdN{PQyX=hr>>d+-aMWD41n?1LI}sg0c^I zG-2#TlQM;qM+{}k-(lH~yMEA7R|*M)1#0Vw10g|Mu?zSJ!dPpui@=niAhkz3BoO}L z*=-n(@H()n+_!5&NS=e+Ps{QgY>1;3yQp$wX`4`H(NR}+Hc*(YGRuOJfBUtZXnC64 zCe|khfTAxRzol3)_a@sE!^~dJy}`-Ch5;|<>QWbB*sLlEun-s)bk~yK1ICUxuz@G{ z1}uJHCk(LTiEa^l3p|9Y+*o{8*d{Xi9fYH>+2_!QD$2A~r95>b=&=Kz*$OpvLnh?C4lesq4 znUkc5nb-pv(b4hl0VPfzEkfUId54AyE^Iji+wtrU)eM$2KpdNE4#Gx1vfLd)Q+Z171rvSb6W--@@Oal#Mr$;1F(Lv)HXT* zxphMYBs*XY&*GuDqc5wc#b%<}^Pr4t+c*DskM}vuo?+g$uM7nC29i|Y-B4=;t&ihS z0Et@^&8}e+;4%35PqAOxX}?}^0mY}2-^0VeHdV8*G%Y|sEe7 zg-hELU8u*P!5)d{_{v04Up78?#(R4f|7r=zPtwOsx(kh(>Dq1ri3iCjg zx<_r80Aw|g2gtLQa0|MdG;8iXkp=?_{to6(`C7jRsYw~lN~?%_nWgF~Og^grV*epS$mlY^MM1H zKpva0GM1f_->}l}mD+8O4;gcSs-`(8<5C8^TQrdl&AaJ%H{ki0oMYl(8kYeS=U242?7On!wO~>q7+v0 zl4Pu<+WyoqNA0xuO0P?5)#gh7M8|Ve#LM%FYH4uo;{A|z@(vFEHvSTrrt@cO_Ze#x zelCHThvXh}y}>PXUB}$&YUaj-F+N-E>_aH_RH7=Z7?8B56u`&vO?%gJa68`JZ+?cD z6gc@DRYt9q4uf(IFf(RlbAPY!!n=LObafijXxE-YQTUA!Q8V3Z-=eFF=WNwtv*;_p z=fXuJ5$Y0pb|K51phJ_9`F79WE)$cP*<#JM)Iq`zO0}><$B(+@7M{MxD?mJ8A6z); z+B6AMX-xE)>XLy!)alNY!yL5?)WF>mG!MWiP}$OIph2o2Nzn7b0+r;;v<4X_&3TU(qIQ__h0()|(=$bl)&FO_K#k(lRD|=Wm z@RfY614AJy@k&Pov}-2C<|cBXp30=!ZxO#ee45^2YTV>jP#tp$2pTd}jTT2l*(a>s z3x9+AH%1*XRk-o_ofu>wnu=Qvp#<&4_!c^&oYss!8acSC34*~m#v+tU$>TTe3GCxn z&#Q9Z*y5O*K>Fe0O{eSLuCDIzLs1d>oB3!bdVP&dGVjel>O1}rV<^tRzvzUQuJP)` zVQs1QkF{)4_2{I)(H|J--7n)guD#ur_Re@*+w?C5xW_5kQFRTn-SUZj(ZpQfk( zX#2_sFxfP*dZkYa6o>Ym^J9HfIdW2`xwVWQRFV@%yJ67otM(qHoeK+8xp9yH1bbG^ z*Qo|ZMpovoLTxamVtvlc!uGf#U+c;Rc`f?@rv<9LgbHn7+G{7{&qc;c)}Q(W>kSb? zvYPL;`Ku8Z+&=zxV3{VA(4(=4N@_BjPhey*C9s;#AUFj!DGBI|`%oDkqQtwT#7pJB z{7F|N!13N*;e>nl?qxeP7vAN!avfWNdcD?)%S82E6G(wtn&(>v2R4F3XS`Dv7kQ6= zJU`+cDKaYbE}bhOa?vB*+>;;ue_w3n&l%M)? z)lr%&J%>Sd8t6&hT**G%QkZXB`P8K)MQ@?-VPMrlgH*gm0FL<5Ujb01)x#DrzMCzu zr5=O8Rnngp;y+Wvni;^eH-V%pch+Ll{Evd*^uunc+(#g!b?SI_4r&nGMPS3@+`v8} z-K`G<^gr>xR}_8zQ_2~{s!;vjiUw7A2t892B&R)pSG6-gb6_UhB9iwWumlyeHLL|F z?l%Qb(N2SaFp)s5e0bRzu?{x8*H=2&9OfQbB+clT!$9qPi6_(G2e!qsE2oiFSE$^`)l z2~DjAKzO3;?M#E0PL>Oq(4Xilow6Y}=L07+f~D$rZFE7+#->20ELC2E^NdbEeLTL)6X{hzY7<@PP;V~m6yX7yU}Qu%7}QvTTRw0~BkdL5 z@eZ~fmiB&9j zAw?9l6gKA->e#IUkviLb%c27Nx)C)2^C4(|XjSNUw-aG|T!K&3#hn`a~~8 zi{gz1s>={aF1qt=+d+Tq4weY%nZBY&UrDyZFO{p)#VunW4o4<2H&Gw}b&6s=RCJK8 zdN+x~`!fK zb|lt5GysXjcc169u=O=7qlL0iR96&*t=Wxh(OjjY!2ljeMB4}hY0nVIB&?Ypc0<{gZSLlL2xdr6B(rJh?9m;*37v9l6wG0 zsfGo1)!7l8jp<+SlgI#9H~7kzickm&S#X6X50D z-3k*{R|cJcFEYzU;6N2c$!LCkzO;%_Mk2LSkbb}m(6O2Pt=^lUs33|xlqtK2AcsvT zbF>112Is~&WJH$1^Y2MwV0hT7&LCyu$KhWNppy%fvbq4BY)I?ZgdyTBfK1`PmTperyf0`-+M za!JUOzo|So@-_;JNF-qE@Xy%^<5J5n}@l5B9XP~2rPSgqs zM9~O(dR*4#KFMm|RtBy)vI$xd+CcZo7g7VlF6MFpUUTt$21L^;@sX32{@u3zO;zsK zk!B9wM(afj2e;585G(ztx4ny@p~B;1SZ#eJc-LYGznMrJw!ZNTkIYgHC+#MW2Nl3$ zECL*QP}OpI6_)Cpj%DB^Q-g8Hq1S}4#-O_cCb9J$nnVHon!?_CapS%*vsI#6rAxw4duVG+h0>-kSvfnDA;%*opo()uqBYn8 zhb5D){{oW@U0>0CU=9m_ubmJ!02~XgAs!8{xg`bNA8jlbm`TQ0gY!KSskQD(Y^-Yh z##LZ;a~c8-4j^#5?hLFunQucl&Es!v*w{fY@=~Vbpl{-aQ@U*sbeupuVu>9o@3M4F zzkAf^*W@GE^G0!?TBi!gT0F8Z)9!K%@4I;Uu4AuLj?w&lg!a}N!U}rMvR`p3k&l=@ zbp-XE9ub^%iyy5ebfp*tRU*&{H=0uRxLPSXH-3<>7gAgd8j&g4^Y-2zDr~cir}boO>v)LX#G}7&5&z zyPp8rfpf7FXF@$iGBpVVj8b}_2MBg4i{0SLd;8_%6K}{ho|}X53yizD(S3*mV>n;RB7s2LLAcFued`h-z?hV@fX7#uI92%mID3*^q z9)G<$^Ogk;M8#SnZ31AyQDjdfF(fb(fI82OpN2<}8VI!ufmXU0{GHQiv_-z!cMJmO zqsWfd*16|o*_Xq&`Ko5}%7+rb9c6%ZZx1j14tvk1_M7wXfjjM;ZMV^G5gmos{qQu= zGhu$DUQ!QKPzP6;zw>vMx^>6*!&`0kY|^ZCh8000gC?O1qDGQTS+3q+tS_U( zuB!=G_SgP)z;-EwW*;yb4dUN=#TJc4$M^d!8Z%?<)^Cv)A*wYFgnmiC?>tl7W##5H zkr}(y5uauRuq|Hgc*RN|sL+LA;+*?Rt|IRU(Xw1j&u`GTTL`}~pSoUstD+lbZ)v($ zQI5Q^(AfJ@6qd&>-V$2@7bgChBlQiBT-76(_7g}Qd+5+1kV%e@_d^-9xSICp$I&FN zwWa^wti-ozu+e&ouW10{aN^=;w&B}B_u{7S?*(7kt)q3G9J-mXahz6J^#%M|Q)~Ju zZ9g^w@)kBXej`E=_}kq&YriLqj5F~~&}XJT{o+*qtI2FJ3T*V`VqhwIX$RI^;R{y~ zcEfK@*(+L%Y#sZ5ps@H~9I37E9_(9;E(jJk)?B_oRJh{`lHuGF`;TP}u?#jKLvsRk z8nb5;zfzpqGyo_fYd<0Q3aSz7O#?tz#NVkv`Hc#h86Fh;%lj@S`G`6M`IG?5t^0p_ z3)rX1L9)Z700`R)r3E1#WBV2Bg}e=rTl^C$wft+2rym~DxOp9n-i5V1lzB%F`1t!x z!NGIGuRC|%H}|XyLpRK4H7QDEX)>m^Jo2=Cqr1lh31<0!9!$15$GUddgRyqrcaS(S>_?x~8u7bqb z8G`=@VNecaY~*fjjB9&!tqQ5+Cs_jpy-jo}YI3E8TYERr#}Y{*npRuY#?YZAbmQH( zdPE598n9M2DG1taCAZ+W7I*J*J(-mfcx~5Sp>047?upS@&t54fkAf#?0F03=Hql@1 zwfDp@A^QqvaUrz6(E)v*A@Uwl`uWs7-T>N99PAwL@n-ZXQq^jciX@anNLAls`+@bD zdr)0|#+Zmun&PaAvO0{VgnA%tXCB0xis>RM!WQGpKs7PfzydYBE4^qn!0ouT4JwJc zM(4xcj_(JUF>A&y8Yv=peXlqUzmGKc_@d9cCJ*r;KC%+Fkv^2ZwRlh z^C1SY;|ORkGQ7tT?)Gi1@K!Cy(nKJUdKM2*acgrH5tAMt$!yzZaqJo5>BE680Q&}I zpBdt=9|Bay$;!K$0A=WU7Lk&w>|h=OWW68>7)|0NtfK@6aS;DO8y@!=3ZUHLHb;4Y z{$7n2NvALqZTM~i*pnl0av;4zq@ndf3qHpCEAbz6HW9P@R5udXJbIG~u!Y;CIKRfG zkE;Kdq3VCrwpM`?jvy@=^o0T#R$|HlN<`Q2$ND-{r^s#D_J;b8!8eoG%2?&QLY!w*!WrFVnZbhI_kb zR4Cnl7T1jFgjnu8m{!Mct0bTzyRGN}F6X0*wsrG$Rr5DfMuG;kB@rrD$PY`{4eq38pefklog`jfOd6h7x9I!wK|B#A6KnyhV zQ~_%s`icf=QL-GKNd*Su3`AG&#Gsuzd4>rWns@s3r2l(#5AtnEnK5TYZvG%}ENxOr z$9oE3&^xy-8Bzze3yfQ46tN^IpAw^-(-mI6Wl4acd2P+z*A~-5X)EZbX&&=oI#l)b zFE}Hp#-u}4>OM3jKq|)kLyGfO!k4y8{k@t?kjFr1B|Sc@+Z;TTTio1$T64uz=W4kS z3cNu47QkbTbzNvV2!&Gr)%B%AWsYl;K)D4p2b9&JTmh9_r7VQ~QHVx~5%Om(u;W=N zH0MN*1&EuOM=+| zT53lS+mTP+T1S1;w=d}E2Nqz#)AFODIzjaBE)o3P!7#U2IYt~x<#}a&M|0r+SRzw^ zaM4u!%uW-2$qwZqaFqDNZu4^mxd?~@MDSIOoI57-fa(L-A3}3LNg4meOSk^~jzi|^ z0$pK@yn)-U{+)v`aY|TS0vNeHdnl&H(R@2}LNuW{L3R4Y+o9Eq2<4yUD#?homvsm^ zbxMGx?uSahX5a!!91`7$)7AbU+5*4fDl1pLbRJ3n4U$gCLm(S&tOodoR zFrF*~wbuO-I}-Z6@YZ!}nk&zMgD^w!(HoLvpq#-=QzG%(!`K++*8bqzZ5u15I+a_D zqCbO+l?0hS2y`T^)eg0CLLZ+(SwZ1xfhi7G8q`zh1TNw%Uc2JcJ@B`NpXT23wZJ3c z`!Ih+K=}lJ2?dBsh3@V?;zt5Mcn2qUZHQ)2jy?n~@B?H*RM|u&WeKoB-$TRgCm{ZU z8bBA29B6NaLf1aQc0{mP4ACBopy4mOppmw-isdQL9&1|`HjhCS@&`T0K#?dpSsm*6 zYZ>`K?4nmWLkwoP*&_;R`7vt-C@X03ItAJK500p`vd}yy02q&g{p#G0} zJ5Tp)>jCU>lz-^~)(GDoCIUk=LnedK)F!=TZz=di9z2Hx3P_$d+umv-D?It}u9Hns&IrJ%J3i3`{qOi2-IW>jJX z(>V?ft65D706iGYc9a9X2*^AxmF?PV5MwEUWXm8Xu3_22OJ4wy1PL^MBx9o(>wNUw zod83I9b{g)g67{T=))rvD4Mu1MyE%4bm5634vT+1G)Hby@doXK@3!gbQN9c z%L%LAWPyDW%Fe)WY(OUG$YM}6{{Y|*qcQPA67}h8QubcXzP7oGl)(-UZ z1A8?~!YTy4Y~WsfN4Nh7b7}4VxN7|x)4MGLjkMYzVQH(-ujx1v-B?4j-0(iZV?R`^ zPtqgt22Tx;&atEZ%SVVl(ef*kIn+2FEHw&Dz}WrPPNH1!j}u)omI0&m7QE3@qdZVl zmUuve1$)b1;l>qapX(EaG0s{^bXU`fPN{&!CJ-r*Jjx9t)bl4nwN?hmR^jG#(BFX+ zqwRH;GNvVd3aZ-E}1 z=vM}@D>&7G}Vcczk7z*Z`I^N*(Tc?$K#ehzRK4+5l7P4QHJh+BEC?B%g)+F+C zaHRcagAc)VSyG^mqOo?V^J-d1(N|xU?9Is~N|)Qfo`dPMx(7hIRRN!RjDM+gHdht-J%pgVhD- zATFXxJd{hxt@MoFIX{_$G_zxHb;`B&A5>V8smxvABg7yr`FFqpx>tJO-h4e8dIq|T zVcJ}+;9B=`pV7|_L*6Z*&myce9IeGJOeT3ZOx7l=iG$J<-hT)n<<#r3bEzp2~fuAY)4ze_;GiGk|yB9+*6OwXzLz`ZM6PZslD)+@NZLgQj;Zyg- zFspEINzvwKwN@)|%#Ki&IJA|6WIe9B+fK@%OC%^t-aRuKEUrZMo;YTe3|g7$m9wA} zQyx0Otk*_27M&4g|LoBD;jz>7A&`{(ip`xwW{~+L;w)r38Qw0doIBE%`>wxLFyEZC zaGHkr2mVPXr<6J7B>xEd^G%KPkShFF%mlIrfyAcQ#uk7zluLm7$y%r zqIF47b%5zj4MR7+3MK~Pcb+>SL*AHnp=_=qt@SGuw#%TQqAmgc=m0{>-;l{Pp}4)+ zs30{GOE!S)q1U6_G0_A1R&=aapaTH1e!zB+ky?g`V0{VzDO?v<2Frs@KnZ}vKU{l} z4%MTRgFC7aN%6~mW@FD#i{-PsC+`rQV)SHR{(xY?EZ!L8LP#_Pv%GV*%Crue`1OH9 zv01O|IFEMQQzXJDEd*iei^~+>?r6^I;IS%a&N??Dp=@4fn1EC6Mdx@0KO28r0evJD zM=dE<;9x<40t632y&$Q=_7J2i{Nxj+{hbF3(zf%n%-9{M@4R7C0@|C zUH7|%y^O;MEuRROvp=mmH~ew$-( zSb`(e_edObR}B-*BPMucFGkEm;EQ1DOP~99BT~E|<;XVh zXRYUuuGBBQKOk4XLf$GBno_S|sbUN`MULR-wcJSp^>tpkY|aig7^?QxIdCUqU2u)~ zq&{mCF#!#C4jQnD!AYE1h;I>#wM#&5Y|xid!-}E4hts7_M@ZMtOyx_}FX+q3)cavb zkTa|3ei7Gq6_lw!gGgv^-2nCF+6lO-I{VMsMSMbP@vkte1O9I?0(&0X$^i94`a=1r zD+ygDHo-SQSp@w>YhH+_n0^F37Ye~Qiw6BDI4bn)VOFAG-@~U+6a!cVdK3_ugB%gp z?*Vo^tO>k8L{qn&bwnp?wqS#c5DB6@LL{(7P+p`=6~xY#_evm9EY#2}?DLck=~OOF z=8PT$)_*iEDav69Ad!PIHunj9^D#kTwJ5%5_J#|@2GjusAV0SX2egv{NJ_uvm_+W=Yo?3nevvsfGtv=ZW=D7;&0yYn8-)Ohy*#`vrNnhFb7 z9@H^@8t?(oaE00c%M4QO_?c@{_9S6{13;-8Z=B$iGH9an z04*=3mAR@Fmro8=xPA#bJ@sJnAybgbzv!V%DEs_amniJ_bMcmJg&4EJ;w+OJ3l7{9 z4nJo1F~TcQ90Iiu2g@Kg;oSK1-CPY z*B)9LrV1pDwUdKaiuEK-_hV@k)GwJ}l4V4B!z1Zc6AyGf^u;nSRYL8;A<`^)Z`v|o z5}bP#oruc~{&W{N4RTP}j7rB(NnuJ)pmoD$@5W+kY|u{B8XFA26?z1e1$FeHMV@|( zyJ5vSG5S5JSvAX@3u~$uuf3GM%oIu~ui%8<8wk;dG!QvB4t3yFKuDw6%}K#w+>g0B}r zjftqKAp{(r4o^S0t;}em{pL~V?*!_YI+B%g?Y(}Q7Ib^9^k%u!d`ywvIweSAD%aFQ z7ITdRLp8bO+ocEX$)FaXmv$4qLKP8Z1Gy1+WaxHIZ3d_hcwu!Y(I&*Vs9t0=Zamw2 zy9W_F3P+hS6QGe~ros`lyk50HWI=-=gilD2C!-)EtqVgq6Z#rr*ZpQ}B0S*e6VxyR zowX?GH$k)?98WMmLR|&jl2C}x5$@TSPc+J)XV68<)bdvX-||X7aI`UuTU-FWP@`7J zYMv55HmBVv1?RXpL->~}Fj!wPM6Gh6%p%th2*mMTiWyIls(%V{{QB&g5Ne@5m{eXQ zn%LcW#YVWPJSWzDZ3A>*%~U>JkamXu;t$ZPezcu~(JRWnIAaTaC_t)2cQ!)t1RO3_ z3`#wM`Aj$22+l=H3Cs?j6VX%y2?;LVR`PH_BJ_c`(2-~n)#tb&5(A$VjQ9bNTK#Ol z-WI#C3ET#4bH=}&g1=~$4j_{8wUK(Bw0TLxQ3?n?QLm%|Hazk#>Hv#V{JYH`l155| zdJO0FO2)Rvy{=xB{^-=Ux^cv)x(h@vNIihgU`fz;`(F;3>nG+m-b(Z`3T5@5$LxI0 z;pmSkW&IM+=?zc1WW-!nfU^X^c}|n@mhva`K*3hAxl;7U8Cs3(Tel{V*r9XpkZ2GI z^OPZPlZN6KNQT@*LY6+F6H$;b${Wi2E+gS8%^|CUu~5k>nCvNW(B8NVVoNBMIQ_QJ zZfp!prx5;?Z;qNUG?<_Ub7l8|myU4ALlG7EkN~f?9y1H^&2_WH@KyCMX?Gy+YeBW! ziJ@v1cM1^tfn|e!{b53?3VMjpfv!A0k2YRsY~cpf1bf|!i#DP48V*f_+802&(2p2a zVhAzk*{z9omk^m^gN4Z)%8hz)+NNh)g*Vdoe;vOM3VAqwcrjFW%>j=la&!2WL`cZa zA4JE18h{2ws+{q?J^K7MF9y6z9O^CYp}PoVl7vHjo|QOqEjULJO`>A+&yfXXR`HZm zQ>9St7(=oY5NjsFK`$y3Zc%Ii|O3&(TybF{zT%U+gix>HKv#4#qtIJ>D!WDrJ&4n|S{Z4w;%sLqD^m?F@5&7E#= zq($R=jWgEOEf@M2bQVkj7y(^{d?a#p);_cjIvs!-!_Y*5voJL_gajtWrbq*-^s&_6 zui9;w>oes-j-Yc4POsIgl=G*IX^n}9kWVzLTy`d|;D87fR=&AW0UESD$^`YZ# zju>iURiK1k1PBp%1(m1wRnI2ba1OvKi0!T|n_2EA0sdWVF@_Fq5H6zz0f1G&k*WFn zd1+&p_*X%?=M0Uf!FjK)L6Lm4(AG~+w&rEy-s!&5#%~N7#NT=c+&#)hY6B(|{4|R< zfDq!+zQK(BHQmD7tJ+L$(4Yx($Xo{;!SX#6q*k9aXmBFYaKdW9inu-J! zk{D}Q%fN~A2fN-w;cex)y#q*1n>cx-kM)P3b4+K0$JL?XG>0e#stLDd0Jg@PL&XmJ zhs!2zaTBvrjX)JiujL|nh2&_|tPW953z{WDI|({OwAQBIB{c&Y*5~UoTw3Tsw8Z6s zmHt>uz2K66)it16pCHx?6%BM~R0h!PP3tuNt4qHpKr&#ynCy~*dobG|C27yHde6Z@P^Q9O`tN5@*&G`9*BMkKREkErp}$Mf zpp+wl1gqpjP~zW5PFdEDz-;`-kyD?9p{@JxoBB-0{h#*EEvTt03d6@MD2lgAg;pb@ z){bCcY@te0phATx#nws?VhaodL2*DS*bc#vN@r|M9WSU+AX3FBDyYbHM2MGa2)Ceu z5}+hr08t@mfDjUr{u_MgZQ8ev&Tw9MU7&gG?j>`y#F zuUS$brenJb3=#JY?X!pMg;g9Q|JhcKeZxH9gMMC{9wD|?e9pJY=#Lii^DlHCcynHu3d?qZvtI5_g=du?2`RfzB9c$QndFJ$Wzr})+~V(*!dKB&yP zF@mQ!a0*tV9c&16-T_rzRS5l@)ndS#62~*bsjiLlvsUd%J15ol-d)Q*BRRbJ(v-

QGul%?OT^?Sas zvz9Y$pFcFg+c%ylx^d?=@114 z6!^-`j+V^)>dSO;S7$JH6N`;Sg8va;-V)cKqJmMDf;ZtzN0erH#W0o+@y)P__7Rht zhnU0N3-pCcRXz&_HLF3&#LAK5g-a!&lzDSC+a`z1q%?im)VD8<;}!%2wkAg^+>t^C zgW-8)&H@UG%e8!nVIdkugv@_qW968jEw@7WQre3y9_o$J^??f+M4z8`733!`cGU@~SS+_)&`qU^ zN?E52gqt-i?jKi;jgc&TglK6wbH#HidXhEVxwkCkJWOUrUY^A(hi9KE-W~lohs!Zs zU@>lKSzQ0M*?#W2p&>FS@4AVhVQai7eo_{Z(lJa_K_K`;$16_@<*X&Ai-{?6^A_N( zS>UBe<6fK32H51(>cSCus|jh9oO4K3+aNz*S8_QGssRMy<{n>b&wsfz@_c>~F=A zo5Oj>Fu`6Y{z4R=cXAfc&>RrN2?#9y`k=MyzwPE8|-9t90 zWUWzKYkTgX6q?>1E40>;yS`3Toa*jof6K|8-A_8pg9yUG*S+KF<#kwW!j+ln%0o9r z^j^5DXFz!5L!QuDnGU_MO~yO2NH(gxTwMIQ))PeIB3#7d>DLhF;$h(0EXtk}5MX_c zvFZ1DnCN9vYwJvm>z!}6Z6l?*khz%&~mp*1=noi$e`lWkSJry1JH`1=({4 zCB1u_!J;{B6*)NrH3rzJtd3vp*X;Is_lj&eXqL8?iHEUbpUIQRKbW()Zo!YfArqdr zHMIg2mb`S2nDm-x5i;do@@_TsrYj)!PSpADM&c4vbSZB0 zf!0fbe7{Ludb4XTNn!EvD2;la9PpR*CBW6Eq`{9Hj=nPL1xv+5^WA{My5Bh?*d_-b zU$UMnfk@=Y%)I?oZfMx)<^zN|GaH@;ktZd4nz8(H+ju21lmgN03#OGtHESnyU)-i& zTD+uOTy~^bl~uR5eo8#v5$rt# zLjUZw%#E#7PF}l+`FY$~#VNi*V9YfJ5N`QIySPgWoJ4pz9p^+eal5)ijuJ27$>jEx zOlyM#O)<`D&gU3?{d<7?`PnfSgx%`tI-M?ZgBg*MLg7FlM(L81jp#@<(x0!SbxG8>qdzhWY1z0G39nLjV8( diff --git a/dev/_downloads/fd56e7819f0c6e7eb6ed1e026733b894/plotting-36.pdf b/dev/_downloads/fd56e7819f0c6e7eb6ed1e026733b894/plotting-36.pdf index a3ecebd177fdbccece111f03dcdafbf92d330a67..5e3532703ce8b827363b691763e9a84a9df51c5e 100644 GIT binary patch delta 17 YcmZpQXo}eIQ-j6W!q9T_Ukz4f06$FzKL7v# delta 17 YcmZpQXo}eIQ-j6G)WB@>Ukz4f06!B3Hvj+t diff --git a/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf b/dev/_downloads/fd7d64e97562f1e8bfd34628ef58f000/plotting-31_01.pdf index ba20676cf01cf03755f1b3b2758ad6608f6aaecc..83b5490bd1005175149b5df1d4e35756915a00b3 100644 GIT binary patch literal 20530 zcmeHv3piBk|L<-iMX|eJS1!}mRWS@RF1b{SE+PqScOi)x8kfd>OR~F2Hhc3*DX!Ogk;<~YpwTPYS%u$eV+gMpXWT!c}_j+Su<Qa#B_BD#Jzz&ZUmyCv!AnyEj+u7aCmq0=W>>=pu zi@DKU(ScfD-C*QR^CPHZ1Bm;~_8)R{@gr!0uUi>@#uk3ger^N}aACKzpPw6@Mj)eK z#fTOMon1X>?gR?_mG13g;pRuMMV8%SgplIK@FNhnQxOt2!?PhgZztG)MUL9{44`zQ z)YIJ%>Hzt~J#N0<{&W|FAC!J%{atRZ9?qM+8OVyN$bSurs)`mtU4yJbL8d1fB8(w- z`x3MPd7Ef7Z{(XAI`nH{pg-f%GjXH2`yC{x!4-`>ybyi~L?bUm2wU7-yj|T;vVHyN zZq8IOM$*HpX3XxI!^y*gYd^kpcsH?4Fnv?1;>V&3$}3K-5H~!xSez!3^Z~A@DsHb)eXCUs(#1OG$a;(-d ze8MKhb$TqJz1=ZnJRo6V>E$BWc_>m^+dm?7!+fuVX{Ke|qnvl6`K+ zrw*N6OQRAMT$}5A}8??@wybbeNn!b`- z>!X&?xNT*i4>w=0X@s!X@WpB4v7(W?`smM3| zMacl*reE829ZQDif{LErInk`+7bCZH&8h_k8Yu}WaJwVY6SbFcH@jlcdFietU*^^1!Zs&xGz z%5jPG*a%6C-Fxb4?`MpZLZ9F)=lrW%1%MH{eq;dmk3z`r@XG*P0fj!{a@=fh!81R| z@o-L4JQv!8UUzoW&R5WOy7ChAsI2$UeC=$xy*J-O8*3QUUOYP=$Xqgs#VKxTZ#VvV z&Mogyr#4RoxiZ=3iz%jSc@y2ojnGYS?NSDV;)2$BLgc z;ZmHTI%lnJD9x@o!TFQ#ISgPMyMi+XFa4m@pM>^( zygGi@3n*s)H^Q1nq34ZzatCPBCPEb}{))bpDi?6;S>@(Q-B{ox z!SDN*K81!o?&%%4cyQZiU<|r~&&yu|Gc67E%xVnRkinsB@(C~XNdfRBEne2e+2??l zNz%Gy`KerJ+wb%8E}rx-(ZgI$>uT5K{oWhF6r%a}SGy1w#bU}i^_COBaHG}w{M`Kg-lIPM&gw6^M-A_YN1D01qkL-Gx^ZEizV43FQMyA z`U@NqrNVEusGbBl39u$vv@FCV*e`u?t z8xJZ#tTFIuaL^{%Y;$whV z6NCswIro$wzu=g${1tooH=US&-IQi~aR3k3-AnFq{rUR96-=3-pUclog6Rr+3!5Ec zaI+{|>k8HvXEJSA!N2GNEpjv{!HNYCNrtNLZuf(J5O`HcY@g8k&PQsO$4Udu*sTjX zG1vXn5pa5cnh%h=ik%~`!>7?91K?ds`NV5}Ob3*7bI|>D=b?6Vjk38n?6JV7((K^T zo@sxv7fd~*(Dy~be!B? zxIYnjm9KwKmT~&`*vn;)*H%Qv-@`Kss+9{ib6#3Q&b{Rsp~Jse+ib zOw{Df7$yNbM)=i->X#^=fWw5GSv`A2*ewjEuk(AiHF6rDob?@e?~1+O)(nDyuRl2_ z^o&Cxp2=!%l?RwFW6Gp@_KQzI08n%bPK=HP238xfC4Vv$w+MQGC_jdW$qflKI?Xn} zc(yuA#{(YY5AIr7+$b(M_B!0IJu8mFylGw&-%bC3*s`?6C;~_|XO=?{oy@DB zWn2a{;`2d7LhuQ9grulfm!VPUI&j-ML*xKyrs=%_q&BEG-o`9f?jbgi6yr6eH>3y< zE!o22)YS%8+pU(6Scw8(ZOwK2{kX*))?e5g0@*`cCSu)ZSu75JE?Q{BJj-+Xa4+K7 zK!-!^6mzm0L`Az127mImO)w6pC~!^xdT>$6D|xSOZr{!3=nFs#Q5fX5NzrM-sh2fDB1!Bby{#+@8&JI3mk=Y+Iw<2CqTf8G_%c)t^=e^JPHk_DpCcOnE=mtRM%h!+{U=(4_Z~;;HEfHb-2+3 z>RUgWT3nda@Ux3O2`hR#X43pS`kg9 zSePt(?|+fi)anN)wX?}tJ&z5wI6SNGT!@JrWw*9Ul4GTnBzsmB$lt0C@8LQ@3oBrD zr?S@iVj?K?3FO~&WiKg%X&yKDe#s_0dbLT8ht6e_UH*w=nUh(m2brdSu7E( zSO8~^rLSNw#PiWE|JQB3XO=_Pe%KpeR0;jZh1;354cwx@Kr&_T@?^?K0BI}Tf=wRo z1nG6~uRNRIa2bw!GO79ZT_KqpWH)u~$+#D|XW#|p@x8tep+JTqcQ&8tXVpX5=p=^D z#eHwEshGQUH?$nn%(IGK(=eZS9a}AL(FcQqPJieP;L1^hO5Kh8s!fn%4};zyXr7`R zUsV@lZD_ah{?#K9c);$qudXu<2m(l-_TW4^W;A`zn-kV#CV~#R^ zxUM*ZA}@$b1z9&QiJzMSWoK4@z`Yz=maf&q$6mF0{Q%`P7Vd4u?V6kKT6r8WV$feq z&2)8%OiYr9C13a;Vi3KZ-Re}v=!mfEUQiTo-n*+5d=8P@doV#%O`bup4x|;EhG{!# zrqmkN-Uuu0X<*wwuZ5#zyYDTMJS{5!#4`B`Gu25Tb~D9ZK4{gDxWkV2YXtSq2vK^R zaeo`>dA=%~N+P;RXRmTV;JeGOiHxS^S^mf7O6s1?)IB;ZR6EyQw}0c^Pc0##h13A@ z9k3qfa@=nJg#JfDh0hcjp2qpa=q1<U!s zJ{!(dOOH4wc@iu=Xb#r9o_M9Hg<@nS@Aw!HA=CxPY8I5&c#trTM{u$ok|BKiZDHL$h=9sB-*ZxiC;0yJ1$NoLWd6nisT*7@1 zX#r=F2T+QA2eUJ_9bj8>c^HjueXS~Y+%P8Rgaw?F*zoXAOpt{m#S%B0)}4N!D<6yq zFWIxbH)#=Ev%!~TaU2)1#i5$cxQAhOfSKXh8(e+{(#yY?aW!^76yH_b`=xC0l<4H` zlSk8R)Ti_T$->OZcY@~|9}7voQHt$wnP>a_suL|@w@2Y&n~F7^BN8dbiQ9*ca{Rpd ze_sh`)Tc-P>WPi7tsYb|ZMt6h?i0ptj#z`C#k)bE6h|)6V4_GK*GiXccKM?Qpp@?3 z$a3Kyp&1M+y;n6i1Plk-*RPWtZ>tA#DV)!K3usv|a^p&?a;X+)W5&ytqOAS#g3~k^ ztRZ9csy%R zRR68?oH*%-N=m@HwF_&=XEQW3+pU*B-=FU^j;&twMs9}$G^swf>XX;nF)i}mR%V=P z>UA&yi}MZ#T=06e5%^G%_xv{LkxRCOy*9KYhw-2#k^!-pB6vkB+1as}87Yp8c3$5t z3Fiuwdfw9M(FHV-r%%+jzhU>I8>4x1paqSUXqGZx|{7tk4u13V(v$QF&ZB@>HS7=9}G*sr8Mz zPV58gy88X)wJEwXWLg@r;5K#8`+0ETOgvz@hNR@uv63cUJQ3 zgwl5)&T-Pmic$L(aAGIXNUwo1sZZvw@&Sfd@k*fb%p>28tt&v(8)EtPn8$K#k=Tw* zT^^0809PD75@X6;7^IbBvPy;_^*%Q(f`lpPD0A~w!9GQ3^_ezlSvSgo4UP_|GuNpI!zWbLic@6hM^X$djHCtIxp@JLJ~odb1=T_L{Aft$PaB zjy)#c37}f0wkPR2|2Kz>N*6RB)GjxTbWnmm9wwN3Jz)o2u{h&ISzWWfq~3)w5rYlu zg@V$L0m*UGs1MMO)D%|hTbDQ){)?UdAR_2@+#nrA4Q*>jJg08w!C`;|x(``-iVe+j zvcImnAf8myAR+zd0-#+^wtp}QS3;nryxz6pH^83!Zk)_w)&j62dtcG>I|Y4d4e!Z^ z^4e~wlALGfD2;6$;2wIwQRn7l5Nt*o#qOFa;*jc=+x0;s0fW>8-^O`d{u~&#{Qo5B zc89>|W~yV8_Jd7HB^D`bnPNpvE1+}e+szgOH$UQLvEdXxDo!)XoQw&a_m^8RM=Q_xMIrDGDV->p7${`xyjT44 z+8)TXQlMDoG|(RcS*@>x8lDtFKj&SYWsm>`<>GxMYwt6tzw8~?4>V5kfoRTi3Kw63 zvoV-b?rA^(nr4|=hoTNcW(I##=g$QgIqo2qJ9*4^{tcz->RRF}eJ8m;0K>i?pUTs5 ztExZU1FcHaakb)Ad*_2k^+0elTBrK?7a+X00NJ{6fRJ|Wi#fSrsBI~_yO1eTbNUGIU)uO@_n$*885LB)teAvMygJfeh#sX1}2l{$U_!{Bq{#-E(MCNxTNM>&Fo2E=;jyI zKi5K5hI9O9MupwkoTD`gS!uC|n$m_sDW)#NZ$P{v*DFHM4vbD)PUwIwE)?DK$_XIM z6$U!Q9ay$L_%ION2Y2K7&7v^2^t=;^_l9ISSamiX-pGD4fTdm+1;VRkVO(Y|5i?o@ zVt;JnkzUUcnDVy!A9TL`9{8>08EG~N3cDop6Ka?F z31o!K%mU@)&oHYgiktV!91513s5#X!48S$ec8D5V9k3g$mi#PQC>2H&&VBdel77$* zDx02%%`9E=a`aTB8$ksNsLaZM5S+k}8#c~MugoZ;t*OCa|CfHH>UqqeIlQIYEEBKf zTUG}|<_7`6)l!|Jeuj`py(l3b4OZ9e%e>8><=qGiuvmxd^0JVZ_^R2Wi8zqdY_)0M z2h#uxPdNvFh)@QiXBf#6fJIRQ7T>{8g# zlFFxe!7^<4h&{Lb14x95Or`Hj?t^)sWj*D3D^~x~ySnV_8sc+@1JP(UqIB@e?8iYc zw1_n~JNyFci1)#pxU@-m%$lb6IwhbUpR(hvO7Tf#&@wn^G}zL%z)%m1$y0X^oywK~ z;k{jodcAu{8`NnbL=SPvrLkCc#QcLL_+bM~xBD_!{kI3OGOIAq-jaHOuQdu2>3Zp8 zO$bZO3|7F>(=buVIOHj*0UH5D4>OyaF7`8oA1N2UnKW-vn>d*!=O*|V_y!7 zH7}wTR3w(R>`zzWT%#2SPKg02()8Pq`^Ee~1;%{F3b0s?%euMYt}s~9E~LHfCY8VB zgGwx#v^pZ6TYma7O#aCeJhk1y4PfgwgB(4O%U>cT>??k3$EinD?|K#U0|1A^iq>&$ zM%|Zctx^+zu%o#wcV6e~A1^=q1yPCk1rm<7n{3BV#z3_Fta8xPF&l^|L@GCrnFK3Y z=24bUYyqqi9gRPh7hmef)XPX;*%TNA#T_a&7>N{DXl2KH+ihPZy=*pAiVdsZr4VEe zA3fTga$<)rEkFs6tZuKFCuMY+@t ziyFAxWL`I^_bA?V2zvCZBUF`V&-_)sxbqHqM)u$Y_RPESu+cgnXqRc+-XXOb`qDYy z<4aTldQ`;v&wkk;$-UXn=tWvaBk8)moA==C-Z<2=9+Wz?;+l=kl;9>%{}srR%YRD5 zSX@xVOXZSp!lFqbGoG5`xjq!6n6@4P)wmJd7oVpb84F5W56c|oewA0<=ML<7*fIK~ z+-j{eluFG}C~z4fn07C+DiGKZT-wAzkAV{X)cJ|8Y!Y^vY9tVqEJ#Jugh zJ7DvqAi>V5Nd%90@9HQz8ry+?8T_T;F7% z_oMmrdHbqizlPClwS+6|!T=dmnnR-Af)kJvuEd&rn9z(CKWi*|eHIp_Hc`vfUUy*` zDnmK=sODm5@wILGvT^tw*-DKc%PHGoOygR0>;jdIaeua;w0RYtVdN?`u0m>5w8K+$ zC-mNnEn^VSklTG)!Iu`@63@mmzf_=+S}UjfQhdnDaOhCoi$3UN{!?`l#y3I3MwcfM z2krbQlf>#DI|XCkn2L*d*H19j-^>y;xj*!RBdq0%}Wv#WAg(<2q zlN`z@9)~0zYHC)04E$KLug`{cZ#QgNW+p24#=sh<_(M~ft_}=-UG^`eSH*+WpjfQA z>?hd&M1bRzp!T8;!CXrvF~2X$i(lI{@Pw3Z-*5T2fiecWQ`QS?_s!V^3g?jUEF~7p z;A7_#v>350lfHFtE*kEZmYOX;-Ht{`C1p+I31Layf!f=H08!dzub1f90tz>V}DE zk+hXPOk5QL%NIyPX5FNit=Ek|fI%cJ&Wt=0OHdjT38nYN1; zCBe!Pp=xu&(V4}?(^dk$X~pPV39tu)@R1ac*Yx#SQ8W=KkxDjA*-l^L%=!yYMI6YU z*Uf-3=M?W~C<}1HvnsZ$vfo-*!683*%*6xBQ=4~t;Cji{Pn(fm1x#07)m>i)>z<-|6jqJq_YX`6i%(2$5alD1+O8sbN_@ zNgmU#O4@<|b11vv_#=&K5N-nlWis*vwHiJq`=vkIUy}}t(NB|pvRAs)I>N@Q2R6PP z+P5C+jHdgzUN%wb&oCDkp9fvrI>x5)kr}Krf;qRNtPOzL9La~AcY}W5f+9Jd@~jdw zV9Hm9EmJ8?I?q8YHe0EwwJQdgFGEjMX2fd{bjm|MTRHu(3u50s@*z?Ec3mu#7H15V z7B7JLvZCefLeSqSWN@uwY;@}@fIeY zA6WFI%k~$|wBRCgyG~TX^gORmbw22qE+`tZ>j<1_a?bHs<}*?ZG%y&Z-_SAq9(XQe zXL{-28MvbV;+N4Yr=cz9No$>qgxvBgf8&7?#JFG0s7z1_vm3YiEPj8^BVc}HIng^d zuz=L3Gw%`cC^e=dn!C(oHRwzfeby^4oQ8%qey||@7+hSSv%!P${1%{bXR}hTC|->E zayuAi(7(qsoUUYE-Hi8Dgp|0jfA8(CDNAXAnSj2Ph^?J?CjigE1AiW9#2#WHkHCVb zd<1hqDlkxNYS=7#C-^e}Djk<9K?{6jz&W=piLo8V3c2Hc4$J%32^iSJIUR+Y3j5_i zcY#ynaQTl`5X(nyFOyaPMS07_J~vNi*$xn0{A*M%zWoI>v<+;p{OAeWaY!?S#{W&o z1;jIlPv@Mffx{U0I|N0_Y=-WZ;>gM=KdJ>nF7L1e?V8>vV0J~`)Q#;?P(vJs4u+%SPwz z@-T$i?1(V`0e&9rBz4#?hW;HY#jFsi0@E^W@7^O^1!gm%C753`1|oS&$Q?1(5`iCl zigNK-Z~%^ajW&8;`aKes5Ue3P*U@b(TDmRMr1PFyF zH9Jw|ro^_z5}ShC$7yLQb5Pidzrs1P+_rH84!F;xZv{a3ME<<1@f<*x!oc7x8qpu0>b=OFFt)IUdmTAe9UpevPUGRt!ivuq6*7a5=$_DF@SPCr z<`0UR;vG%RnnU<<%G`lY9;ns|14F3_te!DUZn{~@IsLw)AVGEDtZI@pV8Y&x3;+CN zzi%K|y$I1r{l~FE0L{O$T|0TuCnt(@PhHicDc>EHi_eoi+pnRYc?7TQma2S=rXHR|G2qkOq3jA#r0WC?Y0$ zmE}~I!MGY?sg-m8XPCDpaM~92-uVpjYI#NOkr+7D_?c5DVM*Y~TPY_xj||W;*_Rn$ zPJ|k^s+w(xH_7(9}K(qu$9*;!N zJnw588|bX`S4E437KS64n%(#26ZUK-r|*h=LM2#xqL!d?0haC3Z*M?D zDe2*s%{&Ik@b)zGf`1uNbZ3mU`?pdcoS`RAlas*TUn~fz&#&NR!e=8r?BXo@Xz1df zoH#lY#0<1ioDnbmyZI$&PLjN2o-gBGyheiioI)q0v~#ZyYtL!9vOv7z?R@z|0nLE4~@*Ukbx$B6@BSHmaW zOGfw#Qv(K*Jq8n93eyw!N6o?~I0oU9e}#ule&8~T9~ung>!su$dT8)rC~N%J;oOYg z35AfxuIaL9y&9ftu|ZF4UrTJzow~~Gl~d;V3OpWz$ z!q29RkCzzfFDn}|^Oex59QM|qs`BcIs<#oIh^tBF4@*u@zdt&CxIUzBf04o4;g3H| zUUW~J_MfOw7@RJ>IW-wsTrxgl&biV(G4)f=jwb!^y+P^WlDg49GlN9Krd8(XHk1>@ zCVZ}kOWFk=`y@9q$zJ1gM?LQ7M&HZCirVhNmuQ zeAduLZ4*q!+C_v9IZl75Owk^fOJ{|q=f@83__gYykyLocxrrfPO*zN#BU61Gq3$%t z2|@eRd(D!`amT5N9?kG#rhVPSLxo>^GzG~1s;kMM*1 z>|^hE_ZbA_YxVTmTQA+$9{!mvUQ{wBD4CUhl~jW6or4>{;4V6Bml(QpOif)&m4ffB z!}gbHqW)6hgVmi@~HGrd^$f^yY)hQX#03!ax~n9&Ot*Gy5Jwwfvy zD{lGmvxe;L($zuNdLCJHKaSlZQvc`Lnzma{w$e`S=foOW{ z^*Ys~gBh{Y*=a@HLn66vG`9VN6u#a}2=~uvlm8c3JH1Kb5n+ySU(tSp7s3mqreA63 zHBLLSjkw|_0nR%#*GQ~OvXrV=RA=IcWD@bUAe z6V%{VNeln|e%Mw_bS-r;qNy_#ndd((fy}cRY-UteQ&po7l-0><1T_jp71^>#(L#&~ zTWXiHAKe4n@u;Gzitd|4{?B|ucReCR?nX9ZA{!mCZJA=ktu$ocBDziU%l6QjOT;Z6 z2M)L)n=H{?mA1%2Bm(gOvi(t&KxBX|nnY_4SHFYEY+#G%mp!Byqu&ekD^Xzd{yX1Z z&hE$_O$uP|KT3c=+~n(mZV1&TX%mR(O6V75k~#(5@#?e9&BOhmAF82!_(x>BDY6mP z!(|iA-OCLT716@ajcSE{*yYT?I71jCtA4!~73CASFGW?A@ZWHV{a5EuSJNVBAUa0& zwGy<{wFne-ikLP+tfrPKfuu<$sB5cY2N|Ig{T&^zPEiAAbxm~qe>%kQ-_?<^=z-3G zA7pjJ_Eb>;XlWn^GLg0xK~od?u1+G5k;OI9gG?fjw8>(~L7#g3(6r(;$$Mvlb#O^o$)ObQ}c} z0(wT*$CQQ&5TOAPtQfi`8My}&3Qin)#_R`ONdx_&ii!v&8)XeWBL}7zbUAQ{kr5WL zJ5l+5`G61zrXYdU$tYC_<+vH(>cY>6%EWL&Fsd{()sP#29#K2^8>uKym@y#+h2AwY z3rdu#su=bgoIsnRjW{GYP(uJVfZD;|4@}mGU7$Ac)q&XqY7_W@*$T7?)E>S*P`a@1 z$Q-C`;0MY%MO6#YAwnx^1OISnBWqxGp@vH8%YoYjenxBop-)2$JENb!Ixt;>-_bEM z2Wl6nR?+j9IF3Rpj(G@9!hP}#0wTn}Zz?C@FoJ?E9u+nIJt}UEDP4d@#p%79=8B0m zo2|MKEtrn^i4@|*llXW{M4T09q#zQv%0X(M=nj{b-LV@VcG8ufwungjtPXE}u{SCH z)e(<#+b!3&+*lYmE#bcE?Crohm#f3#F5`;2-v>n!8mw@BKv2YA0YIDyU`F0_DuMU~ zm=QZw)mO;cL~2^H$<=w^G!qPjK$5tYc`YIB{ zSDbR%lq@&~Cwv50g z9JY-#EY@AN%k^k-f2+R?f-5T|0l~8_V?$xWM@6_(Q_6iR|HAD9a42U zao#w^a%ayhkwqgfN5enT`T{~{IaR1)2KD!3lJvD{&9JBT@9dFdtLCFAVqfA>ap4!W zIl5*iuSNS!d#+3qnRiL`>FOrw$aAL+O`Li!xpc1FYnG+ILNWircI}_icWVlp9WXOWBdV6g_7XA7ndDgn}KQ>hSPQS9mV`Q@LhNit^3q!U3AJq2`DKH61aQ;<&%I4eY zLYwBWYu9}~b|9_YC1G9kn`zFRXQH#`pW5hW^VhZ0DTMXbMcwBz50AOZT z6#C-vo5WbZ^B zn}p!rzsitot}P+7d|vOc)YQfmr-=-+Kh{)Fl~kXuvyv~hJDz)S`Q=Z0F5F(;ZJ{4@ zStaQ~3+MSE4PJb%vhQyNtRiC8`9~)X{2p2Aaj9TdqV6n1PTg&DLmBxOuWwqcxz{4B ze=?sY+3J!Pk-%EcJ3-jLX36?Z)#+OoNmFZA-yoMboLbhFz;AtGar1Hf&k?g{S!u~~ z-f{Zl^vqV(`ALypXOgRap1Wx4FS?^=Zq+a9vC()*TKM|$f;)$ViZ)EDn*Q*^qQg}` zx~A;7c>m3x-r1k;&$b?$nw4U_H~t^w^Zk27zRmGB?=m<4TaJ$kZzi`#aO|tx9%Q6n zCA3IdjH3J(XvA`R0?h5doBG>~_8);0CGbDz^kQG-^d#)XB>yp|7yBls*FYfB2Yru< zm)im4bu8FNI+iFS5t$g|M)yYIKY{3X1UaMGKk|x|Z!&-I{**77KPHC1M~!capszCj z@1%kV9LxCCN&ido`9G5JYmmOq`0*FO*v@2Zc;@zBJpccU|NrrfAF-eR-i#l~Z_!%d zzn1YM#SD@}|8Hdcq?v3V&HDfEX8h#;obhWRRTx?cewFQ`pYco|KmWI7{21WkSchRF zmf0gg;0vZATEoJ^SI~-ObI2eRRY_QtAO@fosqOw=D12Qf7?B7FFW6j0Y6K)){C()x z$@(U>uiH5@@982MZbEJ%x;PWmP=q6HBK=Q?A*mM}_7xU>m1BRw`>!(7FBiW~=Zw^p zziOIMJ!t;OE5|?|?8^;k0Z;x!DkT z`4-w~TZ4p6A1`k|FOU6%0Cg2Lqz$&7aL~`s$5)3)q|W@N;!Ss7D@H_mVy^x!$jiLG zzRkz=0Aatgizl)SJ_RxqTfoDcwgr9j*_tgnBvq1z8c7W)t<^Qj8a8Xck{5&Sc0dfN z@Kwc-S|0vGS|Mbla6CYmxrTP)(0>FPyr!m2LHaG6(^gmgZaxZ0`#YK` z8sF1GK?Z(HAJYCo?EUY2XsT*{Cl^h$qVItcbsJ6}I%x*ukiYT8<4Rk4*Tx0)G={SOq{S*ZX3 literal 20516 zcmeHv2{={j|8J6n;*^6X+wN!<+qeyFnrT)lDmFIByv=NLl$;_v6%x^@Bq>6s%nEf3 zyOOrd5?h9ldA@6{_g(6o&i$SH{O|uh_j&Gf^{i*@z4p7__d9<--|y;O>yGT!l$MiG zrmMA9yrGtI`%oJcxCGdFW0$|D1Gh#DIFX7n@Y zK$RbE(6pmF6BV!lq?6hvR%WKoL}l=G55rmOm^01UjHn1M9HBWon>o^nO6XU9(lHC# z8B4l3kqm!zv@<D)_g_?al@+T`}3&bUSvt|Y- znL`7C-P>ko9K5E!O|be3;<|H&pFA5{$<~{lYD+ZeN~AW&O(xC`^w#&~PY)@xjm8Iu zIX>gPwZ1)r1xW?e>QU0{_+WW-IfotFIbF$Vo~Dm zDjgh@@M7WSvh!M7>uLJS#Q+8L|TwtH15Y5QsYF%Thdmq-Y@F3Ei2AJ$@rHq z#^5gZ4})7;T!ALq+FZi#-R_tf1Vo(HNN7mWbq+(3|Y8z}kOi|#X7;<^I73rvIHpI$$-VEf0zxm?%94LzIWCWGn9UUK>gP&CYais?%Gil zcbqnO|I?w#?#JWHGmbjhx12mU-BNcpT_HvTQ=br_t&3TA;3b&)N?G?oa{@XJQ<6t8 zJ@7L=E}LLaeGb+f@Dd+>=qmH(Md%s1(evdlZ{2WmC|S&FIkz$h zDby-jGOE9+F>O4j1=}y~$rXB{mz*i_3&*(Yso$RiEe`5m^N--Z(`dIECNN4?M55T~LfpEh!|G}T(&4Zw@yQoZ z#Pq?gfVME9&*ghvQd(XC56;ixv3&uTsIEQGLFE0guG5_L5G zq@y_&cI@QRCNJpu6eG*`?|ZJav|t*^i9H*y=LHz@QWv>M9sUBQ<7N--&yIGL`B?M^ z>QPRI8k6$AfuLYNY4B`59am$hwZ@zom32ou)h$^D+@>KU+}dwW+g`4d#Wm0-S?p8x z9woq4yKAJ<=fZB8%60MUlQ-3D?l|T;_=r3Gx^?X+^m}jjxsXsKDG}crJP8eK=8^K? zQ+ta$CwEW1dAHwcWSN7UOYQb{hP?z|Od(LHoq>^M22Jc4v8Bv4D$Rp#d+pqXsH==v$)WKvD zS#j*6$sI2ZHV6u?LnFM0_=tKqG@40DT4N84&!uJEd$}Jxg+>!C^57}3O@dcrU5&;J zG}JM#xH=AP;sgwIp08aWw!t7mKBhgA?+nwx)N{h(KyOwXaO3f3;;KUOeoKV?c{3=1 z-aV5yH`zq%P#7OvcY4BPSlaF~lJ@av2=p##vsAn7kO0atY1f(%K=P_SVOj{yXd~22 zW!p0$ZzyKw>07t&jl%W4*H(l+vP~BUE)ZpXhut~2l^pMA4FyuJj4_cEzom$1_9iX1v0k1ey#mNvh zFjS``dwYMlsJ{ATZ`%$isE-rpxI#b_5NfFIUd^^>o>BqYY0!D(N_q}&;=E0oS(zmc zBE%TuwyOCg{Uey$I&$Pm zxK1Q#*QlYrZ?>oWKK6%upKi}pJpW{5E~%f(`DxlY->P9UukVhQ{%DvI$X#aA#hcl7 z;rwA-*(`4xKAh>Sf+`*DoboEjbj}26#OMt~5R*54trx=8J)qVxTx9Fn0X)Vf_7AH* z4aks@cAiaU1Md8}`F}Ph$qs-R@$Q;;a~D*1lYW|1iZ_O0eOf{dEj!LMe^F7nfg;yz znE=WfJULH4zDLFr!hpt-4odHqRA93lwOi^I6(C|2Juz}~<;gq`Pz;Cih$;-jWGP1~ zUho8g0u1wZ`?D9&>v>t%ZuKfa$vgPm7HRTS0|2`>J6LcoZK&7&9goLliMD4_Vc?dgth|upw{CCy1}1Yf z)aI!#&4NbGF}#!33d7EHm=&Rh+z2vNv}bD0R~!#%TD$TkGcg#ximA6>_2b9Q&~n)4 zDh1nM(r8FZy46T*g}&gf^ln5X8S=wo8)jTXurko1p0Y&KB0TUtxK|qq&xJ8y#Yuttk`JDDK z;S3BYqw=(YFi0AQ+LcmUl?65Juy|`2j-AL_7Y|g!;9j0Iyl8ki2%##RwsZIoMS5j? zuJtfvFftZ%q~<(KY+<(qOdz*yYxzXs+AK*^(=I4+Tej!R()UFeP_?#{^%{a6ZDF1g zzZW+c-(H1{E$^Ix_T;VSXeyfQw5V4ffnhO4K*Pke3&=O_SDS-Wh)ncv*;_t``LSW0 zMB43QST_XGa57qa?hDHt0!}3{w%0Pk+r~BVL78dgU5}!{rj*|k1Up0*g^BvrH>HjR zG`1OVC+wFTYp5437!w;|wD=jcXO9n@TJY|}{bBnvrw+>4AK+f8SDL+0Crq>7{R212 zB$k)(>O@RbpOa~b6^G_c@DLpqFtmvnogT$@4uT zk5h)Wbcy9Y5Y(EKCoqV5?hBe-etSEk6eqa%*N~{Mr0df2I!(TwJSg3tB+MsrGI(@@$quJQEK~r?*-dv2QjOe(XA#!P>>T z>r>P%w|=C?3vwH17DAdL2vM#kQtW(s&Rc~DdMh!@P-Y^?hdb4mf?<8^wvzmMQ;e|& zuULJj+L|btkS#&4d1SN#TW>RgSYigx(O0#iYI7R&W*k!Mja;B1q#iWE!+N4*;mwCF z;-8t)t#z-t4W&z~-#edv(Yg#0=^l}|+Lavxh}756&bf0QGQ5S|))N%V#%|(tw7X>7 z>Jc>oB4_)>^T`4t3u6ATzdsKS8g?PHCph>{ssk%ZaBc<0zH;*h&V9bL*D^pZoEn9IxnUVbi@XK~J%IIS=&SV% z90YSKZ>vrUyOef}z(j>vK(La1I3kz1{o%7klu^NIl8-LaY03S~m6c4YQZ;!>aLMYR zn>%`KbvP~Tze@;<~CouhZn(8v_` z0E_;k?^_giLh*JdrG4zlSPyi?pP(c z#V%$8&y4GC+jadjbPtM9&br@?>3&BnvmKhvRHR0z6pRrcrPOM|OffY4p&KdMUDzE? zgDF9d#q)KbsobE6Y=Y`_IA~zJAI20fDs`dFiq)%6iC!1T)i(40NGb+Fr75XYkS+qK zQf663^i=fkf7_OVy6`%2al^~MK)WMs)=JTKfpLXNElMjs6AO&R=}@(96b)#!=``!< zjo+cPbMyTpwnOvkd*R#iP)1BEyyWxz%zH`}BYd2ddrzz^GA}iKy&PB#E2ntF`^InX zou}TD7`85jUaMMx1IZ-~EK#h~0Ha7b9p>jpBY|xtYaNn(x(*uCop)EY6S$Z09v4(| z%**c)KPzQGI4PPgV0hZ^g$1s*(9MgbfRifQKa7h!oMO#p221YBPDDzFsUcq8F$x1;ZoQA+9WCr15Dgb+M!JtwVaN&G{c9D0bPS{(jFT1dsD=7 z}rfVnEmHC#7RBN7HYDI;hE zk9ktuwF^@Lv*liNKVuYgkcP3^fISL}w;KR^_vjtDvk9|IW{bD>y*m9Hm^z#Wog!A0 z1k3}1Be56pE+j&JCzCP+#h$Q05FboZt7|oT1XSzxg4?bWk7<#Qq$P`>Slr{@_q+Ik zLCHqC7kgddT%&S3M>?(G@;Pdon&P3}l4IBHw;kYtIYcdv5jz3&mLC-M$s0H2ky9zZ z_8kL(zVDFU_d(VX-v`Z{Dx4b>@m307!rwP$$HD?FJV6RGbxJ4Sw_)zRE;D2_0b`Ka zlGnlAcMJ|e#M5vJD!7hawE~) zile;<qS6VdY4g}d(Nq&mhYh)XcN5Fb#g+qU_p1CcL4j_mr9+y4d(5{yv^|j?y>P>?dkJU%~E;*pr zmwIWt7UdfN(M4rCdq?sv?xSETF+8o-x$o5s3P&a9ytFPIX$E2&rnGMKk#G{Y zus^6!Qu`*?pj_DY`!^c0dUqy^Xu8NS6@$8XNYghnuBt%UY9vX_n~{bArOE9hJG8J5 zn6e{*!^KX72CqK4@H`h}woHn8UR7mPE#Njget!2s+`Zr4nUTRJMv#==MfH>j=oVfT z3%ftzgBq4q5MV}#6%jfyj0K=v2kji4o^xW_1R*7a#$-0n{8eetu2{~_C!6skG@!6b5)qi#>+6wn!ss;i9VF zK#XbdlDO%texkSUEet>T(vNXGlP}d!d~pr*TNZ0`rmR^TNCMPO*TTNHFjG;p&lJNi zoQ}!D`!`z8oPsQWPzyc}-LP+eW`8tHTlrFrpXTmpPkSdF>;#m8{7@|53@sq%oiv_U zk@_!;PBY5~N^y(R@7#a`ALM!}C={FqGo%`0WVPD?jkk`SPp^lTqVXUkXPT z0mEZ?M?Vd}1!F)|ocBPR8kSysS`>O;TpJObXFJMxeCjxfk)NMwy&VF=%xi(_t1iG2 ztRd>`(LMmZ2T~3+6f63(B+7R~v?%$(miM!eVf)OzL1p-6a8twZ_Rg z+hJABNK~rlTL95nnndGaqAYOoCb!D^7x|r#!~;Bs!_9!NXt2(3#QD&cMffTvb%q0v1rqJ^M?^uKX_#tgr~lyy`!VG;OVYb#aFcf5 zp3RG`&#D}haf@obk`7`^`6;#B;59Hxmvfozg6Ni%(;ywa{}ZUG8U&&ftDvn^E@(TA z<<#;k-7+p)@2qpSC!VT68d;74vzKKaEc^Y&GCwyz{hMpn0QzFncZi$AmFtu21cu$b zK<}jNCgUT3cZ>47>x=EfVLqBU)%<~Qy%nrXZ5G|S3;+QCzKIOiNO=gD+R~7~z0e+0 z$XJq{btV%w+GZcyO$OjX8$?Fswt=*Tj1u5x;ITGeI@l5>juW*qP!+pJ7KOKhd!`ng`~ikEL9RX<%CAZEoK6R++R(*lkxq-FdY!O!YCypu~hsywR4ocPz*NvkXF!mi3a0JQyW0QAS1~B+(fdn=4M)v?@Yd zYJ13i5fsreQEWt585{6$mKYh>4O(DY{Y_TIoZA?9K^l~D`*>~QLD(5n3MM>#6b1wM zwm&cRKK(w*=pY-gONoeSXNhlW9 zmoj1oRcJP!onWbvPM3P@3!#lIugqQGg^M&MUe)dy!BB+z;5FCR^>qD(yn$%zg56d) zYIFhZL|tiV>#@H{fCf-DY!)NCiUV?AD(lbm2ti0<)2c1M_rp59A&%~F@l|{1*`s+a z?H<7&2PbidNIP6R0>DPLds7%);GhBImMzy(xgO`X+mdx152l>A`4ia`5WNizRhKkq zz)I4!SfMKJJ=dk;HJwTJ0`if1g?V({m^|NTxdmIkzq0_iX7`2=Z zQ?cw`*&g5%3{@ug#Z$N;=f|9}e+zS?SH4cAu&zERTq&a$>Qf+M$>dV90C`6_$x=Fnp&(gk0ozV;R_G9h0%| z4`?cCnE%H+$F`B@D?ct=fBnbd}i!i*I_xqbKC@HUfHKkL@UH$#&k19{~qRjv3{y&oi($l-G} z&!FDQ913MX0aLyzb4V>|>r&nM49a^X&F9{@)_Qye3}$(8g7KXY?fLY)%g9<(1k$p* zU10iLDVMMOvhG1F46;rUnU(hasUQaoHZ8Tb1I0PB<%wZtfb9g%v7yvKQ($WJeAX_t z{ubDn%T#m>m6P8d$Fsa37frlt zZf~eqn}cDqT*AGgozifSp83{~;mu{h{=65xJ4)-jUyfnl1KnBsgRnIu84^6}7vocL zB;o{v;$Y7)i9^nHgu%1PskE93y^xfAyyMxPAYku4>D?;`_K@`Cl*)6eC*bN%hiiv= zOhL=LF~EA2^Di1PhryEa0S$MZyIVPR!rt z8VUK`A3lk9fliXT$IG+L9PqSlqiwN$Ag+xAAI{$V1aq>?si5ig5Kz0lK7EsnyO&S+ z;{b&<2AJFCANb(2v>T?Ah{S*dWvr9lQK>cYSXV%NIe4(t=aK%#4c+QK8)BaYxmSdu3RhB2|2Su#}oEUa+?PA~!rz;Dh zj$u9dTS)3o6&-yI2+X~q*xC`Eh9 zTd2GR8dhx18QZ`-dDwACU;XsdMPQ?2oe9OKX@J=%*0b&phdZCSgYNl*XxhGcP;L$t zf*a%@kv_R04T3i_VWvtjik=01hNZcga(`SS!gR)wxel1fm zMzTG4BAAPq+~vd2xiedz?gMrv$*@*`(E>k@tAfc(_khg(j{k50{^-**;?;J%)l?=`=~LKn6(aIbso)3DB#nysCMR$OBp+WXx(>Er z=o>`u;SV_?8jA`6c$OT?z3B8*6g+zyJa6QEk(%pT=VU{f5n~{o^rk80;7+ur*w4n4e@8&H`jes#UE;p?%119>x2|q*b{IT*@g>$>T&OL z^#?t3Fd3zfKcg~E_NO<%0aYG#CBMKj&r|i5 z`j&9mn4H)@+_kEBTRdnGC3E(tq^Cjvml=8S_OY{I$=p1ht|R)dV9ENTx<}Us;^SVA z)Y`XrXZ+M?>N=d|+`iKp+!Cs=QOF%WD-3JV_Nhflcg6-OO{tf*6&Z%ICepl(FslfP}CVH7YKr=&pj zr8i+`!0_&g-eb3+Z`z1=;h8xGS#zU62cR=!wAAGBdGy)so)&j?gC4<^*#CIw=r9vY z4sbXJT9ww3)k&{SVVU{lV~xWCfJVE!tv+lWdI2Mb_XzhzahPMu^7~pP@W&{ViubAN zEZl#SNWJ6la2-oE=Ko=g+ulXz+P0Mj*mKfo&N{z^Z$Q#uG;gpennQ%%zbyM84Vxu0 zPfVNf$3}@olXpp9;e*^B;qc3H0HA9aaUMTCUI9#^S0zoI6A9%*v3;u?tHZmNzbq=o zGUAbXZ>d6rR`{M?f3~Y4qXh3i4u$qCTLjBiCiStXQ7_DW1k2hu(Dfk{CC|L&qXJyQ zs$_MSFXlc4l0k&E1(&2C{=B!~=4Q|bMfy_j8n{)uM?rTZdxkgXc>o}bu?<0;4V!_n zD5I9gH}L>=*<60j@rZ!Kx_KU*04y#jh^b=-_`^m*6kG3bUcIC?D6X5T9F42{pj5Ub z)b*M}Yt3Xg-JhQsbRKI(TeCjO+&6>zH7zD{Lw+Y^P6-4gLpM*3&!lp*fTenUj_f(S z6^<%P($_aW*bT7PJ0X>pU?|`ueQV_?*r?GcU_S|1{~9#WbLi3r8Zu}A5cPAbJbg13 zvJ?L}juL*1G*TN{-+`fm_0-HJGDcv7pMsBPHkeg$=GYn9|Y|+~q z)uXu|x=C7$$cIcE41ax|e&li;Fanq342d=j@+@UMxc8#l1b~Q+aTfx&>jF@wPfhf@ z?40|50S~qO*}@PHL{Kv`3cW4?e;d_%y7CXgV4$yg#(COpV(irO z8P_jt`-#Eova?_dMEmT6V&{e*_}MwBUUi|V%to-?{uK=R9mcX#>^My>;#8t zG{s^Xc~914vb3jqH?nWnePvF}e3*W$)x_g8Bc#zY?%VnzhAo-e5IbDv_Ek%L^k&<^ zNZ%eE#D{I zT2f}28};1!0!?Nwcg0UlbR%qxzZlh<-^Wq7=vb(;nSP37nteJ+^HeU)t96KT~IYil?$qt)c+J8U%DRTi5)A)ZZ@ zZ1I_0;gtM7k6=k2;3d2^+U8b0KH$clo$g>uZ>QU*d1uFZr#n5irRICjq~w%*^zHMG^BW#y`ndUx z>NU?O-{&cMhwhexTfN}EIc#4Tx>rn2L0MHE-%W?@C_}I66RC68&@FU--&LlljBF+Q zmn~)L%$%h!WEb!9JnXl$qCipGG5go58C&B$hb8kRch4VET>Y?UgU6lj!ei~F%-uXS zFE>>+J$SW;e%XZ0)I9NN4S7k)74pN{3ob;CPS%Eds^V5rUWacPo=J#OOx_s(KG~vi zC+DKvNY+T6j%9?@t;1S8SHhNB+8nhgJu^>G**B*~t#W+u5py;rKDT|C=hi^TRil6KOZ%)lqDU3w>X>q_l5v!dy`9HY^lq_s_KEFD~st%sVH zj!w?IENG5IS$@(%8vHD;gz|}OEZlA8Wa?;X?`-Etl!KcikGYsQW1BD0wG{YChiSIR zJpXA4WS*U1`=Yd*tQ?srt)L`Flp~X6kxhzZ6~vgZr4G@Y9WAjvjxw^c=uS!G-`pp3 zpCdx#5oGHnvb7Q0h{;ddLq~Qhq8l^6ZwQ^cMA~h6_N*DQtrFcwsgEoqPb8g1HayA_ zNer+llcZ;P#@Pay4QvYizH1a?^k;$oAPS7$f9KnVW{&L2Bm?&TqXdYg9Zsg`7Eo1r zRU!#p3H>51uRuokxZ3YEvoyDGMm2O2|A=fbMYg_Ln(m;R+n6DuA{}!!v(-gE9HKEW z&Jf0wWPjX!it-8Emny zcLjN(60*25dML>ghZ;H88u7LnZb7z-?e*6KM`o}5BJX9)5&U|A zMqb38h{+RZX_--%5P_m{cP3YxFK z`q2HY>FrSg(@9Cn&q+}pO;$KRASvRT{z-EQOw-QMmPq;@m=QabRz$p9PFYnENfinT z==OTZqJk*UH`4~>WuG`&O71@mfm5!O1)>wBPi#$ zuWa?Dh-VU0idVL8Ie$yiV`qu%7JKqOzrY>3`}8#QqYti0=P}$n_Tg8`szYb|W6FLP z&$|A)lev}0_QZj1E*{~rcjLZa z>3y!=T*f7`m_hv&Ov?XgT665l{X2U~%BSSy+Ne4pws2}hI{Xj>dytPp+wKug${d^1WWL-omf zp4(SnHJ-9n+`Xcba`9e#kI3N(lGF8vVJpl8Up+q7c=*+y{vtQU-a9t4vYt5pAxy}S zdU1Da$?uL)D=f#R`|c}KjT#uTHUFT#e}KU92*CMQ^+_My=g7TdQ4ULL=)&3fX443% zz|XVnMSt=xToSb1`Shnd!Lh_Gdb#bPi54%K73BPzc>;Z;*tRD>Z$D1lXL>~G57z;Y zAwsRgO}>ijAD%8g`&eiycvC}XNvqrn^Gvqc`(Jvf$?B0iUOzT?xlUN@U=2;uTyR^Y zyv#Evb!8$)^JE0=DqVM_!m<#>fW2!19!1@+TCihTaFXT~vg5ClaU`bm#S>Q^%Jn!& z+ZwSBsaU`1Ir;e8=Nkm7gUkjo(&N=b!(?u;qn3}qZQolsO&1z=O1<99IKZhAt#0$I zeEqHXxN%7oo4%b~^Qk%a_qNI4WDaM1irdIo|M!28;Xgoac_i-rs|=NnstR(iS==)! zGP8YcFo~gkcVp#DL1pk;T|$w;#b-CxM1Iq`{%}qEF%6GMnds*Y>LzQ zB>xjh&ThyVMgPc4RsM$j!5dS)BY#W`f6W?yD}sJN{y#|t5jckU73BYy(HXOPA7tjA6@&7-L_!0a0??wCwzC~++{~F>)iWvk%|8F3E`8l+YqW=H8 zh+pYHBYqX63PUTwAJ9Jf8Atl~`M(YEV*wYBby#e~kUf$FzQ4jF_- zRe7vR;0K`=sqOw+DEwF_Xvz~2Ua+||<%meS`0LOg!TJulAKN)|Z{{NH+JW3eGNlpa z&AE;mkZL?!5Dy@R;1nY{pMZB>$cEN+eRd9+S}MU+gO?qT@_^H zkT%#BqJ^`wy^|V=WIOkpjGd$TCVmpq6FcK#ioCw-$J^}BoF$sjOs$b+@F|d?*aDVz z^xf#Y&Nl8=lb4lOl#`c3N^5yVMfua4evlW#(d;ZgQsK+;BegvILs}t9Na1*vICl;0 z#G!vgI=m*QN=D7-Z`aV)$KS6hBIVWJuPGsA@=w>4{$U)_3i<0e#~y zQuhA!nw+BiPxQ&k%F80g`acB?nuh)<^$4~Srs*(|d`Rh2OhWv?NL@a-&4_QO; zC*Bm%0`zb5sUUUbPuCFU{(eoF{F7YdkcQ$<0yT08j+-9XNNin7Af}8&mu8q4x>3a W(;S^Kvy@X+K^lhZ*6q>O|iflaO5@N+Ku|{9V08b#)2Et)Y9|2}C28U>6^MPXck1i>G@KK?MxhLeSS2 zb@$r^2WtNCfQi3fFhLa!Alg~Edb_&?6EyHg<9)%V*1;~p?gTY_W0Om8uzR2%feb&2 z60LW;?DF#SB&Z9&4fJ=jb`K^vfMwU208-rd1rvy7zJLTn;n_%dHX}IxKo05e3_!Xe z^?~kyI!r!si+hlNNT3_w2htDLw{YL(RI? z@{i=8*x6$3GrPC)wFmoh5_G6c#^^_S6rU*glO9)p!{)Q%GsZqrX(MmrzYSIn zMA7)7&NLmtP`>l$o`s!)NS=HuttS5YeNv+{|1CdzNB6Tvwg|5&O7QuuhC$?rZKvGu z+u?rx8`B+vwoXB6R7FfrlHl90d*l0o9;>j(f#HFuZzC_{6hdV`Dr9{bw4#lTSUJ-K z_ReObBU$V=V&v%hD(QmQJ7eoI3QGg4+cI2rU407b5}XUT>4w)@k425f&F0KAw=A|A za$Tx0i5cNabc_42^{m81juT1dQj_jL=GmO-dxnmOKA6MxpVe?;0yU%M!+ICZ^Sg`> zRN6iJ=6e6o>rm7ii%`0HKPijwCiO=D%GTsBppzA!-xp3}$yZCb+Uc8~0T^0u_t#Yo#IWbS3$(aV$ zzj95D8^1Ie(p4Z+5U&o1d7KQ0vGbT2#EyN6#>hXE;?k$%F><6q$)WKv8y*LYkEuG6 z&ZRFyV*;cv4P6)?v(N8!&sa_U%?WFsWeqBOw$eyyGbW~1z0o!FF6Xcpo+VG@=#!FO zwpUAD+CJwsXP!e^fMBQRwh6y?z3|A-dbjcHkqM2FuA-*N0dakOCSPWN;RQ#|cm@(p zZbN}IZf%?_mvt7BdE)c>WtkDqN$!wEUD_{-m5h;U(FyY-+R7cpuW4afZ8S~wY-dlw zf}QExYp_8VYUj;*t-hlP@UqHP-!(nL;J(}Td4L*oUs9i(tQs2fvA5mWUSz@vr(9{5 z*mD1yc8QZTc@O4#zoNH%LSoWO3oqier+7dG=9oU}bQv3qHb+WH*IDh$9(actj9=2< zuLT9AACR6A?9Sft3{l_rs59zf39Z(w8LDn?q&T;KW;W7v5QXSg64BvOPX|eb7`r@VWHOjsFK9Q@9XS3TWj zyXfoQc@CBVY=1=bJWt8ubwVu;ug@(TpsYrgFY_#I=UXJTy56cjLDg&!0+58n?Hd{O`0FRP~jdHE*V z2<4Tp88_SQIqTuz+kkygwr-K-G9=ZW zGY{AEnlB*R^SM;Szknx9UBy|L;)M)gZ>r8SciK++?fF31&B?5)MC^cFk#gsRQkTvx z=F1<)Hr~PXZ#6gz^$xgW6vSJbArlCAu%j+=?g6yU>X1IaiiPsXOu}{I_Y1>mzGnPD z7onG7gKcx}n@GA&F7&5nH#we}b2^GEGff}WvL0KZu=1H{>brYL+Aie4-E%y8cm>nzw@mQNuyc(I5>#VX(`zWnFdMgUS*IiXSHGfVNEsQgc~#S} ztcUd$@rosop9VB0b0Zw#rBi`iXVyWTFRqw5DVM06cw`N!*Us^!=OD^8<6hop(qCY6 zSn*CaQs|sdA_VkW7~-=VcFEYFh9dQiWDNjm2ttf{gsbx%%p?hsZ(Gc|C6I9e8+Q z$^4;G8Js8MURs~zwZ~!WbBp0$*2C&EQsk+QAq~H=xBrzBe&p%~kXq~;B5z1RQ_>H3 z`9}7{Yvcrsn{!EreWP#$Ufr{{l`mt8*ED_Yw@MxfJ0SPB0t1t85nH3AH}2o^IJc3{ zGEx2IZqo{G@&~5IHyE(1-e?-8gc{`E!=wjrM*95KvAOy3nR!ZxUd{N~b&;|uC=}F} zKjAO;Mbs2DT^Oo6h>d1oQ&zu*4${KBaLwl{0}OPq!55@uT;+Lfz;^JkBue(#Zxc3s z_5QqGtCPQXTjDjqRY79wP^Bie&S%L{{>aEqd^{%KmoXa&plzg;St<*?BjU}m;@)4z zMPz=zZ_im2IIqPPWw^ZFJ`Du?a0TBe<{@n06tf2r;-@j)g_V>KXbM+@QgL3W8J3Wu z{2Z>xqxI(}tQ;xYkz7fS@dRMU%17~Ngya%TGq;=_ye1o(U9o(F_Q+VqiCwGU5Yn{* zLDppy5In!sFa3f7B7c1?G2syoy&saya56US52Bq(M-)k$rY`I6EXC16%7|@s06lkH zey}WKNheZl=P-T8z!+N?R6`p1d({yk1w)BLwGlXc%S*dtRy#Y%4VD|@)8j}> zuc^XW2~YHP&W2RpQ;poe90g_!b>k1mz+cc`Fb*0Lpl z?mK{T{($c5)_hq!WO#k?DgHbReRA}&BKnXF^#fvCnV#}O!=7*7k`ds6v*rf(DDNZ4 zyLAobJdB)+t^sJtX;RF_`5;l2SFP~}He0z6zd2e+DFrg5oH|YQ^Ej=ndLqpd!brWL zJNbh(C}nWnaxaw&K1Dh&n{Yy3ap;zu?$bX6y4Qz`=x^0|ujVyCAOrH|b0+;aVP0wM z<$B@}pGcwdR54o7jk0Hsi3yGT<*3YdAtWG|@g=br$t{Q1k#EH6>}OHg8B4I( zgUoniV#sgzjZwXX*D!5{wG4R*v5Fk0Lk???uEpg`BKAnR7oEHeYU+@cB&IUm&GCpN z$)Rv-9CPk?gp~&+VOnILvEDZ#5taC-&qA?KqCWX!)6n8}yhy4WNMATcI(!UaJL5~w z`XE|X0(OHL8xG%LOVwkuY#oWbhmxRGDyfeD$_tA;_nuRTvuqkpDAy`#h=`_uqL9f) zh1sxrYWQG8#wnZ)gILAyoMK@WVYMT=ihIQl%@VMGYIt8#)AnYVNXaereREzQBcj}5 zRIf$=BVW_tN)^|Av2X~J;%pL)EM&)vDz46aY~7^8lsgRl#@MeKQx27kNPc<$uPJBF0@C4uKc z;?lYGW_Ug4c@NtnE#ih2irg=0+p=ed&vhh+C%L`xpWr1g@9lbW`HN?Gy0%OQC)||hW8>;KlR4* zu}m<;T!&gPL_LOB=Wc!zDZ3udNOjD1J6yqTpz}_GhZPGN_*-L;1i7g!J3}}ln=Etb zNwu@$dnCUP&6jl+EO7h{FsZ&J@u$*oY1Pw^rud3B>u}dXhMG(*`_5YbkZpZ%7$e ziatbjK|w|^N;1<$#z!bdBz8w~kbsNn+Dxs`XOQON{I$EioZHiofbE~RB*o6#F8TUa zt&?|4#`dj_OJ;v{WE_(2B(hSX2cZs<>ao8f|CK*W{uQzd z%g9J%m$@ZpdmhqgJbvze;7zjl5zv*-@{?ONW9NoyT)RR<$v9FaoOTq-K( zZ$)&MWnOQJ7raj!h#E`&6%Q$M-?~p?(sl1#hC1`S-m@bUm#~X-)>6Ej|2T_SPp}4#^4dZK_&k);v|yCqVH? z74g`m3PZx~YB?d-~h&e~q*GzsE z^!5_%>d?GR$bS?wy!MPm$092lk(}PCZ-Z=cP<3G=|MUPh=x<_2gACr~pwK{%)f60B zik5l!pxlxCOk&bnc5#G9ZMhy9#h-4eMV;K2>ySe7x2vHnS z0zvGdF42R(_g5rtJ?^(!tRF@DSSOa3I%LN|=F$}E#+As<@+52wKZldBO3$V&?#)9n zs>(y-tQj(kG|EVt!Qo4os{lV6meoY4#@zJwrf$pWSit0*gZqM*wL*N}E5uvDtWwFjNUL<` zcjuVa%Zre?ZW--ejl!7TkUDFEB1#A$xkYcXc7I084D|Z>AM$iRP_rO>b!)CU0r+)S zWuCE(A=OiHH%i>)!BO)t86|r;DrNB!Xgxie!VA6WtB^3c@(l@lbHbbk#IGv_WyRGx-H0i)ZJ82keuztQ4*z^Ekd^ z3uJ4XgJ#s`LzO|t2BEa=?N@RpY=v^Q3HPtb^^nKWL;guBciVXkINmdDTNe^+kj?VbSMVer$08Tk0{qZh*-Rd#pW6QxF_!LC zVLlBH`0|9)mW*W6*1Y;Ihm$2#Y5HXy#&Tqf5n`p+@4#5y-^SRzhI;?7yD!j^`H5B; zW$ZM=g-q7uuW-8R9!*2VXa0OUq_EDq^9D&oG>5O6;88W!K>Y06&a$b<`jY9BEvZSj zk!h7MnTj&Qh=Jw?2kquX_XGD`nDiY^&@2?%zP!t3)e#@eBged9(ZjDJDlxm<#Qg zd^S+9|GNHVTE6ARID5i?gy zb4EolSLt%LoOBl)I{KJB!3L9HXamA_b~dl97!dk;lF{sugTG_u_st3&rPjd5h_ zsslHh8?7F8H=aMHBsQ(p+y7pE1M-;cxLY1l9#lE;9)FOl$#f>`#tbw?AL*MzJH}yU z9*b?LhR2Y?!Xl;U5yx=iF41OL2V;eW_i^@_1s_@Slo*;_Tp9D!J^y}N5!MY{oB@b*Kgkt2>?$b`tLrY4-|SSs`{ z(?42SPq2SAlbiRHrG(p zeegQY5U*0bT&g16dpkrDq>NvTIl4EX#pRX+u^+K07$^>m?)%#A0HX{59xgF8dc9`I zLiD0eBvhK$cFJt}oC~Hs? z4DPS5Ojw3&L_6>l=iW3Zcy@?l{@md|P#8bxQz z>alxz7z30OZCH9rXqm9;>6z_S5Q1?Xc~UMHSli~}+UR4?r8R;RIS>McMXD{Q_LpKI zHqWm4U?YkXeO|3#R9^&VyI)dkS@u}@z=9g1RZ7XO$bCMHv3eq$k4(5}uM>a2!r=64 z$3?ThWM$r3u=RKVEhuBq7N$gNcE99YgxhVtF!LwfK)K#$Nk8=ku8{&Ph{2x1`Y^Yv)eMz8I9i)5-l^|^!{fCnL+i59EZjC$RVKm|6vrB|_Uf>y2r-c9 zvq!Te5&zt$f9M}Vl^fNUa-pLoL#+dIugfBDLCg3SR}3m_6GHC1JdDpHW~x5nHA&(+ zVMeXRq|MkHU77hkH&C2$o2i<^bCJRb#fF-2_|YFAO2)}@DXd>-fac%Z9YJD43W;jw zlbFSJMsYmyiY9oMegL3$i&KaB+;^@nU11YGhbo*l~Ch>E|aqC}hNoX3Gk-rdKIsVi|L zf=e>T;q>8->fN%K^;62hj6oD0L(UCc4->3{wGJp*q}(nrwe||VvA8_i8IjeeI!sBz zF6|T~RcMA&Wrh3 z6KSEw(1jiPdc4NHnVk3W2xqyl2yY};yj_MBORkXY#)jmO!E-}qTurf86)V(PwGOT6 zyX0H=4y=*%#nF5cau_x_-z6r*+3p0EcYP}Fim?8*SMZB6LFT9zMS9*+HvyY{eb~x9 z?0Hb(B~5d(9jZ`41QKxeQfj3N!a9j6C)$nXqe%VgL`vXQEW-EOTmx;DaO&(V@ElmY z6ltQbU<&m$G+rQOvW;OY!$}xno^vJCU}M6kpg5IVe0Lix%|ck+9i^Wz2(b$ii`GfN z()1-sP(?N%gyt#bmSJ-Z&DThNtXwX?0w;&IN#FR((TXxGdL2g8=5{q=EbG1^+A6?{ zR5Wc618URm$1?G_mGgP@NW1iz-$XVw*?TRC;j@Sp%7k6nd{ts=CCnk!6z%&`7c2TL zamiwS!SCE{99g$kRvx!P!gDmwPOW^wsiLD8t`}d!O#1`DmzJ=Loc%caHx?hO;7x>J zjO$o`re@fN8YO|9Uni=X8G|OW@tht~5l=#}03}A**(h`7u;>#u;k209e&#jEHlJkL zrJTFyT`%(HOl$MDc-+_j1yvi5UMT8cNA(StT=ukpZ42?)hWHn(q7{g(h%$+7#z5lx z>k1x9?4|mi+zX=%J$HMs1|5RYc5gamW{?ml4om}`l0&$?$Bd4OF-FpF-(AD<`4yRR z^R0&x70-0AaHX>rw?I4a$yU_R=r%_+w5J~XAbZr&4iy^vuBwk3Zx*WRN{EIl?hS|) zRGOc|VZmN?hFh!nX>35`qzbFcw#WtpWE(5m&*5_A&W8mbI>wYR78=N?ag4z*5U?xr z1l6p0?^Vm5I&Q>;Sl+!Oembxo2Hn{`mvk&~`Pd`1qlI;bfB|(zJA=P73Dt+~(oHhS z5WTPQpa3a+lew+Vkjr1LR>BM=xHOL=Us0~8yD8*ofyOVmf8!t?dE5?#&9p0?r7c1vZD1tIs+omn zBVT&Iwshs4MAg_$z5OxsD^g}-Bu!a=$-xrWg^bgNr74)Ehu}%JvmuJOxfI1V ze<$1^HqE=Ihrl}sbhXy50d=2+3tfNexKL=OH=gQomLkqR(61U&qgUX9#^SeN>Tk#c zyOXzeSqgA$darupDeJH?TF5a$lr&R9RQAf&9~$V`cfXe+D<-iKkM zbO=gz)QGYIE}@oDoBj(?*6VVs-aOy^+#JetUo+=$o74>-bNnOY&0HiVj#YG8xUSGY+9D90esEFDLIu^M&LcJi_t+5^)|j*qi4vtBzlu zG1;(0yZOZdPTC`cq8o3SEQq`1?~N^*yvyM7HWbKBb%#2JsFzW3Bo+UyA$1xG8>>TD zyWcy@&PNMAG!v`hhonucb?Bo!z}@d(_2y2#TjUp9k$La zdorr_+U%`3MLDRBY&?^Kt6TVs*H*(l)I&I{I_&7&IjV3Q+1iuNOBcoyWl!?9E}{tT zxKpw@CbN-AOUn<>lxsLNf!g2FeD406yP6!=S!MG+Rqz=b)d`8YH{XtJ@{l)ce#Y~ThTiGu@i%^L~MJ$o|neKu&sW0)t6IG zko)It+x8~1htPmpM=v9-a~}bY6yrXw=)H*>If~~`a~(x7xVOmdXS~Fv3d^rtZWpe> zLT9eZ;UzTV4E;RY;jlICTyG3zXKeyh0i+?drDZ7l8y<1in>n-!|B8}iM@xV|qC_w% zmM^d*79z6`B8EC!Y(rDDi}~?wP$RWirZdin>0kE-7lr3oGj}3Z+PO{CHtl!yD}ar23?`MhQou5}%+NU|E2G@zo;o@-9QMWOx1 zWe@rD7xznnj!9zi8QupG{A15yT_MFyWzAcr`yG?)gMFnz=9{nm!sr{`5D*n+g*w}( zpbtGegYa&0UHO$t!4qt)QnugHu=q3SWrjk&8D)m0b;9CmM+X&^<+*tQM|hGOkqF2@ zn`uIt--^=0F~GHI``F-;aG*QDm}0jA96~8*)N4Vvd`?f85y_@0tWNPh{C4H z*|(9VRR}}I4g3;DJB5pHNAtXOrG%Bj@`ARA(~p0g?R4>D+rGr=WF#w)I8=o%xK-F2 zLQ6pW+AyBn=SONFVng<4F5ob#g+EC9UD9!eISZnnj!1X(bE*yFwIMae4k6dHjC)5o zQW7`^%~WFMN1-aTTWUuc+v^HcX?Er($sKlF+6+{$gn%&&M_2`yGy%lbw-)=yXMnh5 zX5gQB;p|G*D8ev48I~I0&PwLM!p?(LyvkdMbn}7w3~U<7$t4Co*mgdU@9*iQAN+(v zaB_0jm=f~lHfvwrv3=MW_s1-nIz+`S^gL1wZ;>Uu@8B3D_Esax6qQlndZ^MD`bq?2 zWinuc6-|#zSg+vO7%^!<7(%>w_UCNjNKpe_HH_!jP|9!`K(xDUxCwsNpYB zOD={#$co>}=Do%hSYkH&70Qm?6)ALIf82yD@>t9*k2;NGC!NK7$1TH6!#%e6#u`_l{^Vdq~k$`LVx)mp&e*BWJ)4Iag_N58e_ z8|>$Q&414D7krbbj^s(uB8Md6J`d)1_D2@{5l?(`qQ*u}eo1l`4E7{N4ZLLwzSPMz5(%r7M?Ws4-DeEfMSU4?7I69nZw&-2wqPvY z;GV(gScc%+;DF%sV5z|vx2{uRY)<{~yp~?`h)8o<^99E5#{|(tb-wdA*B9lE3f$sX zv@6cu_LajQnX4ZY$t|{v#=c7E6U!P|Sq4>a1{_At_Kdjh7I2d`jxDRNXb5gG*QdSr zPrs%AbgYlKeQb1DsldL|Irk-b%l*THGB@RTqc05jJ;6aypA7_GdXi|o0U~e2CZ5_6xIVr!7R13e?LnRU~G@AZ11zu$v9R({^Zp{42K9Ex&Hk zS2gMD_f~}c-gDRb{loZmB25ogHNMJxWbAjsl@V{U?adPPnYE|XueTfyA#`pjTX988 z#ye%dWwO(*8!2k}E3;na?`9cx#*nyW+^Q{JNeao9rXr`#&++ovy!+v<39~e!Dx0($ zh6irO3ktICydM-PdZ)JjAEfZ(Zk_QBDr%(v3U8!Y50s}(2?zfLcFiOopV9Qx%L@Ai z{^E6Jq7Qbjt$bZW*qOck`LnBcDRrigy$?8kl24dwGjDh4VVmDWR$bEE{V_*=wy(p> zO1ZBUmT%6O*Pgwp_i`lj*n7@X1(Q;*iSg-Lt(Ar;(e-3Wk&BwEthOJueEzj{m+YpK zOOpa9bfW>j=kugSgGCdSEdGHjxQA$5V|ddN+KEIobP00DSEfd`cI#{u*13DT*o0WS z_ys9ix%zkogn*4fCSHL-!A84X0tw2Z#EmY(YZWpXd>o%V3AZj; zhqwl#tx<3-RZ*g)i!YexKP>^~F~pmT6iLb?b%LTQnM5F|t1E*oMCzKr_RvxmF2R9b zXa|y#vNGJq1pa-$g1e9ak(Q3W4YWwj%*;hvF?$L|d<2!Mnk1c+1wGd%6&#e;4QvqCoWiJKsJoo?y?EI%e-b zN`OFI8{`HzXlbcv5r}Xl_(4%cRUPg?+q2%?%X4=y)R5iyCD{H2Hl}&Gt@ZQtaR;Iz zS_ixP+Q177mwkvcz!+Ki$Gu^YPwegL%F2ZQfkX7aJBKPslb{B44EC83G*vYT>Zi*Kg3v?|;J!LZ1u%%$RRimiflaGw!ROQnWN_95!h&aXsK9aRNC@x@*GEc&0t7Sw!HU8) z$>13zlyTzV8QBk9NezBbh9ZJwL)PFK97r#4Iedtc0gLEKDBnLX0D*W46}&nbQUxd< zH-m9?jh}(aM8^q1RH@HT<1r7!N#VZL zPy!I*UpINGjE4~zbcIP&OYPrtsPU@defEjM=tT%&T)l1+zSt zpS~XY%q?wbh8s^__wPwj1tzO;esEG8-;zuGp1@4}1APg^KLazcQ$;o4feNvZ$&B!uY>HptmY&%GS#2G2SV&hUM2k6b$To+x9fMADRX|`_vrQ&H<4MS zgJyNo$CHZWM%7NOSsk4$A7)sqyn2ti*}s#oP*VEB5HQOd;2XNqiVob~}F7G-I22&qR@V-<}Ug zas2xCMoipUtBefluh>)NN7MSw-hTmgk>l%ULPXi0d}zj$r}W#pRwsTx8Z4kJ%Mua0 zp!|46>w@Sru|^wr_Fi!7Shm$FSAVH|X@!~A>>HajrdaLXD5jcv)%^AOkJawFrTesU zUy7uie#F}DtF}(EK{w_~R$#^Iy3hvH~oY9{sA$o0D$wa>Qmfo7C3qBv`V_d*TWuJY_}wZ zqwfTaX@C4Ob>_)6!S-){kIf*gw!QQIO!n>?wkqimTjXe@0>jtt-I}cgGq+9TOM5?u zeU)tqxG?=mLh~&#j~wyQ*j3D~+76PWXDP$|1hx;P3)3fPW#zNsm_g4JFg(D8=GfxN!jWw zMPFySg(l@`uU*cUcjsgs1C&-QB<4te9aNvZaI;s=mo@9}^8LgIgKj6V_nCJ#E_m@a zyy5Ye`&)O`rZD{0s5iY~-#PY{7n|SNIXpVqd8fm%e~{rnAafNE_x@FeMCNB}| z9g-MZvow~t&+78ZhA~=0>@yqLdplx^&Mmq4WlO^KCGV~E!!9bNRxlY)ywy4rixh(n zl$G2e=AONK+~ZjEJ+BL86O(l(8Zn+--)yu{_UX%O)+=u@r|6$3^%G~g6(3A0S<-o& z;JQ+B_1cCT#`6~V(pOw1)0|E&ewEb6dSrd=VdA2LQzzPJN;A3`pU&%9Eq@j)q4F}D zT)$}gJmX(=hvPDv=JnXCJy)6g^5L8u@5y&`_{x?OCd><{pR_Au!@0tD5Bv+h7EZMt z8Jn14x;611**!KL1+~znaRA zh=2Tr3=ZEB+cP4|9O;jr|HlwN3b^C34#h@?FQ-RhX`2R7qA~XkX!KkW& zssvFSYC&!H*FxdPI>AJR0C+)jnUDw|UHoBn}?_xI)yjn;yPh;A+f5{z)f zwJQIg!vORW4*MY%{(!OnjQ2kv(?4(i2lia#{Xe7*caz$<`oAMDQuVCEVZBrY}Z zyMl=3Ub|553A2k{q!R+#I*0*bV-~b~{(RU7ybK3++E#+JxyQ#p*vHG2uvb-y1lnM$ z3A=-X_XKGZiN4>zQ}Pe=TqQ~bJ+WOOZs6rQKR&i+mj}Vs#f<`%8J_|SMGJWO`>lg- zB3ijlTSZw#4Yb5SX|1Y3Rp(69RGo~owW&+Edz$=~K9lVG0_{(Ywp&;nXI zKi^XUwdYUwG)S-thkt)QtFHBT`2qF(jb=>}Xnp+jESUt_yFcGkgkGeTJ_z~2>*PQ`=2Bv=YevSkcaN&TxpP!?TCqWhc zDnK-Ku|MYO=}b_AzxsGNm^%6qERkh*>_SL!4Dcfm_mB}1w!^bNJntb`&ml+Y?+l=H zqtyF2BGdu$i6)M|Uj9A~2tO$O$ol&okGa}!_X*wQWPZkKcS)5q=r0?bNL>6l!_rU69Vq2$#b~YY8>vU};w~V`W+tuuqa$7c>zdOhj zZ(^xjzMk$YTVbE@dku49}-z$y7hn zINWzCM$b09KdwD$xY}mMcZ%~QJbbL47PqmR!4?ae862Mo9}k*7V&tGz+Hk#ex;xi) zW{gd>WhYA5&U~GisLb_pu3<(87f-()*P009#;pI6DQS?=RkTJ_AtUBa;b`pSkTbu( zo{*f9(S)49e-cv zyJWOV0wW;r!l+b%-(4~7~NJMs#SfxU~EuALUWy|US5Cku)qZP3OIgKPaOuxi zf0I69Sh!{XWtLs<<5MrcbhP=Tt-lY{&^Fo~#YQ|@9(4`Q3cJ7a|W` z;jj0~;9@$5)?r{LZ4)Tw=sM82lr2VLh z#8hsrv^pvi^D&Yg`>0;-y>e@L^fA)N8Fqeh>i2;r84;YLc~F7gjTkud*t9*etxTB||}OX7HfUI<35y_zo_l5dzL|2q_R@XI^RqE&F! zYRWYk5$013z<7!0;w-Yg6|kU|Al*Lin^ep;g>G^=?@ln+Pw$gKm+iR|HFOeRH}_h@ z@zc%afD0IU03O62cN9c&d-}^0Bh0$AVWv9z656vffk!u9Bj<> zoq)G02Q5qTV2UPCP`(ja>!%LLb!NCr5iq5&jv_BszV0Rt#d`zl;8*HBlCQzp^5WV! zanSy%swvs&!Vck*z#rv<@5!8KVFE8D1I!$7cT-NfVKL(m;;Bl-6^ z4MXqF=E#>Hj)=g5fUU)O2fbe!fEkpNY29a-&?JWF$?IR8;{uDgc7E!m#PbDe`xZ$B zv|7ATDr4K-dwksROUIvetw!-*;KWZ7i&^$eWkBVl;Qk7_Gj2Jo<6*N-+gkS~&3Z{^ zCol-B$Q1H+=vpnzq|P_Ka5lPRF=gV}D`*f&Mp}~PQ0h}Fo9Id~;x^~XG__vTGxdyr zHu2i3&Lj2lSo{``TRz%(P3dB82?xZmc%UxDY^!-s7VZUB7^s()82Jh6gJLyxfSHt! zDRHvQv7LL(SDkbHj6N14pNt6MDdbU3B3G~ul5i*0jn6j(^SHLrcMT;2l+CXJrR;-Q zi3>S!?&ywdCpMx1GN92{Ye<9hhEIqu>ctx&h2immlRIEY8wu;@y50i*CZ5V!spC9r zlleAI!3BlDzVcGLvW;KDH3N#>nxbeyK+}%`^*HZYFfqIx3Hjjl8D=_1rU55{{01Z% z4e8I>?0`@hCLUR?*E-S-Eyth9SV@+28!OJZvun9!@D}YV z$BOn!XdcYis5|dgZIQwPl~ui3-!U&}Yt)ET)b&NOCo=!?-fB zyHbISTV!V9#LCwN&<{1;pRke*Fh|x8)=jY9@X-Ow5Il@ft(O{o57+ZWpjn|V>qvYK-i&oGQk zeO48W5RLQ!3*wt>5*${?E?tUeOsmHGl+~vpHwLFZODfDlfW%7O6W_c$;`dE;G)z3s zQo!ZMz0xOV1Ei#GlTad&aU<+JaKpGaLRwq!Y-2;x?jM9skn_35emy}0K#+cUF{Vc$ zH1B~2OmPW(vWeop)X=BBz@^x_RZ*!h7U#vJFLn?=2)&@6X=9LiCm(VXw2G^F5;DLH zbJDWLxvr+uMB3?}A)L7OD6B+B9A+1*nuDCOGdS0r!q6fZ%z1J{wSwuPU+Ps%P_)!~ z;;>Q&&|AlGtC4d4H-aF}hj=&});^Mgam8o2vF{ZD8qSE@go)I#`Qqyqcm;SG7#AkG zf3|-V|7x;Bdl%h03=Xm#+1sk{05_bR_L?T49NRd6XjsDnEA&j$9tWCyc}-vE-7NF0 z@{K)DOjjf$mS{kCKMzxTLutH0qM5oc~zI48-|lbsrJvto{~0y`W-WvDzzV3@T<8Efyiui{8%N7Nf~B`Ps8-X zGZJb!qC`1VSAH9XB}2M)opHFPf9Kzq@b%GSu%lz`cG2s7qX$d64Ov>+%I? zyX9)ei!PwN*ChjmiH2<8V^yrQ&UlW4GJq&`pZh44m!ZBb&xeLvV@Rq^C1X5NG3!;u zDF@Q<8B@Iz6J<@%bcPGY%UodwsS0G$;t+@f(i!943rYqav>7CO7d%&MyR~ubQX!Qz zjx8nrL^o7+ZB6F-A_!Zn?HTz&m-#*7mlfGt^GYoC(~@{4a`n2j)z_Wmt`9J0m58ou zuBwDC#YDl5o46Pbc6!gv{#MQqp}pI=5=y!yx2q`VHvRZVy(v_mV8gF;C#Bf8qUQsTd>0X@dP$T zJ5E500LOT7Hd7A8e?b@b9eU!X-_PZ~0#v2%xNF_}0<0I(bm1)N>sde+!y*xk1{} zi`RsKOxi5=@6np5sf>0c<(H*Ixj8o~)~Q}jQ#n0ibHb7m3u(-euf6`o{8<+!xj3(P zoqkoQ7^odOp)RYeUdb<$llKaFxZf?xi4j$({bpa9*rc0-P$8EJ=n5!&sP~2 z58Q0#0|!jRQsvbvAFsIqsm$&*eQFmOAyaeA=M>w2d5-0FCBO@nEvvRv7n7HIJ@eNZ z&*Z*wptx^rQPCTA$*7E_$|qcwE|lU2!-&klk3w-&D~~NPf=0|8_kP4Ec~&N`#%~sROS0$0uw$SKQc6HMp^7_%ti)L|(NF zV7G*#dD>YSDwwv^CrV(XK>;&6>&5B4wfef-V3ToDdZ8=kF0+6cdXe z;&JD)yUXGLw?)ocO))@lqeoWxZ*TlG1gyTO*E#96*a_RcUsT0$0IMEvgLZyP%4KGf5OIc1I*bZ$Vc7FPE=Hy}o@9XF(({Eh`8k9qK! z^8G+<38|q?pS1gosuiecP^ov%e^A`K3`}O*v_&X5=NHT(S|$Tx`pyPR#bH)QD@arf z*bifYPURVDV`a4)UKno4$^7IE7t*aBvq+=v3oeDQ`wcNhcFtX%H1ah%VJ?vUfDhQaRi!Yv%#nP0WASQ zt4X0V*Vxdgo@<7G4FA*h@TMP!HKF#$mG#^#qbtvj;jx0{YOf zqUlaw%z$Pz62djcMIoJj_mitdEsWf`CVJgLFhW&bknw^Zo1FgCWmjpne*N9B@}cX; zm&0xb@_DzX?CdylwN>Fd zrvK#u*?-#2)9bY2d0^-}M8EhzO3|GGoN!oUao_IUklUM~Wdf48I?^(3*!2|FV79kc z=hg-xm@C@G=PCEY6egYi#;sgy9`IFKP`cv5OVG3A3NES#fPCm>GeS1AIVZ`lBNdDU z*^-yE?c)33icNOsR7Ie%OQ$bm3knZdV{s2uoN9;( zC_gYURbRBDg&~Jt)p$H%?-%kmtt;ula|Jlee1*mM8eN?SD*D=dRH#8 zBmJk%+6&eI0;kh>7H8bTkVAb!?v$CJ==n|BKpz*MK8^edTC#=XVWt3ZbkDF5qL4dN z24sr3Yr+p@K?+$kE%&p#<#uQ%^;Ca%kUghw2g#$MN7}7HVNy=QJz@LP{DmelJw2a; zzZ@Rjpo8hP#O?Xh1;S8c>DT)BrBeY>wL|H*Hn)rd$QEK2b52|uAC-+<2dT`{#%9=2 z7)Q>wJDobKBA~&gsVuH%0bQP^`DBe%u=*fo8&A_*Eb{_*k!_{3z3zO-tl2ryq;J4r zJlo8bnlFlJK`=IXTTuWG8lEpI0T*wxAUC&l41wqqP%=L4&BA@#R?H`F7>K$h#G~4O z`_qg#;5xoG$`OhT=sV^kfhW~JP-*A=9&gl+8p>%%E+NPlk5=C@%6zC zqEbho?wX#Q^Ou4&+U9t4j(&l-sg;|vRWwQ(X7=K>@wQ-*68(LY~Pp zaS#+o$o-jmT^L%D2`Jv;<~^DRBDqw0W)4*zB9sxcD!TrKpMj+^eD&;;ZJ_N~)R#Ve zy&h8O5c8x`=50Avhd4G3pVF^pp%GCgU?8O;dl8Uc0yQ)yQ^!7G3AGx7>1=OYgZb7c;#R6Ge|Pg9ZfVBk3LTAPUr;vS%kS|H6}Mx4unM!_%7FSD2j?mbY_fXDO;2>}Pr|g3A1SbSK4jQ-<@!HnJ!Bhm2~QIAwPM+L!Zv6v zBH8k@3x*U4G(Ro71N_5cn`OXBSpJ5z9(;O48z@33tbZc?R)*wH-$rda5Fj-w=i(kG z2jMX-aQ|-xr4Tz>D0{z~)`S3|TF%4LW2Oa^y6##>nR?DZl)Bt#kC~e=B>2YA$@K7k zh+1eh8zuCB!cNnoH{iFlXlFFgE4cL_x+T$=n+yLGgpQmZlRK2K2$UnX#QKnLZX78r zBh?2Ix!3W^Cg)6kv8)}G^1~1G14rHg!d!KlwUqFnKxYUOHKD!G(o5t${$K;bu2p%S zV1wHi*)X0j2}y!PQYn5~>(4-5=)KG&?#9S^EK#$Q(nAd^pv=wkGH^?3DJpeqX|^OJ z1K2Oy5s*2A=cN1`Uor%0(zG?X6c^YippkN4pZkiBD#)Q;1Eajc`e=r^+%7+Fm+Si! z2Ge}p8P%`~MsHUERjlt&m)S?rZ=eFQ;q~NPk*`A2!LC6{_B{0@jC?!PcWehl{*9DJ#g{v~U=S{D)0sS?fa*c?l);g`?XUZfKRR_N zB|osurtt|`8fNO0ST~kCG@a6dTaW9mK-oPpWI7d2*8`<=2a%=INwEInRGYoOcJ5h*-EA<~Tosl36RzHaq$D|L5VnQuBqfbSz}k!~rs0wWXi<2n%)Q{T zwN$MJV{2LiQh=-NJ7T;)vaKrFa`igS>NmIE)5GQIa$ow17BrJCk2%3{;m%b=fxC@oc3! zpp~>47l}!hbto_gr2dZawC_@feCQ4`e8Ae;T$9dinh@mXSTy8U=oCTt+WR<;06iCZ z*q?qALJo$_9=?4|T)=97Msvm*SaOW$3=FRP4VRlmLz4Z=6qwG_C>Qi#fwk##cFxL` zSdpx5Jdx&Q$>DAR<+pLDNbfT%Sa34KK3tQB!ljyZ(wR-?p-3LwRJ@6+AeN`P0|r!T z^NGAp2qq@2x;?X6%gTX?GXCUurWrioS#eJPwONnoy(24(0hI-svYckh88(Gyz(B(Zv?ELRtZc6pR(e0!+372P=~1y%?wj(r<~H!4WDk16FIA zBgaNmU3^FSftR#M2cXhE9m2GuatsErj zQH|iNOULjym0rR*cuT7fGyqJ5CUZcCaQ?{K^BF0xfL8>zS-4u>m+1NW4sB@q^yMX8 zhRL@{^>ilkj0tP5P}z>B-TZVx@OE4hzaN%e&8^)_*kQrKf(51o0ew^i1vtA?DRZQ^a^&RZpJMQ zBf@$jxVQDKhdsyi^F?OoV&+W`eV1=oQ_;CSD~PT zql?E$qef)kgF13%MYR4edoW5~&;r{b5;5Mc|mtV3BG)F>2^3R1nz-dHoUy=X=?xdX0 z;-NrmOeQvl6~*|Vk=WxERxpq8WI3(}w^S!#(ttb-A@h#V}<_wcPhNZkHHmX9qvVZou587l^HWvEF0evvRD$it~u z#9Q2;3TPaSTj%*93vPbv*d(}bd)q~eC2YqzeaRbgYYBE!GDk{5B9`ACnb!Sedbnt=>jRB zr3x7jyW(bcBUjs@+8oRZGQ1mEu>KM(dXE=CJ};6dfz-U(5Ex*@UVv35$YxB zv=r}+nCCNvlVTx_tm3C{#Bt@T+}r?qeEET)F@@)T<$()*v5U+5ezyLfkT!s`w1g+!{SI}1&LK8-_9Y6B_9}Mb$bThl#p>ed;)fMi>znPv?s$L zjOZZvgKR5o$G6CD9$OEHM^ft3Z)>2U(_6@6(Ei5CX;KyG9T}~ZmagzqXoZpfF~d5l z4uHpy{coQ%UWdR;&qmdY{O3}DRER0o$>8DN@=3EH?it)ES?N6))~{gkU^evDNDDrI zC{f#*c_{);WlXz~>wRMjC=HtmGvYtPUN*Vh(ZU*(iR$&~Z^>C_5&)jAcRp1t3=w>8 z$X5P!uw<-BZ^^L6;hS0iTR|0A<;@%li$k$-^2^WniV^PDxrlww#4mn>nHYf`g}Z*o zFtp4llIyF@A%$MF)43F%lK@X!ys#`xm4-zI!jwX^6M$SHoEv__;vH%IAW~fk$`twx zi5$7|rOOX1URnY;@e3-v6agFjFaaY=zCK_91)eXb@uCCJzV8aw?4yeZZ3q zBX`b*9z0+e8qyC-z_5p?nAs;R0Mw9bBlIa+7(g?xiC@X9te{-#$$D?4%HP7rXx9vN zIcCs81B%a5qFs@Ye1Gg%3MT$>Sx+~680OX+I4=rj1kEtc6Ro%sN1 zS786a!BLOXT~`erO3`wfQ}bYbSVKu%Rv5bF1HjeV3kB6-P90!O6@+evz;>*8)90ci z^V#s(V#&CR;z_)2u_kB8D^$TCiHzGo>AeQj(Ri}i6jsWd=ln#PE_{|rzQT243y*>X z+3olgPe1O~;wra+ff@|5nWxG5;6Fd8OEWbUmVbMx1JDRHEA%&i@EBRUZl15uDp39D zjhKy#Qa->3PWk;_cB9})k4%7oNX!nWOH zkl*Dx@Y=V^7)d?8kyR=LFF}p9|rM%w-EoLZp;k)#pF;N05XHvmZbeD923ooPmuE&@MWhdh&#>B~XyG&5RCf3XEt$h;uj3R%>P{Sw zr8$`CwXlbK)rXk%;ZvN{Qk{~hDK?{Y;w|Ie>8{~$YrUBfubFN(?W=A0R4&bSrZsnF zl&{kG*c4Fv*`Vf1Ztv6BWH8V(^`D{DWDLpgFO0Eqb?<$=hV~foUu`SxehB?Dg zrIKS?_OhqU+w}?thIgmmtD7lL(3v3?y&o#r(lb#!J^CUvomJ4PG4iavH>|W`DllT8 zY;^y7F&~kw~qO^E7_EVFqo6(9Rtp%GgGBj5|G=sQEG#LA8BVB6XnHq@gKsYPxMkPjWy{ z@Wud75-oSEm?RS#XJHVoHS-~NY^G!P%=9i>z0i%qizr?@iv`ynC=xI$&-1)JR9JoKXJQPefr1I1L;$0gIBPKX7B4|BqKX3BK)&~0;Y&llW4hiwo; zH;pMNYbYw=+v>2bW$0B)g7xe*bT8eH+sjnckv(PqvbRi!TDZJIafyDg(W&LHN>z+~ z@_(+ICfn^ak|~kdG5?#2#QpO1LATgtrrlN49lTA?HrBP>d%n~2;!y^5m)VD3)RtC8 zs@;Eg)}O#K$yP%*8QTH%!_D7Z7{~(3A`v~!^b1F*z72cEtpD8X{5Nwkv zy>-5a$7IsYKQ@KTcnMYS5qRdZt+1nlV3+=D!=HD{+^Y>|CdDJA$_l4UN&eW)`;=Qi1 z(fHR0qlRzqk4YW4v^MUzd%gb9lygH|o!-iM3j6=kmc?DJKE8hXF7`eIMFHYId-$28s*3!CY)IVU z=h0&{Lr{X7Doy>5`eBdL{L&w zQ$#j5s%ap$hb^_=-p|Js+Z(B%sEF>cME=cwLia}^L>@r4Y$97Cu??I8#GRhV4o7rD z=l6}IvzLfFT%DX8k?ol1{!2?_ArgV;glv>Vv>gaGa}q6FkNLSEvw_W|-*=m0jQ(Aq zb3}pB`|o^v*gGS;In@Ar|4{-2;x=CgbnB=lNs~ZCS3WE?0{`7P zl$A6HDu|Ae9k2uqWetLwvYLPJ8R#12)2PV{$lyt0}SI4i585lnLr8$XE@807c|8dPaX&Mh;|4usU)-I;W z@X&iz5yrtB$XH}u?6a~8A_xuaP*vB&&YJ27y~uSnB@)6QSXTvER~4~oWli)x6@n^q z)jk1QG zkpt5Ux*RwJR1p@jJ5l+5|9}t(rXYdURZ*%C%5gKm)rFrCl?mX4U{tB7DH{EXNFLZ6BN zc1AzXIWS#=-_bF%2Wl6nR?+kKw2y{VJmw*B67HxEBp^ck>-KXJ9!Aih3zMj(%D?B( zoss3s%Lt1W%pBUrFCfrtyzXiQcP4TfDa4K?*ngIHF+FgXG;hp08~vDypfP zJ?|!|tIf~yDcdaLD??bk_LAMUW6F6AKZy(pg!}`oa}ziYOOT-Ouj}a;YYHNei#a6_ zMmXtznBI1E&8N%L;TfN9NiJA^E8zK)I}W^pN~iWzOI(P{mY!6J+`9S94Vj?rm5Q6a z)%Ki<*k-=RLf7)v&N8#L)>%s& zGBXOib?g_YRtAam3@bWZxMGlOwwFDRS9r8xEWF2J@Vfqqw(-SV5q>l7vZ=gF;uT-4e=m9_`gi?(c75>#%xl2vxBs?|P!C$&$+Xq@PK z^?uAMN5SV0O2Bof^2SZf)BVpxE>e z>iY-8OhN$8zp79E;2s~IZHo%)H+?(nl-lkPw<+S|3}ewtzJ*IKZS_0y;nwfTgv}O3 z-O=eT746DOr`vfW!ZtC;hd*vTMA+kSK=n4|OVBr|cgN%TUtN9sc!|?Pp~>GjwtTAW zR9fYn%W!T!>Rl%(Wc%u<6Ii`TRVQLZtegH;cTl)aNTtwyoc<;r_bs@WZbkuSr=SS6DAb zd?@j4SdB;QpzFi0TX&aDc?u2tKDpW+u$NUQ+SnCb`{L`C)QY|1_5> zw>qDF?U(CcO|IVmrQ1|D=(@tqf)>UrHx*WFw!H7jJbDo^<4V~Dr{B($yT<3uyP-W# zpYiAYgZg4puivDYZg||XK=)#8|=cXxDu`5q4oM)~f!T7`&jL|V(_otr-=}o$7%}RdZoolqmqV6>bvyZ4WkXF2@ zTK>?Dr$}o`(deh2gpb$EKbCBGE$ibmugq^*3oXW{=Or5)iv0)q{QZq1KVtmt`wt%c z3&ux=h>e z5z`C&faz6`5b2G+amB;Y33+h~_R$9e%1A~g208k8A^D#`^gDr^QS^_zjO7R958kx$ z9r=x|345vX%_9HsQ>>g;#d98h+hM#!q7@^4%$aQ<47Mr z|BoSlEa2j?4vUQ#vNxFU2na9O zT)UJANV@pz(79lJo6_8N&g>h#i2B=*n}`nf1SK@W5x0^4KZhaE3l5tT3+G_$@9};P zGW~vWE}Yw?BtNHVMt1e|M_x__`e5I0Kr$Q6<_{HTL)tR zHfE7_&-a`4k=Jygowf}~+VuAD^7C*#N}wn!C?RdI%>)-eKX2bHL?U_iHw7;r=ZykH zq$hUF-vN2;*WBB@k2w*J+B>)-%ivQWL$L*1y*ziI??~IQV+%=kkXo@qCz^d zagMwKd>owwkP2T>0IB8SAJPg@MG8kJ!t6D)6Nmm0JmEDZO*N!l@#8fWmA{WuLE0og zj#Je@j0pXkJD=j;$DyV3U&kTe)DRV;f3x>0Dk>vo?_aMesgRIT{IAy(6-kPJTUUjI zcE{1b+4+=INk}yM@tPv)Hh&$bg0_`@xTZ$ZM9koaaU=wn{CG`8{cqPaNSc3}PebwV z@>5s;n_QGMl~w*GKQ(2fwEbaSH5JXjk5fb1CO?kTKx*S3uBj`bT>|v)yR6g^gZlBB zrn>T+HT-<+T|FFqu(tr3x&}ESwniYDczK}?f<=lwo=!-NLGA#rzw`C8_wmEbQVD6X NkpyIAcN*^!_+J9baWwz{ diff --git a/dev/_images/control_plots-6.png b/dev/_images/control_plots-6.png index 360c1e781f41efb986fa941785e5906396507076..53f120234a4af3c99a42663a4cd94f8c2b76e1ff 100644 GIT binary patch literal 22678 zcmbTebyU=E^ffxe&?z9Df;7_IBAo&v9V#Kx4N`+Bg0yrAN;lHYh|&^*bPdwoUH6&q z?|tvOYu$I?IneeAt$^^L7xDW`0KvhLS7XpDI!A~qUCiow( z)9Pp7mxPC+p@*KcjfeLOH*1LI3lA3uXAcLvmyBN4Ztix@PJ%rAd^~*IjITXBT-+si zc^&`ncknp7+43g18M=X^;JBz5xkDiMTBsjrkar|A1Y(G$s_^)kPsYxiw`rm^4c7j` zi!fLxl=BlD{xbg^_HOWMPnl6#kzG-$O}_PXdRm*coso!;`T%$JZ~aecNq)MB zoDGVxzU@J#yj*fnqFLMPwydEe@yI1{3hcG+8>zE^In2BSG-6_6GESN~jC;hyM$DLe z#Kdu!_?ApeOazn&1qB6aK6rRon2;rel$h8K0bylg8i7MK6cloyu#~Vc71;mB2mZV= zs&}HpB%+V}BJKC@Z;@V8{{sOUaO}R9cegjMM{;q}M4h8qHPbAIzDSGDpKTOmb9rIyHv0b$q8#ddHQvEb~Ari&nd zWSs4Lw3;I2D*!=ede8q*=WRtdFqrU{UMMrEzeh_ONk}Jw++X}j6j0t$46dZ@mQLsK z5_SrE$mz~Zj_Xoa3f~L)uhO^p4?Q)&w!INjvg9?X!%r7=?&^%77*%SzOUlTIlnJ=Z zwjKJi{jE?5F>_R5&k}~508j=0xlV<(o=5u9W75iIkcjJ z*JkKTrk5-Q1qDRT(vtBL8CU4~`np3_iO<15-?yerdR-9K_{Ht*$ol!Wc;M2W#4#y) zB)@w0sw?uxa&LSbIJaU1`B#hf!2Q$H!P6$|7h>MKv@I39bGp@SWxS^ z(wFGB?!L0>8m>WC0gdmagw)~8CY0fU4WhVj~&I5GS3V zpJz9!ddT^#5DtZbOky5zqVKTKMwjJ(h(k+9x46EZQd03}e4HFSD#b>(mCB&ITkfp( zfGZJm-xack#>OAu+&eS%-5a9?qcT}DYXOr>sQB4yzmxIWnZ{67?yiZmQc_Ri{^8ty z6RKbG`~i5nX3bt05PT{D^eAd!`J2lVojf%%p*Mfo4J^)nW{A0>1qTPeo^KIe zy3?+%uGd3j&EC!$=^_NOch`c(^-fX0e*Nk$Pwip9ABXe$&$kcMqD~o?H)jj_MY?%^ zYwafzbk$BaMwL(Y7A!dO{@z@jCC10cUv5>jkKE36e8AHO>#MJ;`}xgie$<+C}mb)HF1n;gNGc#SD3{^IagYO|L+UQ%uaztkF$zu06=2^`MKUZ(u-k zuGyPcd+4gLJ5|i}+nbTxUS@l?Z|{B*^Q9&@%{4vXB+5 z5x-Lhd}<+Vg9`J`%abjB$7!L2M<(Rf{Yjk(9D4L6VUsGJ71h^ zjx`4Iypkp)CgaBBOU>YIzb28rIVL5fmr7Z2fAWz~QAGv2+^jh?o=yAZ+F&N7(Cd33 zIYS`e(P}n3chw)|ycsJ#2lMEwFs3=5$Swz39UN4c`h~#Wp|l`)Mye$kfxP^M(^>G#~+hwndp_%Sypz4I#O?fk6F z;7|6v(tnI2;ZP0M4G>w~-(Pj_uVn?J{+KDpl& zNfiR(VR5|7Wa>*7AwK@EZ;BBvSEr7sXR_CFq!lfkArn9ybbWyJ^5siQTifJ1t#Poq zAWy%)?5yDv!89;1@K_&)I=7yXqt>{gK`fF^l3elA{m0-gM|aN(*9LZ$qzF%gSl{}C zg;51j{4-ZI-UaL-?ksSRH1twFa8$_wwM*;j90a;ft_rcw+qX=NjF8s1Cw+&`Y}#KU z!8^W!a#CneLEq%P_vIA<4i3)w{!b#EMmOsOPJLX|`N_ErW4+#-mDSI8fW57guYt-d zmj~^yAs`&|jBlKroWugJ#XvfNe`Zn7pJNjpN>A_hrHz@n6X$KsKiUL~@Orj^-?-*= zFajaRZQ3yWI!4n<1GDpp&nlE!=rx?jtjTh=!Bu>oje`T{^z?MH#aD15j2x18Ka_|e z`e3PhZStK!fpC*Sx#{C@5*D{Pdx`oOydLURkX|RJrWOY?C4K&dv(ft&1*>3*{9~*> z>ShQ+f?{h}Z4|#Vz|1xo`XOE$-lIjw&dy4o2=m3leEE@_4U`s>wjR~F$_W5 zE3XwWJ``k!uYXO@JwG1R1`&PBEuC6@v?ntF3d~@gw!52~04jrtI8Nu*Hv3PyubjFH ze){xD9#k7pm)}=e_fxN2J+|To2;^dF7&!-its?Muwh{kPwpVU7MA~5KSxo?q%nvm13K39UXeZ3dc`DNd9Pa zUyB75DwKeRI`7W?O~po77~Ev}Z9mSLk?p3avo01GIk-wJ_}L(ISsLnLz!UsPue zXZ{aqH4y%vu#`=yQWSNQI^#G0mk`p_?`X1XxhbrlHxu8!;PZrVa%$aU-lZVu%lT{n{!F-yMn+ueJq zgqVDB;c9AV-*STOCzc!D3g7Ici?Uc&SYV;SR(Ad}KX~lDGFAOum1yKTo>|8lAPQgf=j} z&#=YBAI#)Drsyt1OA9eE@s*-U-*zUzq{3liRYMfePqp45gCko6>Am-C0`7Lr zE?`VDw~GtB%H79LLCVAv6eNj+GZmv~8#=p+d zC*r~>CHk;pgJcj?9e2}V^dF!a3EJV|h!1#(B0a>$s9XBwX%vmoo<(U2dPsrostFMh z)l?#H*4b#8lhZ04!Z$Gm+q8{4=-2xXy>XXbn~n|+<3R?ERp{RRQi-P_Cp}QQjyDW!g{2MHEv&Q-N_5_~I zD9))rq9dCMD#^CFXud4Jd3MevxJ1S!`&^-WIgW<#&{Q|&p#ZT zslSMmqxh|={79&&3khlPQg?8xUvSWE+|ndJqqz8u%vdp0Gac=banIsLQJJa06MV}m z6%G!!%+tO0QJAQZ(9Kbv8Z?R;8bt%sOzY{%w^9u_S*3tAxO8^)<%R!!I$y24ik9o< zjg=;unzy^Y-E*~QoUX5;%D27DyX z`h6UALvZlOVlQaXG#8?1NP0}_AY0?T+zyb+>iDhhof#ON1Vme=_s{p*7m)bgPvLQu zX4OhgdhT6=TJP#KX|f$nsCJAyHkPj~A?aC1Yr(blE0Z-Gtz2p8>F-@9$^|66T!u~9 z$fUsO6T+}9$2b`uDwt>JPArTU#?d!CGEP~0U-S+E5pgD>@3GtbD<|WwBx7EDf4GQr zI0tM0cy#1VJU0<6rA8N5%!g0fgNQaZW@ZNV5b|53ItneFL-6WNBquNe6UAJyem!u!^a zQ9#$m$!n)?)WX*l^r7hJ=!^iQR@)4Wm=UIaKU@j^{wlcI*4oi^ZP0C|DBhIec9|4; z>NuxQg0M#z<;^^bx97f#!i$K7kBT6xDs~a2P08Cr?5uESNH9uAR(c6my zxQzATuQ0$3!~o90rg86hW0XJO^0?;g)ytPI=@t3M*o%vZ*+w_hR?a8~Od`yApC_xf zvGn+sZws5fgFoQ0_~@ng)xUMk8pN>8 zUmSE<1hTTSLJpJn9H(ngR7GyJLzN3=h)23fySed?(+%cD8e06CH!Sg7MaYBuLJv4_ z4D0aEw*@U1WG+^=M-;Wxg&p6t3Z@J|wI9cS&yd9O-w!V3(o&71OTE3anDULp#Z*Q- z-`+K|y!1$=nraqx*-kN?k@i$eA{Msq+GnXEpPxq%$@c68wFg$w7{#+zwb%{O&y5+e zM#Ia7GbO8Jye~a`oBe$)&s{dYECKK*(T5ieFUro4A!xa4D}D4_O+@WtnbbT~0QHHU zR=*9rBQ`B`Q&ad}TRhHlQdU0yaQ4g!-u2#Z=zZ}x zRMgM)xHr(7Z;~Gzjim85cL_nkn1;AsN*K_`uOz}Rzg@IpSW1hVHdMCTgz$831Ktn;RpJt35hN)Eij{#4~N@d2zklTt!N1-31Y0HmUDBNhD^r zk{!xZ4K*6dB;4K`Zr7l%UEcBkwD&;if_?D#P3`824oF=f_ORnL@>h12UA6O&LLc)6f zPR+pL+4`wkaLIBLt=9$}Y;i!{9A^lE)Y`-DE{L8MeQseOVY2rR5Bse-nveMU1QEfj zX0d^gqargA#HP}zAgTo@;GZ*v&h;HmDd{~-ceI<-1bWq5P77hLDK z;^CeplQE~EkTf)=Zw|vE!o0o2!^TC^${04&Uwi?vC!t{5VKS-xJOy9yXC@dB-(+F3 z|A&P9{zC9O4a2nQ;lzi#TN7~D5NPR-`Bu5PrYdX8c-E1ooiPK{d$+9kAWuG`*-!L2 zsX0#fXxOQDLwFQ$a1iftMu=BCFp%-uR*tmEMQ zyXoeHnqme1!}II?{rbWU(XH&Qub{9B(7bpEB`to-Nz(6>z#ZW^ zeJUbl1cv2Z;MBXV7+Lu3O|V%rWt)P+#o|9Shgo(>E&>Lgt85co%t~So4F9uC?nj>@ z6KWlg*7_r5n3(#qK9RA!FL|DrPuHKcQQjj)iBS5S@NjDqlPHNHsr?Sq-1mdMUwByL zj{$NH7kv|qn^(rTxwgA2ZV)*B8EZYp77s^b3g1yQUoP`NRpc*&6> zh`Il&=`GpoKTJ1o_ZWhDenFX-1lkaC$YcwvfXYT^BmxqM&!&w=K!b)w2q9(bJ2B_s zXJXz5F+qfmEG}C@N=@thjZw8 z7{tp031GzRedEQ6f%u$hZdmD_Odi3&@wZ$SSTkc1Xqtzy^ zKALFwksQaA+*faB#FSA}4amY_$L!{`AlTWBpP47;cM-%B8thE>vi`|a-zxv~yEBZK8M(266Y>KNkj{!vJK!$A8rQx7{BReb zf#XtA41E+yjKDE+^~M`q5qauOCB1Z*`%l<0T5g+!CST7{pWk>lj>{#O49Q$^du>lb ziHKro_uLmdFf>y502p`fo~pKW-I*5tohn#xujHXX5Q`cFWHQhQgs{4&nE!?h2J0ed zoO83h%o|DApKEyQTRHs?R;vFvZ#z|G4LEu{&gZ4r;2I4q0>}U{$C-;8&aFICC%4cx za?h@pWNu7~8YV`g26b-ZC=fEPfym1@d_^P6sI08iV7AiM)&?w@U1?a4zh)NC9JX>K z-wlruJ~BuLmr@Y({2yMnk)Y+t8}Zu5R=D}vSpcNf*D$lPDtW6auy%H0oFD5ka^j|l zXnG41bwdW_IFPb;ad$0UQPv%aIXSzljEeIT zJH$$0j|jX0eWEp^=gOzuH*Q^!TiHA~4kEjrBX@EQ4l^9gW zb9?~2Gx?D0UCVA&*zcsWNBfH(XA{AZW9-iI-gZf zY>ihOVEjX3Vu&D?!`Y9qad4mzA79_a_PZP2G$A`Q0B#x@8Z3KaA4v4G3ixG8^rrr9 zbO)Hx(;!~@^j)Zf<5)qAN8NNw>Xv`6eWP!n z{e0}fC;VIztu4T$oG3$rg|58GYs`#TXWkWEt8(1pkgx5Pjm12?zGLpHW+dG~H zfS&m9)z6zzhW`9WdoD4zIt>CYRK$_zIlkfdclH6{VWp~@rdbO?6DG<^UQKxH+&@3U z78l(v8{c})jol;Gc>y}z&9Qg_FA@?s&|D0xSeTKW5y4qON#j-_SX<@DUO)e}Najo53&qLsmq zq`?w$C`27vfK1rFZzr7e?G}Wa4_@ztk*^7R_YQurqxiMEx z&SO=g3Ud1IKRPz@g7B#AlL_ng?jf01_2BmUz7!N3hYb(BMDyvyO?4Ujp5q{>qM(qF z`Lffhs@#d37y)RW8D|)adesbgT+*h0z9B+Dv{%MLzK9Zu`8}6!c&Uh5=r|58+xm?N#wol)EBmm*34x^K%pv-D4)Y`+#9zCrqotOCS zg-%P(T9COlj`8;NuNeU`acYG9gw=d()GE5r4CITD>bR?BX7OD*xS`dhP5seHhI#Is ztzS6EZie9JWpEKk57cU{$`>6IS322HA@4YbAUQDuN6 zp9`b6BoouOmYHS)9<%Y1f@TsyJmipUvUK2rpSCxPf`V1_=`O~badfrB5wmbAjQ!3C zL?{6u5#(0-no1rpF}b_%P`hl9JZ*2=ReL{$zJGn;Ch3wrFA)~jBegU6pdKG71(qG+ zRu_gdgcm5K;|o<*hE;E__0*O3ad;)LieL+M3q2qMtuMN`=#y} z+r}ZF7e56m)cMs_0UaQ#sf$^vOuv5z1zT>ZOAb}Ch;6=8{q$bw-BIV=C<|e)2*sy* zXJGD&0mH;c0N$C;5&^jeDyh-#|8C0zgB6~?9H7QoG;j4V_&m6*jQI0s#3x6e3(>Fc zEv(Q;K}PlgNPu6R7uq0jdg-@}Qc|=)b{#XNiaRlCF-&5RzAD{S8%gzt@S0*jWOX|v zOU>HfcWG#9>KN405~9M#L`gy1+}!;EKyLX6heOaYFkXz88htS1j8km()>c9cq{9+9 zH_BNvRkPkb$4wC>VmG4(U=^GlgBhq7pa!_OxydUipi6*m#n#sL__s~g0FWkLT^?`P z?REe9b>F5)!NzV;9{B@?yjb%z_?-HfBhP~(E?(LX9!e0r_%j$)y`LnA>ged~9~}G` zNEdx!Ym1e4-_* zsPb(ym=W&Wc7f^T<)xyg*5N)R{V|-Bts^#~RYV+(wJ%jy&XUpP@ZmjjOfku=a(2OZ z0_4R}aIytv+buPvhz3~Cd?0BhR1?sE?WA!gkl*{|9Y_r9#`k>|G3F9uS+0P{b&rMy z4`Ntlg`*Th9|fp}0e#{>OKMt4JNBR&i7xy#(>&D>fIoQ>43Op9V^pMKSc6LG;^G46 zYxb@v8Z19Qzm{Loyb3nXxBiX(;%*P0))w!+sj~eHwprP1nr=5ql}24%U1e=;=X9+- zzsLGhjZ^^)@MxO)nZ9+qY?1G0-9gAWA*8J9<*c@>RETsD)uA==M;-?9NjyLSnJ72= zS*%|ITn_jU6)mlCll#QdNviSit%=|mS&^uKAorJU(2N9hhbg8R#neO5XzrhdIyuO# zEj%_hHt@8NKxJpw%Z~)GfITakF21)Jpx2wrjq=q+4JYzr(0+tqA^=KT22Ife`}ohF z-vNd2K8LP?H%DWK(Xhe>s7^{z@DQxLIK8K_yPxO>myLCtrXSX8OXt-SRyhD25cmTg z0UYvqXRX;|L$`+vEMb}$v6u_Q=ge%B$O3_`jBuQWfEGmY_?sdq14(c8kv~!-y?Ko5 z98y=@F+-r~x_2Z(uC!3n@JA+A6D@$&&Xk0rnt16nRgC=*EV)zxIlyDU)57SZp&Aci zBC@i`E&}B6gKT5rIkJ^#Rn3m+RulP@f~=xSZsQvE{_cFu^!%?ROnouG6p)Q;@O>9# zKkopWKa>;?8AY>_1l9PkQavQ|bNK6%xY$@YxQVYo#hz>nXhy9QMFLtVVd6HW#NTU? zUH(Q0k3KFo_OKa_Q3NoBbO0d}I3DDlKE3xYB*Z-KMrz*=qE1v^;ou^qU}_ z!*@o+?#saF(6f{#ubofeDWDt_03Rys&A0xku#g4Hp1HT3LPCgHb8c^F30I{})P;zn zKq~S6V5VFDY5cPkl-ek4Kb{RJPHb#!1h5cMD9G zUf2pSBlQX(G&I>t1YkD^`<~5t3$|K(Q^09KNb`kj=)Nw@U}+7cGyE<;ew`*5PX*1A zU@=h=7h5lXU-}2+BYvCTlqf+sehQY@vrH?ED`bzUpoE4;4oMm=9ek*SP*p`tRgYjq z6juJ~>Us&Z_Y_fQ`oS#O7$Eml# zSA~_=!23|BS3roW1X`IAKL!U0G2KlRRIGql9UoWm19E-AHe8;$`zf;jA=>$|UE|5g zmqupaS-5yCwwC)lFbg&gh$Qd4pJ2$?&umH z2LAj(*=~LTdG@>0oP?CmJ_N|iC@I)xAT6(1im4o$qvf3GXuxb_%qj7Hs-Rmx)o|_;HMLK>Bw?i^D8lBA>bcArEzqAlK}tu1($YPuC*#^I3n`5+ zC}5MhTxV7&xMd{K32q8vK(XhOI%)RYrtC8~Nn8cZRUHM=@V)s&6Zbi-Prqk?w}Tke zTF^G4tVNU6wlTY(!??%m9O3P<`#be=CC^6|8nqd=%x=B~kROK;BO<8~EB$T+aFvgf zlZHTLzXz;o5BidMV{~$qz5>S?>jGUwbv9n8u3LbBlqoBwwUpBW=D&Z-KKqPEGngR` z_|CRilQaDaOv=jHR;pB14Gle0ZMb9t3@d%Tr*D%uC8&L_98(=ukPtv)RosY7e}uoa z%X;s*7CkE=4!}ievMz4W%?SlLuQ|T5vhwln91Tc&U=OPwT1>hVJGEl~N%z-mIRssYi77ySHxofEwd|D9wKC6HYxyh-Vr{-o-R~qSb zbeVw?RPVd&q|q8w*aS*)~ zQy*>hH}vf>-%c7{`YEK%U0G{jU-pAXSY+g{tf1TQ&9M^Oi`k0y+v2ZGob1HJh_i)$ zyWyj?l~yuez5(s@{SwPTAtgm+?lrYp`4{4o5KTXGAjfV{6|oMTy>{ zrvB6xaMi*8(*=cys7v~!FXUcImlXW@4=ul0tcr z(d_q@vfkn1ocXTAAQ-Ug&TVmje9MdxS9`Fzri0Hfo$QD#v9N#$34}$|$=(3EBq;_U zSBL4EUiKIUaNgUSt0k~O0S@gTlD&qrW%&#A->eR#e=O1~Kv_Y{jB7hejjAoPB2s1W zk)?G`iBkaLkPzNn8aXpQeAt7uIeFt7HQ=+;>}Ybqoab(vtq?vdySg!2rPC23+lM_n zMC7w4jbkn-9hVz3!p@_`Ay*_5;PL$NGZz2}idKiRDiU1cDdu{urM-KLzr-EF0>i+f^QQJG7>JVTd7owL?CYxj+Yy4ojQHf>H}$28r6 zbS~>x%oXjO5nN*>$-3<~`F}&O#P4PvnIvq^8r>3PKfAe9ySZ)F?d|<=X>EAF4C;SU ze637KlV6Qn9Vl0asn5es;Ukd=d-6@zkW^KJ?mx5 zDnzM5t?eL-j{&cesWcW$tlE1%ZXzKoXxuD(quEWdh)OWw&9sp8v;IWA%_z|XwHvYq zU%jGK!NkL}PJ!LU@3U_?+vJJIqLzRF zu2&=|Qg})!NeuM#guqQTc@xwX^TQI}+$;%95`;y$G~Nsmn@{fgd~ z3g|?k4vfFZ;DjMwSI)o1w4`^d z;o;#f0`m5Cz-2qz;!6saspr@qcya)4R=Ju4>MP1t>UOuMl$DV1eruv4=cR~b0&qGa z=Ue^k_PFw%hD)1{0#l5XPi!PE8Fxd)E2ye!T_v#X+mM}U&2}T)j zZ)AtXuL<$uN2!^W$>-e<6EY7BJI(|c8RaJHy-|NHiL{f`?#tH*|@zMR}8$7Vs+^EY!6UjjwQ%iPB^ zGFMJ7J;A0CR?oECUR@1c2)d&K!tyWhKq3z(K})18CkG+tF~$B*3ItTHKxQB&s*eP` zC|1MU6HZ{F0*QmbO#2AwJX3y0eK%0uidw?`InV3LA&V=ja^6nwwRNfmY*_)#h*9mVuix< zXjQWo*pgS4mU1#OGsl2CF6#6gtdlMQjmWdHVtqZ(Wa}wM)9R>k2)iKVYQZk5xk}_Q zGxqiM<>2MzJvr>>EqVX`y{U8?%QXX~NjQl+S@yH7akaUoyk_cAm&JFw76B{^q>|0Y zIQl<+r~$YGtf*6W%|UnmW(|xvuh`gp@rj7?+HOSFrbdrlreTvmpA@}4!QH!%x!SJo z@Dsr6-pe~!KJ)8^3~t72=a)Qq@{rNg%(^JDHd7$#lkS^dl05SO{i4mWQSAqkV(epI zL*Cn1E$1+>6=d~GdM5y+kt$5UzOu?%owxKa^7@0J*iMufa6R2W?u?KqVYIKa9iq>W z^d?kQRkdUA1Ab89=Lvoezv86x;GjnoT}aR?KiPr-Qbm)E`@7Mvx#kgvPC@G_ly+VMj%hWwrMejB>&(ax6x>Hw4i3|>^NoVMprSa|=cFsW zpo=&F&1A>I0z=*10`Z(BpJnf7mNc$@zF!`7d+p(QmEH0C27U- zPzA9&m)`dAAe?mLiol={Qu8J;5Jc;~#oEmkqJE+8>~j1Om0`ds)o_dN51ER_QF;W5 zSiR%cY#HzzwG*%akMifA9A%xqrggtAC@@`iOm4H=ueV!sYFla zP}N8nk1Np1W9W|Q-_@dGOKEKGfBxx_u?lj$v}lhgB3(4NH$FI3FzuU|;C1E6J z3C3#e4fM;5h4l-x=*F5nx46}tb-~_MySTjM1Vr>0u#|gljnmZzG+n>V;To|>Grx}1^%-s9*P8tSyBhZ=3sam?1eq}KTX=wR%C z@5Q@q*Nr{rjBbaqVls3814WeiyFcmCPhiE247$Bw8x5#)n0gn-to-lZ*<=4g$C7Rh=`6Xm@(cLU?(`-h*+{(bS0ce4Kr@ejz8OpM-J0Rst( zdwVfJp;_BFsCUMif2*z)Z%~8=l+7Av=a$QX%+oej9v(OQ(pm(l3X}ED47ZnCypXCc zxAXl)F|fW#C&|aJ2i#qW|CdUmZoHO{QfL?gj^m8b_W|O8KoY0pz=vMFOCqp1WHlcEreM|q+mjSyd*<%D(nkimyu4PK>-4CoNSW3a`1UQPx?>g% z4Hs#Qz&z{2p7pUVC8wS3+<;e`i|gzRqSoR8yig=SVc591^1xmTc0(wbV#(7q^{1qv z*RqcZJ;F0{3Cput@(e^f& zGlxicZr*oOyiWZc6C-np4Oq@jz-QsDT;O9)^|Za#S;`_D-+8g14$y^Zn?DsOZry-M z{8M7U>wh|BODSlhQO?k=MmCk~^M}du7xon25>QD`Yf4J^+ewbT2IM7uhcy86wO!B( z+DNGkH#h$7?r!R?LGiPqn$RoYs$QRK7Oit$a6&B~fGxl!op5>!0<7Ap+g=C ziB<92p)Xy2zh{pZGWlPH78_OP7wZ*7qkgA}xxW0$t;{c4(Q^2y*tD^#s3+9<`r)x`^0M!gD*H=b<6jVi^Cl&!&pc9}g z!2oU$`B;RsazN5_1#>H!i7SN42rE0S%+EG-6ufAA?L?6b&W-Ac8ZXgJYdKw3J{=RY zaB3VJ9AFa=X!^+l0fLBL3IaDRbA8CPRICG=tW~#BZa<^vv%-#jks}cCk_0+i`E_=8 zt_1L&GN2WIoTC)A|5s0Yv8dpS{8CpGzjfbz0AjPj>`GHVbCnty7aB0z6sTp?gWoM`C z+qZ9EJgXKMI~=E~6hSNU^5r+w5SDS3Rk*HN-kdT=9vE%R1%)E{R0aa#_)*@oaVGv}XGEz9JoxTNDnXaMdFkBT z+~v&#A6;D%Fhc_e4-XAu9(ZBx4?G7xD~SdW$XJO%Hwqttaf(GSSTuCnQ~?G#w7y7% zzxWyY6~syE=_eKej2tDXtE-#Yd8#d3_745i{Xb^jYPT8OIL_3UZjNgaTGxspNUt)7m%s5CE#1b!uM!(KsW*!}|$7 zasW&b2rxtl8lJ~Ts{;%dQot|K1$s~v{DM@G8d_OBjHZ(e1ym#yLP#qH0i%-d*ZAT) z0e)lC%0K`m0n9;Rf}6(tNJuB2Dqu~&hFajgHay^F^}}sH{Nynp&~HQ6^btt~(uun% zB=TCAqXy{ma&rqoMk~lLclIo1OvjTEedwkH$Vjg@;+Lp9ZR9h(jJf7_+h_ccMR6^ z^1o&}^QpfD9zrG?NnekkpYJ~r@05EsEOU45-f}kY=i=(BYA+4)o(mXU8~}-*#x=GU zk0`k=v9}lTBLrShu=~kvC>KqPhtS0hZMqirylljbzz7DKUDPcmf(Z&UwKg!A0++po zNO&bU8O_wE59M;lOJJClQX=* ztw4XQuJD_O&=x;YV4j}`!*G?BKhVH6F^>u(TW8ZEdP)IlolgK_GXx8!91ZD=*ec&# z)BtW48n^9fjN^@*dh#lNFpb&s_fuTh@8o0(u>BD0f2ykI*|OHl*B3Q5sreWMC#9sU z)O_8lcHi`j`1<$&>lk+r;2(m65w=;-tFtYX8ps1Dz|3~GU}TaXTp}gQ1IR@sr5ftA=B@%C?FbDe1jT zLrKY=sTmf@;VJrU8=O8vHmL1hNv~`)JlxG|EjscY5O3y5^2Zr5NRZ`R=Qp!+A~VmgpLCoF>K0JuUa=D>F5-ckWH4FHosze5Dl47Yj9`S+}>u!qW^ z=ebn8J4M}(z!U^?Sx5*1B$jc3utNtRjElMcLm$i#4*?#Hm(w+NV06$Y`plxmhaWWx z2YQ&V033WU}g|FM!UA^A2R}--ACpvlp$C|p=D){ z`jQ?+06hBQ&o@ON8COXR4kGY)Ron{#u7E`^RTZlec)k8b$Qe>rT1V`@33KBGP@A5f z-fqtij6(t^Libhs`M(I%w#6i*4Fj{^9qe&EZ-5hTHf@@HG8aY(xjajrVF(;H#?)a2 z?bN&KYWF&2A0MAD^!A{ph`B9eqp~8(iJ*P+b*Kx}2QY`4)i1JD2j;^`YOUXShVedfTxb+QBo zA}N7tUMFiceV6Xs2EOzltmfyRKYto5DC0hC&d~r_&9K$jn`J{o1`bV)B%{IOHpy=$ z`8Mmj+qlN(y=(fAjco})NW&H%*Sh$U-Gz2kds@)i4qTjnK~cKL#ZpB$B*k17oy;?4 zrYcd5jWlnCU}1d;Wj#Wvs;IUZuo_Q*oI4Nt&cEemG!T@j?(y9ok2|m+);LU&cy9iE z3{WMi%LcQsa<&@^lUk+Zir zZLaxb{Dl{@B|HZVQ})SfYa=@_=JZqSAh3;zcWjzy|Ni}tiRqgz3nQo6oy?I94e)}( zNLhP)uVZA#|Hl>eO>sqpU&omayasoux?YY){4H{mNDB*F*V*0yI{h`}_6~}f%IQTJ zmr7IM^Up@yeD~V`$)az*>#2+128&`SYke1fi>@hea zc^-j{R7-^4-5Ri30przwMm6g{f2w|HrwY8?stki*j<8t;T=TP8fz=!QmXjA353E`> zDUiB)thQTYR;wsVXo^J;FR%^b|M>%th}h-iW`{$w74cGIPr4ZpeTn~FoZc@84`Ws! zF7T#53586QZ=g(k8mb!jz~_P7EN&*j!?!dr0G2U3!SVL?+vl%<$x4EdKEWg?sLUEt ziGX0j&0FEg=4iLqq`+kQKL)kQb_=Jiu~A^%`U=H|0EfY|3c{8nLKh?)Z1=F9``a^Y z^-w6vZzl$)qYGAySl$6FV~Z@x^?P##b#}h7hePoQE#+=Ifb&GmJ+$>3@Fvc+`hoGt zeAi2=%6)KJog8?bW3cZLJWu^Uqh8bY{3B^5G?=FW6SoZ9(E-j7gbpT1!RQW;*@zi1 zDQ(0~Gkgp116Ho8bMX03WWfx9klk76jtA5=MTES;V0OdN1anc&ci2-{^9 zROLh2YJek-EFXpi55vwj5k*)In?+ToK`^ayLXnn$(J;yfcDC^sow$uV)B5&Qsgwy- z<&Jnx^XSx~nDS3nWOLnZfkSg8>wkPp9?6fbMm~Rr7whKAQ2ZXn^F*%TWh*MEJLIu~Rin)S+V-{;OC-nl zK2%aaCX$83#mNm<%3L-8~NF+QiW)kP&|I0T=p%tesRNynpEyNgOh~yM0uv+E z*0$^?Z=@5umm;X_{@ALn*r0+COgn)wb?M{4|Hb%Sp6=j5Ko5rnzVpEKbbG3UJ-&yD zP6GY5sg(u=p#;o%$PWKR+0ldb#BP_KxH~6>Fj{o9rd+&}@0CB-%rAF;Nqz$cWTTMV+Zj8=^#4~YXBrOW+y3!kEGdx| zOGOz=hCxPT*P>)FBl}=1F(gZ}X9=m_P$B!87F!D0B8DhEb}E&9%f2UM8Jhm*^goX0 zcwRm)p7%43dv5oAUDtV@pU+pw+V-PrFwGlsI&uUdV}y0xN^9!sk`*-cmG95~ctuU4 zlvP`Qy2&HJq4w*b$K1h_!PR=7P_6fM;>Ev1L=5bYvZcR+AXg+PD98iGC-8gDqFJHy z#W)>mXlTR)1+Cu}$NBw48Bi#Vh^5p31#B!9&$<^1~%suuNf!vIhG)>r7WU>c{@)RsE zISyP9h_efPKRxI*L8%fB&o`hi2!yb(Fyv1d^an$eE(+?wEa(!asQ5@S2Bj}uQDq7) zNmeRBzf7L!9~t^K!9_Sb-35O2e0NvH%I^*GJ=IuuHCBC=4D~&mTTFnO!7(yA8iWGD z=uoegKBCM*PvM@L4Iv;8n$g?<2cJ+T_H#5fGOtdj6E>NF;zXO_&%L=7OdK34%PUtF zL7~(eqmXp^5q`P%|D(e{y(h$iU~0t={dwW3VZPtR)d0+rF$#UOc?|=So$EoY-upIg*Xx-t9b^t)zdf~SvuOt!CBWO^CaW`sC!Ca3+bYaI zYU~+&^OP!yLaoMTV05D(q2y{eC)BbML_Bk7P{9gsG=t1dydf95$Goo;D(Jk&4vyYbUoayOH*Qo*iJ-9hKYwC9wziy} zxR?PAG1Y5+n9W1@B!B4JVDhQK0s)BG!K!F@U-BaZnk}YidTwK51U6Jek__w7quypF zpa9)%{$kXhr=QB4p)4Ye$QF+e?GW8uU!O$%2Fd33V_v6Qpt&qZ~Qe$}ERzD)I*X=caB|}0|{oqo+UqPft ztW1&#ZOUHRc1>RhZQSE`_x!zIMe?arq-m=JBI_0Dp1`sOgrc3aB{MrW?$}q$$_Zorfr^!65uVtp zH{Kjqzg%3`B|KUjtbV=pV$B|rt`rzZJm5FQ30<772Q_#>+qJ7OzXscnXHpMsJFGSv zUUyR-MgygfUr{Jat$N@e>KQ*jK5%$xcrOG2JPu~tq~Y@TeY;R7Bd^JO1q=MAE-79% zujJaCI`YI^4va!BFbbVNA$rTSeRt^$NoNz~o#)PKWv3frsa2-ZpuEhwL80cVbv{)t zwBun^)Q-tbxE$I%R+5V|;frd|tNEhnh=Ol9y4bnJZ@SibNz(C;Mq3j;gHH%|y#z~k zaLNg1Cm&P`R0L4A{glILX_O=;GP1NpuOkgR7yO-dv{x=w2?tw*C4?npgJ32GygByE zr#4+*(!I#fBtafx=_6IL<7$c=Y{vCAAv)T14Cld-#$V6--WHJ=h^No(d}n{+?L0c< zCl&z@60KlAkASX2c0oJz4wQl|I%@>gCEKDT{NNiP<%>H$Qeh3+E_7X4o=OjmiK%(~ z@Co%C3hPu-(slH?g~FD7osY}tvfXIiAJ%)k-$;*cf_M5Hbs<#vd?@(S4D*CjP_pin zykqfeF`h|%-0otJr-%JmI?hop=^3Y&@yia9ZkQJw`)c2WP0P|xGq$nSdxXcWO6zqdV z7O}C_QlcoMGPfi9K+yEz7L3!JI)9$Ll~r3iHHJYTds`1mvDK`n?d<=(7XRRm=C)pv z>|P;E{2QSD7Kf#u4m@LB-WaKGlhqvw`>4s@ngl;=66{@cVBoBQ*F=OXx9KY(fCjtD zUSHTl>`F*^PQ{@l^|m({%WKr(7I)X*w3a)aH&+n^0?5TeY{iLXB}^)QNp+qO95M4n zn@)o#08b!fK)^-;6}JlF`QfiG&A1`c1uDLY^FQW6BD1lvffjB9OwRA~$;xD)B9Hg@ zpLS=-yk(&>_xmShhki^|yml%$$lL5{6({Znh1iOb#L>rouUj6+a2CI2t@c5JpC-Lu zd3NkGqwa=50)|w55Do#1P2KZv6%Wl|(BS^4X~z8jfpNt~f>@X>3K<2nwm!>GcI4;_ zWq?3;4N`UsY1b!Q*jlL%p(8UixeKh&^E-gCX9nObIyzFA2CK5DxG$!)0X~~sTY#40 z{m@#eA3h*#ZlOg6pbil~+(2oodHApU0&njEd#+siI&Awe@;EGWFe9Vac&{$+~a+-FHSzcaNQwNB0z++n4R(r?xeOv6;IW6OI+PO<~5XQ7mdqU+I`C4!SjD|VdC^Y5^k>9&W#U+SE$Y|FRAC4m6&sbK*y&2B2OFMxMfjvG?m#nePAa0^)DsJo^A7!{|E24W;Y=x~bS_e*%$NmLP6p|7 zz;MSnS%&F8ug=Hb@uo?8A)(Tme8RER59Ga!U_l1N_V0iKc=paE%a9m_J>)?I0hI7} z*uFLsHZkEKkuy3ud6$s@mRV)x-NJJcEbY4Mt5Yq%tN@P=4ouDZ{8k;=lOPwGe?~&= zK>01Yz~*G~+UpN=`u-1)PvNkSae$cj{`DfmjW)?=`%!4i99E|KFbD?N8N%{$+Dd}0 z)@9`T{hV!I>6)0H&wMLw43ynjWDno8AhI_AP^X>s^gBzr`YVBxGrJ%&V{J*gP^4;6_EDq&{c~Ad}!`^nVI`PfN`pyzH(QzlD|G_ksiDiOf0`t^rNw1vF zw)_sMtopSy=TxWvl)w``fgzJPShZS2v#sUvd&k4sC&#(C&a6&(1{C_Z5dB;ms!%3lzGd4yn*y2DK!$kg=nHZCdLCYsoeG@ICy`_&pkfOC!#=_U~TeU~?v+NPi zO{LWzgolT9<@lK7Ll}sfs2J1sdJB3o>PXll)v!A(TN&x;1w&9VUaaBb3UC2%1tDH` zKv25uj1f{9qo?6+FVb<=qWs}+y(0>7QDPWy?N6auVOO`K+98X{x&be{$Nn{0ikt8D zRBZYfBZVk9giL8qGxVgnH?VPx>!)LXe4SX_3z(=KK;8x~lgJ9=8w{W&IcXtO|6K{imN9)<3ns$c{{#FV%^7M7bw>F=jg~kv9j&IX) z>qwvSN(Jhbb@dYDk4$&AXw^Qbbn0}VkH5Hjxys!#4^O*HRU93A_UcwCsQb^<3~;`_ zD!~@f@=jgXWv$z*H%b6@e*NM>+|Ur&rSZY_WT_2*U4sH(&PS4eY}X;z7l<4q6BF$l zm1XgNVh$@{DTOiI+c8Gp?GXnAbb^9tGm;7kM&U5Pa8W{@DY-IhXO(j=V;Ezj@f)HY zES;toknatVO2TLH?AjMwZ)|ze1_VYvDy=G+lw9$w9d6Q&{#sdEI~myiM9kV&OD-Q;Zb?+po3$wJNfO$5yVqAoInkMH;BK7s&hG2=5W)=xCrb7^k z6%pM@D|s$Kq(}}T)B;#sU8IDqvM+Tv3~S79<60ursUphCtJ~Z{*%a4nqf>X^9hcT> zONe!uBDb{;6cwe0EB1F|Cy=g(0H^;RXw(E?AG7pTo0E2E+_Xt|HQw8b;JKK YrIDfe!Xusz5y1$Z3wW)fbGEnt4{vmISpWb4 literal 22754 zcmb@uWmJ`4)IE9*9U>AUjdZ7UD;-jj(vk|&B_Lq{Dh<-1go>nea|ETOC8R|<1?l>) z^Ly`m$GuOu6yOu!x#{TT<>o2L z&;R)U{sy0`hXa42hp`7-1>a58#1nzIqJ{oJ2Kz=bBM`<~YKph@{W3PEea+r3p5pHG zBgu8i_1&0m_UY4ps=My%GVGD}VNt!p@Y+u|Bn4e^;Fon~903`<_od=1nH1awSca zqM{4SfYqotNH?-jyxj7lxUJ(nW4+#+~z;DY&{ zD+7$e4~MXRq>HH}u-z?loo&`EeY%wDAP{ii+<1O4IbQ2-6HVVgI7o7Faj|oF*rCGk zG;z3WSWQbyxx)U(+|p85R|0$bX3(qNueW^>inh{r-HBi8z1MZ}R7o<#-7)xE&V&xO zXR}xL)j7|O7Gh%VdTckJx;%=1n%K}FRqZ;Pm21r4+v4Nnb98<<`^Bz@B16iTPvuZM z(R3VxEyqhenJse|#3?h=p1?!}c^l10(#kXQ5r?-g)`U8X3v8~3!bWInXC z$fb!sPFuiAAj8MUrxbR)Hd<^Nestt#R_B4u$Hzxyaky4k`k~tS`Sa&r9Qx@uepL~M zc>V25y@hL9?fi9fvc`RX&A@B(m&oK_EL_~S>1jG#VtU2xnI`w8-qb4$Z#vTikO_=O zr>8a@(R9XDkFM8yt;YKYTwa{d&&`Ec1|73%|2D31F;6P}@#yzInBgp$06o+AtgI}` zTlQCQi0LzODSyP3CG(lTemq&tC@wBum4EsvFOTKl`WSJO|NfojzDy*-!op(ZR~7fk zzg0|retykVA?)Y4#C`vKUqwYJgNKjb@pL>VNW#4kR%BBAak*~k@*xlXT&C|2(^>uEy^AqoXD}$INB_%t5 z|9*XjO=u;QN}o2hu(=tP9dxq#{!}DYbG-4%EyP1}S@F1)bl2wFFA1*e)Vf(G@|ci5 z$05Q%H12kDk5@U}kUjr*Ph3i>ZDK+~qb0YgN#^8mI|iO<0Rm?=i2nNZm)31zU)$O+ zU0hsN2Hs<0U}D}2&idK$bn5&HwJ_dx%cbnW)-<7m!}3VdpXW(DCeIdol5O_ae!}ii zsd1S`Alkx-RdSW1cK!`(=R%Y@j(pNh3fk_F@LnT_@EGc$Ckjk-%Nk@1S0ZnOG^s@A>lniLBX{su^AnDdiu4k>4pjasmuCo&U+s|K^UAl zY$zrMz%Ex6< z9(>m+G8WWK7u|gIz}?L)M2~=7JL_Afl<(ZeMkI`8d8JwQbmLZSeSMC8f!@(>55J)A z)|A)bbqb0w5vS3)9{v`^0=;~lGOOE~*|KzBzI-vRu)mwc&|`L}pjh_?Kjq4DVQF)# zYs+~Uvr2T{=|ltxbJ?SxTra}I7homED;$W!u24N27|=n;AMY;SD}B1Np21<+EKR|C z|3#hWa_jIg87x9a>q|mUFUy6F7!`eea+j&vP=)ZT)^n)P)snivV<7~3`xMkbco4&s zLu6nogkAYckp4TFrz0 zbC@Y>7+ZmP!$Nx$`jKB#@Ddmqjj>BYDY z_gJzjFFbu7-E}aswPm3ebBTmNcxTb%pCT9BJh7GDnW6dmT);MzTG%n9#Ju76X3cEh zzqD`P6#u~5PgXx(pdK`Pm)QDAH&@`v?jKDJ9s6o!F&>^PkfXXiidTzf_-{I;BqSuD zPmIYL*M)+QSttGPahT|gBcAj0L1uhO#;#?x`Kzj4;R_XnNUPlC8D>8DuPUc-IGyEm z&zEs8?2N|$!FjqwvHg1J9gW^&vz?zurWMt1_6Ch*L zdSRCYJHvz8i5j90ksFqQB;IQyUu)eL%Fm5sXfUJSym_9R%Zw;6H!n2g#lpfub#-xS z2$C&c_qk0rXhXyxOS{~ktpbM=wWzaW(n&vO)dvLyg)jd5k7{dctrolA+CM3RGuZm< z=xF`^*222n{YJzH&7rqF06UrYJ>iz>SD#t>EZ4n7+LlVrQGMo?QTeO8rDqw{&BO{FVd{_8V;8@6s<7~B&cMkF2)c8M9X z#Nx+U;P%YIcE{J-@x_^RIwct_HLWj)`(lF3KV6&q!%{q^5)*j*$JsU8=Tf~ZZg>BA z4J!-caQpHwZiqVObv!XSaaMn3Lh1Hw@Y%LWt=q{rvwGpVMeIa=ez@nuVoxRwYdx+- z?KcsclyS=1uT8dEN6110thAANZspDH9jQSQNKPVMH4`}#&Q#e?pNA9qRb)p^k4 z5fS~Ev>fQ&noU*=TnLkPjgfMh>O7Lo$UwMmSH3u#8(ZwbRC=?t=&G0~0%MX$jJ>IL z@Nczpp_fWxYvyin)0>_){MI&R-oYeZ?yk`;&HzC_KjR>bzUUWNt3E9r*mzg9F6Y_A zjoZr^42mdqitnG~YEo5as4=ivB)A0HQ(lu zA+fi!VI?J{R$@@tjrA!p_mM%WPGWLONQD;XO=&Y(O&NbhMd`rD6Xo(v{_@lH4{;NO zQfbHpCW;{U#XGCF%J^>0J2f^UKV?@{(Lew zWs?CY=(hDL3L681h3X?MyEewFR}aVZKVu0y;RrwGQu+Rx_TGmg7*ioR8Ro`pc9Qeq z*4uo3&cMKs_NdU0*-3e(g-N|!)xw&nC+ipIm3e3Va;U9oArgKih=Q)#hxd-Jb^K;d zq++uwClC}wm6)SG+(kvx2}P$5Jx!5o@uCrRxgz`!L--MklUgy7tSrc=RGmpnBAQOa z)PCtVMx`@;UH&u5YKR5D{au zTBv(!dcUK=2WeWZs;#MhhtG(Qm#XGro1m>}2V}w9oKzLljV95>ri)QmWA$G0-bXy1 z>`uQQMO{7IZG|D)JXsUEIl1`!_tFn}t9Mf_LP#QNgn50ZwMMBaDV&zZzS|h5`Ur?ViY#n&K8&W*b(1@8O1fJ0is;*P;?U7yxp2 zN70}@8=$g-)!#7kX}Of@DaAt;-Car?TYnt&8h^a}dq+>k%b$gdcvq7qGc!XEHbb|j zLrcu_t?*1BI*0g#$&J5Y7&n{EM8+rB-3v+L4W*X}>C3d+h#a!PsHRu%68e~E3rpaU zp36K?KsL}&bH?lD%d!3yOY?q)40rL=Vvk)s!A-LKUp3kq_1|BwMh%h*AWcix#}-{} z2bqqoJ|}KC{;VowS#Zd*7OTp)!T2EkK9Q#%ZW*1xzIec-#4;g!TGaSnTxvaPct`*_ z8CGZ%ny(T1{f%9_+)a&)dS6_NK$4xq6yS^%?W~ z^~Lx9-aAXM!l;&EWJJZY4hhM6sk-bP;8^%Wd4{+1Z-k1@4wpeDy{_-8JSWu09Y0HJAVe$Q!8p(X~fLT77H~7>$L9H2ml}_@V`dhAon$78k z8(Jpg>9P3Z)tNGcy_tk(Cxsgrc0yf>-;*tqi0jVWoSb1vDPT!^lDcTV9&CD~H%JYX zGVHVx>ebFrjEQee)se}{$~yk4`zR5Z1GKKh{om^iHVagCt zd>?f z#J+Lk#*47995_x>q@M`+@2|bx`bBli-l{#4s$f<{MTL3o>*K5lp=;CxXFJbnNl40* z{044XwPK~Bl>7yd!#2~+yu4G}Ey>y=h=E3loo;TSg4YSsb-1CvOy)%xw{KJKPfD=#i?qN8K~hGco;vD^P%xOpJTUT>DJcP*t2aP2`E**r-?Y}eAJ@*p&KXS;e~~B1#y)&)_>&UVi!3%W<(IU zF6!U}E#F7&o&eM{?DEJ0YXz${ z{emv7y63!BG)XCVJZ5-D$7)oanNs-yTsINM6*!KgkzL81hSK}wJ3aiU<2_Ua3F_-} zy@Ha*la>CPwicQw(UlpQxk*>MrCmaPRgp}wnOM2TCwsQi5fRP_AK3+*D6Ua*cz>vI z!KN0Dby-V%m10Z3@vNG$#zpP-`H7QBk7;8qPalJbdNW&38%+7*k6Osf!(hGDK3fbN zVjS5M)lr(^1Z#|H!Ex4)b2NhT_pZ^>r@k= zW-1d|k$r!XcG~HInwZW@g8E!$CR3xT&-y=4*SK#=(>e|-b2&{ne3TMefc3c6)fMl? zZHP4!Y&p7HV!>;}uPs+BCCQW{d~i@6@ayk_p2o@P_TtmEKWfu)RD@(@*y7&m2Xl0y zSIR0dgU)o?OzHerre4O%$Y#4@hU69KM5 zN{A_E!)Zj7%~9qsLx1?Qx#`T9GZk6c*Qt8e?|r7#SaABLH9h@X1uALFP-^fF!ra0Pa8-L7mdVsX+=^iU> z!eL=qiRRfBMAE=El<$bv`)I;BS2G(zL{nQ75m99HBMlXbIYe-=L^GG_kcT^vB!G0P z_Q-F%HddPaqf|Q^=j3pC!=9-;$i)TFiIAYvx}nKuueHRjPrFyi%GeIKy55uo_?j#< zcyaEmmli!xQmkgRl$~qX4l$_+(MS$qyX*WhNtmn*M_FWN!58S~#+&n)bq$wTQrz0WAO#NwKWh|WMRqa+Nv<6WeT ze`mCNQY8Knex?NTOOesygpxQqDcf*jCMKblUsa(`_CnUjLS3dqQYfcM7HP?L$i^#F z+5`Htahp%nt4Vlt7X{Lc5s<~KKq61raGs>Im)PiIJY z>J;d)>VMKf0)?e?=gyrOY&BbK`yUw6GNFPtA)d=#DhW_;#l)rHU7@_W$Qp2vcq^Go z*GKwr%5%IaK&-K`QK)GNcpJavOy4r6F+O1Vug=fU9}ULKwv$nX6mrAfk#{Z{nX7qG z;>b3q$-;`n#Qjhec!SUOu0wY-ka}%xZ3|zVCH4wJecJyKKkG2+d=e%TErO4Ng|)enTO6thWW+>61?{H-HwtrcwGuC9msa zwz|_%lvv1$f;R0}{QUg#=m(X9!x_76 zST!&ho?@BRVKiPgZ#mM(;2$Box`d*h&Pczz$37P$mlDW%_{87;_fWn@!7MI_0>i_% z+MIy?e={&JFoI^5OIumWDci!KDnwWY6TJvqi)QoGL|y8s+xMUE5)OP}E_0@uTlpl# zRgNtaaPaN3K_Qy|=mXJ<#=(UId;}{4uT?zal5)l{}xHA*5{T@`5PsU%ErlzL_1CQJ?t;tLp z9kP&V!pNmwB%j#;-Q9Lgb(2=x&8htk2KiD8)IDvrCtW#8-YQU6b9QA$3{5uEIZo&q zR-Wy?*>W7JIL2xWsM&a=U&*lpHJ(k96DieIGJ(N`Do5nTG`G!HR`r$WC2P@XY&uGg zo=95SkSZrQJ|j+V=ZWt(T2y(`r(7C;M^RC`(O>6%XS~d5QJA`NqmK#r(zy5 z(*YE)g;odKV|1^|POusulI?6Y$Z!5a^`_S6GBPol|Ei3u(5-)8EQz#iB52%s#)Gn` zCwKE0qJxXC>b1z~)C!QfmE2ReZYZ+=&;9ZntI-Mx zc?qhQf!y#dN4PCsn&{g_)sC3;=x^#|ZpM_5vgEtsQAU=l(P3~pv`(7#F*4q7Ls-4+ ziA}_?c!C`fiG@x;7G}O^t%y7;%R}@IMs+>KPU}l3TIFY(MnmE*5XhZJ1b1iBny& zf`l5Go0~yK`mf#kFaFWRQ*@H<_1!R@9=t{pH^|D`HF0~7hvQB53lV_5)C9dLj3U{< z{n4`v>h>KR_%D>LQ0!z%p+*XZvgIDU`0vq4^D0BU*{$BVAcHR?-1gXZy4dAIG5#B> z28v>b>~%z}%QBY%6mZ@u3W|zJzki9mGZtiy>e28e zr$`G?xMRC(FkR16e_K(}Bsm4otgaO+!)Cjg@LPul_jn&uFeY%1^WE1|Uwp^P!2GC< z*>XW}bc*?Sat*yWJYD%39`+c0p}sRnpqm~JBNEj9n<}+vhGfshZvO=Y4-b+-9KmCX z2LDPQ%4Vt1SAIAddspmp9SzX7`YvcMESOvLcnKs*}7dQI_@E()7< z4ih)zM>?DvA=DyX|BZ=_0}qcFH%$y3q$ya^z9ktQk%Kh2FscukQj1eLFK5K{j1@7O zgBgr#ukGw(uZ;}S5y7W9P>oF$rT)*S7ImZ%uQ70le)l?*^W46D+i|K^kjtnf5{lCW zpww4OCYqm0Wn^UNH27?eFpG*BDpV?ta*I+JH&K5w=n+3{H&rC*undaxNH{-TkAA@s z5Jt=p4O*P_z`NVV^LCzkl!M?tU9`w4~1l9&qme)_!tNSKYGjMMYBG(rbx{ zj_&KxdBro-_#|E%DoS4#;#*#XezUSS1$64K>@JVd5$PTzavNQ>wzgJ1^F4IUCx=sc zZgur|z+34xdFY!rga{O({SHkS6^uj+X`Py2(?@%a;0J1Ta%icG9nz zWc{%<@$s5}M$4+P7QJE}b{9o>1B1U25%?Edz`qjqYUC^Y6b?^~Bt%mHCK)?Mc3_TF z+P^E4*qP-AW2*PsyH04u-4LKhVSRd}Dhpms5u3voi zk>7%DSUPr-Q?hf?*;ibsbRmbCCVY@?W?g@}PG6gZR@vn>+0e@|63<$eQ_ZmdUTsxfXf0}G$)h^SY89#5>5T>X)PheC&CLAf^l=w!v8~&bj z=lm34;6M&`ne}t@YR2HFsIr;;EaAOQPE3cvWiUjiJ4*S8babX^D7=5mp_`lV2A`(y zB?%AFyFSL+|0Kj2nD-0o38h$;qK38i_;#9L&+okYMhK+M30MWBL;) zR*Di1DHLw(n&t z;rmwaG#QqU_*bt{QbvH^BL@WDBhZ??!xa=`fWe60-d``bv8ZvWXZH69Q}uOs-~Cg5 z!myYR8m#r--`~-u1wOOdknwTj4PaOecbpum#0E zqkxQe3v@{d*l`|z*qdObnW?E_}XXHH# zd`Mqly7_x?y4}{(Lzuv>t$gRsv#qj-6-&7@*nY(0lbGqECYHO{po=I=NJ-i3%zZ^G z{b=vh>ESlBtSmj~&Fw`d6<*;gwiTqLc}0J?OA(9R$Od1H8lY0Y_D3?m>1n*czI_e!74I8*9sfiODpN9JsrIccDDD z(qw3kPMp@Yn?sQHx3eXf9r{Apn96zQ=TUQCQNOA}YQ%OEZzRPrW<*Pgjb?#;zUMm~jtN62cn z`DwiZQ~CXLQDk#7s%ExZnE;8D-=3+@9a1@^6d)5=)z4SI9(cT%oFeJX1?Nr-2ECmRDX-nom90I<=EO5`o+dBvc~Fm>ik(d&93x>(B|c$CMqvo zj{xj3-=H>~2lohQ*AJke1gDzZ4lLc;)ff+xJI^Y=T^!?zdnl4_)p-gri{0|^iC3kU zeoYPlY*AG`{;;~xh}F8|o3t!WKmeztZgZoiGMA;r()XhijJMpTTaj~lELMHARzoZ| zxd>LKsE(Fs&{)v6-6{gh*?~R#>Z{#fVC~s~o8|zSo+A8^6ha0UK`G_K!{u)O&OlF{ zbhF+Y6-ES9Re4Uz|rhd4||XB)2I0s&q_;aEi5M9FqS@^y&6e{Nh?E;$jSWbXu=_i z&eLKzD`a~rPCNQcn~|=>qUkkQKi+|ZZZ)Xdagd3KMAtd+}>R?Khv<(cfaZ{Jea>zd1aE((ZSn7dq^Sr*P{UFtz1)*Bxj?6RE!S z^)1E7H1uU+vS}g=i@@BMT*|Ip{X@<0QYnD7$bUbNQpK&TkE4@Go5RBY*Z zM7}M%m<+{4v1cPdGkV5-Pnqq)Ym29N>g?ECB}D|p8g^~lSRdK$?uxFOH(v?-7gy;;Mi!bS6RItT9T>RFhoh0(gdKP)+7YZq4CnS#gD-Jc zS65lZaP!TOULK}9_bpp4xMqFVup;S+DxDvuCIl1Q&~hsHSQ~5^zmp{cdZk{U@2sp^ z;K70XLOU>w9!DojTG}?olmd^_HY|Xy=KUKZhm$5Ic4=cmv&lP0%9=+&u`Zu*)wS_2 z&a-FF23mrH#pMQq$Euu+qIB)(Oi@&mRT}rLKsU*scF68JDyY&>kKbAYqKbc-*K~+2 z%wSpc4NcInt@gO6%#$L%jSRfK|7(+v$T4>)SLL@gCve)SB;zQJCNHJ-mi8} z-4X>h2TrH7#f#_9o(Z_k$%ESl6C935i^-NcU?lV!`vIm#hTt>7_=JSP&j#GRX(EKj zPv2?Wn0%V$sritcrjY!deoK&K?#*r)UejuQIEz6F19~C&6U2Oe z!xFfqK6|YWaq;kIva+)m@|o9va&10l(>S!Ob~f=0bNX9iY4q7qH~%%c?pi0w^dP0S zPOP3~P=S7h{q77Q$Kpnj{^f;wu|=`InOXZKpM*(4vFY2jQQpm2k%u`Wudl1KvM#Qc zS{YQb%{h(zk@NV5m#G_D{3a&GC^R&5ZTyQ(LAV4syb9qt3SYdy0-qa%!Drj9crFf( zmG|ptW1vXj(ay;BSc!RIn()K;{0=LOpz&|7cC*Ue-fyW!ZtvRV+xO~xzWuy1?|$Vc zyc+j%0_o76Wd2;36St$9Z*g$Sef-D{C?Ac-N7m7Be;@UW+|||f#fulx ze-|cmM4a+sU-Bl4^>Pstn|zeAkK_rsU#?jHw&hqknv~VHaQp?bdQs8jnvyYHa7Q4hBUmq{wX9p=2$M8uWN)n{`v-gbh?;p4rJt7-)(wQ zQqs8xVFkxPrPX?`Q>Z8L91kqi)z+d02L<=5KYik0fgS7j_ctO0a3wm#^3~s}`(_Ug z4%P-7x~v_lb0%`$TY6Yl?*p~*yh}sWec9au=y;ryF>l-!a8>Y?3 z%yeh7i`-+rx4&+p*^)L}hyrwwB z#4+LZ*+{fK3hh9HdIl$-y!rAX06=L6kKlNkpbY{=&)>q+pbk%yul*d-O-_Pe020F*)quFdq;=E>P7MVC2ES`dRi{x;m_&D z0x4=6JOaH(OPUYA{+iTq8lAByNaB5aa$uSdEcu0ROmlNzcCuPUbhHP9K_QojZ;75s zVBHXNC7V@#UPG?;dSgIizucwtHhpjR-#X#!4B2E&)au=ASp_00Cj8dndj*Re!rn+?v|wZ-I=0?(w0Lmbo7Mr z-%amM@}raLZpRy48s$Z+9`#>5+1-xH^uJ@+?twcxPh73gP;Y3+EGH*qyBV|j=+5Wp z<0Dn7UV0hhL}qS4XO@-)A4n-b-6AMAU{;QVbC?ELipS%ZrZ>lJg{-^cS<{$%sM+Q^ z2#J$3{esR7l7{`BAfKLg`+X=a-CFTrW4tYDEAA#A{q!{N%=R@XAmQx6!D@|fxtD{4 z8hwcYy@Adm9! zzAk!fUMBCeiL}k0P2wGn9?IWuKl+r%GQqkv!a0GxI>ITTmEq_2%w(cG-Ys1$8C-+^ zs&=75`k)y{`mU>M_qM|?;nmf=D=Qn9hUx{;bZ?=$-+l`Ab3>6wBdY%eP@$1_rno!P zv=>r_4ZsV)NqfWwS@5z48w=>rh^r0>vt~E=@<3^EVIdc)`}jpQ z#d(~ zMXw_pi+#5A*WMZ>?*3Jyp}|h%GQZEp8AV?_vN55)IbApsMN=mhl##)+P!@hwO|1h0 z(fl&|E`Go2(Mz-;5sc!kK7Yn6Tv`g9|ZLKK zv~gLd+%6{Rl8!Nk4%3BLVzP@4NJ7gd0l- ze-3^BFHQ{rHP%fh9+fESmvGGIn+B_07C)g71ue{rv)*Sj?S9?rTO*6FBL(+(nUD-X z!XeNEQ2va)P-<^hNX4$S-Y7YT4uVd~NAtWHIKHEeivA&UaL-G^pWuR!fsKfyl^_Mj zYXAo_;0f|MP8U+O=Am1e*It%5BP%s9tUSkS1~+fYlRna_t5x0QGtrB8s`D6uqAHh=-O$(w&oSK_VfI3E&1eq05j2kvsaSI^=45i_~g@Io5cSwWZ z`cG$^HhlOHcS-i#Pi%@!HY)^GfcI@x%DFBaX zW@dJcn))^Ps9S&hAOb+wJt?pH=H0uS`j9+;Bmlz3{zn=RHkJtzg5GQTXax>hSh^}Y zc#L(fI_=dimjlwM^;jfOPvi(St#Nq|-kGDby?#OW-`{vyNBM|A#i@HS+2QM%p!z?08YJBfS;@S_HE4eAn;(q!MHh40^N@DjLP;~ zq(w6EL9}k#r9U4X9i48DB0fSMaL^8z`mc-yKmw`T*$@O6e>Fet!mXr~3 z7WOZe+x6&!E&HBjI<%wc9sbbw-5p}h2TDfx3v$Hwo%uF&R7O&ZsQdaUiZTWV%@vl0 z9Pfp8s&eK^I3;a;^2k1*5I{hO6OY9eMHNi6xhTw8EmP9l4K`-D%ii8z+k9L2{QCNv z1!9T`k(<>aUB9rfI`7Z#Eko%ax;k9!iAjV)@LI_~O2$AlP>ef zX9GgSwQJWxpvwp!AnwX^L(S4kg!8?@9KH5(OF66gI}?Abk9RBUNr1mH9{}P5TzXR5 zi0zhADe7_&P`{3VWk9HM%K8$1CP48ymfNeT!NJ;<)mG(%8GLTnXkM80g0cP`w?Vvz z?MH18KAhvAaSocuoB6I8?5ReOk2Y4JsKkFAfi;=rHdbK@lD3vVDVuAf(I8u_hNRI5 z-5TOP8^&wn{D>)`dk;ljUAIT3V@k~Go;~{c*%~+=zY}~PF0oY2h{(tng@sOGymLTv z=YTc_+A|8;{&ruqAmapk)36&)KKD}nYNk7?5lB|LrASB_>poZEkRL0dYe5BN4_dbY zKJNkO<9=Ip%K|}XM`lloAU1R0Mg@x`rREJ`zzEH+e#{O7;ebs$E5m>D=ff~n)0PJd`6fvddC2Ok*%-IfK#641Xl(Oq;H zdhj7MheW{_-lP3{V8VS;)--N52kB5~-zm@r&JPMI^o)Ry35#QDPOR+9T zD^n6w4q&(5C+cwliT1P9a@P59dvP%z3Wc0Ry)^*;=xw_O*&MzIM9xRBo|eFu85wU^ zxz1Yfnv^SY=IfQ}suw`R&S&Vb`xrzlucWNZl|N+EnkHcV3|(C6sTVk8KQ%l@_v*LT%YNGu@BT zdY2be#ykqW&v1t9?_^8kyG>ejb8}uVgWi?MxjCyuE&~EFmnngDn}1u=G=PclK&t_u zgY@9IpbFr~0qiGN5sQKVS!u|Hi4KG+_hF=l# zocYjS^-1}%VYmynu|X8I$Ox>n0VKW=*f)uK#J;yJL9bF$QGvw&`puhr(Ccy!cGInn zd$(;3-QCrXPc?l1)y#s)#No;<{GPt6VBGkSmhR+gl~aUn(ZayMxJE*P)<|fft80vY zJ=1sQD}a1==nm#FEa+?GxL*U=5J zdrW1gubq zks_1fqJCtY1a!IZn6fD(m9|`U{*@<{vvI3eh((^lG=>)c?3n%CLv62eK}(SRF19Z( zh_|-33i8?SvXS-OS2fqC_@@|lTpzv{TsqJr7U@j5ii0`Rr1M%s-d>A1~j-bRkx>55mzC!K8`nz zeV65d4N^{St`&Q3?lx-7$XD_5hd@uPUZpb#kEcHGjQFPqW2+_`eEDH+!vX%u3F9;d zUk3e%BhmE{mjI7DGKw0wbOe}*6?vIKpTxD*?Gol(=_ z3?^FGSB!D^Bxr@;u%zGFjptl!U!!Gr`m?zB{f~yN5}S5X$qF!%9_~u-O(^-0>6-Fm zCEy)y58mzEg>=RM;ITEHRRc7c&m+$xcUPwlHLc15HE83r4asJ^6ffpz8sRm2=)A$%jsh z#4k=`EHQ~(tm$Wz?st;r*{qR6MCYx9C|rh4=atc7a2buV-Ml&XMb6<^iK)l%Gx<)- zWmgIa@kq4qk3&YGIs`e_OEp*UF(lanBk01!SJ?Kko)2?(M3*hlcQddq7^_~0oaAE%gwI~F`bUmuhQ!jBLj&3sI3NJJkqe)nFYhsEf8@iMODAc`kAI=GJ zNy%2|Oh)X0Je>nM&%~b=T7WvzrA?BUc}*~+%Z*<7fS`K*F6jIZSugb7F*9~&0X4J$ zC5m{!0S|P&$E*&2M0*=jEn58kK0qfBC=`Eq?6T%u9<V>g2tkVAc z2G0N;zU~2!MI$AMVlSaV5^Bh>nWg|65G2r!FNv)!)VtfzIMi(L69*@sB|_WKPK z5s@Qc1{i($;svUwhkHNZe+WTa|MNHe&3KlUmRIPdDFJ9aAz_O9K`9{Lr+j+Fc?IhV zm}vtWof|c6$zg9lOHVfqL#Mt9Z%eTFD?-A&${>3Md94lj-+av-c#=^cH%?2(BxBjeq@_+O;I4@iIK-@o3S zW<8hwWPS$a82Tvi@!6f!LKA_Kqod;*s4vblmXVzVshUE0RMZ3;GsRMA!eQDdK0duP zk5eBL&AYbvS-}@idb4C`)YR0_>>~xgMaKM}&nYRCkks>oTHNOE!0fXVGqaWx0sS(e zIz0dvKnS>GWXK&Wy3#6|h(MyzFTQ^r5b+(zQi1?+jxHK*uY$!6ZR$tJ`}v6jUH%Gs z23p6)Za{&Jf<5LHre*s!@M-9ypCNJ=2vSln73M2VSC4KNn_^1&Aa36-w;?5QrxVci z0d=8>(4yw5-xAgIps^|;C1S>(P*ok{gZ3C5KH3qZmHFrFaMpi8)mjk0)_{A$`FJ@y zzf%;PVm|tXY?IgNB|sI0&&F-z4c*LWcfQ~FAFEMBNebW84B%W7T}NbGeb(Oc`hWf;wZWYBluoBOd`g6JB*M%* z^l%n;YkK&<3%|}$3dL0~bF%q@U#m)D)lEJ(#A@|R_&M{nu5YY-61!Tc zielC1mW_G;9&*sie;&AvKDyLSC!y7-HZD>Dcs;=DM9R}MPsk+yJ*;j%i`8@y8**~8 z=S9&sMXgSFNbvP9KMNxYWmE_$Hif3A{|sTux#VtpA1?5XL*BAl$-nj>=f;VoAWw4`v`6I;OPnb*pLmcI3tZG-> znWsi*k6GTEI5sP!Xlw`)M5iaMa%Vbh_V8MgO_K`czPssbQOqyZI43_*dCx!dk^=1w z9Pc0;Mn|l4J@NCqDJ-n-OQ{%^9E(WgBTD4L&JceuMQu&SYlYbPiv-e?>)pRq=1VGY zq|sD6s|8$&5u~f35Cg?D0xq;=4#bd$(J`IVSne2?5tSJ7_yeJ&(j5%6VZ@ie?7>SG zJ0=b23Cg+jxombeHLVkJn+y5R)(H`cJ^tnf=Jz+4n7G~J@E#SD(*1QiTo&f4AS8_@ zDnt{NCTDq};QtSiljEfV^+6p-Vt=LzlSc)HzI0(-LG(*A_ryojVM=;qJb3WmHxY{y}zQ7maEHo9PVux3_tjCoz_M5t{MlmysW`^8ln@i9RAz`+C z?O$qPmIWi^<+H#Fx}0^W~)U6IV0ay#C&OXM?`6wyuBWb^a)hqn|cdfF-`amre-jY>*l z%mz74jq;Dj3bJoYG&*#bu$ye1*eAKpH& z{L2QiFx9P);g6v;vp8IaBXmC&Cd_zOHvV%s;`U{|b)QeR0DrAX8t^AK;4KE|_eb11 zJBA6>1$uj`-kb3MbaJNgP`B+Lp0OkmmE9C>%P_KzLUtnCMD{JWr5ReR*(+O0++-P( zp#_yuvX3=Or0gORCXp;rGKuWU|D5~P|Hbp>d0t~aznQsQ=XssiaeTSBxXze8glQQA zZI|`>JRVn_mpFK~aj$Ke0;?JmQ$C*$-Uq3Bs*6a~8686jVp$xihGB+yUzn^xAE?`# zt1J4iItHT?JZAHdl`sXiyBL5ghUKQE-D2b?<=~S2{4i%-)RB$PZ0<|$@YxQ41I!A5 zBO~V`k8~XXKN#oTggYlsm;f_^Wf%i^gdU_8FizBr8#|M9@hk|_xfU5&`Agjg$&(1c z35ZSte;eO6b^Fk=hrIMAELEEIGg7hQr7`}EpT?V( z&0&@dW1_|sbAj`LI`Y~Q@@>IwdII$pyZXI-0(*vwkz4EJ)mA8^YJT$!qhsyb`h)L_ z6BG_;`M##0x3gk`#G<3zC$u)XcjrX&OnI{ZKqNuLbZ&Iaz+|dz3 zE*9LqJ-zoaJP2X6JzOIHKHh3l0wO0`q`a2A{IayPUZPtFJt=+cB5!#x=7118NX)Co zi3u`r+C_{v0BXoED620)i#eAS^Ck~0j~~sHfDUs-q=d1Vwl!RTL+glkLjSv%xPmZWeGZRQoZSvzeYJ zn&K-!WE+8k4u=QvpP!oFvH|pq;IW^iC*77#$Jl9xuvk{XVud;ucd`Nq^d#%C620_>Efki%7k;f2{R; z;Qa^ahvDI+5Am^Ttt9(kMoUoTzNj-*Pho(^27c4>3NrvH6XDFGO{k}K99b&2c&ZW- z5Mq*s`-FYR_Q0^n_PMO%nK0YuutZW%oPeUp?(>1At`2cB9zujT&Ni2VIVK*NB66o< z0&Y0^bu!*dtgY2Q?skQJ9B6u!@%kc1@mY3YZ;I@{!jh8t;X8@|WBp?zM&&`r?aGvp z7rQsv9Unt00&2+V{OM^z~B~xnz)udZ=a-A z#gEmnMs1n4$B&eaz{fwmX?J-0CNT*jGw1mKRn!I5X4C#Zu(nfIQ<0e zXIw((T^2TGu*q|yWP6g==&aA|-ygA?ILD-V0Cx525!j0ew=f zV9CaSgR^zup@%CZ0;X7&qIcQA?w*!VZ00mHWXNPP3oyn6+w*Q8;C~${T}t;#;91nA zr5U(9(f*z)oc0)vL8@*yzbiOk6yBwkeyZD6p-qdiC=#UxaPLA&uV7Y;yy0y3a;s~j z<31v{DA!P#;=8rPgk-cFF7zf!OE4gaIrMwl8@}SEx>KRxksrt~9qt6}isL<~dK7ct zF|$N-aq)3r*lCrqPjZOQ<@&Xy?Mm++1E2CI{C=LeQNHaMt+FLak;$b7vHH!_u4H8{ zgds@+WkNgeHL65wI^VVrjGGwGwqRo~9Il1Gw})e6)nPN3R>)I+K3&d5`1roP+#^Sh z9HjkIr=DG8U6ffo9KLENw6ZvS8UUOT@DC%xDu{GUY{H z6%#{*Z~KlZJWJ;R1-1L7{y+EGSds4vOdWnbwZi)C{Mn{13LLbuZ)-Dkf-8Icq4TTX zsAZd5t5h73n#w-f%?AzNk7zxUgybG|&7RTnCr_%9rbLe5T(y@`OQa6Y@=<0^M%+`i9`zpA_~JmSbq=5zXjqHc^a&j_HllRfBkM*n|$jX@>KEAIm$oQF~Ydy=gRlW@Wzde}>aFpKrI-#6^we2g; z)m0oHqL`Z(g)i9C&3(8O0o{ZeuN=PQ4!!F<*RA3+CVK&im($;A-p!CoRPi>OdVn?3 z3AdSmSK7s6yR2`BMx|-%L~pW&Z(YdN9nP0df~HuvCO#! zef>cu1zVFaQcV&F{O7#;nRIvMG_kG?=mn;+T5`pdf~#XD7h)oE-4zb*+M%2q`rt7< zh31j&6)3Pj1!;4t_0_C@(3+3Xr{mf9>+iFaFRNw;8=D|pT7I#}I_%N;<5*t)lf61?uZ3m>Dzlf4|N^l@j@3ydBf6nEhryeMO1Y@8H_xyo#eMe*{lT%aI zohrQ^0`<=5wix*mj9VYLEQCMMPA8FAD7*~2?!ANCOU)z|k5Q(Apt%@em#3$Uo|lAN za^DD`rINL++S^!g&kZm%>EH=1P;;F=uyk(Nm|;sD`c;X6ex6J3_3${Ou&uQEadGyZe?u&nPjSFT?#l%m%7p!KSg^^=tgvC zwHMn6hf<*riWC>eTTfF7*g{!lE9V+Uz(V!au&;jT9+>&X2Y$14#_ELP{CaXl&wsG> z@~`pd9xCn%oMr_o@Zjrs7Qess|**X@ptSPpJB& zspW64&#qZh@JG&VuTg_C8X6|lLm=D)r>tykL@#T`k32Ld&x9HqNBHWl-!GcrKJELVwSHZ!;pLTronAcASJR~`?XiKZ6JG|NOp4i^nX|=?bhI~mvKJ$@ZOgW&J8;eC!-#-lH_HoNpmp!a zVx7K0mSda>39}AqtAuyAQN(1ML(5$m%U_}vowqKzy1pY)YioO3qn5%4S$umyE)|nC zYu^ynz8*KbJ3}A8wR`%-wdH7_QV+v7`KZKxzswoE4uAccWXKM~(I@Wsy~z_RoLQX= zoHc9TZSTTFS}WL`sy|^)N;7klGBXkHm$7oW#FUbl&VB6j=gUz`bytqd59r)=M@Hmy zlaR6w7UoqLH$YstxFUA94-jsEB4Q!Z=1D2Q1*v&ev39|Jqt|>mi7iz=>+< zZiSpZ>-?xGT6b~b`->v=6J3t=4Glxv0NeC&i(qQ`j(RoH<_%B4%EiZeo|EzzDP4>` ze#rn9s>s!kO-E669UbO_$*KK2CO8s{x3~28^Hfbu4YTFo%S7cNQkkgMK7P`0eNoY2 z?kK3uiR9@re3H7b0Y286crPxl*a0ox^D5==e@JZu7oHjYpW@v9n;%f!`}+DIiRaN_ tEO4fDF__5t?00E_8Y}$2Ci5=s?iU#siwh9G4{^f?QzHw*QUmwv{|Bv@hQI&- diff --git a/dev/_images/plotting-24.png b/dev/_images/plotting-24.png index db907d560df71bcfe5ba7094555e613fd0af5d36..47c3026a8b86e254a3481cb73731dffbd38414bf 100644 GIT binary patch literal 8391 zcmeHsXIN8BxAsnG8Xgn{MJa+P0wT@Ok)nbS5Tt{2Dbdg+bSXhpiU^AIu7dR5q=O&` z29VGRO^_fZ(m^1=8J_p~-s?L*&pCh2k8@p+y|X8?X6>0Zv+ny|p<0?M3P1VIca zRV5t=f`eNa?iek&5V=Mh!9~VR*~m@T8SUozz||Jgc;M#Z;OyprvEuTub;V+wosdGJ zB0?h9xE{H=xnO04g&qI>3n6FMhr-dWMy|lhaTnG5SP1${^XMNI;2C}ig1C?ecw7k&Mw?W>bW*j*@yi@HroU6Ik&qLuI1-Mf8Um&$KhS9K14y*_$ENK9tjL(*8w z*h;Ve0n_(NN4?kxV=0X{A-EIIpI*EFT3IRd%xNx0Z|d)toe!i+`AoQ%>#>t^llNlu zsV8RkuXT6q&yGFmVR&}y-D?QK=?ax{0N<22X}~9)Hu!L1{IA`*42ut$TFb&Abv_8! z^0Yafd{9+(BJcF z071beaOl&^GvF(`5)6WxZZiMh?SFY5{$4nd=5#$HueHUx8}qfxx!V(KuJfFSQiqFn zL$RZkay#y7VR}X8U9RwzSVcZ&#K;NQ)Kb{X%uY3|Sd3-?9L(;U4|nuBO{})%+w=+AMyCHj;rhDb*MN94tcfq zejps|>u5$Wa|Wz6)p!>5zYAhMrdsdwd>ff(0_EDzs_`>NNjOHaO3LpXYH450%u;{F ziej-~uZ*N}fq~#vR*zL>lTdXWRh9Kn<&aeyuR(PsD$lLAm_gkivsHIDbTKn`a%|Nx z-_GXf^3HD&FCFwk-B00=Qb!;aLE#YNPdFs8t-pPoXMnCg;8u^DxswM`^z>t-3yK|+ z?(=-2xRzaC$+Ou1qeqMT3U>LawE;uI7MVcmLSq`;?dNwFyY4luK4_q9{p$Ttv)(PM zucej#>>0HA&eC173HK|I}r6Cj54J`!CyfeveI0bD8 zCo)>2-`N#2SR_eTc(9-Og5grY7Yf*bo6U5b*%pod2x_>`d}dtvqh4;mKR<%!eA5gO zP4{SmbTBy^2YVk?-RHS0>>sKz<5tokh$Z`zQD=870)db6j}sy#`2s-=%>bukQIVdKqqKv;l zGRqjYN6v1z_?@}ekLTD1p|fD@*}0_8`a0a>zGeL%g7vBj$$E-QV15Sl^lf9eC;d&- z?nb|0c&nr9m?bmbpQF1u@no5wmsce;G*n@?43EDHj)~MiGUxtU08VLZo|6|aRO9rs zkr3P6Eb79*O<45cB`@Gma=YZDs&l>V?{;UR!7kakOK!(p%yCq#eutFQ+1+grM9a{< zw`*hylX|Q5b?H%j+`}!-b29y7_o1mJKB(!w!{}u}3#Sv5lk$&Zck3yAVAPKjUNa1~ z4<9ZP>?YLb;@~c(V70|p#;_lc+1SKuL_^6DVBG1w<*ukTqO-c+Zaj96fo)XN-T(RX z=V}@n`s<`F{YHO3lnyu;%RR`W*oGcwFrAs1B;&v{0{HpB3vwC86%JYOIuPR&%U

z6SL(BlI3d4 zS!zL=on7LQ4+||Ue5PQM_l`FUGDCliAD7(!ec0ukvEfF<)CI#`YLeM8&2X$SZjPa; z2Uy9p)JnWD;!DLTfp?e=>eGh0^D~roiIaB&Dc>x{8Z@a7lwr8#pCq+}1VU>lX;40y zgJxCCj#=l#2iKHk*wO@-{~2fG2>vytqTaprFwlH6OwYx@JyqE z^+yMLO3>vlPu-kvJWy9ti%Rtg3sU&ZE7}{LlW`f@X7%SsXj5b{92Z~ZQ6Tm(Vq@}9 zP~6!`R>R=|O*-1+cl1ZinBVn=3lrlWtW%%0AjYz*S2GfjUAHZ+Xhxqt?Z6u*$Bavq zb!|0e`Cj}^%!$2Z{YH9oV{cMDMV6>Z)&G|O6vDr=L&z&qE2{h4%(*3Q zf2Awc(Mh(erz(Xu`#b`&YFipXV`C3@I8!HRm$UWN6J>|OyGF_!vtYTA;H5E1)RFAQr^QH)Y#&<=wI_H9=g>A@P*Vfyd}`L}~hkJHx)Fp5~0o68~5u%Zu8Q&|KD za?XJ1bcXhaPveLQ7Eb3jyIW7s*S1HDXi|fffKv6eA5?BS_N&$`%M&rU#Oh^vq{m#3 zr1kj~ZUl6LmpLjmV8WM*Lw*d*+uV8ivG5;rX_D5gD*$lbczEE8z2N?pk%+?4BW*&? ze_Nj;YQm4U+r9hcs=Fk%vM*Ps=w{jyMC%{DAzyBa)P|(9hJ{sdWk`H~1@hwLSsC1kV4ee!@KZs2l$FG&(O5~mGWD&J2S5#IM~EK8v-p7Cr% zV$<{S9;ZKr!ExC~Vd*#MOXV;&?7`X;(e|o~JzlcspT@nPOgY}z97ACu3aa(lye49W1oTS(zOHymH z^bN6Ny~;4f{(N&m@`$xl5Zpy)`#0Jt-`r95xalpJqMn|CTEHILwmj9tbvzOsp=U6v z2{!~$eMUV_P40yF1XO1H$AmG9}y`G_IasqO> z&RX_3CE{NV^AWNRS&-E?4o}eA8(77&ImbKORM>;rY>geQ=o<5$VIZQW9v(H-xa$lR z9u1gdZ-@-WslJ1_xGNpru!=`Ty>;Y;S?Ri#Cfqiu9M*(4z6VY6`+BT5hCL8ml?)dg zNT(T(GeghJY%}lI+|{T^p$>7($w3R1$cbyq5tFj}Cyyy3he3lRghRrU1;^&8h(mLga@6=KDMFf?Uab(6J;f)m#e; zHMPXkTfFjd{U2wt5RxUJz-sFxQD=3ikT*OqjSQ3yO6s2Cd6g#IvL>3`gTDGpyV z<*UG0%hF8Ui!8{H+&lgaX;Ewn_U>li<3X3tcUn( zqEMlO1twXw%MB(`ZtWbNkG6l0kCs@gC@HWgE&<+js@$>}F1Iyo%_{cj^}$A#!u)WF z^{JiY@mkNk`(@~`$jG?MfV`MJ{&Hq_cd_Wwnm1%+!Nr_AvYuI3O=6`9YF3>M4YL%< z_Ssw*iTEK96GQNvOc;mqS}Fp9wD>Zd8}|)VA}{Cz)S#E8nNobPKN)aXucodZlbq~3 zy{)FE79AbE@u3Gn8zkfQ>w9QXUT&`2&TL$;IK5qA&H9h8r*b?T`GtfK@7QO8mr{JF8=QEm&Hi6?(R>f`EJ>~Z6Ct}hTPoTa!lV9Kgw$R?w^^+3Wt&F z&u?8E_aHj@0K+X?3|Sc&N`fYpdKgU3^vui|#Pk0A`$)fyUKP8M(%JiyEG#Tpot>S< zHcdT-<2x&)B*Ny9dRLOl#b|5Oom980nlR`Ta5|&*ca3^=bv3JqB~HR=ESrk%M7Bwl z6YC8xmtpxV)Y~fyW7TB`2iuM6QD=qC^Fa^n1q$qw;DiU%)Z_7cET`=iTiVv%_GCaK zU}>iYdlJR%WAB8YdzYh|wGgE))Jxe}Z`s|ZT4CX(Z@PU_&PMj>y6KLjRA2MqCm!|K zXPaflRZa!s_JjSui9I^=m!I z{SAJ5Ooqjm)*=)n(?5NRpQAN$-T0-=z$&I%U|gXSe1aqT&6~#)DQs*KVpxVBlK&s+ zJuTkNf-A9Zw`;<|Dy^mFYZeRp+BpOA$Hq(r&1&?RuH603V&VHhHkJw4=8~390Jg=@ z_;ZfqHTp>sj)bN_Dsi8UN5nVD<@Q5DT?t4P$uXB8GN1OW8!TSdv#_vc;p*nnNS_C@ zg_NsOZpW&uoSYd7g^J4P@7EJ|9M!A!T#nF^VQCb88P2t)3zs; zmX?^~%NjnWE7nYh@x5?WG&fH@iY@&-gOLcU=g#y^)e=hl0s?)ct|W1{ zUs@>AMaJ3LS+#rj6y~T~t1Ikz>$fL5it@_%HE!Mvr2Xq$y7xLM2W-z%cY|lZ(E56M z8DU`v6zQh2MZkVV;nXjyFJLQ`+jN`;=v_cmbTz+d@8Aitol!o|uxPN*tk!LFz)(GE zYiZPPqrLvZETd}xh}7cLBbt)eE(A#`skFD0$K*ve=n?evn=36R7XcSq=*x)vy!GfdoRP3IYpsV;v8)EdBpC^n~5Pq~&zJ*H2 zD-V!ygg%hXIFFhDYac2+UAqfsL2o-DmpLEdStRDOv!g&!r>kVk!Y zMjI`z3RQxPtMTOv`ovL^I!*y_C}e(A-?*yV1CiVT*z)GD50Pq74F|jS6_~y|U=1si z5m}%af00XP_}H;i;&#zu*pGU(mE_A(`r6uWz>%D;$d!IYBk|YB!?Xcm|5bWo$x6_2 z!`rr3Z%JJMefhT`Aa1)UMa-%dk$*+ED^a}f)8iRE9i8_bZ+WpR+wossc8$TfLxCr( zQd&NTemSKCkJHI^lMQ}8+vA?@y~-@B%!-jY`C`}?aGWYg`_sD{Zw&H_Q{e3}F)=v- zhX+1OCGAJ&ZLqgXP*%Rt1JYlNm?LDAt$q4r()x?FHCKjnB8t{+;l1DA-HwTm&jvXs zR^`Eyuaq5hH}s}W85a`fIT>?;{q>8JRVmb2(-_>u+NeE{Pt>Z$(ExijA)xougC>~+ zc{~eOT+r`cCtRwU_ z(BTPeieg~7-G?lM$z%KlrWo1dmP4H}q^7jkBiEDw#N@f6c2eP5SBe06++LQ!vVEc+ zeZr+j!2wXyu#C&|Z&dJ-icQMcxkTwE!rxC5x5$}*InL`GA!_5A{_y=RG6<`00Bze% zE6vw$XVl#|YBH)d*qx%^D$sR~Q+6=iyGa6&jEjOAAPe|xXal2Py*9LwZPl|U&2PeR4{dBz z$7|K^$%D6IGzXV9k2@~_%Rn(hUY%3TgxR>H0&SQ=ymVjqd~*`xT~t`P0-E{dCn){p z0gW4L-vHGRUtjx%UW#DHv|XQ41|u4z$PjLyM5#omu9Ff{`XJ%FY!U0tucwe6)kB=- zcVM_VxwR1K$lXB`9X=abhND0@|Diekd>L*CtPs-$FGU&O;W2f;rFgPfQzVBhx{dUs z1)UEs!2$XwiVhcZh~G#%?1%_liRe^AUI}JES~G{7VTM|x7YpCs34eVjGBzyCAuDh( zEDUeNF8VoKgDcj>@2Zt%PpVFm1R?FGh@hXVEM5#I3wws9kXo|nT~OgqMd$87L%`)~(T(RPZ+&AKb=_Nja_GUYcfxtPFhX z+z$73CL0LL0U)+8vZp9cbDGG(-7RtJ$RGu)^DQi*MNd3)fTGqD5bLuU_4`wc2lt=e z=`V!Nn4>rdq6L%45^)Clb1R6JKrgInYfJLTUvnjfPO;3+qVLAUB#5>(bNYjYcBY0C zvb70jo~Z3{-ZRX@n$L_3wJh7fgM^YVsRt`eLhxt8G(m))9XiBHl2G6k4F}$}D?;!a zWl^WGF#+bO8*z=Q06=O|KLb^QhS)S=x$WeQq)FBJ`N}@8lQdIq($a*dG=!j&uFeXS zS8!-DFZ=b!dvPZ?qMRDd?1s8MxR=wRnh@ z&8I%e_^9E?TN(-HB9B}GI*+&S@=T<<`{Jl3wGtip=}4{N?hI#UxftdvV^z;`jVbi> zCg#U2OcyJrlR4+HH4qbiz5iPdB2+pO`tBv2{$5p-qz<$>9N29m*Rd;UVko--wXm0E zDTokx1e9!GF66hHvr!a)8Zx)nWcbut0bki&Bn>uL9Ox_zYN*{UPdQc`{4d2ym)2)H z)@MV6C1@vwo@VO%#rY4B89=e3+dtYF@VdZ%6td=Na#g0hUxta3=t;lT()qqDdysyC zSPA}iTR0EW0o1QGUf#sQ_yl80%QDXhWLO-IM%VmX9!vi6QG>8HOL`A;4649+e$_j=Noy8X&(uY8r0>l-(PJG#3ESAMiqI1(iW3fdURB@OUm z*Gy?!U2~_{9b&~g=_Yj%9$um*Z7Vns8SenWxsQ5rNZrt!e{>ayWy_y*gjk0~BljhH9(B>6e)n`)V~CgzR=0(0ZV2 z#-&Q5#m%P3V(Z}kk`E&Vh4;&T`TCb56t&-s*gl@QQwA@!eF;Lv`vwvMY9&sEUCvJP z%+H_ky3{*6=orgo^D@qxT#N_A6QDF;P$;(j(|Oe9ce}#Dzsd?pnfot=PY~N-pCC|u znhAT^6|>^)O=$2VZAWk#@#N&=lhvf$=j*U@3;W{(f>4^D$J!9xiTKRDe<~Xz*Z74Z z@-|>a*1U>MGZCDshvdm_%3O20+k)r~;d{H3b=53+)2pq0>n^F1i!6j)z6Qg=#T zUSSQ;zP8FaXcWUi(M0t3f8th9>uWC}3`#aJHcqT`p7d{1AQnFey7P(^&?Fz!@#Dwm z_G>{gG$tXzdwS7QW^yeW8!lrNg@uI;ff-j<*Y3T8=xF9M zXV2b|xdNTE0$b|=poXK30f(VQ7Ji%hpezd*(>HTINHowMNH#8vS)kqtbY&M70q|8S z1k~zrL45z~Z>93h>wPLOLB*FD5zlW`-UeR(0&n}@sknbXqzaOwbjovHKdP=nC}mBh J!dsS4{{s~lfja;I literal 8368 zcmeHsXH-*Nx9(1;f)o)%5CJLD1Vp-_sUQR-KAFQW`w1m`U ziOZLG@A&$9`COHhbpPL9NO<0LmQ1*7b{AMV;iYBn13@QI$3IwjKoma&@p2*6uNmD- zCr<==85w7PT(wPuE?$b}rObSi6v@knh%{in7i+JkeYUfWgN-sa*Eb}J@nJKEvpS77 z{Zf8GryQhMj3dQ7b!7@2Fl zN;@=9kKgOA+sZr_sSa8|P`;G|0*ozE^>_gov%xn7=rn;G)hMax2W}cO%{ffqTtZ>rhhv6glnih_D`B}IHVB8 z2DMth{U7Yy|8T?qUu>pbeI9DP)Di>iAZyE^uaD6H~A*{ z2V_M_2ibjlKt)KEML#=3sCGvatI_!=^pCF9o&7uPI3JNq2`Wcc77ZpYV@6|@NS9$$ z{d(`qa2cEr=-c})3Aa%io|3iEaxk=id;D#Rc}YtLVWxIf6jC)Yut$lxjXIc|D5?GM z_T>J8sj5;UjMrZnQi}>%kFNA9t_*83AM>2Fs$adie%kA9f@F)b|I*9fb#vS^b8}*X zf*K6xNrSd714tjAMm(==i$6}~hg6}s_Fb77*P27VuB6F9?$Pm|Z<3Ey80oSI97uQ+}$ zs|;`1_#Tm`<@bxX%Ed{W7559wjlHly>q~Fa+B!ZiEP`=1Jq#V!bgQnej`Ok|&VOmd zdvZ9i3Q8|*9Ji7#3#w9d@;cZgxYu|m!@SCcq1HaHpOG7%g$Qdi==R66INvoB1u_{5NtjoYx5FWjIDlKd{Y4Vh337c8{Ksxs?f<}=E-e0s80Ss-;;-wn~{gyo# z&rI=XhT{9ENIC5hx`lh&juqY0I9T;**rXZ^*RQREzjicrBv+F>5#B;pU!A!QQ|M3g zOeM;O@8}p(hxtYekXY%UbR!#&-y-3Mf%Cr`a&4NjTM)K|W1Qc*{URELr_eofU){Ya*s|j@0M{Er`gmJpeOVX?lMJyLQ`0Y9u2d74KlD523od zrJp;OSX%~d7|83LXcK3Jwk-@|&3_-^J#*e(B4QgO;46lTiiC8<*-EJI94^ZMBI$fD zlkrI3p;o!`Vzh%sRRgBb0DLG~{?`5dMcavH6y>1?47dDq2KoAh3?{0sifQg9Ord2z z1Us!hU;a_SkMig>)GE(+3j4>+CwR*C@PqPX;x$-p838??;@m@iaO3g4Ek$NE z*TJ6Zl}oi}^2J*(xP!D7#z*}*Nz?k!i?T0YataOcH*CA2V$ogw>KSh0=sN8AFG+;S|T;Kr?|~;gGTqfY?$Sgrr!Epl|j25Xa-aJurp0R zKa-3{yZz{@?iY|Vfh17&uN5~p8m5qBA`wMl#2^M~37?ZswcO9snemmE*I^m91S0z6H%1u=cu4eBNI&Z<~v*4ply317FQIwZ7=Qb+$ZPAvBF0ODG9N} z+Jt-yp*XKJ0+wu!Lun-HJG-rnBj*Z0no7=Kx41WdH@FMIBzh+T(#n;BtH}bbdcYw> z)@PAZVXoC?RQq;6wWRar@D&-9+ZRA1$ImS5c3JtE?=vVPOY$?XI0k=aAtG`8U><)Z zise3{$2Se&c$Bx&Iev(lj-lXZSs}B4?J^nn)W8oG=s2>Bnwx-Nij<0bD#tp`9aQ@5 z*KTa|6ABE#(R5s!o0nRCxY56K3fdEf%3OelsU8^~?>P&v%GCfl$FOO2B9e5K4ti_e zGP#uQzelc)hgSXe$e5*4TTjFZtD7(!o1h@3WrK#NGJ~@0M;i^EOIV~lgR&$WYJF;6 z(IekV&EO^kTe|bLwdcNhg`3d*Vqqw}zDrA?ALpb!2i_OQv0!(7 zu^V@YNXYZ7@>tIa6cz6zs7TXNPnBwSi?*mKAE*TpZooGo9%kaRvq6e$O?661lDbIog3dfncm&;1QU~xOhmy=^&w{VXJ?Ss4chl{ zWC5H!6&w?D$>KJc%r%&rRZoT(1GgK3isb%~Can(MK|uvc$-5@W+>Ru(syUp!@>dg# znFp92C*-1^b5|QePhM*>Nju}r-ax#0lfilm{ShDc;faX}w`Y5Tm%;p6{;8;6lpu=W zI_?fzgVx-@>iUr7>^bwz1+bz|a)bP&115vI{aLm-KvjI2nBUSJ1l5a|SN&ytXd~I^ zAP0y3i-lpKBI0vqw0V`L7sSPA1r{#7> zodoXEkrZn`%R;2!KLZxBKAmgbD<0fcLNFFfd@4p_=I00su9^+;E;R3IyG)Mz)3x%X z%FFxEMat1Z*(J4RF2teZcVpGE|GabAbSX3u7f}RW(#jJTk59K~8Uq7opn?pHtuFcf zvIDCpdH!k{9qt#Hdr^{j{8&{*27D#ipWHJJ&wc{O6+BVT8LP^*`wA@Bg43u5pkpLS zh!s-TwaGMkmr7>EsTvn!X3sK%6IFe1bC`&Nwom)ef4d1Lwm)@*^jjD~!L|)Eu3}!p~OH+~)LB+@IK#}68Rtbm+jI8U>t&FRFgs$jw?wW9tJ%A{WG5A!rnm$e`hrb>( z@sx;LR^M3~DGwsur5Ex3ysK1vu|>+Z3&5Nq;1|Z3wX_lK;1*6IpKV6lNQ7=>B*dZXh8zBP zGCxuG{q^<2d4&Hhzr`WrXinMe-K{JI@9TS8%cd38E1ZsZ_?MqdQ(31x8Kv2??wb`Z25RTR9e0F2>lZ@-I}aOoaY^V|{%)#N$%8 zDT&ZODZYKmiNQ@`N7TTAMU6*>%E5+V=;RqJkUm=OaxdA00-LqERW(Zr`d#$mVXVf<R|Ld>DYP1MjNX*#e^y-OB~yjb!NCsx(C7V4(SEsR#oQ3ZIsHSOz>Ri6T*XQQR8^!k3CXfWNi1HbIhK?{~@ z*#D$ZmD?yfD{QxLZEdac&Nseej%gdZnMgK6DeR2nDl26&&)I!j`QBa?xQ=;eS%W&* z-305|?xuN{@Ly7IL@%KD%@>W6fxeNXI&w*D9%;%+f9NX;O*`4VwZvOI^zPO;^E9h$jM2}`@ z1gg}h8VWhs98SIJSJd^K#}o0?b3CL1ICWpJr@#N7LWaA{mP+!iX*NOgf}4xO%jw}^ zzh0y`MwaLc=U95wX`H|6TXtUXcSr-18U~YB?J*HFq-t4#iGIv@zR1)jP(#GZ;I#41 z4&k%3DEqGbr%#_=2+YjPU_ZUMkctQ>aT$8cQCfg=z6CsjSnY0zLiH-z#%D=d2Rd=x zP_%1*%#f-Y-kfCWG*8eBv4nbSE@&f>PlifuOMx?LUtzj0EG}+rVlosc#M@hHEH?j; z2^DUgqKjQyUmvXTw8f{&>R8wNKC!==e!NZ}K3q>sOhjH`5*@4a$uIf&%b_y|8DDAF z26u9H76Ysyy%gd7p+`!+?tJ$KT+T#8fa~_kchO6i27rukDgT-B)EV6R z3F?PqHJ($2rMAIjS#hh{uZ6{`ju)6;F!Cg6Yv(NMk+X(D2oB`y@#to$SSttri3(NI zny!P{u+Tk{aqi^;T^4&x)X#-jBcG&LPT5M}ggF4(XJXs{{SE*6_9mlFtY;Ls`MHUD zr0bB;@2cl2y9L_X+A{u2W>xM)6L824PIo?YJjWc@<3j=Z%FE8?Q{Ec)0o(Q9!2`JR z;r5TK_f}p7ZTxy&?M^K6nd@~9C8x?_JYe5COj;w028(l_t0r-WkNdM2QCq@<9<$rL zs1HcyYD6(eb%2|x=mw1lS5mWT(@7FvVq%J7XB*Go*MqE^@H^|{@M3ZuPF18*2f)oB z051zT=kbwW7FdyDs8(qJG5eXD6N-!pvHZvPFZt6c>E!qC0XpG1u0kTg4Z+f|3ukv8 zmXJ=4i~FbIbjDTW`s^qQCQu!?-eU!KxDUs@yz}k)SdE^jC;(|%w=^^`j8%8+5hwPa zf~xrugD?2147jtj+sI|*)sE9~IT?t6B8_KfEXo}o%@`>ddX%KxPzEFkjzj`5x99Neuvo4+oITe~2rP@*Ct23abh8$aXqM9-dF@a7&TiRdJ!DpGWC z9s?rZf{ymt#@CgVMxlFu2Ekb&>qSz_&C6T(`uc_v9q|UHPtJ!rQdR=4Zq<0y>`TJQ z+$#fJpVp(;NE)_HmT0(D|AP@+`EU~e#%iV{-kDu6kiTE?OudJz?!X^Z(9uEDd?H9r z87)rfE`So!x}v0f{&EjLB?-`z?r;hE&CS{G7a^2o)t8>=5^Hy%`#Q%cQB5uA*M$nH zuWb*j`=Lp%l~*aJnUrtO(lQ@6Grla$z$4MLoqde@8n?4kPPe@x3wQzC;+>p=Z5|c3 z#2`-C4ZnB7NZiH%G|g@R*>!$>P3TD>WGVwM@n0HsoQ1ab+s^EQ3T*a-_!vG_CM$AG<5<5|y$=LCR8wLoGl2DC|KH`0>gdyH{$&r4^$lOq5- z8_T+A>8XnArtl>ujiD$yOt6I_F;U}r)G@~v% za+gKJA-zvM3AbI4B2-C~uFQhXC7>IFy66GY~p`Dz1nV%+{dj^6$$8qt8EP z8Whx8rdIaVHv!XF07Q`HWZ6GV!}$|4h^EQVVSg6VbmLwLNB51#02l7F0@`z$R_l$X z&fXtnX^RJfVP(DXu%4s+jpq6bo_k=BnF;A`VJ;v7f;Nr+W<{IE(*6-ArT$?>#WxuM zYt4D1nG483FBX>!VzoSIqkyAfe33~K(605v6&fFIzu#6OEae&03JqEvQQy2qqRd-? zIrkLO(iANMEF3 zxZ=pF#R_O*LXtSXZt#11?uY9{EUEs(b?Gxa!97vBys?ygr+SO{R+lEk4tDy`En(>8 zNx(x({w2VU#KgWh+zQX#nv6gEBR{{^?Vb-SiUGvZ*aYKmPHdS{x-BT!>7U(k16EKE z=Jn)sZqQ~B%!gNXzW=X9E9ot)?Jk%U(uhXaiY&rGZSun=KA@M=3KNYTZ6* zE6~`RkvogeZQ0jY7}7mv22V(u>vKBYNyzw%NWVqk3RX%c5Q*MzQCqS}ATi-3v0Pin zUFd;rLQ<-fG1{T)EKT?}6&2KcidO4Jg!a~?nDTyELY61u6pM9OGl$OBq-)oi;N5n; zT3Y62Rz{s4T}Ui;_HgMjgS*h$MG3glza)p8Y`*!@@I;rv_ZhU2Ds)iDy8^A<{;Zs- z{hMFDywB(g7KT(4dfIWdxTFvgF`}z$vT$RT79aX+G?dX z9uhnCW)P4hI-lX&!k5f|{3;^y*W-HS}zbftxnDcNU-ACBXadrVpR@DxHgW1gLZ|Q4)S_@ zTBxUOIwK&5TRDg5Ax`#uXWKD~!MjhPoBij=Q{+~WvoAt6nG&W!+?JqG+G)`)i&RocT= zK6t9B#TvN2fxX=7PS%kW`{w47NEOx*!A8<$wE076gi4c}ZSibLJlxSUr1Yr0woCSG zsuFY?;y`dY-M$TQz|AoL$a3j$w(5MdQ+L{_eMsRO2J=tF-16a#(QMGGI8o6ajMQ?Y zqXhRNp;IaJs}4{EW$&%nxsSfrkQMX35u9BLU9!ZWMuEpU9h$srtkb5rcZv$y=7`~v zqRE`;#uwfvdc<2)N8z2FFc_D`p?A&)6@W7x3xshA$;tUDp}Ti_(-jv8x!vZrJpWbi zEO3s=jXsC3JNR2Y)jj37&i!fuXoVW0qE~2g_CtL10wWlKq`lfyqok^8+Z4PtG<9?s zunABtVOi%dHr(1>Z2v{@xbi2 zTrK!?^Y?^hf1a*ksZCSShE3@ioY#m|=h62Fg8bA=^k7lqKw};GHZEKrFtVN5bJ#@_ z>_JdPU_AzEHrH|=J?a9gHwu&BJesj0Q!VBu8o;m(|xF?A#Q*azK-IejY9f<g=HJge)N7l7RmV#J~bSI`xEO5%l^v!)NhFH&}TAvv%krm@j zlS7inQa(ykls$w)_d3cQfuN3xQPe2&eq$~;Qt@#~lbKfisJa~_0i3#fly??~QubE$ z4*!)vz+jIEI&c1XLlST*Xr(rr&qr|oF#}<;X?6?6Z6;Wl(~+*N;4|O&cPb-M9I_4Z z-W{f4e3`pvw~}uz(K7Cql#tM2yo(zyKg~<>7GladTIF#*TK6)$x_-9V{^7<2nj&Pc}xDAQTkKOq3$1{7rY>C$kdarXlQC1T2=2)c0thLD6hdFmhoZR@OOoV z`7S_i00~bm-p|z(kU~pO&np>0I_ z_ktP97iRESEdd7vB`zyJCrAB1G6E?SL0D|z6=~_j_;{bTt^EA_;#aSDhooTln8hG9 zIQ@TPCHnO25|!+9YS&4ezzMiIM4(ptbT~BL`R}Ep{|{#;8H jzuD{`w*PM?!#9rFsVHY}2CEl<^?;BXDD{%-b`Sm+Nqk+U diff --git a/dev/_images/plotting-25.png b/dev/_images/plotting-25.png index 0ed7dd7fcc282681c00b40c462f5f6e0cca76a85..3df60b5ac9c9cd1d6aaf5e3f3c54a2bc7639c9ce 100644 GIT binary patch literal 10117 zcmeHtcUV(Tx9(1;(iIRznu;{(ARt{udKaV@MXH1rdX1u@D4_HfdMMI+hoB&+6b(oV zRTQKIP&!CBli&Bo`#(Uf*^V=O*LZ( zf`dyKikcF9;dv%I!I!-6ZFAo{o=(02_k0{7y?ef1?w-ExuJ?KT9et3lo*q)765^ub z!aOd%zFtUqF)_sdZXxRF<1CiwW9|cbIpw8kfrKDBebOH+BH-0!2;%##rFO$4Fq1GH z5@_-*m-t(j=?wWT_-R<$>tgF@URVKjE^6|e9FK^xQDQJ*{#>~2>%6<=jl1TqJNB_T zfu;9L%)4oMqFE{4!Y$>fU8JqyG`#R<55-@r;`%q@Odo#|xhPe;yS8(zXuuW!IxUFv z`&z)LZAf{lz4$p62=dYJzOz7cx5liIF~r|-5t{Kc;YWziu2A6VA_(HnkoSA*)Sv3DcB=35 z=R3BxwgY2Sj9eyKT3Q7Qu&U>9Xn#tuC^PT-_xo4)`MI~8;g3+!FJE3xr9mP3VNmFU zp)94z8b_Uhv0CS$yFNZOmUS-oBv>J_`wYvR3oi#MZWglAgWT@pE$UYI$QS zHT4`dm?u^c!rlPi;1d`Q;!p#2`=85y>=0Uzmv=M8+UJG5|5|Z{O{)+;zsBlVWg{mo zisVh%&GXML)cF%E!w#2=*yVkT)nnKl70y76c@U(GYw~uW=TbD6kdTNkm}w7rxbPvy z{}ybMmj;@1VCL5!`I37J(F@JpsBR#GsN;Sw^gcX3+_9{(?>Zfkl9E!?*4CC@`T5hQ zOXulPRNdr}T{#3M=;p(BPfi6N{7ktPK@0_+hu&Nw`^OXBbJL-m#etjX+S+Cn8f4q9 zMyf!v65xiWw|BL%v9a%{g|pzri#Os~xVbAaIw@Rx{;wct{T?~A`9_t8M_vgvIVber zUH)!u6l%!SRO{O}eqwVZRouy547-+uMD9m&tTGM6bi1SV)5d5yE{dB=Ss*1v2j8IO zoON)FFSFvu6mg$~fBuYVM#dfQ*+q!-^y&!qWZvLgVq$#h=aPh<3+h{<0R!wMbtZ1Jwk!BC zx(R;1;MJ+70l1em6+`No%?W4Yd%1NXje?YEX~x;g#tR=BnBiaJ;Lwx4^lLaayVOWi z@9M;KA)CnwI*j*E=G1fk>oUZ+?XY9Swj z{Hnb3>+B!ZImexU$1UC0@50!l8=8?<4gEFru0H?h;Me6lAI_X9$R=+0>9D~-teqnt zt+*yN7O)|+A&K-UNMym6-2BW)G1n?|6_a#zAc-|YRtGJgCi$hMp6~z_U(maELE0` zMm&qRncIVVX__Wozg_j6vS1p~^f6>k7=7`#or@U-x*;y+nf%Uvg8B3v!!~i^HqF{JBL=sp00vdR6f!T{(XB(K{B-Ifb%yl zPfxYj5Sj~NWp#p&ms#LmUtGiv(H`y@L9yFAW4P7Ij2$k~_K~&XK5N+iDGI2=^e&%X zhEoN7=b_tj+m<{3A5j`?_3^45uC!8nYf0y_dg?G4i{?HIG~JF;Nktxy+3?ptbXJG~ zUAj4s3cDWoAT0zkST0T)L30`pz zTQJp;t5*~F3}hl^d|q0-%)U6;0@~S_Ce^v8Ne5Jks8uaVzd$p&y*}Y<%~ci2#&a8_~Hv7wL42x?1_5{8S(t z1!Qz@m~T1BtlurHx!Kq{lb}Yt38QXD;0vO-B+Y0aIM*I9wMD_9p$z$NYl||$btet; zJ2W(^fgF}$f5al*c(i>LmZA%!pn$S=W7p0X)- zrhS>IBKAMK7HJtM-U}b%4(>~|!Jbuz=1z6xNQX4k1y=iRv>R_NHZV6oJ&o$K>aY$b z1|dJ%AMG{_V{fxS=8e83+oM*-Q4F|iW8?Y@d^9M|klj?R3gGjd2QedgPYG&Xz$r#e zOw;DS{PEfPK30`WP+QM~#&>}8gzag`PVwxlBNXVZyEq_oBO3(YEx!%X=`dNUh^BIc zmFp)K(r$NqtjcQ$F?nM!xbnvI0QseCPX+opPOuL8FOCm}oNVcs^udaa)HveCt8q2~ zS}G^a1Zh;GwA+IU1{eJ3ntO9dBSCFbO0?!?w{EJvjBXGyXmpb*)_K#u{VlMR76sd;&CGHvX@Jt645qLM5X`pwP zRO}8HxCb6|j+o$GQNPYIJ1kOcFJC_1ZN$yAH!ycG3P9A&eyjb>pEbCXChKd_l$&w6 zw=kuZGDz2P4QS^!OjUCr-I0N~(5s`DF{!^$DB#S*J~gw=%5Ny%so@SaJY2khcV#LE zgTHY6T+le1%oT{utbC$$e6(lA!&Jpdb}u=R_ju?el~AjrgDAQood@O2%tY879?cHW zI8_UaP^jsCPF_4|t#-g1AAtsSxloR+@=?G0PX&+6k)~>bba8oGn<54LQF>fWjU@h! zSNvqXR6Z0ib&*q!G)>?q{N=@cy8Eq19)cIU{Mko(n!FcGtgWrLyjMz!CS#uj|H9pF zSrMvTS2s-}NIyTz0%a!FNN(Ln&W0KL)DWbhnwo+&_gbR5Up;tC$pVc`bP}(`a3T2q zqP?FHr1x{DrmQL8Fjh9UhjZ9RZnGWj1kLBKACX~VIWfK5&ImtJufkj;dre%M=;=I zftGP_i|_o?h6G6NjdPYn3bn_Si^8e4XgJC;XhX?$Omw;Cv-vNo=alppv=jI<(BzFC zz>RFxVAxX#Jl{YD|1>f#$Oy*786V&OV7iy97EMli=*_9R-57vS4ZosfcO2>7+J*>tr&w>uAlipm$ z#3{$iAZoxJ2Et3lFPH$dpG8Jhz@PmiUIkle*&wY$u5w&Q z;H`>*qc(!RpITNSM&?FfhiYmuVjcD+_G3nnp##BE3hwp0hcre}>bY9PW`e<_K0HGJ zdi`LRG5h)*cKH$iGte8al@ep8!tE|9umERiAYLuIa984k6csGzWsUUjLxr0jd5|g< zWBSg!%8p6W4}4cjaLr5UXtH@O8mP`KX{0ing?d~c&V#FHR<~@_7ZRyQlfO}iq4*4v z)njVVa1_0Sgj2=_n;m$6aNldHEoiZ(bKD%S1&zliIWEEola30fF1>)yHKo|e=n&yv z_?#O!yeD4&k!Btwx0Zd97`!8S3k6LjCtMEOzt~FA@&rCtwLBcO$2eED=I%Ow6EDal z$O37E{eC*qP@b6hK;aZrc~0VHy2N{b8Z{aUtWjm#C7bYO0t?huXeNdXW+H09yuReN zV~25N9{{TEJWP^yj3%%=C#OM0-YviXo*U9&ql_{7eP#;m>7!kVTq@OR-(NffX$}e$@1DZv zm@1B`4B5&pwL~mQbIOI}zNa}Cgde*XK}?9ZZwvfZ-HTM^3?Ytc*MyP!Qed1sJ@scM zCJ(^RAHnCI^Xa+sLrgKisp6EuGR~{Qywr^23FJ_o(QqLt-Lg-ISwjWzV9;&uhkIQx z0D@!KC-h-FmOJYrNy(G?j|>60gywiidIUor;Il^?89QyT9OcpS1#Jjqg8ivNJzUNW zk`?@IS~LOQVWGbA@79p=9dq+y<*>tIhu+wgiQ1x${qMB+H&7s8_Rn7n-YHc3;q8M& z`n{)@b(wDQYuOr9@SFARO+Kc}p|1;~ci zCU_YmBqW48+*y6Un+oMIle%0UE?Ql0-59-+Vx1SV(QZb?z(IZBz{1K}qL(2P9TStp z+tb}$Y}4vL*%pNCduI7?*BXA6bBzb$54fDCt{Rq;(wc;?pZj zOH02sAn>n$dg;~uUH_(Gk;W2xqQ;ih>LnkznFD&!UumemIGESeBnM)3)S(CZG&T9n z!@qiHA$kshdJoQ;*6lJwm4Mv4Ha6u3D#s=|$--abujoj7&M2Cin!0Yzb)_o?`Dogb z>u76_bcBT#_cuDi0R>(=LW&>Z9eC z7vfYZh7o7ZoVmHXFZ$K)IM%3tw}0QJ}a9LK@OJ^WxJ@At@+UTL-z|b3f(D&urwM zA0I#U^%*vLOebb#RcIyfJzcmL>WVAS(l#(KQ&)c`DJAvL37PM|IEXIgQVJGOR<;G6 zT+hib#B%nm+tDszjnh!W;lnE6Q|^&Tz|SAIIqp-gA^8yK5x}ZFP0hsqyh=tgG+emgD*qusD=$ zxAhk>({?>IGn2!*Gd!$)eJd`4?smQ* zMRwV5elxS9C+_#EG-L|Mhi-OJb>-#d*}J*9dHn<-ZsEyvHj$;}NJvbKaS*K_Yi?u1 zNkAaxg&f^pcsK);)8-(FBI}e7QOn(b$bIGcdh$={MaoFu$*z5huYS z@6PBI>L&&7(oG*<^O!P^q+-0QtNV(#Bw%A^5(qE9xUevwon6aLNlqSBOz}J2ASGYf zzMJ0SyPO9MG#!3KSOJ<$6W6Ckl7VUsb;EquIr3CD(YHdVINr^`1HONTPf-63grBq?P!Y;U=T&8}>VV6cKPzIzvBciOnafU9N|Cg3%mF>+VTzmFp6 zJ?t{>sn6)n=K)Vd_rE{TMr0{yeHt1X+ZnT~JTK)`>^fZd=G8CP`Y2>xvyfKX8HHGk95 z$?4fbZm9Fl$~Sh!z^bgUU5lSTemwc1-0FvPW`I@}!HOO2ZKQw|lWQ3<5gh4V0(e$0 zTiFIg;+efc=Y{UwwTXPN(MLj+LU!H3D5bYwp7m?Vt|}u>&B!4AM^IE$zsugRxw*OJ z_lFC&j>S6?6B6=4+`fA4TK!@OqsreZN(K(|%A@vm`DL+)61xT$pq{~PLJ0MftpSyf zyK>GjGw=LJFj!e4aU7SddLY$-i3@?BJ8hs|y`sZcD~id=njx14Nf9o-E(hYR)oFI6>N{NCdhzty`%NB0EnH5C7P zxtvfv>#SlCk98d6D7i(&$9!~pRsMROmF%)-L@j`kbryA+@&svsbr=BF*(O{i;U*An zkdv-BZqf*$2>m%gyLkh#Asbq3HYCtOf@$H$sdUsJSaPOIImfa~yI>hm zuX#<)bWZ*jC881k#&R8Dm^hVWVmpk3!_?C9ZC4}}DSh9)e?QNol^}zEGY7jMqbVo| zaM>Av%iKmZS7xUB|2)mu-I%SscgjCN1SKGLv^zI2O?hj34D67sf13SpV~UEbF5dc7!MaNk`a5UQTZTH0VYgC zi{OXNu^K2|oDQu8IFyA3^Jaa*+{kz0={X()S(%H0LfPmNHtIA}Q(4e}fm;a;&BPAX`Oc768u% zMPie*%j=21RO>mADx;$PA{_D>lAYBAiiR+J836mlL|#WHZSHVDuuz&AlD7|sPU_Hb z8AFIii(OJJU8+}@j0Q^&)UVm_t9~m0aJz$!;z!;lS#W|4574mMO>qIGBjK^*RzQZ> zBPq4S+ORS?C|YHr`P<^TmWULFf^+J8N9 zCW18Ed7rHT9HO!MSKR9UQt#>YcC$nLZ2u+?6mhV5t3-$G>@kqMG)}YePy4*|9kU@Z z9t;7GS;|fc-?<9dBLxe@VXFSjcXuL_2KxJ>y0>3uF6IJWA1;;y&83o5pffc{AR<63 z4;OU>MPeQjz0XlVy(3k*Ab8{Ue}fK-<3y|q7?odFkT_7_De&}LZlnd@e*GBOQ(lrl zynMkt(8l$Q_}d0hXW$%8iLvorqef%Jfh1IE7nY6lwN%2P;DqSuI;#xWXlCE1B;2d>)`Kq{@}Znj+%V>9Wnxyy zpzswMYz6~|_+|eDe$tzOhx#=&{erMvTBxn$?I++h*N7h311$HNS1N0LQ{H;0mwvrfKeHtpn!I8ZOs$P`)@P~ zB8bEO>=B@xfpaZF`;WwdJTE_O25J@XN2&uF78Vw%#+Rq~^b@0BVlq6z7Wm4?ckahy z(UIA%NRo{8Q+?=quRnVuD6w@811z~c?hyCwQ09@UYEMtkJnhq}RC!adH`L=uKYe~0 zdZK2XnV7<_^tZ~SS2iEge|Nz%)s*OiMDX9J%Y%3x=wH7b{MUQ=s|JV~4d@R_v}c74 zd6*2re6k{lK|u8wNR#UI7k<+9

gw8kBO3bzcFMQLi6PnIF!cB;73oi3GekmK(4$DlYL-Z=X#K0U*zv z{g<`?gs@?Q45g2-%uJiseq6^=w%G9xexMhM$x)!HGGvF!*aL@@jLC$G_`PYctsTds ziOU*XZ!8-d(3IitK1;mwm{Tpe!(SUJo{~XU-+2FNngR0UnB(v1;Ii}4&zt`G096?{ zU%w@6x)rZa9%yEo1h6x1wA{&R_CpK;Xn0_<&$V=25O8ABR#Z+LOb`=aOY-rI{UC{St_qR1C!D!ix}AN?T_@+ZmXM{(_T2j8!Tb zlLag5qT)%KbNY8YNh%#1Gq9~;Syl=dkAiU5$S-*ccg_x~c7V`K{o zcxxl=NE$Zw9uQn(9>bSk@E2UIcpbdA*dv_?pS5Z|<0{%9|64SG)C~?TpV1I-3%^k`El-UZ^^YV$g;c6;0P$*)lbgFMy9tO>j zgA)00l4{`;^_jwcL4Em~87Azg06COIN$<0__fOR*$kcR^W1~OKDIvKdY#>U<`YIH% zm;UV#RIgrY#+>V7z3jzE0qw^E(jTWR`I%nU(}Ry83mHo=nP1X|1@76nE*oz#MEo+W z?J^P0$a`-D3TWs2H)N<@J%$T1iN9>$_uGJ}u%Qf8l0d4=Txs6CSz;#Eus{Lo#)elj zWHTfUt=;+PcYob;dUo_v^?MQA&|0|M&Qslo1Uu>zM4MFIzP|I9!~(0Raw4XMSkI;h zB$bpn$pv9izieq_CTUect0el0wcG}!cOPA;8wBi5y}E%n>O+1iN7aeYcPMj))*1Vt4yyR`YGa;pJ#iH{$h zUXJ?{+=~=s#Mn@uw2>tvux?jkFiUmC}0#Rtf85hmEh;~chGmfNO zoOTOsOSAq(VJir+vf==00g@%d?&>J07rUPQv5f2KpQK`9XMuR$H6WxmTvSe`GV^WQ zCtop1BizpBX=y(H+x!r0fP!uo07fN_q}*pcMB5b?=(a>VH5kwSfB~cm1$LhtXPelH zidZ?FExK+($BVRA+_OgJ=;|{ZJ4EF}9EvVyr{47cY4P@6T=ncs0vHYiLNnun!gNOH z&21Qzht=Rt^D#8!L5H^-%#4m&>+AMKxq)Xq{sn=hhimbp*l{v1V}m6XrA;7RxEBY&I? z#9(8)_kO_JvQC_K6(a34C@YPen#YHIoB;@Dmq1MzLPZLIOF3{T>X( zCMgt7PK7{uaUz{kcv;U0sk-WDD#O>O%Z`Fxei`7`(gYsz3w9fdei~S88f%Ow7##M>?&V zeK3G6^J*O&9JCM*SFbsIpu2{c+%8th{y&a4+~huoD(d-P#~bo2b&*rJ~Ht zOv_nOChB4!Y`yvj1=53aGTG+s!S$4kTxFn+-=I$w0eOHpz4-zt8zOcc)+Hq+*JeZZ z=cBH9&0(2ml21ceC1607|2g0C|D5Q-^79#Fl>rLuw>qi^Tq9lDHJ+deDGKwQqoYJb zL530F(2%ySZXz#<4uJ;23o)|5Irf-mWd5}zQ>S5p)R!TY0f+p)4h{$pCKeX167*0d zka?B=00E&yCq)#Tei|k;&f1m+oIq3Ef)J1P14qY_s;bT6h(^GiFa-r8q3zxa>Ofl5 z1;SsAyx)p%_t4VMpMqjym5ZxD)_Duk=yonFkhEn=zUFI`0{GfOXu!K`z~)G&mO}G# za&i{82>8Z_^Y5O1>hG^hrADRvb9_shPd~HxKXn8^A%TDvOE8BNqwoB)f&TURU)@Ik dpDjmJ`SGgxx837vH0T@Bx~;EPant_se*hFYAMgMG literal 10111 zcmeHtcTiMc)8-jq06_#1RFI@dPAW+m2_j08A&KOugdt}Hgc$@yKtRbENs^P~98^Gw zl3_?D5M%%)=RNa#-`a2M`)l8={b#F|DrTncJ@=e*yZdxM{d9+DpcQGTn5h5&G|EZ} zS^$v1p9mZ!IsC$NOt!!;Dfc^i?%GaP?q24umO#zi-PzvB-5z7X;c4mWhH-Kf6~1~! z_=+Hhjk~+Eo0N!%!~Yy1?Br@K6631p3THXttfcP-z)3XmAA$9H$q4}WZ)JsB_aCPa zroErUjAV5D;i01^yG?Q$nfNMC@JWW3|Dn)AHyEZ>UVx%fhp9!7>5 z{%-`N%5Ll-}jf?20s?^6TmQ+=@@i5*SsXx0Vf(!!+;%WKgr1&W z%)Fg!b7`d8QxLG7d2c0$Yq6hgHda=vf%Ka^Z-3^mDK5%Qu0FO`Q0+2r8wHBZK z_pj^64(9{KuzgagU|p^jKVDU=}Vgq5k0N2mz^5HbUkdTh6>)%^gZaT`m%1W`P`Cz<*1+*$wJI$7C z{vI3imwniAl8c9@P%T;FtTtlp(mVh%S|%nX)WWrLa5mzbOjbJ-*39^Xh2Vhyb8P_N z`qy8;Z}$BQHpUw)n*U zVCN5UJmEaJ$vX-S^{dPA;kI3Gl6VrzYo-54SVTnK+uOTpR`>pWg=@@!_QeVEz+3o> zAZWDK<@?6pZV|h_lp884DpJe+6eNh)xVY!C=Rv<28CXk%_M?_~EvJtH3mh%rh1Y|F zS~=O-zjnSy>dMPMz04;gV?upS_~sA7c?6hxPYLEY1LWk~eSk-s&VQ`=Sb#_`EQzzV zJ$3BnyUn(@nk*h|VId!V0_Vp7I6@DcV`phDWJk(OVl_&NVk8`6B2X)xHTq2kD(bQu zhYud8R9LYdthVgl4ULR9sM`CJUaEJ|<9GG(zEyAbdf)z^ehp^eWFgAYnsrtvYKzdn z{xe=HUU=|x>|hAb%5h=XCIXZ<~?7#Z2-?p6`K3Rb`b3@G;H}rI( zR+S8Ek}|dR`8-wxtL*tKtqntvJ8Vcm8J&4)UD)fVN`9l!(y;Q z+P4?Yl4cP7;}F_GvZkGrV?{O}t=_X37euz$BZ~E3yaWPC082-Kj@A5LwZpuz6*?j& z$^xZhvzq}9G<0Gs-Sg|-W!CB~O^(C_coOV+NE?X{wC-)rryfmK&F}3m+bLe3gte8PEDC>;tD$ujX_mfZ>lSL( zM&dT{vo%2L?%l^@dZ00s1mqGX9zGAX?w1hVtf!O7y{SvpN*f!Wtc}{;9W3uu zSxD>VBdL8x0v3jc6V}^Btr7y|`qKvA+;TKET(LmxWPGz&B-HepP%$wL>RTsvpG3%J zfmSBp?If>#QR^hTjo?$8+unzJ&Q0K8;GC(FNTZp*;&U3&7ETj`$`h1~RN#rzwxcM* ze$O4#MdvoRfIRHv1+v?{l7qiXlQ-G=WM`N2x{MGzCy=07NAqISPG+6N!MpD4X!YvU zt_EH}v3Z-7!Ceh#h7;yE8GR6jts6aR@PY**XuSpw@bz_9TZ-rgij|FP$^@&4-<@FBS88GvI+=f2Vz zo}_;4L6&}4`o+mTIMCFis?z2)AL-)a;Ky@#G}$mM5@-sXkKw-es@ndwaMN(ncrbic z%t$SKW75v5a>O=15n6`H;JO6>M1%Z62xON*^zJl6cqGuy{)iTm7Fr$ zVh4>cNpN}Byh`*-B&Ch_rdP+e#P9Qhj0(GW_kL-sLtL1MRq=_(=irj&(^8AEx;?gj zb#+=sDFlThc?4xs_=TMP6;a)jkE|NXFn=`&vwJo|Li;e5{xql?#82Hw-(wDio5>@X{xKoX*Fg%aI@sI^t`OYAzvr(%t1~pKLLN9^B%(st&75z!7?>tA5uiUkz$!j-Cn><(Ejj&xnnk|5%FA#)nMZ zL6rSYcIuhJ$sXKV!jE|}*FL=g$}-<}G|p`WdOgHtGzP#@VuluXAsN3=`mD2x1_mxW) z8#bapuy_ZSgMj*91Gjv>omh-k&(<}qN+tLIpnA34w)?DGGq#H^-&7V_=r8&U0@Lo% zG3g@Ghm{1ewF^|B-3qF^q#?Wfq5c+w&C8Y}9V)VHL&x$|GJko5oZgQG)#FW5t9Pch z1q3lU_pp$w>m+Dto%%yhOy?;mE(!(^G_^D`KlSrHtt#dMp(wJgQR2L=X778Vwj_7m6eE_4>t^~$t6-23k zyw!>k<`X@iNdL0$Db#bC3vZFsXL)1YM4CPRetP?8)-7^_P*Xj`VW0`<=)=w`JGBTM z?)J|=;aX<8Vum9Lz!A<mcSk0LcAmu5R1th00 zLk9;Zgua93ftCgL!L(;`%que#&Cv4 zO$C^Qp^8~?izF-IFbqRW)naozKCwCd7a zA3Kv%$pQk+$-t)TLh9g)(<}!Fk?!8uvx2XvsO)(HpkLRpKEtg9eGQZKIGSY6InC#@ z(Ivh6k5DI|7sp9?uS#QnKUjQ9t@n%K1-V+X3iMW~WRmt}spKXKh*oolDc;^Rp=p<3 zZ%qUpYgAOvqiIDpXf(u|7YWk>)4rwdz2aIGR@Flwue4IEB49vOWCBf6ngQlsS@nsH zonyx~5-tN~+YgkOiE9;)&y_)UN3jWgGz{bMMi!_OxQ-WL(Irg}e0I#^s5|@_0Lw6; zMwM3j5ekXZP*N4eQ>rIh!RRbI>t%a(Ak=Rwf%bKX@-e{zWtI#CjlH(<{C zLD4HJ>YM;l2YA!gYu4fJHlPCjkNVjb|8&;ifq33_BKnI z_9zYnQHBQ1DLGG#6%lg9I)y!ytv42+xHwWQEPATjB4r)n6PZ9RYC`tOq!{Lx23{E` zw7*tVfgmE7eG*M#$O~Rw_S=lz?GeV}PD%2LVXvW@-gDt)T%Lkm7}DVzkTrSOJBc#8xV;PMi)Fz)?x zeXe$*qSq2zUS1sy%D4nn4H_Oy){l77E6^ibT|`>!;|`E>)op<}HM7;JB(D_^&f_h| zLaDByOeAD;)hR5CS&`#H16&LsSS_)=0SopmtyNcBoKVP1&q(I-es<@aV$IIJ4BzbW z$F;A6!}-VM(NUND)&d9&|BRjS8!OsCg5aToSoe)Dg9SR((Hur_>_nqJ^OaUl zD)1!}i(RirU^BsWiv=|I2FOeAOU+3Xb;y;g)c`E*RmWf{%NRwB7kqTW3_$VbW(-pw zDQ+*XBIRq|FL51Tqs4Pnba$=wR;$(I|cv1zC zB3n-@D_5TZFYXE%s<^noeY3#5JU;Ty_j1DX0foYM*D&2@;X<|yfWm&FolFkU#J@J@ zCT%zUcbYhdgF50qP$ji_V|pN;Br^@CWe!GCxUUF`+d;|UY({EIi8h3khc@(I>E)c; z`n+-{%R}Ob8Xs|8k{udk>%wSpwEv+Uapi`U=^V2GI2k?6=D|PN7N4NtaDHxDfv|CX zo_e~BLGzP3f)cn1vsQ(!Y~|=nf3Mfo)zuSIGM`P`Y1eL{`oEtAIRDmyOll-}@oIa< zS3Nh?GwDHz5mR+1uYkbNw~t{Si#hQsQGK$2_a4y!>8?zcc@vM za_b*S^_t0-_T36PxC)c5;buSIj~yKPT$hTJ*|Ygr z?)4~8=l=a)U7V38Ck_ddT;fhE9a^m!{wwWV=TF*pMzBsc`PM{5MKQ3mv%lLfDJU2m zEjIM%p)ENS6cEt1u=p0qmYbO=KkK(`OxP9|7hf94xZUMi%WdGl&774fPt}Rdr0zGq zPMB`cwY0RPsdun{QNb%LjLyl)$!IpTCL;-WC4-ITQ4J(lCQLqC7M2zm?l;aG86N(% z-Y+}W$&M|Gls(d`u_-Y63bQwP}`|+|@H#@#4vKL3ArIbaQcQP+8ZjPDia?oA>(Z-HT zmX{#`bFIyLO9E96_$_O!|Fp;0VhB$f<;3@!o5R{fg?hkDxlpI@fzL|ag1qM}INEHbOXr5M{_oEp0{P=NfLoVTHw-1qUR=f0Of7ZLm?=foLqUTJA# zCMKrOJv~LKz2WtV;&yR9+bhL8JCDPeL_0iF@-+1H@*rVT?jJiKxcE4g?7i9k z7NN>CK0cm8TTAPyYMkJS&fB|?DsZz+Z~6A^o0+Stt1~q6@cMoVHp)BiewEpd6wJYe zo_bBWD6Z}OF0EnZ;ZJetU}}TbNDz$?%0f17BUd^&2zv7AYz!`rD7)oC%?H z?_SZN&q7~nK|ujk=ldNkPft(6dVEw=rYB)CKRY{HbGy#7nBlpOwKQfH73!z@_1nM} zfpsAB4z={e6_Lo<1;bx<214{&>v{(rijmds~FU%*@OIX&fos zsBH^mQcC@Ve{mX2}iO%%=b%t+|?H7cYKFo)XT zIyD~LMC#1Z_GY-rcV`9rFRI37hpjbNxaGi=NTrlCtPE1qBoL+=f=-kh5i zGOoYR$H&JkVV^+6jG392pwsYXzV_%vJ$$cM!RxX0H@%`_($h-|OX^j$bJ058aYCF- zUxt?U4iGO+ZO>v`MvL^b>f9D4Bj`QSut(m?gOC;U=oYH^MW~rA86#Y{50)yrlpuUX z-}uSUv^i?X07eLP0=&EfuP)ve!wg=A6kzF>NbkMH!87Vg{t0JvXOWK1HgH#yW#)kf zRkmE8?C;+et!_W>+DpB<3(FMij-C7{k(Ps6fd;o@Q31W%pS~ zCXVfTn%_Wbz`y;?w`$27NBgS+P@62YKT!e?iU#J|0yp6i6X4{xT8nQ$& zR@ud0-a6G9kn>h0Lq=xd=TFS%7(SoXrfq+BnG3-+e*2!qrY+4|`%I!%yf<#>J4{yQ zj~xbCain!32SP>}~h96BOCW^`r=9;TEO79o>Hz5M+AD(u!=Ag%4dn_J=a zvjU|tM}HzaEW^m%7WzgQb&WDuQJ%c#Px3=Y1if6X|2}?pGGbo8@IkSbmDO7DZ zxHkOf&mV(YXY*fdA3EUy$^CDvs>}C|eCz(S&3g7Y63-8Tw9mJ&W;@iXi0@`reKAsA zR@che%S)m;eYRqbcGZbNE_ru7CoAIJzhbsRi$9D3|HN#VW3pOssw!NCG27x{j!1J^ zDv6w!e)YZ3FbG(_$|IZ=o-|JMJlu99LcTDkmRPjR1dNr`$kvO{nGL<2KqEK|dXmr0 zFaq;)@FGld!XO|;a4;7cT0cLoQP^>s3?1yQ3*|mN_hd8Hz3;}q08Yf>xTennE1qwTaeK-wl3Oh) zyPyD)RDCy?W&IoXwpX1{X9e+Pw`h?JI#GmA1*Kjcepg0{t0(Q!fB=`QPjFXIhuPJP%3Ld3St$jIxzvE z(?5g8)b}>D7mp=zfmxrsyNSMF+7s`fa_`evg+l@D%IQ1Pkw<;uK4Tw;KDm$XD7=a23z$cn4_2llds%jmY#%9$rlko+4rZ^ z*?1?(EJXRi+3UG*q--*w#eGpr6*I>Osm1QNdD5d!N?evfT$IQ^XuF@^neHo%=BAz{EH*F9a^19lgB9#p1Akxeme*U8P z*SxutNBOK?-@^xMAv6PJ`R@i(PW5y_a8AV0Mh%|x*rS6d&;-W+{>rkNn615zSEf^D z0KfXN5^e}kyMTAf=}pc_VS$%141kwU`EyT<%w87+s;?z5Q5)>X<|w578<;_eJ$fPL z_Ew*q0e2xZEN8Vjy56%Yl}thda41X7pRbUb+h2w03X&o%8;ajL_4XC$o9E`8$VJHb%Ii$CLgsOs9i~>nesTav`@xy!)bnA9L_n zv^1BPi_gLAgk|*ExunGRrv5NXgHSvFwaJq&47=!5``myr4dATTo18oZ&TuCfzXuAz z-s?S%SWZQvk!ON8XnOkWFIhP)hia2`L!QhaxWYYus7?IP$tbcQIcsxp{!b4Co}2 z#4u5g^^4qiO|ws=v`V>Y{50obI!ELIXoxJ0OR$(V$fychvDr2Tj zaTlcjDBv+uTk$Oickne%W1NvUwHEMX|0;cmFtl4hEbvZ?S^P76l=Cj+Wn5geOwu;y z0=1-PUy|71BxkM^9{il2L_f8;gOKZDaS7V^l{E-SqjY~;RJiYaUuvNo#~WBWk=|df zfV4}}4Y#)hJ<7mf_PA@P1>I3fhZW#cqkJe^N(+C4T|`i_c^UhVNf(? zrndq%(vLASn{I20m&=@Zi|W?o7h|-0q~;}O1uY+qqshkqd^lruJN=xAnZn7}?@O7B zRMf;TBtgCpa&abP2;Iirw_-k(@IXS^o8{oNeh&g?9TT4%+lNM}Nv+<5w$RRk>zZuB zr!2^>T-Sb*EK!w8DV*ulE=qrBs~GiA=!%qCqtZkH#LGL5ubS4n`nih4Yo_Xmcjnpr(zJaonL zJy#cY)Mbr*<`Acj*2w2U>-y)<*%a(Bvd7(h`O2W`U1}FLfs~F7)){&dwX~up+C+r= zJTIBSI!@+YD3S4pgLlp;`|ba=U{+zk4e$#@TlGdYA59v4^ZD_*`V2xA(meO`^In}5 zys}!b(in}@mVZVNp z%E6BNB%9kyg2I+2c-b!#eY7c(UvIECl-@(GgENK8W}6KZjY?RCCSG~`EyU{n8+}py zr)B3lz`&?n+RRUw;!Aapa^IR*Ibv%SVgT1m>nBsbr%LqN4-S^5?>dLrAE6IR&`%Ti+ew`ol&n$htnDtq>hb*jeqxO!rQNd;2aCo_*|p;_0fSni zm@+RXQPC+83VK;a+@KbwmsvDwDD&BHd6xU$qE@m*bu1uS9Sle^(|=Sca)M^5t4 zvYek*ZM*A>;1!IS!Oq@Ww#Sbi_*Oaya9tiplM^d1HrXOAF)~NvMyQ$cEd49&6AvQ*mF;k+lB~SL3KtD z3OY4;`5*npcwS&>`Ie(;Jz^r=e2Cj^@n?BwlGkpNZv_V}9hw2Oavp7Cb3UuU5Lj`& zx7mUtk@UMVPa>(MtLraz6bsU9)uduB;!)gKc$nxcb~|-ABe2rDqAu!^_{bCRLJ$^W zk&rQq351EkudLp5hj9*Zr)Dg&A&FV^p8u4KY>QvvgW%@l_l!7LNZygHGHW{uY<#5B z-Ms$SusWd#!d?t!@B|Nw6e+HY*c?!99a+b)lDj4J$ekDFHUr-y*&D%fL*q(r^7l&2 z!?U9ZVi6bI6g@#F_d~3l6;fadu$25SA`Cdw{crzFPq$1uTwGjBBZcwr-o0}t!LK2%gS)W5p{uX&!M9_lvHwcW zKe+M(lRL15!3MGlu#+TtZ)5QxiV8%+&`8GxpT4iB_qesiu--jiOH1pr^6u_#{Zc`p zn8(unD*K7QIN9|0_}s?E#>rIyetvoO^SE4CMQD3Npab$*Z{EmRr~6f>dCxQb{PAOW z*Aw<7Ksw9(9(k)Bu}S7bD5HQF1ozU18$+8?JEYEMH~~)m$B!R2f4+TGQBx~Ete{|j zq7g_=Bem?n1e+UfBY+$No-jTrxc`G5p#P*_=>Ms)Pb|KD2>IOArO}@z9h;U`0y(Pj z2(s4q7EjwCA*@R*x4Zx|Ws=jAEjSId)0#(u+ z*m9XLRi~|^qjPo$tVvP9c9PPjt)zOd)e_jCH2wH{xQEX+ZL3-e3CL7<@F0$gnwoaU z3-VPu5Camn@7%c~wc5B&Y-uTkT%GLx?tklldL|_Z7zzb<# zZK!+(28Ln(Cd?3b)A7+hB-knwC~@&0Cr<$mv5rXg(%tn10mzBAnQ1)ic&Uj-M-cSD k&Cq}KI{jbmcsimzS=siIPR1w|ni^2PgH|Y!H+%X&0NXMdEC2ui diff --git a/dev/_images/plotting-26.png b/dev/_images/plotting-26.png index 99f0dafc6b6a825fc097540f01a50c5d46ebe2e7..0e238cd0202808143792777716045855bb767ffe 100644 GIT binary patch literal 9350 zcmdUVc|4Tg-}jlZhO!h&LY9iM6WJ@Wg|csBNk(>s@wH{7qEciVLrC^*WZxO3uP~aB zb&4sni|kqN#lUa#kV{+#(VE^p~K9Y3P#r7Fbn z`f}2D&(f?-Ih#zO-+1MdqB;a?4dk9ZIdSgB!+W9&;Yot4S6ua7$r~H(E_pwV^(3cW zkuQyrS6;rV%u~f}WJa!phN=%@rvlRfz?$@WaKiy|#J~$Sf)QR7qyBTZn_t{Zn{qV- zUK^xd9G0Nd;1C2r&D7q$RDI_=t9AM9Ckw_vSQH7UvM+TsH^#zR(nHs+oYCkJ2?mY0 zgSJPR9{KIA4Z8pS@u6BD5!-fVNCIfg&yQ5;FE*~cQ2R3x@953V^ynDVBYMKd`g&nb zj>zawgpMGByrM$U0#VPo?f$ylvb*5Tkg}JWnwprAQF=E0uPdyotDi*{xmoBrk3=3d zJA)P003c+3du+dXfPgA8D>6SEtPDrR_cxp_Rlpj6&qz3TF8Cj>CcF?Y)BaDqm21Ty zz%BRTa%VR$FLP__l;!2+O2_x~;?|WPF;*as1p$`uEqiOFViztX2sdqv2G>ue2e1Cb z*^h`bY4m0?!>^}X?c+u$6i!Ckc}^Mu*B&I;{EQ0tmJ_zOk`b59s=o92o;--VNnBAO zW7xru@wGwwL5g=v=uJk(M^~60U7;CNR#xsG7)YYdf+4t;Ari{UHs5_LwY0QwjRsQ3 zO%-_!9n64-6APdUd3t&(1+7jK*P#0pZeJg&W(HDfFQfdnD!&Yi(jg}~ zp0MnxsiI~Vac6cG!-DNI{tQ2g>FK?_w$qLG5228_zYf2h2^z>(rTP=_9VL{+49n z1M{Z=(EYJ_cZP(2#`??3%2?`7P4)Ne99=D~_hWyrWKW`xvZ#>1p5;L=ujDi~ZVn!z zhQJ?d-P$(r4YnV1I9flYYm&EBb3&D^){j}sCiTmZ;&CPwqt5QcGe(AYo?v|$fyS$< zD!kg(9e&t0Cnq9wnQ;Ds9M0Dtqo@6X<%L2N=Jf5`!u3kTmQ6UI{wr`l2b7uNV z6653U`F8)b?d~@AUZk#-%eek%Ya5{3JcIzp^G59o3S8eVHow*=%ztYW&!3o-9@bRQ zu|o+?KXLZ%_eBH?OjXgB;edJ^>8qU4DKz)xz|fbzzAXOTY3;(25;F{@`suT0YwwsP z^9u_*F|N`9zmgxwx@13o+&awAm)oNRYz>JkZ=CKTSn_hTW`A9Dc|}LpaY?5nFHf64 zY^ThtY0aDtiBR46>N`?O5+A)d6(1Bt!oG8e4S%R{3tDzR^|tNDgWU63gj6P32l5~pcuLSMWV7YSVFq!<|#7a-W@(?PKAg-FX;uWz*cd)Nk|c zCF*twp8v_q3~vclRb$jQ>Kh|0KO3MbH#JR0hyBoW{lrV@C$g58lY&KgXv@p*uxrc; z0iwdz)^+}{p!!SWE-w^rEqoPt8&G;ev-6sfju|b;Rw2h9IVEF%X-SB^ygWN_g>;d; zy^gn{{qUi>2zf0MU=z5Gq_Tdus@Rc@dkwl?p6hcnTu8fN%~$!gnC-11I{A zoj{_&t2wYIGf$M@)pCv1QHR`bKHK1WUJuPLhw=$J#)(={WiW73LOK0K`58j3YFvr6~ zdZ)(BCH0QqtD{R6g{rDD4sKX*qw*j@@oyE^4X+A6F`8X!;i_NXa{q{%IXf-KBLL0^ z1!boxce~v$PCJq;5gyG_kq2TKX@Rh)8{xl`rQfqKu|#@WAk|L;0SOgy^ld_+OhgKZHnPH>IH|#?QOpL|xa~uow zNy)?FfvF}S);@YaNhGU;3H&ZBB)ul4^Br{02BailmJ$sU5rK>HRX(hF=7AH<>1cWc za2n_nI;DIj5l11=YWUHdcF1M~$B&X_U3e`}&J7$O&Whh*^7;%B0sAq7{hSG2PnJCb zI)o(2(e0NoB#ej-9W98qz8Zm#RB?Q;peL0O$$#H6F)@*e7CBPp6uEFO)*&ay7$)t0 z*q<=OUDtko5iKY+N|E`15vfh+FS3~HGg9x5J|XLYL+Vd<%i8$Jo@0A|8aSB347Q%F zW2Z3sSJs2p*9$TZ!>=x#p#``rfEcy#?R2g63+p)>!~J8 zw{;|1q*y5vA2EX3;?V8nMb_-XCr5L3LS$uuA~yoOhf!~^fBldCDffZmoBx2Bf#siF zW@cv24Z@ZeL+ghnfuaR*CHdR~eM*(S^;;r_Gpgo}12)V*AeGQ~kU}5azRV0H3Nl++ z1d*{@0&T|wfIY1xXzY?VqfAR>U75s7t74%!Mdm3kY8Sw!{{3dS=`}D3 z(;$IF@8H>-9Nn22XiGNtpFfKag9w0q_N5>1tclp{o9MXCOp5^A(+lz@dq`+E5QQt3 zkre`7LV&8ma75?&NroNo&SUF`d`=+%4czrx)Lr(m`-w?bHwdx}5VOo&iVAJ{WEs74Dl#$7nb@8x3oMZ$yoU%-@YcXV_r}_7U;x`wWWX^XF)99}s(;@wM6KQ?wwG4(YK&<8VXjk6ciX#a90&F_wSzbVKWJV7{)$hf$5*d5TH}uF3&e}Df>!`Loi z@>5#T9HGImAz-l@#bL~radb}`_^@@1zOb+ll|N0cKzH+~E)i))YP>TBN^J6if7P8m zO=b@J?)z?k^C-=srIyoQ!!rbq1NkxT8U0q#u*YU)?y|R+Ew5O&1DnHhORLLgV z+L1v)L8g|L`K04sB%k$pt2C8BV-XP%8g+M9*PE9ww+52?hKCDG@(d5##%KzrsD%cR zW_2(UO}O?g>-Mcnj;Z=#HoCJ53ugNIUCF;ruHe&8oH)T0`M&J_P&OwEy~(e&i*h=g zoLMdQV$B1;qt@o0YYJ{HcS)`dyJXB%kk$Is_kOdkt*yC!c*+^H_h-s!IkUgF_f27; zSpVRl`@4sSmQ{@4JhxW+j9@zO@7T`C%Uh{gD=2FoD7$YsG}$|5E>jv%3~38T_UqRg zu(y~h-zmcq+d5-q%=`^^_aZ{WFQpQ@CZ#jvo3^&a-l20gLF3OAgmn*y@Pk(BTj+6K zw@S`3l(EI0VqoR_@}=@3%Uee4QhU#y~+Wz6s zK5P^O&GApe74!7d4{GVLNl9FZ2?=-l3(bCq@XV!$?FEY4*4`Mj3ohZhVEOv+$%{i0 zu9o97tHW;{BMzQCV&*QauMcvlth4tVZM1sEEoqKM=R)G{-tek6zo@A1_jr5SkTUgq zB)_?{a}F{bi1thI*g9` z^$~af_lFhkY_Bg=>+40qaTq|yOugvIvzykWXkF!&7%&#P5eU(^jY`Jf_0`qY;foXs zrD=Kj-eSxCZs~`oj{}ydLyHa0T}k1Cl+T~3(5VBrHx^@VI(N7%jy8?HIHlZZzqgDV zCEs6{rTlFB(5)~wZ;-As3`z4gWo&OU6ke-sZ|>|sMPi-jRwy|Mo4%_$^&@?;i7W_f@W9HS!#*`Eu z?~XW;(cr}zIX&i+!OH4{CEGv_K+%JNg9`2*fsE)k0aU@yJHBNYc@stnr!x!$~6HMb06LUDv zo1a^1QEL&=Ps(p@9`(9;7lx(cQfP4SHgRsfNJse1_F{`YS#5hh+2ZJPeW2(!9cvfz zTT2ycIluqf%&xpUeyux0-5vsjp!u@)$~!%R6cJSKL`Sc}SoHqgYL8)=x3PzfP5c(I z=hlxbm9EVV&Q(*qPWE`3_#ehL{HoXg`Sa%%yPg!?IF~(F+F}R&gm1+u zdZscrH}{&qzyH-eFKFWW#pdnRufAkaW#wSfBa!&7ri1CiII}LYC^ZiaZSrc_#T-Q8 z%4D~`PmWN05@seGD->7~R|&)O8(h+$?S-1e`1qrx#^YYurQABsMyhKG>x*NhB{nrL zrq>JV>4_QpJ1)Ata1aFlxq+GYtm>7vH$(oTh;>)>Q!z-KgY(a&biII`L=9|mYLZ3^J{5~A=>;QOP71;f$mey$9sQt?A$#)OUwzj1u%7+ zjct!^+_JU0^&Hd6+af9{X<=d#zr3;{f`9&$hlj`X<}qV)k978W>RXv$P*sDn*{KXkPxFm&SmCCqg(i5K3evVnnt+$`;wBer9e zuJKQwK9zIsJoe1&1NkbeYBn@x`1pLBi2f=}#xb*0$ue$@>&1{QQ>r~pu3dYqLhc)> za*yAmCgVldR&}hbvKq#q0gBhxG0;ASkRHbitM0D$SvQ9S@)lNl!w2;+-SzkMoF=av z_~P!^{%*$or3n5Z330St(2R(gg@yaCuXW91$`0Kr@*|Cb6)CByRUv=wLBIQhAv!7Y z4rIls6d;@Hi_YKO7U98uCF)_12yG#1+0J(Vf+!+-e;R!9|M765 z&&!u398ljDU+5cS0C8VN+y)MXL+o@U^`e223-tnM?-8HoLSo+|5n-f1bW-={!89Kd zJKoy|^_1+bAlJ$36f=RBjNnD;B@?B;K4UlmR#ONlN{AcG&Q+l3JnHuMw%4B7?_7!d z^7-@YB0{|$T-OR)PL2iAiIja*+ZBx)S0m*73n${6Ql*#-3=HZgQ{0a+(wf38YHasc zfOWM8exW?pVS8QIcT!4zNWK!lJ>J+UYeCH6s+AS~z~8DWE2p2FO{Y>9rH<_VIt?^9 zXb`A1m=mXWH^wZit$CDzQelqP^7qGq#}P;%tlKK!j;zgXYC@eiFaA6pqfU760I9k) zomH*>fX>sC7Fe(Y0bM9YjZi!-!Zl}RXL~yn&#w__Sf@WJFMi3^jsMcqllhM#efUrt zRlP=_Rb!cF!QeC&;e{=m6FJWz_IyBp0apJ=Lzo#FYKw2*nIS?55zHz!eB> zDUdvTT%GBCDO6nq*jPhD(G%*-`&bC?Il1)C8V(VV8pZwnx)o4ALUtTHPE5qRhJ&5) zFQT%aam`^6+OlN5xuO&@1g&-J=aS>fK2I#-Gyi`SD=vIV5;2A3&&diCGYn;(&481G7yb%uiF*`j_Ko78Tt0Dmu@8(gMV{ zy}jAz39&EuYfy(IT%f}rSXM6l!?(NPO~F>n+}w~Xl)urZt#Fo#4SI1(wqaL#iIw|@ zcsP6AmRmj2qo|;uhttAVdLpN+?5=4H=l|wf#ryO6ySr#5Z`~&gda=<%huMS%dT&`H z^zudOB{8i_fd>99AI zLr01^KHht?cbOa860(+Pih>kISlJp#xm~(sjHy0>ViBmD9~DRWCqgO#<(uR2u6?BX zA1r(faoV9xRtw%gG$GsNglrdWX4V@{Q_Kp4Ba*m$sgf5eQHP8n0UtL;iHH8lfk?il zsz(3Rsp7Sm9!OYikqB9GZS?>~1e+QZoFk-t{TZ(m52VL7=-gv0dj9?g?7Mf&``t#r z1+-&96u>5bB;%ld5)lj9GNz=zv5sGbtp6A%ekMH2Hi?gTeEzGbxFu09?6~r%QdB`4 zhwD4q3Kmi9=H~4A3bC_&yHb3#pv~3_pO7vAr8=kwgkcuqCO^qLd1HSIK#8KWlVo9y z#10MD^+m6fJIkS@0iCWEf3aKcCZC!|1BXDB7Q;?=T30K78T@J6!~~uAGk8uKM6{iK zMx|4vT$oz-UX(Zz{P3DJtq`9XZGv+!)(@zGKIXSjg|sv01`hNX-FVW)9OZzNpZW-vk~%9lPiGtZHpr(B$vZx{ly%967(zrS z+J`m`J64qUVnmjpM!+G#CgpN5&rsTcEoxb%g0Mf)fu=uvKzS@pZaO9%8Lf%Ai}10r zz|HWaDv+ab2oA`rkkslof})Z}|L8R)oluQskG0f}(Nk6Rn2l(I`s9G~?PLRkl$7iw zE=oUmVq)RK)s-UOg%R;#M*!Wd!cITB`EU9-uv3!tesu$fOZArlC#R7b#-gIq&*=LH z^jZaWGnXboVmZ4wRm|V<2ugER#TQmGhx?uBuWJcbpGRIJRP@mfohLZF=8t2A z>fE8eT)b?4=r*YqTP{Q4MBpX^&%8yu_zuKOXhGpn#|TGg?7eWhF`#rt@MCusiqoeV ziW=wkFZm9&vUWU&s-9%^?S?SmVJ+wv+CazbA6K%-c-zIJs}^&xu5 z$T`tdas_`wf4v%+y%SQAAQ>wL8@PsJtu*rU+M`)Nc8$+7Kj|5hJf(8Se0iK019c{> z>-WCA?oI5wD;4={Z0;~Eme;h5Jv6dTi!EdXONp;|kJ2hBk3wOw!)4K0sBlhcF|Y)se;K+%9|}p! z`s-G4o9g_kDziaUK-z+FoMBkYaGE5WREhe8Q0-Fyc8mn1YK?*|2B};GIy&Ql2VhK1Tf<8z`%0@+b~-Ull2S)@-%PoKrR=zULD4X(WPfvIU{xhqR)bGu`>0_~GG zg}=Y++NU^8gM*u_)HPLAD4s+N>g$n)5H?8?s6xr+%`38K((%n(DdxNo%zeAOdu_-w|p6-+L>iNQix9TZ351@wW5pYXYG)@J}!Gor+2BPzm!vWg=GK!-pyR7)_G( z%FC!jH0dtQXqWAMEccUSjW1)~%{Y?#)I6UKFA_ND`Xy{Vs;|%X8RBKjY843Desa{n z;))o{y}5k$QrAhiL zVp@bNJhPO{OEOC1nU9H4+W3=I1#{QiI5C>j2q<=8kIAHnJPi&a6+e9OqLp(=*mtRU z={2usoVvv-rl)iYVrxUuPKp!F&v~GXH=MN<}2c>cifo7_Wu{Ww%G=u zbSYE-W=Gsh`ybFTAJnfYA_$#Z|El;OZ-L03^Vl(+I3*>eN{3eD?(SmP;2W)H62W8t zl<9aEIS|6^u%w?6#kV6evpUnK6ue&i!3`WJ&s3q43SM7!{;Zf;SrxSN1$$_^?1Qhc zjvOoK=H_N*@DvDF98`wcPR5VRp0GoEK*sbO zvRKy!7NGkAfX$EROB>(dWnE?;pY(c*V!{e*!{Y)!K4)GHf(6vIiFl(Cc%pTcMu#L>|}lx`-N>ug5*s{H$b5U7=k kA1Jf`$pbO}*AUs`$5d$kW#?FYAd&%HEkjMh6^94^24_U48~^|S literal 9365 zcmdUVXH-;8v}JWm#*d(a0m+~ON@^r05eX7Rf@A>^kR-X0+=7S*2!iA&lB47dt)NKG z5?Y`Y$+YAksi*kfTQl>1&YC~(tp(k;>(;HRTXoK>C3NrYGW1DD!Uy|;34BT~`tld2=T&;kHg}bwZle>fMBQ~^^tDCLUQxw0DAiv;s zwkPiH&Tf(d0*?Q?2EUW5jlers16SAzrL&5m8vv&@PyP`Bp5dGTa3NF`Z|OcuAx!!> zjBFpZuaDZQ3G_4RdOsi1&cIOUUPOIxTM9>Tu%AVRt5rV>qt{?m9u7`)>@dj;4VAi> zCnu0BDR$Q5ww01P<0r>VL-lU?I?7q?2?aI!1)l61O)0CZk$n?^@{6-6n}5?*=l`l` zP7I|DZOT@rtSyTo9;w@36DsDdk9 zW|VN*V2vFK=;S>-JoZ~zk2Ai6oyYN$V(!rc3?}r;qx#k6gRO2<-!(qIF0=&jeGLGK zI@g&2k5SXyJ7J9Duxg~$7(b9dT=`L_B3X&2r)ObyHuu0R zV(o3zyjL251GKeo_Q{n_AMezhx=rlq>FMn28=Z-iDa8Q4c2z)WH zud&@0qF=FLg%Y2B$>j|+3Bbw}!FR^q3J1WP1Wo{48zBA)eqe$q{wH2uYegf#FZ;#8 zY`dpV9~c=WZES2*`X71UFsbcF8v@^#a1y%Bi2M2sjEr}qr~GzJC;fIO_kV>6tT2*d zJrj@snM1@2s17{QeXsTHp%Cy5qX%r5KaHE3N1N%ycU*pJpUC415qM?xzD;S|9iS3E z`p`$iscHK=DLdPl&}(NxPn$S7IqBQm+ea6kGCzv|6tyWSmv4%S7UbnEMAuOM$AUc4 z0}ht|06Mnf;$lhftp)6M1d|x7p%QaNquhW2$UQo_2}e;g?cX3NB^4VNm(vk*b@^y_ z+J>DCLoG-OFg$SG)Zyyk*-l)Sh68^5H@fWnXbLc8p!#sDit>8JQ0Kjgsop z)?0{#rY3Fg{b0Ed*|UeG+uMl;Tic201EV&7Mn}b-C2M{2E&Zs~*{%L<=u{LNG}3uV z$*h>GJ)cH5yGIq+HwWOCn`>5i`GA~~QIf8Sbp653&fS5$;Yk?-W3y><@daACFJI1+ z(SjX10Mf<%O(cDGJ_q@rtIyHkiXE?Ayr_MDpuc8aI=^l_T;y3ACCQP+6*;rcE;Zj& z(5nnUbWv&F>6+ag8k%vRG!d`zcd=Ft^=%Zv{4xpy6TCM?PQOI<#kjgw_*Upf%8H(8PA5l?f z=j#;5#zeci^~{>|^aL%R=0ar(J~eS&Mh3nBApE{(&G4{@xTl#Go1X4iG0&^JYJDwJ z!;g;%GJQocdvm*p(-E+mf_H^guv#Ml<*%dD9a80nQVxSiTUvB*CQF? z;buWWLAj~XkJN@7{EA_I^VFfN0=sSJIVEyT7p2!jqLB%>ZEGtukMl|MieGKNV`pk= zy1(!t(!J|O&9!q>i{m!wBQO79+A0k=vj27v+-d=h`AY6Ll1=Hwh5PxrHqK3VG~W;k z0FfPl+u~k>-SZ&|*0IMgD69D{CHBb?O$r|rYnz%*M%7SjgS{Nf_N)^AiVVTa*6i&4 zkvss;Bq`N%i<1#ress>g8qf^ZQpj}YsDGFg2?&-jJe+2e$2gahnF zm^|dG63QVZhEwmsM9GttG~W$X!gPz7akWDo-si1~;#-x+cyAvcA7Ql$j&ql!nLgwy z7Zjq*y1E*CIXT&0B_J_Fn(3l$2k)c2lrOvsw!9~IR5|6lso^-)Xc#;#-EqtjC{5}t z0T(s&Y|bdQ(sqs$k5mHqtPjdPS^-Z>MBH)+cE9+}gf2vgOL~+m&1Q zA`Qh=d>)Z7a{}j=^NAMI2HhzNqW+D9*S|{3%I?q3&L#<2zT7zWBu~g+=8%EP1f{0Ofu|x^dM?O`ktiwH{ajb$j9G$A23Nu>dr2BU7>*wI1J^;hThITn#qA8q25z9OuR@s){-6^xF&}L z+F##tTGtXg`4ZTi3~V$pv@a!bfuZu4f*z;$Qx^P3BH zIeg~5%UN4qp7nRL$F?Yh7FR;X&k3;SCnmb1h>c!3g_r2uV`B%iRIhB6%hQR{0drHo zCfgNMfGpqP&$vcu)JT<2&AEt)60#C@fW6cggC+liMO>u2XCzb)0tRX=}=&5#0o z%q&!!C~I}!{NO2RoPbV&3)6up_u^vfbsdkJM}yDZ7#LI;7zX3b%K1U4GLYA1 zmUx5&euvM)x;lh(kW%P`A&cjV?10UdhFSQZ`@DRP`p7+F@A`}EQoadao~yv175#|l z@8)ghQbxFo8FrbCg|!nF;}t>Qrf+D1xDt;fliUsyH_6X9E$QYr;8Lzogp(nFi_2PuM0>zz64=h41koM`j^Xdt z4QH~TAAKz<8@RkD(Z{ON3`chDV<8-c%1sgw-q8`Geck%f5%_31C5<9&CsVjUi3Cc; zg=&)M?v;mR*plOaUSNK50CQdGzQ&mZsZlgH;2L5z-*;ccB5<*6dUQaLw*j5#c^MpX z3iK7VOQ5@9+oZ5<1HUE-QXbA$GT!0qwteC7fJMWZ zJ!S;pbltBU#&x|8kTb5biaN?Xb+m_^t^*>)S zoudhHj7M}?_Xx9tT6piJV;_s{jss2)TzHdmc_{i|mp3PgGzlHcJv zb6@;2OKoLM4UV6ZQtSSwolmtQNWjm>81sfDHb=e8l=9c?&k)uJmX{o1Q#5y#kB0^BLthl#%6Z4C{7Pc zO95)-ol4)uUCGYHm5|6c#>NjZ0ca8DVMK6LM34-%g{Cl4AVKqcXe=A&sm5WYOlX5B zBwiE=dfo7tHrpBbHI1Y;SwsmZFqbz=Pu!iKl%w;_&K@kYtS-c8kbu)LJb4l^YF{Jc zdsE6xN#PD;E`ROu1L7&?+joN9f4?H|no|qxMm^qtQGsK{rx~bcvNtAEfPV`(ujA7$ zqO$5G;c&^2V0fIz%6g&%iTNinad5l>cJL1g$a{aQps3Q66d1d@8J=E%W(&mmFIx*` zgi(Mu_KvYs)Q>T6nhsGU} zD#K@GgM+=W_EU7r9M&^`?>FBeBL^KXfD-BCE#Pc$t?jEEAPa7FIJ(O-ZAlw_-j#62dWnwZf@~I0m+h6o6)lV0B;y;^WeuHXyl9A+Wb1B60{< zfywDyiiYP9vG&CX3p>C!Djgh5xZ;k0fYv$fhsk31MVubn0DM04NC5NR#3guZd$hVx zK9e3?ZsWlK{t(;G_!%uc8~On0ERjNW!IuP(3n2mC^;s%~tp699U+2=z3yX_KJX;P- zd(vc#Axtku6DF)0xU$$DUJZ8TUK*(<9v@UWP0JRWHazg0_Vd(c zIsfVNvf|o0A6fM8R$94XxYOsAHt+LVL=FrNW}e_0xxXFvxK!m1f6|Wh_h%d(>|R|F zLS$WmaFENXas4HW&x%m7Nu74f{z$3&&dPYLoYL*vL7knQ@77zmf4tXHVPIe=C@qaV zutcahviF6ps^4>QDHCS46PccxD*5rl1ZNelVm7_t?U(z@jX6wF#;k91`1|)0kO$cd zFCQP@Q@MuRT;;3x(sWf-JFufhMn<|?TFz55(9xH-7KcuaT9zf`Xr^AOkv#0pZkZjB z9UW-a9Ge?leGpyW&@eJMC|q#x^+>(1yIUP%x~~WA`_Pd!>*kHk1oU*n5B>A^Oxii7 z`otK+7Q+OZ`*YL%3m{U`CGNG$4dZZyvt9Aab@ORqU11N@)WRUj)YaF|4G%x$~L;A8o+ri(5EBNWvRL`kU+)Q^ON}2e#FF?sXy|J;eR>q&#dC|$MvhOCt zJdwM`zh-bO&FRN^#AhN6^S_vt^sueUOULA)X{xTFZ37k88GA^^pqzlcxqd6vuC?Vwt#Q*y7)G zQbJ12m{(u#ZC>T2$^*aoL}V#8KHi6T zv>I^ZfkdXvwtH?GEM*Z*&qnYY}*c%MUj z44v4ddyJUNFGWb6SDgY5l6MJC0XWw?p_{7#M4bJTCu=zx$#agl>K?QN<;eK>B7EzP zurH6&=Dns+ebO_N&t@W8>sJjPaym$OEDdAlR~t9q=$o24mL_mXxGzNM>*&nfc-T1R zvpeaj>`QzR0U8fCx{_r5>PuRV_Z4McIGsCp?zFG}T=&K8tu2G1xs8*pqphm;my2s?maFq8PT_l{R&~9+>imzE&6WiM{)Q1;&+tM%Qomd>lzAsi=?JB?U7eGY zqf}K@b^d6o+7aiz+O)d_xtyM+W^W$#W=xmN^u~s3u~F6C|KMk-Pa6oL#Rg>xZgbtL zuGy_Iap=WhOsiK(bfslG&7@nOj5q9E#NzV{#n>e0R=;L>ULWYcwt?V8aE^e9Iyyl7P?(fY+wr{y9F@TqL!e=6swrAtbmflGH ziFzz*y|A#*-y=3Hy&@;ua#2+$wzKoD-@MfHz`<(EDh{xzmW_RBkxiMe_t|}VGDaA; zUpMbIt$wL1|9#1}H6?>bKmaa2#3!5Fi4m`tmY4P3zSh9I-2a!^dCfCJX6I#IU~{c( zY>biW;FGE6WHvd=Gx@8UDO&gMza_Z-db<3*xS+6bsK~H_OBL#9C;P$3@NgE?(VWNR zuKv*hq@<*hF27D(>m<&>U}yyWNMk&R=)5x3_+XIHu}LmfxU>Byp@njdTU>C~izgxlIHwlV)YR0wYHC9;N^c(@ ztdje);|&I=#w^HbR8Te$3;E0QnQ!4*%pQSn|F|RFFAUIP#nyAinIVu_XJy9LLCk}c zbbJ%W2E?yR;ktJb7_L-FtNj;P2%SPS5;;;UoEb4Q35@R42&~2X{_Fz;aHf_5^&tRX zyXCF`z~Y((WGoO)BtkruENd$HtRKw)^|!rg84}Q*ovqr`1cBHM7&FrS*Tc+IAR=A9 z>G{V5&g_V*o=SCv&BbF+`Up(MzPIhhV;(jiF$)s79PUu}At9q zvtsYqA;ehs{2DeN6+{9(U6p_SIRSZAR#x8l=j6i>Ikd9|qy)9Jitjaq0HAuE#C>Gc zETDLI%IBV~t?dd}$ctm-!7$BPT!09YE4X!w#92e+(#Xba*Y=oYWPV15e5CZoD?+sS zEqgu$R*wXzKoKeX$uNY1ac|zxoH)nsbU@3W+8LS%R=J0cj*b(xE*}VkQHs}(-I&6F zP)6Oj!&!Act=*4I8OhE2ck4IqLTt*Y1OziGbs_nIQxnb3h{{E@njY@Eq*0#D+Cf8h zp;9?vlwZ(^X80HiFq`k&Un- zyh{svV%OD8kok-tY5mzcN4&{K4+LK{O6OPTEG<`aC+wA);&qt`VYPC$iY3`F&>$|xQvn^E^dUn!RE3mMHXN4 zWzDoZ>IZfu%J@{5H1FG4_5Wa={^%)iBftg9`TT_~cLa^ePUX*!2|66GF~U*b1P@YL<1AbW#n4L`Qjr?3IPRtuUZ4D9mX@A#fwz9GULts4SzZtz}TKfC^!FPRe55z3lL1+l!d+m)& zu@e&u+mUY}J5pC*cS~FUGYMswAHz_ol6a)_8}pV8n0G_*#Mz*rxXP3gAJ;5S91?6u2X6b_JW+Z^?$L|hnrd=C5NrkGl;W?8YonJ|FK>ij0S`h@1Ppnx;z z)z`N{j}<{WNE!GB-l7ifmP#JVmC&GDnD@#lCANjmoxXI!i$3OLey*gMs)_VKI2$X6 zBwk8}G&vp-%?>jl&c^rOzKg#~nBdk(=hsLuZ{T37gG9f+er%Y$qn!d2b#;p*CyCrt zy>X+u5D}eQ{avIhNeJo{&h!Y-d|%Hh2f6dd>Mr>7{k!$tL06YX`e`g#4#4wqbLZIh z|C!Vl@AkbGnA<$%+qlHr-~qw`)^l)312?pTwk7)GM!@>O$j#c$mdwxSn}8FnmF4S@ zn~CJAzdd2HB;mb3TeZztSNDGkzz0XmD|*7Ll|u{#8N$X(C@wVbpwF6@)&>UqudynD zs53e0LaP}&1k^IJv(rJJ#3X4x5t|g#+Tg!;9szhbWlUlG8d7++`Ve&|D%rk)7w@Ya znWT4IVOwU1_K;C#;ZsofN%_?yF$SQIkJ6**hZZ3K; zNi@Py=dJJL?jb_V^NohezTz!pp1iK*4ouTa}zPNz?!G-rLs{ zfZ_$zRylm*MiggGP=LLd^6zK_k>!& zJ>2_fd(<)hUGy7Pu>j72Jc%#wg5&~U(*tpCnaRdHpR`5x{t+uBiW6Bu6umjuGju}p z0t1mZMMR$b{2W}6pFaTUkYoIuPg%lvw!n!_pXn&@Lmpsa6xfGUwS=k3Xjw$ka_<>Fx(mh2z7ABhpbp0Tu>0<^*gHi>yscF@lx9v3WB}MW`YY|+P8xYw{AX7u@!k& zAnG(#q?4<;IALE}W%_#6-7}d#`hC>6exNUjKFpjFDTB#&ZC4jBN{=>V$n)}+8z*x? zXqH!9y^}eOgXE>NtBYGz3cb=Vv-{%%%p9nly`o;bK;V4)isS7!?Do#i&ffVI&NMOc zw)DgfIypAg|4iQbfB$|ZRonup@Gwp8Gd3H-IOCchu3^WJ-`aIVbGJ5|{i|zPBKg#s z4b&xF+rk&N?)`nd7Ds*o8$ga1-p{4r8q&wFS!})$zS@4BWvh!P*k@;D;AFENR1=6; zz_W76$XL7N&b#!J^M}v_^LO?2S(fc&rSb0);@YaO8O z!-}7d7YTm3R3n|d4@G{!qjPw+6Uf2LtP9>tTP+N33w3F6){?Y2odp}ZRDeK$s_mRx zA4*5Kt`2RF)TR%zl)wB!VctphT$rkchV`+b@U4uzZ+|Fm6-aswia0J2Yf=O)oXf6Y z24JI!X}e-|Oh(6c0_!HQHxo36zRZ9e3+EWLo>fqQZg%=Bh?Xh97q{n3;nj>=f8heUkwP zE;HS_3cS}{m;b~W8TWJ^R#tvG)%3U|{+-}HVoVVLU+cqXZgmMI{3tuNM031X&=BQ3 zS+GHOk=Q~@8>isbPEyd{#i5|h^`l<*p(97 z|J@pSi}<{@boFzPD>3S@Zr^E?D0J>pN*ex$H{165^aYB%V^1O}X?%;Lk&z%;kwnn9 z8;khwlsNsbd0fQ$54S$sPl2TMb4m6h(5s8hTBgvd!1wxZuQZzm3SfCYLP<|ci%r$e z-hSxt@8&j4@tabg=Wkr`YyJ805);!|Qx3oiQzI0wj)PjbQYGA!WMpI*VG7%m1hC2f zR}#ALaq8%l^I07r|2i)}|GuLm;Z949BTf`Dep-`K$c`LqCUeB5eRUv5ti$j8pG;eW zk+Jd2Llhvw(Id98r)Zx*k;41;TV;M9NBJR2$F( zxvrBu@t#4=)70vxlLb(Tg6h#t`|nSn|5bM(@j6f@GN*!CiVjp%{>Pq7kjGY5R_0}8 zDZ+CXm8MjH6*?ZG!h72e!u8MSi@^5{JeTmTOQ5A_aVU3rf4Q^x89+1uYGY2nZz~)ky+>=!D1xD51rOKK+pg4Slk- zSwZHgoQ&KNw4J-Vi<^q9tkZu;$lP+Zm5p}2=n8jXbHQD517L^V)*r%;@Z>N6eEN7T zO{2RBGyPsJ#v@hrbGBlUj%a*{aO7pcq{S9TG(sAG%iNvL7Myb2&|fIB<)T@8a8Xvv zxRDtqA}n}s;qJt%4zFY6ixShF+<9tstWi8V8T6WnLaXR!nK*OnWDSe6;U7f&tClLd zR(&)STK1hRNSl;Ljat@MFcr z0>2N$;b)%~0)QIye~OB~CjhMmjuSX3(^WnHFo~G?Fb0=h)_w(Y@+Osl(qiET!k@Y+ zqA@WmaN7Q-0GKf{8C^Vz))xo3e;T7QhOW^hh<1`P9&7s|#Qz+LPUV%2ZTjew1=2Dq zsWawSA$<^WAtS?}HHl&fKDWQg>MJ2?{e{MM!j&BTbOOV|#W6C{&hQ<>u%rbci4V;S zwD^vFAfV8E?d@c}MDHvt&mZlGOZz3SkmwRj@Pzfx==no$v)HgZ^C~rYq1hcMZ`Fx`o#jpnX7tC4ey(|VZR_Rqf z+W0Ozkhs14s-pec@gk1F^XmRz`0~oi?Y%`1?b||+ygqHBQ7S-Nw}0uM@ke-D zXd;%Hu?|p41ABX_0GE=5O=jN-qS3X+Lm9!r?IwK<#L#<9de7FwZjPmy07trC{*ymf58>@IujcLqj9)ZYX+U*ZWDqb!3 z7d@A+mYfGUXAnRrU91Q(JA+>MMA(@mVjoQ|%Pp16eHbc?U}$uaDwfaRJD;-Ic!)UkU73?BWtAhOpy?enG}UQMK5+I~QS5~hP#n_r{pM2W8G zAzu6gK&0IHcIUDOfY2nsy!?;e#t>(XJPK5neLp!-+z0uyUOIEUgcDFM0DAMiF+8{E zvfeIZS)J!|35YEDtM~i11Is^QLo^+3(9u}-hs1H%pl^4cVN%xzbYqiPqs!A6mI$-D zy5B>;!;j(Mn4v8QeTNIx7QF2!_&xMbNHV|MTP;2^wx)*=Hua^LPhq((04~;UOIhiQ zbhyoBcHYvWoy>?o0n7U2?SqV~?;%jq^&YvBdjFIZfR@WV7wO=zHI|-PpLZKAE)H0u ze{E#EI|(DPR`Q6uBR}hI6hMx=u#Cw(5B-PBo%qtYi=> z1=|KOD4AMH8yhV{TxU)P{2u#vRfyPl#SjVbEqEwUXoh?+z z!ylav&~0a)M0hShR*(N6@Xmx8`C`3=L; zrk+jKsE{ zQhiBDc$m`bG@+6+{;!}#kIBoEFMcAR=(X35{uwf|@G)*`SxiJO=T6@&Iqok9W5x)D zBG0=+Be$MCPjKXBw7e%dZp>VtA+$x9| zM{eVQHZs}4_pR#ymj@5fI*ET=Xcx)g2`WDwLN#MbBO-~o4=u5hk}xlK7#q1v9!z`i z$8B1WK^;91aoY3OkrLc#0Z8J9aq6YX&X4dyG0wMe4n^o|BCzBq0#f~M;c&}%ui4v< z>_L#ULLy??d~!8Vu9=9q?1K7y3W5CwR8eSB?;=Y9@I7G(P z5fuar03rK%yPV8=0_x!v-B5F#t;>Q7Z*ARPdYfX1o~{pdb7Tt=f?|%ftoEPw(ImJ` zuGg0;GHXGaM&6moXpfeFa=Dr3ZacCDNkX}qckCJM22k#JMuzhY&_4qaU-8N_x-x@d zd6!w_>K`)yO&nm)QYZVOU@JKY*kohYC3 z&cX$hk&4gu3g?)$AE>^4aSp^Y~YA zu*3wgivzjA%AdJcK5qDyNdOfgv4*@oHAocrl$~GVs=IXBm9e?`ojKVt!sz?vFGroL zFRl17U3t4|P*7x_eC@lp#1N4@(tI_kJdysBUASnydQ;wTuQdI~4=NubHwDy0o8Jok zvC_{$N{XHL!hiKmfA}e2Z+Q{o;z9Scuk;!2(^UJ|`5AKgh$yIGyGa#~iCfc)M14*MH+$%_>#X!Q5Ukh*6H&FL1X!_{ zx2la5ix6AW;b27MA#2+;J^wc`iOoKO#Hds_cGSDH&^-qV8tTN!uWr{1K!OAkZctDcz( zSZ#eMS3bBcr=XpHTGzG~N%y0l+gd9r74@?GY*Xt}BJ;|Mv$;!^U&=5v{Ql+D?x#p* zP3w$4UZAptKJ|2nI6~dnq}&P6Kf#p>9Tg?+!=VP%zLcn*FZsz{vtCP!iOj6BDB!{i zukBrj$;TGS(RdxV)_YEQ3}I|(-S6TOJuOpl&U0iBO`=81pUg`;q;i9*G%*qfdHOD# zW=>>Y9#|q%e0;KkC={Q5HxByrQ3TliEj^rS=eg!V!>b6XauZ3rC&K-rJ?FnCG6!uF z1=#!ZoNcHa^d6p)#=!$KhKQ3;$`9+Ay(Yne+FT5nNqP>Tb*!`VQD@FUJggS?$a<+QZXhR>K96kz81%%nw=9V=!t7; zUP!D>re0n;(9yBAruGsbYCCq}2m=y%=3`R+$!|b?SPZW;Nv7)92qy)kK9lqe7Z^|5-wC!(l`XWx5fO1|{#*I8Q!2Um^5L@PQPizX)BJF~i2k}*1Z zL&Lz86M5uFG<+Uqo=+-zy~z4>moaVr^dcjva>f5Ha1kolEEdWnvXI`ag*X=b#7 z;cD|O^6lZ>i_!>THg14st`Cjcc_88?r5C!lV$~ro5_;kQ^wFUo`F>@F6CMl?Q!Z66 zTMfj;LR?cTA#3SUdCIP>n;-p9eMQT2N_xVaMp|UV{aWo-*wC{z0o!&)ySkE-*J~4d z<05ZohI7{J9YBJU;)hQ?&yEO?OwNs+kN1kW#{UGLJ@%>duRE(4{1Q9*)+))8SzxY+8SR% z6*4x}sjHhU@dJbK2|*gK=fBlK+x$h4HZMMxk&%J-O6ck`iHVN3qfvaCK743L--&L%sD%kz#pl|m3N1Rd^3}#S- z4i70=oaxJ=QmNPdx_Wz`=jP_Ns+yRaKT}^FPrrWfpt7r$&+0thj@Lb*XyZ^&+A9uu z1%-tc45M(3@ywe&B_#zbE!|l0OIfeA>9~^Xx1i%rz2rMnUH1LucRU9J_VR=`+-X+q z9#4HFc(zAFsiB&ME4(2lIXU0d(#KdNtF+a{)3aP%ci>LoXFZd}N9Z@D97^mkALQm9 z@fne_{5;zH%-GmCBb5Jy!{)CIK1GM#sJhleNO zN8Lf9(>Xv7h;jPB>slVJ$Um=Mx2Qt*rf6vzG)KKd5?S-c&jSaN53Kai&W^)`TU`JSBmC?`PHd>!nmX7 z{CH&B4kd*@aL>V(j1sTk6oT%uqTa-cd_%RSkhpDa`MZ8uH-T)filw1R>HVSGS9K-0&MhHh?e#*999 zL(VKrb-ySsHX*t9-|5aND|<>)H_X+ElYv|^I>H+z94e@0h9S((^Eag&)(*3S$9aB# zyFJSF=`32o9C%Fkq-r1ZFc-6(0BWZ2C5q zX!(27>ODh>@m}uk(MUZ+IZ8f^6qPsJhP0sh&4dGn zT`#Y^NW>5vYKRCDS0|pmtKHbp!@sa`-OMxvddxC?+UCx7T)|SUj-ep`Z?T}Twi~N z7Wv8E-d^9wr)uW`rIfkh2FK;^gXPOZAwCWF4_!v>lY63rVDf-<#(!z*{j2^TQPXYo z(`Nw!^$@mFM8()CtMm9HOz+Sd<%oz^UGr@3-Ly)9>xQ*cx#Zu=@1&!FJ*m!KH5wX*I<3Vuf883 zD&Xz#KQ=D^m5%>SkMn<5lo;Vf_up=0Vv>32RG{5>TdLV>_}s>UlW5p_1-7=|>2J+S zoD*SScTlOhKYq9x8yStS|7=|n;J^~0XHPmqu0tb|g!l0BO3KQfZ*Fc*GDNV#mnGLB zU0vPYYQJijyhbo6B5@cN3UoH4py`8$xIhK~dUFoR>qZ}y~oePio5(Vj8cTQp@~ZF=g|13o^!Fdu4HSL~|<@J@s`ykVFEt5}8Y zoPtKMI_ON-=ETpkY_z4qA~3rxM3!>5H(&NQe+sT6S<&#(5M*s_ZO<5}YEbuu3A)I0 z!6DD0su#9dQ)`YwdhDw;2gIwDETE^3`TrNT1X|nJtcHP_s6S0W01QI@G~fU4m^Ho$ Y6lw=_jgJK{LEQoVw4T<>lUDct4gW)5u>b%7 literal 6913 zcmd5>2T)UOvwjn*G^2uw2n0WR7eq<~g90Xip-Yjbd?-bb9zg=(69q&%Qly9)q$vm@ z2q^HOf*?(LH7HF45~NA@zF6)*|IEE}|2y;FnafPh3GdmnXW!jtpWU;GFeIGfWIMnH z0N}*qw2T2j!mkK2D>FO|q6cc=NzF&w!pG$D1s~!$FGq0toR7z)%RZN!&!hbuy}X?- zyDQ2bmY0>6MmzcVczCPH$+`WfgzROni*kux7G6-x4iB8AHvk-j?GGZDcs>c|$Z&FhgREVKW1oNY*TmsrzZL?3TJ%3e#a|JDR)cRZUdnup5V9;0w-`-FIX&Q2q}XlL5!tku6ag+J z%{^XMkCcO5FJ0pzAC;8xUEd!o&JBc{DR^VgVmdeW2+zJM5(kd^m)=;z$bEW_j@2gM zz44ieWf^pwIKbt`@6NkQq)L#TralbMp2Z&eWhyz8Ps6&Yc`*YSexpQTs=Q_?18Jm% zz}CrF9^%|Tf?+~&Iy)POaaEh3Z~oc>*0`$+r>Y9|e@sdkT^2#}p8tB~7!AXCKaZj{ zP}xmnOScZ8T%ZbhAQ_l(^e4uO@u9pwy@7TP+HjD-3=-MU=_OBxH5i52!$7Pl6H^Cu zYXZYWxOEa}b{8afH9yqceVE~=8->jr{)j{(W^boXE%T#O;a>9NcT1=bLmk!~otEo@ zji-KjHJ;WaMG^yb*GbHIwPpYpaf@T>X~azK{IxTap5yC>x2-wPbh4A;Cw_^UILx_3Hi6}BCTqA0rPn1L;I`q`0^r< zS1SZ4%`Aeri+5)+Owsj1WVHWxQr@YZR0(?+xgYVyHjRzpTzl6D2*%EVXYPUsF1#Z#;o@V*5l1701 z);X3tp>)8T3ux*fuuZulmkp4{8j+|fe7a}enu>-AsErN%{=0p52fdmD3ijQZ4%Xm zw(d(c-#463d&#CZcjdX;fk1l+`zxJ&;-~M7VYE$;Nl&?Ne((A&fFBka7IFT77ici9 z)!3vFJ6=aro775P0AyT>m~;6Mo{SkMAOlUsf)`lqd6~cmYmX40>BkU0K|=urgDk*K z9L!CmdsDuSl5)cHse1X#=?F2!pcg+c{qQ2$e6${ad?f^e-DPux#eIfB!w8I+ok=pa zp20B1TD^JmbLnUH(Oq09VS>vUNL*Bypr3=lT-2|OWUNcBkshC1Cm@8)gR1$au_!}; zV(qn+lCgkDkF{ps`@EQo5%DWuS#O0fWDA`P%mMKZZ&AwiAz4`fEiY=2lwUxCYY!?1 zqCC;!;(#?#gG8x2L6rdLweA0kNT=^;Y{Roy_N8g%CpHL}2Qb^vjW>2C>qNs$Q-S^u zQS^Isncv!pN5PbL|I-pkptzoZkyRn!{BElopii z(B4;}hYXRQ?rey1M2G**O#98bu#V@RP(#keAr<8tAzAkU`Ux9*HfC#N(==*YH7W@rxRiR%k($!bIx2bGG}jA09= zI`XeLgx1$b85_mXxof}j@KhXT3uR&g_u}G&-kgV)H|&f2y)@q>W$af5#oj}*=wqx4 zMUo9A#A7=;;bx+fGHLaqC{b<@%B9SDqFr8emrn7OV*=m!kxoT~3`+1;C-J7Zcx=}U zMl08MMx0-53~nK)8K&hnBi}2%7(-_yzp~J>fTruFrdIC(Tn@X=!CVy2&e1EXp<$RF zUETC8)YZJQEl`}&RZ|1mpfEUiZ_bJBC6^)5{nhfzC_iYy8NaecS`~zSK9TBZrW?xl z8$!=E0;jsoNjYStqUta80;mg6*eakhF<}&{Z*2TH6C5fCjUm!1I&Sj7`)~3{4W%&D zMI*`W(_Q!j^0h=Zi^KM0K5uLveB=(&x^Cp&RYFMa+0wUBN@zB55FR>nDeuJ)tQ9u? zs>xeIYA|f=%nK96Yr^*-)4UazOFnQQFb8XDW{R6khfj@F;Raed4bjFi0?^r56_^1M z4^HV3sgT0%PtdA{`;hmcpK*DEE-^ zI*K3N1T85oC`!uDhui8iHLECQ(1NrQXKpP$KE6tbyA&pDruRk8Ih=xzFI(r}w(|FP zZw5vXwPP)5Vm97UbnZNP^Nut4G+{IRol#{14zBSjV!MoheH}j$XYz1`5T~CZY=*l@ z+WLyaV_s(OD3CB2vOq{@f!a{-*5b0Hb&}Up;1rX7(0!F1BM#&r6t*_qp+$~GfB!zG zamBEavonGyjet%ZCKqv;#9bogjyKraAaHmgKCkPvdP@dCK_e|kcMte?0AfNM4M^bV=1F30b zs)Zn*hWbn`oo7q12Mq|(eC%Xxm^!U5g!B)nnGTdT64|J1W37TuoZq6HM|B{v9Zx}! zEvI|+NNXzugx%VrrvrF$6A7LwC{QeBy6nQ7ZoV1X4<6kIwWZYWwqM@ABC=7eVg%d= z8Iqt^tu#Z91Z&jnu!@iSSmv)8LKi06r8BbPnwk^0zQSS|_=LFIzPHd=svHYa5J1?u zo`bq0R`QZ-?Kx(!lHRfhIokr}_U!b47d6VSmeUz=Ws!2ruyk|5D%19?On0~v2HvIY z0?^p%%b+7*$sP%pwV^1vLWq<+vK%ct48o8gP*$czhV$xZRCNOSz59#zZi7dHJ|Rwd zumY9(%r~r2Q&7y@eg2J7D``B&zQ*2&o7f5$!OlllQ2Z zc+)g|i=*}iC#^LGMAvfwkAvCS9Sdy``ie^%3+`u;D-io02YGpau$YQTfB(=VLS+|R zL!J!N)k}swU*|I)36t-&jfQ}{=WTN$tQdDx-V=A1_P&mAA1wa7)8jlh7!hXXN_26B zE#TGeo=P{Ck=Np&Rzg2bRO!eHA*9U3$zzbCwh{IRM`5-B1^;FOHQ*F>}miFtW0+fp(o<8?lzVbl7 zc1^`e+FXgyhegR~IhWr8tKV~O6cryXsY-S1#_@0|<|3y%RpBrRl=;~!l z6(!Cuki;~Dst5Nz`nIza@|y~$-FLO8K-19ZV;K{9`2heq&hHQDk_~ux-1&ftI^5!s zr5OpE;Fn!h<#gfYMcS z#X(u=C8>%oJZpr`>nDaEofTezF;J{%~9xF5m`(3+LL3Dui!AF|>@diUavL6kA_ zsT!|!-lcfVSpIz%5&ni!6sWy6DhN%4Gz)|^{mOhs$aHSET^q>Q+aj}6=v0*YK_rMD z>A#r$v~@n?&_=6Tq~cb{pAgfy_>*CE9+3m~Z6I)dN4Xty{B`(HJj|xG0IEb?LG_21 zH$eO~xE8TYCq^>9TuPz~i|uaaC3hG*&sq^>naE?Xi^biax%5rv=w%q$kB2V{T;9S; z$}<2;EryPJpo3puUL|-vvTp&f0WGSQyq&m0Kxzpp0xVl%BJT1FAsf%@bm6~!-|*0s zKD7wqIN3n#p~(!f?rzvoTKoFal#sCpxB>cleN1xCqc~>H`3zwdW=^l7#+9$t37`xD zmRncP+nj00FAeJP9CV{8;YV|J#Tw6eky*OCJFe~2t*EF@SV>5mw!QYng^CAh&)LA7 zQ_F#=Xbi=7I#6WJo2T~k`;PnC9U{q;jXXqPG%u)qpeGv_wB^0c0eIt_lPq~9@yfxq z%4}f7(kSkT1`&t@EEw{*mbPQR`T#M0j8}bNQ}FWhzlpoS zZYIEbYu6u?dL8GFbxtzZ(lTbZ45FfF-&xW7Rd%3QvvTexRWHfp!{{d6$&*=pvqgz!?z5R%PsDGp@SV)u@vhM^FG|IGHK+ za-#&o%(x-Cy0g@#AzF6fo!r92PDWnnZq|*DJ82yiJv~~%ldoIBpBHp%ww@jFyHr;# zLKcQ#U=1mD$lhGfE-0MO7<*k<+2lCZBFM@DF^5|1tr^PpsUlYKFt!b)wgG7?;ql3; zck60CI4x0-hed!BpF0h*l|RI~SKUJ%z5zZgmh$ywo=l>@K~9`=suDxx|wGNbmxz(*v>*%kIb zy(qTnzdV~DTNC)ARdv$UswU{6#>Si_znV`GMVavRt;s%ev%Z9sUgheAynJ0rS-+Z1 z238oZSgl^W;Fnul-)da@OB^L7B=7?ZrKP30m#NhQRm36%1%*-9&v6ZM;N?}lWSfbtpw)3mTaCJ0wfmxn5ctI|6N9Pi`)mz;eV;u%o%WDUqF?=z z5*oRdcIQsw-MdA%+IH64k$m;Dv$ZQ%Cv5TyrVG@sMt^^vs+cX7x$>!IavZHzPYA=LFN0gM5EOr+KnWZUT zKI7<^ebjv@m$bg@{5pKsouh76b(uLA+cFOvy_9n1k%bUGfL1YSYG~-up&Sg#;7hgK zqf6JmQG@L+-X$%29#{4l!ETPr1>^g?-G(d86fd@Rg$V}b(uS)F?%mV8#>}ZU<&c74 zWtLh$8EZMjENXzXeqtX&XPvO@XBG=sNT!$-oDo^9VCLAL)oXk8u}#cW&*QTv6h{^< ze%dRq$^dGMSI+JPVQ_x)dpI(|j@8qP^z!yLv$2`Q+*F13)adHzDLJ*HIR%cbyycz2 zRl5zAId|n61<+r9J97SYcxdLW@G@1O&$0Oh1>H5l!JNDbS_z`3JCqc()$8FaVXhZmMLt1XuoTP_Eg(5u%A=@z10Jv}b8 zp^B!KmhQUi>`LAf`qVi6I~ZbNnfq}5>9nJH`T4ru6U|@w8z~tW;+NtEfzG#ae~?b$ zB|4c#zBUM&(?7gay3o9zYNUTh{@h}{?c@B!NZ3- z@jfj|y}5aL5mXJ6MAeZCSyna15NV5iO6Jt|l z0LE{o{g0Sq_pj0_8i?FDmrIw9m0-Ezr~B5KU!OnB!^7j;TWFJ+(CEap>KEg%)Kchk6b?O%%nlQ=lt!$DTgKo?My8j!XR|+P81twyF-SkgZ<%#7#MI z?%X{;`iI8`$2U#mtBl?k+EkgEnvSWao{ron*OPBn(AC$MD{E7^67A45@XYm@_ap(j z&mg|^Vw*rq2FARKNbh;!zi=!^FGS@NCnx9E{Cr93;burMdM}Tuv#T|g}RHqbjDk>~} zeSHUNf@|ud_;T)@4Eu6FQg)u7{l*h+dHel(2nN63L#+RC7I zLAX`XDkEXRghNLAb{4_FEW6Dw<}kHJWyxeCZcv-Tz`~V#|NaT;YAZ4E_U-J-N;PU6 zxB@E#hw7ENEJ-OTB_hqbCFSr*n@XServyoq?gI1mXlC>qSTN;pRUwf7`ksDg`@b{_ z{a;K?|81ftXj|)ab7$u~X3hhYzpt^lzJV{{e;`;xIH(Aao(i$xGF<7~)YN1Q(;1#j zZEXt|S}|?JBLD&0eU#T8QGLTRXOe{To;)%1_xE>kahXqN+a89HS)DIk>Z&HKL+WCs z8Uec4QI<&Kh`lzE{k%;cE$CHR+LRCIja)791W z69WV5_3c6PIu~N3c{`gD#0+{2g4aw=-#L=k5+fxpZs_gpy*mNHD#?WaLf@7LFBibz z#%QcLRejh%^!+e$nIa1IMVem)~q{U~SC_l!m~ufryZYNZA+m4{rW{8?Aqu zod4S}@PDWkwM#}u1{N1H*t5{Z!3jA2($aEsdkm9|)BsSsVUvXv2;T5qq79#QsK51< zp9zbDZFTHmu|t@E|Jbf!?>6=72Y@y12OO>a{VO1N{D#`x`krV$z1Y^%k*(KV;XP>* zRJ67h(B0cBxcdCrGo^E?h)_LgftUtT81M+-I;fJRL0Zc_Tkak|#J2`PZU#Y|Y#T6@ z7$f%+J|zxFR`hne`L3y{0~Y@)W20i3S5ClM+ViEmVDmZ>#g_hK77t%%I7U$rEx%^l z|NL9V|Hp{PODigN5*b0}>rY>=3=vrYh_(7X0sQZNlliarv91!G}B_Q7;B7# z6w#1vY!RZyE)wH8KELPt`(4jCx>F^ z^$)=M`Y6gNoRm9x0_71H=ofHCUf%mZTgdtPyUVBfTlvFY*!}dZ0|3~I+5I4*LhgzK zaM&AtQOo@LBl?J!pM^y(V@WE7LjrN3{7g#5Eq$g0I|(D5lhH;zHGBSg@3)`j5o@A> zqV~;)GACs!J~na;j1UDc)-d1U*OKGUa2_(@voY`fj6gK)5s^KV&)mbcM@I)cwdHui zBoJAX6VNvr7NKFW{Z_L5hMrzu>ex_NS%$GR-vI#p^m%Cr05n%kpp||+EbuSezjN8r zw=Tk1k0M1e+_5yW-a7=3eU5}kg$PoUX=)0ceG1*)z7{nWdI?NSk~*_VZK6dxiHOB4 zPdKQOvB`aNhtcvDN6&G7&GXSWzN(C+4ORILa54dWEOyLcvp*`GKoDdo2!?ZM;)+*) zIA)jN>lS>jLnDntLdLxNMumJlhTE{K+Iad9+Tej+)J9BN#=t-_jGreV!=rELs6odN z%}U|1v2^bSx699g!|JOktBgNiH}8NW$L*=tXoo>>f%_$F6Y|BSyv2x)@=?}-XUP?A zNlL-E(;CMBm={#*D=ztJw?*1>mM#AR+wAWd($q)N>Z)H$_I{YN>CaiIu)5DjsC9MhXnZJ26`vG zrl&jIxRQu>G&oKl)jlS3pI_G50KjMHODbNj=y+>2aoOS!M6cU|1NJR5cC5kU%@KUj zq#U4d)`mRH4a0o+bZ^v4XYFMEPn;Q2^tz_!=-I5Yy#T+i5LziZ3p+}62UzOvcJftScpKOV7?q-viM$A&m%41iGR`U8i^nrmIl zzQxad5Lvaw*z%L#;)luwyAuiN?>ET&( zAlLqZaJe*1G{QU~{^joT*!Xw_ufY%LZr&?`T{uMV)jz@5X~WrOZf_|>bb>5E9q_3| z+f*BW`1m^K+lR9%h-y2B+zOu@CC@av1OUCA&rRIu%gYn;H^PyA?Us({j}Oq7)Q?(N z3}Tp=*?9rV&eW7R_?q;>jP&jz4eL3R2%CA8p|!QC^CRR`prwTXZx2i9W~o^Up6(7N z)UK@ZQ@Xf>rM-uxlm414IWB_$J_(76UewkkhRxQ|yn_Jk+5hQh$q6eI>FE%L3HVuf z7Fs9vl_+|pj%|2yj?V)hDDR$?6QkIk^$)!GYt!XR(gt4U)I#e&Y{VWhEe23%@f^D zae;OE>m24qPBOsPejl|Ts<-~oQIR7N9Dt06=n_Van0H#Q%-xLe=v%pjE!)e@&JACpemCqiK5Cd2TI ztHiKnD--ik8HtU2-AF&QO%}|X)%W7ibDzzR$>^BYObO#P)R*sAt5K;qsrX_|0qCC* zo6V60qBo5wdsaQlyU;~Ll8)fTPjmdcry=#x& z^D2=bi4L_fRs3iTqW)6;P`tlt%%^X!z-bd8H`|Mbi8I~xkdW&A4Dq(a%G4LFN{#^y z_aEWqisg-Awd<9guZ>7x;jfv9he#B*ED*1 z>EVYD#8P{R1aMKmzjWGNJ+V;>vEk4dNxdgBef{gkbs84mI#fCo^@nZvbHVN2#>U^) z+%ZVMOriw#%Q5WN^YaG)KHsCK6}QHiy+lsE&e;#_w6t#r_S;i+#Rf6RiwF7vs@mDP zBc0*uO65`+z)Y$eg3|l|_gM-8+q!ob2y0&|UaT(c$ZfAjz20zS=f$77zND?l1)}5F zLG-M~j#=#rh9*;=#I7lFS5!9Vob1#T>={&NF}6u7GuB%_qLIeB?d{VywY0Ti;DP7z zfD3iHbGY5Y5@u}AZBD9?uU^knbR0Jg!=%J-3lX`WkDI93Hp0RU*1moKeDxnkn2OX&x>-H>uw6pa&qECAswRZvy=^n>iUBZaF!{STUaVjSfc$If;2ClBd7!e~w zP=M<=H2V#`g5m`D-ny#53FgG83KMWb53Rt)(V69{#tsIQ-S1UI)TO0eRf`WBK$d@h z%d*meN2hj}gFENQz)9D$u*R&=*ReF|)opgX_O)x&?#EQM1-<52$eiG_ftS!B zMq;B8AK-rfztZ**aY-GR0yZzt>l;9t$04qF{GwAkGO2N5Ll~q=ISc;#_s{qmSDZ`q zgox^qsTr7Ms5{Fmon0ACG1gl#(MTRtiLHTGpWdajSJc??s2daPE3ZjGUNkfh28Uqo z4jDr)G|C%g9uYYWbE`f{7WDpX73w_5P!H2zS~Bf6bRmqR zp6Ki*t1B`9Y+y$(2vM8{fsDjp{f=b%BAvitx^-9B-+cmM0Mu?lU2$`k6X1c3taN z8(6}fs3F(J43tB6IaIS-0kNl+ONjXSiT5+SfC54@NhkRMChx)WGENH7&2!_%bXZ1< znB{o{QCVwe zpM}Ikm|YHVw916UR8}s6LxhE(!dvJS<-Zi(h9~b6d^eF?dj*LPRSo*E6|3Nz8_1}q zD|wui1d$I@PzU+5*heb+p-9nq4Dz+eKFV#ek&8F!5+1@F_%ZeE3Z;lzI^Uu=8FZsU zh7XrmH$MPQJp(VP<4t5UN|`k9D97XwgMM^8(Ka)KWq0^~uG}t3@6`7`j-e|p9w!4H z{<227&a9(weWS)c7bgoEXTKPP&dI#+b)=!kL-@e0&h}KQ`nn#i3MN496R@FuKKifU z8o!BY1ZOp_XuK@AWdtd7W6A9-J1YEN?8zT>i<=kR8X0{5PUf&*P&&PDcwmm24MmR}HTLK`K|@F55{MTFztDnmSi;EZ=T)i!9rj9SG&z;RfPm~OHt>WZ9Byn4;ZZHFqX0V(noLT3ZCi+&O+HrE3)AG zlZ0jHLr2#Zx+app7XV5^@d@md{_JO6QpO<~HrlPUgRxUD$SAg&u3{MM6y0-{vy+o- zeNpxODGX_&w2+MEwB;jv~ZBx^a z3pY8Z5(X>Z6Mv|PJw6eFS8keye8H}sxCTF$nS)jSAp?S(# zc=pxQP-D4FLu=_0nj;Db{K8eYEL&#xPZc@LDIA=ggZw8Li$aoMvBbAAow4OUI~qpv z6vd8d8Un#WSA!MXoqVlF?uaO7Bp6FbO6TApUWn`1?$fOJHe;ZBFC!`hzJ8nogv-ks z*}T>X{k9*bNVHV$$(>P~Dsm39hcG5j2UX!Cn{?>#o3#h3y5p0{-cskg1L?3JE)1p? zZSCI+aeHWRaN6UmQTAzTp0CQm#pVt^rN7*lbdCM?qmZ+S@{wn)7d!r&eCw)RX7Jwe?tn&hn2L%-m8?`<85PbuU4ug zwfY*BQ@(sdd|>1L9mcp;Qj}5@y#aIBQ=y}R~t-4)bUKSwSBDsOo#{VDXKBqf!s3s#Zn}lxqp94+V2jgy52ROi114 zOoYwuT9WzegNN=7h)A#}X58Qd-q~2Q$mC{;%KwRpl(8cl;mSgzX_V z$9X@CCyx6duDZf)hzwhe$z2TBLk(>lQ+*oSjhg*p+39lYtGu{QM%hTd7VJ9xBm#I| zn@js`eXuQ?5ylI7XJ z|D!Lnj0<1u!U;U``yC&`75uOH${eD?Rvk-9j_fvL9WK?O@L;@Sh7Ax*L`#SJt;sW2 zn>-SdRq|FW9bnIbF-V|v{vT0Gjb<^`PoOI`JtR1v>o2m*?o!9c!oK&Uj?|H^O+s+v zq+W3E;1I)pF*V)tQf&}ShoG0Q5K_fO&U(yiB_~zpNS=0f>6}>|*W!;tJ%SJScNeAy z{wk*P1%0KnYZ~6I2rf}_y9@Je5&G)Lcoai-ZiE)h5%pux?92^9i`X4L4#0yzqp46| zK2jy8ZuAsePoI>OD`q|ds|_l;Vf%9EiqUQ+@=D>Jy@+2YgHzsw*nLwxVkqkFczi;~ z*B0aoqrAK>=Tweg&geRbe-Ed5 z=hgaXDuX^&?_Zd|EsGabC%We;H~wb2BPt0r)7IvW!pb5l_^tNZWXDW2H1r$?aMFs~ zM_rzxDt1-hD0K2H{9PyS=yOg06eP<6$}2jJRB&W=B*eQubhQfnBVo~8ZUT4-IhF7&SE3unxw@G1|3!{L zV1tDhP^6rliA^yiab4n8I1L+_mgoC7muSZX_Xax)Sj_AzAt`$irE(#kT(x@LdKEb? z4<~tUZ6t*HXTiYisUF)trPU`&IL>@8ODNRfD)6b1(B=@p6##HyNTX z7N=h6fJ-}#TZz355f>b|@s`E_4^D@CI_tK+)J8IUHn)-+bR4v|Q-2OpdtaCqUFO=$ zPBDWCiLd|tbaks)vm|!5m(9=mjTFc^6J#0`6hvIUs2vnkY1135&3EKO zWto;VAGIc6W)*s($fD@7XJ4_kl?FqDvBaHoF2crJj`pprun;! zOQJx~NKpT6WzM;-$^|xgj<@~!+KK#Ut}i;}jE%O-;#XG#MKnGQ^hjDZunNdKK_h<(%k5HR z7uBMQ3UdVog=6yaRU$_{AISp$9JU{$m`_KB1sfUhz+v{Uxmo&C} zgHK4=ol(h$wkzif;lF46?V7Mpp>pEl7rbfYFE3r%PCVmifDon+RT@mTB|nr% z5>_>ByC*VP)g|pUT3-{p_pgGCg-dR=Qx9wdzrEjI_gFY^X+qm5O9>6F3LMDmo(=lM zk8h6S_L`-VLgDnhb#D@37#NFq;ft3ey0|n0PuNu(!v<9%&8jUeEpsDvRsR0|INkVK z$~iWaii%}=db%=WFjqY+a4cdSyEM^~kerm}%8jgGuhnBL8`AL$tx zhdS@zr8;udEc3#b8O@mUfv6j2LKlgK%H!_@4l;pcc> zDJAbArH``(s9VNZEY<_Yh3s(UWk+KqOt~02%F7cbfIIivRw8dBSDV^9K#jT zQd3>j2&w!hta#==KhgcZI@?2jg1Xuu?+`kBl%`P7I_L$Q#_s;582Ia_b!V=+?cm_x zhfkmSAZl@K{%>EoeyqR^{vE;iJ(Hyo)c~`=Ti5^7(q!9O_XTdKfg6k)Be&CXa!MTD zgbvAn^g7VtPM>~4$L z?y;L+_t*|2#Cx>f8e-`ypC-kG4^R}`yK=vz9KK)jclY5ZqcJC5} zFX<6}EsT{xYZ7BA5g6B8}$?6#VtEG;eLG)@A?JM6d5ABHE3N*HbJ+w=7+ zm=dd(=b2ddK41AmdiLzc#?s_|Lsm)=tOMcmlgS!=Fv1n#zn4R08DO}T87$VoU1g8{ zQhU$-(h=^RF|$kRB&`_MFPjZevV}mO$H7ksT>1ihj5G}I={xY$`u|`4pY#J1QWh33 zU~xGnEnP0cg6D?f5T9`-sBn2@#k&oR^YQ@{xLj)YqPY0PNHEQN7cT4^U_2m>Tda>t zGFbbTdTHn$lA`PE%?A8}YHDfN1pEo~J54+sBH6{P$m8${TO-mz+QSToRPzgb6Gp3=gZr_$HmKj0|q} zIO2-dK5OcmP8;)gyYl&E+mDF{N_vNR^ZT@J>m5tTt2Z%e-o+~tvTN^&4??xL%haEe zLabG%L^y};E$t6bt~)2?8qR5?B_S2+8wj2xd@`=UnLWI4fuoa!{PEp|@{_TD+K%TZ z=pLR;uU@m7=y?_lPR}wfc55soRj-aqn_600$^t-*XC*QLfE&tzlcb95SYl81f8&s2 za21gxhvwFhq>b`No&vXvGVt$+=Rtm0{h2vJ627)}M7?xC3AnqH2TI8G_p1ZNz*0e# z5YSTZOtWwOIrU>?@w(3nRtab|EQ%Rt{(5Q;w(HPbra#`T zWcFvI+6yM0J(vc+6asFq==_EZ09hw5JX5f7Ewl0xW)OCzGbhI!k+nRo{--!T+GxTa zu5Bq z>I5zUe2l2*?_vOI9lz=+5ii`MCuO?{HNVl-L@7j+#&H!F!H#RJfOO;St!07j zFYhX#eGc}3fXmo|>kGA>?X5*j3dsoIgw~Jkeo?cwF+gNGtY)g_rLX4EI!c8YxVG}` z$mZ`JZzVJMP^@NqJ2}l&U&(IhA`)mhb*6~YMr>QP(u!pfj3W7_c%rLn5@)7{Gm4AK zkqB^RXmrd#iBi&<&cevnNVysl-5~N1I+Qg<_AwhbF@qK0KHUFy1iNGljXqqwr{g#qqvSuPB=Hi6h5yNHY%YB?$Ekm}?DQUnbn;8L)|_tKU3 z2Z((j=sW^A%G6=Z8aMC81cOs|G!&w4xyTHsukNj81X%L)>8hj>XMQM;H zBQ1g0oc}~z(3S^w*03PZpMu5RMIFNu@NZ;i0V6NaU+F4?F>AND>ow^BXt&54t|>D$ z|JWU}>s3c=D`q1Be?!I|!LS`tP`a=}TUc`Zj3#^)LkQk1%aki!9nM-?>UO^;%`4H`@JW;(Z}x7|}X zM-wufTSMR#L)26)D^|11)6?XsD9jC_UXnb;kg31T1if8QmbY~Y<8Tz4iEmf+6-+|B zRp&aCT>0mPpT5J`i1#7?bUAQM#!3c4cXMKU*bu3$?~0DnJ6_v9Xbh-{{ifIf8SF07*`(ioQs8Ml~G{AQJ+4I zyYMV}Yc?2<7o%Y7Ly>M=*RMNCGG8+SJWgGy=u4Wi2FW*35o_hlZd_@q7|o3sJ`Oko zkYBV%2tW3QpHUVD?{TK+FEvQ0uO_2Z9|D|6irSS8`uVwTl(WPS$c8SH3D@usn4I%K z_9Jn?+_PI=Z+q31c-dE238?-cF_GUtHL=R1i2Q>|#-s1ZXZZ6pTJYdSAt=S&JN2^ScPQm~9i z{5bPnVFas&PVX4e3qyuXz(qjK)bH1oxvf9^jD--S5gR{$uDiw#soz9#fm(45tBtbl z*sI0SBUKd{txaag{Jg(uy*h(Ae|I9F%3Hok75Fpi^MWR})yAo%{%cXnc}OHu5DRC> zO!@S3W;wB0^MoYW`>8OY%DW`xxjv>6@=}PnxQ==4r^P;UX$DQXxtUk%VZ*OPWslsI zZWJ*Ns5J9}dRb|V-wc0&wI&4}62_0))zPK0#(7Y4JUt)Ux}o+IcIB>z>Q&b5Z#P** zo?Ib7e9Dr#d~O|HgaRaIaG*(C!UpgsqSbj4G^a`T;^Koo5Qi|^tG-b8~--#DqMORaLG=|>u;=<~epRe@2 z&<|b@rHQ$*VL*6fsU<-iga1C}EYZBb6Zq<_eJ9U!k@JnAHMG7yJ7lXtIml>u#1FV% z`xB?*1vP^ti#eJ{(DPFKd$P%9L%`ZlsCrI>rIA zMJ04oHLd5zDBipl+!%0pu&K$^N{RsPkaK}rcHl(niwZ?&{yzrLH42^q=0_w6H-caMpESwu4=y>6Tu&Vsnyspjp9;d)?k1W955x2aU{L@8Qsdyfh4Ro&o%eleX)MU0u9IUqjgedpQ|r$QqN;{#1JVWx%H>1Yxd(>BaGjp5#l)9#=P`gNey1=GCoQJ`f~g|FDNau z(e+3Su5n497S`?r%%<-in@lvCU<;I;l3_An*nQQ*cKqc*)C>()P-LRwmS+jm9bMfa zv)#jnOs=tF|aiB{Z zmsS6{s{?V9on$*aO!nwOtNX*%2_z%jOnWlP0r-H z9!Ija`73RhupP!ny$^wkPxW=DXOd*T$OI2oFaz|=UvG1C)5HoKRf#&-lTp(J7f<^WwBosmO!3 zP+T|xe#N(fMGbz6>r*q5AV20AC*`S;JuWX zdnsu=aL}8#Ul;>|220XR%{~Zi8u@pEtO38(_>)f27oNkMH=^5NcHV`=)8%IcxCg?mh;{``$WxE7#NMB2} z;R@VrU(z=9hBi z`>#x|W1ow&25U1Zf$&1I31sX!vN#3p<_u}bKvK+kRFX^B1;rln9Nz!=(@S!}Wpawr z%wzHJM0v6OdJdumPw_#q8btnGUY|HE)L^arqei6B2R_zjKvs9@CW1o-`)! zMYD-<#VC)v2=;$`#y@lLiq8D7H>Jh?LuQw>?e`R_jGDAv5$H9T*`IeJ4|h!F*~Rn-Yi_9i@@zqNg>aFChxnH z9GA(1UbY?BK4395@#Id>Leo!cTTYKJPmDg)uU#uU*@nEygaPF)gL2pr<+)I9Ckgft zYyA;1Y#2UQW!*0k+%EC3$9_3i;Nwa`Q`PLiP0OWma;^cn{1!28-7*Fr8A~j(gUfXu zQdqXKr-vPYLb_+2;eq{qZ*DG+@Pq><^cg%pF*ZnKZXkGTOg47Bu6-&Q5&r1w9qi0S zELqIMN0YQ$6428Jt&{9}632rlym=28foxgSjUB$8fPbkJGbC>!Rc@q@uE=1`&xq$+9v`b}uTMhA-)0Ay*RCFm6p~Izq8RdO z%OJGP7Y0n+EBbT7Xkw&DML64q-t%gndZ`Kz##p{sMhc{@eS3MHbBoT#0RoN)CPGz_ zC>u991+#9Wtj2h~>a}8pr7I+EIHM&&O&6D!epDPy>@0~_E6{64TOTLnQ4Ep&dz1h@ zW5v@Wf?9*lWaD;$#`EIdng)!Js zIhu)p=b&|<_>MlYeX`Q4OYB=`!2p%s#)c~2iug2X6{ovU4)b>c5rso1<2P0l^fANN zd192DlJ8&oMeCqO-GnUkz;lZ+h}xZrvPVTGDKfdKcclh4gj)CI!Vr#Wlakp5RdZL^ zn&wt>9U@=dn;yCwCcmu6L$+IvB$SZKCrHnp`Bmgt}@VdVE_)++jbhbwSFHXi$*1*YQAuELqYyr2u3wtBM=Ie+hP3RRF3_nxky!f zdt6t>D6aNY<>!^}W1L%V+$_KlyTj2f7JXy&bu{Jjg6m33(@l1f@$oQ~^Z3gkNY{0r z>-~eJeWH-6Nw9Ad4YTO$WkXo$_)7w}@n`%d#xZqqS^lHafSujxFpHiH0zerD+Z0ZD zTE+G2*)(RHDg-m5kANYEa_ggfMhtl|E}dZIyK~TT@DCl2Nnv0Ia7B}o_>voh`^!!e zXT_l4a2`JDOlhTZ2kcV|A3cTsz2ku#pA8uTR;Js$4Qm%_PMo zD2Dq2+S_OR8(cDek2B??V5Pq6{&pa?U$U|zD|p?WJEt;H3Is&-?zYB7CtYUE&{e*T4?I;hnPw zH7wKu&F2TYym`0bcK|m(GCuY;%HS&=pS+!Ckk+{^3S4ip1A5l06IiIn>d%an@xd8GZ8dqj zKsPGCff=U;6*fKVusZ&H7@mC}ey0j4XlRWzSUn$hkbx+JAU(W)4+bXtjzsj2AH=?X zi-7v}`r9m&qfAzv!k9Kca;v4dT;suS_BcF(uJcG$ucglzL38Uz)U|C{DYSWI>%|3C zM{io2s;f)sQtp|31A4?r+yt2hp{ELI;gNX19&lbF90yb)*DonD}5(;6`Ac_fr$-8?It&zFKQ1Zx zDgCs^%39O5`tdT4$rg439xuu05xRfwWi+|3&x^7CV?o32%egrs1#h1jp)UpwUt1^w zBh`+1A3rRfcQCNECGhUs=iKI&>ZlnyKkpE@I&8l&`Bc8Y3VV6%UWe@7z^!1$l(3rr zYH_NnYtXNyFp__fKrC))WOd2K;{I(zLl6Zg-Ye=Y7W4m?wxeA|j$X z)!Fms2~t&+a>kkKP3oVFHA@+sa@LK-Ol*7di;FMX+S>Zjss~{|y`(vmZDFu!%d17h z4UXSmcttux-T&$rH?z;5KkK8>z2C>)d@j6Fw4hOX>)qpx`J%F;u?Vl(k3Xoka$B5c zNRTZlC56tp5J`puCA@f1w)tmmVYJTU^+M?zWtosSYhn@-MUI1|=1oBjVg-1-HWrIj z6=Wc4VVPm}*WbG&u{b+%&+-{4>6*LlKR)wfD~WraaXQEvJE#j759RN}=ZaaB-!o>lhO_wzhSVGljUZxfE<&)Hdq3 zP_nlR_u75hmww_vFsorV016h25;k1(X#l{faJX}V3r&{?`}gm67_YD6;NWo5b??sB zdD>rLqw6)_kIq2(H2SfkvX?$KBJ8`t~1jLX7U=-rgKt z=eB!q69SobygL@i#1jYs*dHUR>q#XcxcE!y*=_=8Uz%!-RB@wf z!Fi#{V?GllHf_&`xu&x^lH?sBKsP>@1?~TV^7PB7WTD1g(&&9<+p+RB?$XF}BpT(t zSnC%msC~_Hl}l?y)}q$v{A11vp?9Zsbadu>bHZL#RyylO)RD&7L?k41r>Ca}88v}_ zR77EVfB37MhD~BU>D054La3{0s;*bhojWHZip*39-UnC_)UMueZ|Bidt&pu4>8AV?-0^0MDsW>cB_2g9}Cm zF8UtdJ{_5!optO=Rhb{IwC6N=2~D8pH6LGCSSXef`Q*8-Qo02=w3V zr$;p*AZmv>_tOI_$pI=;bqQs<|nwgo6RXYyOSK9ZC zJP&d3uwbm#G*t_U+NGXs8dgUfi8iNi{r)*^-WX8V zoqjqeFVjySBAzIEdiHC3T&hOk>+TntWg3ASlG4(cF<6HR?cVd{Dhc!8{Aa+H-~PY)_+X>T8Eus*lgDUcTo}2**wDx*wM4(<9HOG zo?iU+?YUn|u%?j#iY=UgniU_W0eCpJSj22ObY=7@9j7bx(gcmkVZf)^uw=V`xn@b zL|I}EB3#iB$t>9Fg2TOmO?*H)%LkVu2=mVW^h46@U$W+~WLxl3v!US0}{9#phZg_HBIO4$e0cq;qy?drsRzY3CFyFl}Cpt-?)qLq$teA)iCo6KP?%Yfei*y8{~(Txx5!vo6E~Rnq{&#h<70ute!*AS-Srb_ptEU z19k9DQ~#gYTJrzF8}}l diff --git a/dev/_images/plotting-7.png b/dev/_images/plotting-7.png index 378d9cfda62683a99c6eb005865b9f03951e5092..5bdbdb02e910f859e703044e8426d898e2ca22d8 100644 GIT binary patch literal 17873 zcmbWfbyQYi^ESGP2axXWMkzt0L%Kx3qFX>f>5%Sjlu$xIEE)u)yA(l0N<}~fQIL?7 z{AT;U>#Xmb^ZVmF$F*F#c=mJeJLbM-=9+7W)7R4=A!H;(5QIcaQ`Hbbu;IU0p#*sF z&u8{e?eLF`mzt5+Rabj2Uu%zB$YpCUHy2kgm)kb%KDRtPZ@b9>6%~e?-^geYuCH* zHhi`Hd0KV-F_hS0O3L_`u!#7v<1eVCURNY?wx0AZFI{;#RrQ!CHe8cNA6J00m0Ky4 zT-#sdN$OYorQi^D<5U~$!Q4ji_4Rvy_C-AzzOF>&_^!$CF-LK0QO3r`4wUh$;j?pc za(3Hd!9QXuf{3cBs(mab6h0%aM#w2BayV!actE@dTS-;bF4_ozuMLqCArus83^xCd zFAXHBsjJ5)E2)N8A>=vLpFWw4Qp9SK|DO-=KfTpXHQ)c204^S$a-lxEv~=Un=Brm1 zw%2Fb=I7^Q6B4>#Tz&Rwo0(#C2j0n$cDUZo7O=ObrlizClcKmgWt%M@aB(^*EcP1TzkjcI?0JEaX?NtK4GolD|3VkJW#OxveC0U5kBgEw#AMl>`?esq#R zlnV7bW@p(N8yh79lVcM{vYN$H@0)YT;2~TBNW!lDeEGX)27ZN?yr?-dE{2>0I$n4< z!B&B%X(xrDW89b+aj5dM%v|P25}zPn=t{%5u~ssOR5dunWP*c(VS3>=N->CLdgPZc zX8VVSvm1@hIkLXOFfY@P)!)BK>e*D6?jBbs6u9s0d?3*CNHd@g<(OY{tFG;7D#pyE z;uf8|=jX?M@gnWpOd%Yk%)FVFF$u4*u<+kxW4N`9d@ryG`()Bn&I`+sqEpUv;#rH^ zyySmdNRRefT(S!HkZp?mgpBBVvh14UF}vk!Hx621v)GLdx1+<^)4p^b9g~oeq8E!|G&zGNU&7j z)pRgu#^C*+?bFv5ZQ&VagU<;=D{Dz8!_BMZ>!`2q2*KniC}z@MM$@{;nuqUO(e2B8 zj!pK&6rV*pdZn=*dix)F)#$@Hau%8X*&5`$;Jou%WI}4~xIK52Ce*;dqN-Zodd5JH z5H8i9`ZY&|vX9z{$$uzW7SF2RL{`f`zAkR&Oa6Y1v$;&qiy20Flx}K~(zB}lWpsv! zbb_{M!K`~`N1o17x8#q8n8k^-0fF&Vu(R_um{k}sQvi;Qt(A8p>U6fEb? zhbQCn{R?Wb8(vD1t{S866>lAh5ai3}w{#LoCN7HRoHB$I6b6r0<*vrV{(WIualUr- z^d!xIE;PXZK&j-Kn;yVQdXj|3pTcWqN0iP(iA{)~l##7lHj_`DY|56z<^Syd`@au) zSLFg&Bf4kie>w`u43jW;VECvQ)^MWpq`upUIFanK%b@EUEIp$GSTuBZ9Vk3E1Q->xtyP zvM!p!N*S5|HqQO_#II_OMx>B+H+EDiE_sZ%h94n}!lpXdFRW?9$m(UqC#$HcdPP}| z+%JM3?Cnj^@3fv~WvF2xp@(3bCD*LH4fB`zVUusBzC}N|jJ4tRs_(s<@2ZS1Ywz`> ze;b4K+G{=Jg&=BcF5s+mmlyC`am!@;Izz##nZJ9jpDx;6N1`?SJ9>vHOEdm(Xr-eE zXSej-=RY3_j%%Z*Wqiw9D*dW}3@JdpbmPonh_o>cf@Ht{@l7D}Iy14Rs%p47W43Ts zz^MpdGdB6p#aLEGJ{K8-$R^(Me*->cH1#qnFpG7&^7jjTd-~tEO(UA@S%MXexlt>~ zc~Sm?=ed((XOBW~P2=9FM~xt|*R$VcSl;6#Ob+V|FVh~1h|&%_v{{rmIHfeEMfgmK z&^r)Qdp6bl2H(HQ<+Q~6uU;1E9=MwiU`EaI4Rp~f9=G#u2 zg}Y&AiX6ne?(83AbWZ-R^6W=0_%%Cvnbt@Nt$Q0jHGOlUzN7AUAG#2QYQN|>Zk6D# zxZCq}TMWgG0o_#{5f$s}Tx;v)VcG)iogrBR^$2p>yq^B=fD6lxj>R3qiPvH0%ZNhT zONG8gm{L+^#z{O1$pR5c| z-3{_U5kxmWW3M5k1DCL4ncsEF^hNanfd~#cg~5+B?lb48w&twL`=0ZQz+`h)i9(Y~ z2z~qgxJn)~zK9w}%^)pK##lc}yjOyLa_puL(WzO&DiP9w+Q7%ZH+U_M5_9+$;N%=A zG3*nw4D~ zeI`BCVpR7ujiyLB1$wh|Reg+ENbPUT?XKl7bB;xYRP@?`)yhpxvLSx75N*f|?X{Dg zG;cH5p4EMcY?F9gs%mDLV11{Nkr{y%7rQ(G*lOg-O@>ubuSwuT!}3fe=Ni^)Df;(h z4|at17q7*kw#e=I`AXK~vU&!xp1&#r3+P*(z*`bi#ygZtI^tCti;7{(hRUUKiFVdY zM;)by}^R1#}dDfj{2A6X%3lE3)4~oJw zxev7H6jgNZY|QfT8YAE^=GSc!>NNh0mW}^20kN^7G282g3Kz^>L`6{$*0WB>D80Bg z7uFWcUwWr+ckJKI`dz!=B``dBVZO8NspS4TWriT^ZHOz$M{Udv=A~O;(@q66F`k8n zXGJ@4@lVZdYA_w$os3*f{x(-k82+3^{oyZi#nU5k8(Z7aT8AsDYHHR$Ka?P$A3hi+ zGD;9yTU*D*$9JvGG-LR9(ksy$q$iv5nNxml9-vh3+4*U3h-BNXuk98}c$nk9>!x$- z=7?b|LyjfVGcq>Et|-n|_p_>8zD%<8?orJCzTcCQ66?Wqo@}{$VkRagsv5lMCF5H6 zQn}|kgP%&HD-cE^y1vY>xI|pny7&H<6n*OVE8v;CqKJ^tU%#AQH#K#=c|%xwqr59u z8e(5}clV9W&CUw*W?WvLbiQ)Elm~D>z3V&w-A@_VW#oZjn3j7mfBEgMN(XINZxauI z>A9N~JwbajF`=OdF|!o8PL{A5%n@cZx41aobjQky-NRG*Bbo;C-@kvi>Q83LmhnFO%H+-?OWTv9zwaF{ zlq=TN)#YVpYX;w79*#1^(p|P~iZ~TM{}+31(JpB|jdjXQZp4}yiDETDlPnJV} z<;s=7zl&MfQtq7hwRyJv$cd zPF#D>w@96(3}Im8lu5pn{qE*`T+oqKq2b(T9O-|TGR@dW6hHGU5AVZHfbXHF$m?lS zYp?r~q_?iKmp@TQLl!a0+dL9d_pgVIj#{|YNw(e!sqFvf`YykgsDl+v?k2N2m!g zPkRoFpK2u}4MzQgRVzh^FE1C!iTj5+ISPKb()qqvd_*rr>z|1*m%VfS zN?dym={Uvn7nB`9p?b+_x-+36>PnpCZ*)z9L`pYZHMU8Y!wdANi)t#2|1G}i#}K$bIws4E8z~YRQbddtX^qC7D7gFU{&cWtI58h~AwqqMS9M*- z9~J5ME7J6-u>)q1IV{F_%-Pw7$p-i(By%NB(<079G`xL(IhtEo55?Z7qA@nkbe2W( z(3W@hl*WGop|0#Z0D&svOg;a^t&MYPQGLv0BE143OL0#!A0@nE^(9f-?x z$NRo3n>}~!d=&{FE=jDP)@295l+OfRsH(d*zj8cn#ugeofD4fzWEtHPhEbcX5=9I2 z7+M5Lo}hg#vit1-(eOA65W`tS>T{ui@`c(sMDujX_EIob6>@afUzr`5gMpMiVOITz z{-?cRU$efh#9IlolgpHBB2d^tGmud zkazNpIt@)d+GKNy$}PGs1Ru6z6Ls7|W3`c9yjhkvY8jagxRexw=CwCc;IL3Qr7)LQ z?LU835XmwSpvk6Xi~ZANf8^DoiP}b!nyDVmLf~a8*7&^`lirk;x0|PZY`Uup_)J7J znXGd{VXCSgd+$zMj9xzQV;{EkqAu>n-oV$Zr+qCsLC5!})J|D<@#IogyetkBLb&da_Bi{?;6!?)1ua&24;A%#;{aWo&$-xo-~zf2&py&#qnKd zr!(NktegUovX5s+-R&YUk6C#4h(aHj#Hj^{NuP(vDb1)wk_hMkuroRqwHvUsPDm~m z0-W9C+6gtJ&_~=fJkO<M&hU%@ zG9o3}DE}#2qe$8Mr?gxREf%OT*FLyv5hEnfOHVtW>~;koCK7|0;~iqACvL?RoF1u# zh_guW(<4kP?hxaU>#1Y}d+LJ7t8$2F1?3|nwXICCppA{f8XiNSVDr#gJA$P-- z3p>g#bv}2Vu>M=fjE28M!!;4ojxM9NyL04vN1hq*(1)4x3TSqa9yARf0M(&tcM;8Q z{Mnh>hA%=$3+r*IM!sZtQK}52{T7~8PEe>ZMphpZo5NOHE$J0s?rw_Ee?6S%wN-w z?Uo?NT!tF;_ZA|l-0K|Z#0HzT6=cEj$gz~e;mgy8l8OeniBc0<&9CW>8VvMENJz{N z@)f8W8POLN7oWfNh8j^aF=0H|TTcN-r>D1f{^N_Q;Te?PEtSC`DS5rOLu7G99(#qd zOUfqxT8nxo&?{wX7C|7Qr=^u=`?cjBFfCHPYs}zM;}b-LFCS0YrdaQ;PG_ID#hWNI zj$jbCXFq@5z|Ev6Ipba%t>QCkYdHT|TUmk;#4B~W{fb(nn{V_Sx82KMzkXFYj&dHY zSe`oN?f1NWOH@))qN%OzB+n!oeB}3iagjq_-rUZth_ue_CNK9Hzd)ns%ly1xwh`NZ z*29A@2~TC4#dZ;q6fLBlc{4B&nvg*B)qh23`{x*b1RhCOGK*|#Ru;aitLyV|x+}{9 z)Pz8%aY;(vbh9Z+Hn=t(>fQf`f^G`q9wuD0kWCC5cfrAt;FbTGgguWm_FsM`<+Re$ z(#sR&OzG+A8=L)XwjZ8oy?3g+6P)yS>xWA5=&O^D6B9l*Fxuv`)K zI?{zNENEonE=6~J$Ba8xCbPX=5uz|w|78wDsnVjAoSHf^H2o*2p927{ zvRxw|KAi3JW3s}p)fYJLsW19MZLP9a;-}%`y`ysEWFz%wY$|#T)dvia-1_DL2B1ssC7Dp&Ln6@HWk!<6eq@&z0qwMS0&awdV_{XRvml_bW4&rR<|H9Ua1XnEgbQlrw2RRum7PJt0YgpZfpx?R+dM=^|$l zyIS*)>4=oRYL*0}(T|Qt%${JZu*l~ItqURSbZAFe)tt&JK4yVrfd}<&omxXwM4`xW zxcR8$dyI1mE&G4nQiLp^T*1|NQMnH|qm03abYU2!R0s9wOV6@41}k$}-hYHYb3Y0~ z`m!v8<6PU1Y5DYW$ywqCmIIHR83COha-Bw5W05}ziDf##G+ND6V<%%oDF8vT6@p}x zm6bP64%clbE6k1BgXLNM=CD-N)onJv^%ikaGDN*fXFLk5A?W7(LV+^l$IY{K7%t^W$jpsnu*-5MV>-GX0&RQODGR0udR! zoV4u^jEP59l6WzVwm-Ro)cVgm%i*w3)pB(gW`$k}USz>~Y6IXt1uv&bx%1_Vq)*^=c=LlabN5Edm41O&N9a-Lkec?2=8G|#|`YMMQU!|xDoyRyIsrfC+Dg9J4{~# z*5w6_YgA#1g$iHt@#Nc&nP_McE{c^|j0)G6>YsKL!?at1p}9dj<2N_{{J}d;>5J{`G@o|GdX{O;`i&ix)5WMMN|%UBU`J z-nrSb(M6=Gsi~x;6}OzNipQlz`So~__&%Z4nr85!!3wLZtM7|7$P(EUSr2!AN95(@p(ECcv@+w1 zpM%gEk0bZz$7Q(Vg%0YGP(O(Bb6qhm%gN|49k45EY-CVSP>4-V?gK-DG?en!hlUWM z2iRBKdlid&bP#p^j&ahAZ%1z2&nRU_GJ!|Gvke4D(Uk%P%_~>>zYk_?!X;X0ma>w64P?{R(g5ItWt{rw1y_=-|QU*DciKGuK8g-LK^8 z>)S_9w+EY@O1lI*glUH6or(OC>!L@es+}AdryyE-3-Y?j{~))?Oc>s4XO+zafH5EQ z9s9q<90I;SB39^?OK{UT)t7|%vA}coUzatJj&{icirmQ9p*$#+O+FpdKO5Sf^z*C? zX&qqykk_7jSF3zbHD5V#z}P=FM0|H8$B_BW%MPet5bSxusy@YGl%kiuvXbgNpmcRr zco!8Ot4RQfR)b_gSW*bv+r~ zDh6(aSUP(SDA#QN{q0N+aLQfcTwT^90wK2&FiL$-d2qXcN+?*>)VOyCyrrrgo;Dom z;+k&c>(BFHQi`MQ%d}OnjWY1ADC6%T2Yj{?6fX zR%lkASCn$6K*(Y;rUO^?uZ*>_E6Hw2mTmt}L$Cp=cLj=UIC#WL>t9<<+0Fq5>gW)) zw6vJ85dnbRy;~6*YgZI3YZ?#Lxo`ROY(4wZu*oc;m=0Ar-vHcI!Rz~zBhUUr^XIYi z@L<5t_9~uirabz;NBvgHV%MQcZE-34q6rEq7BY$8n#CL_HMX7$HQ+5~Xm)$-eHtWw!h0o?Q5#9_aRXn}SZK@JO z+ABUH7va9pXWf^`0D#?7TGj|MPs=6;!tg}l={YCHx_v8ISE37i>n&TPyX&(lRaK%x+2?UU zT5vc<7E)9X@GkxFg45=QJoCTvt~P#n9X&um#u1UtY3lJ@RFtQuurMo3s7P@@meqlK za@z}UU1nMiUw7#D{N5fn&wx;QZq|3KwFsrg-i_nd@;mOo#*egk`1%I#KVqjvsHn@` zyY`JpcAsWhn>wL2AZ`_i?C0HlFlbbLS0TA*L7xwT0Rxf5_|Vn|jFqSNN_X$Iq8OnnHauxF zzecR;FKwlMssvYA3EmnRr5!i97IzS&G$(-KmnIxw$X(4#33^@aYf0e`aZZQuQeH7= z5xDmPeKOUF6{fn~oYYTL4NgA;ir&7V5X0Fi2_p7OCA0XrZ8e+JzaG`0d!aO*B;@Bg zb{l1=TSn6$PY8>SgWXyxY4#$>G9ERnC@RyUs9?Ap3`8e1&74gI1iL zMUy&yw}S|Qr8x0+y>MS!c*i*z)_U!JC6zrXaaY{YS;3hCA;>%!-tWcTlLG!;`~bhG zR5I&8;wG$QHHX3)^@jnbBSmw{5$NV2CF4nc0b95IWK8CbVYmqxF1x&h(e*1+)PX&V z#dIpR*0&Ob^XlFR$us@2=e$MlaeB1z$9!gP&5B2clmVgzYy_C%n6@xs zqhNkI$RAgzuMU#uRE2}KZa#;!AT7@`u&kxJ<>R12c1`Vk9` zGrM687s?=hD_Su39FE%ncA93f$zi~HCCOii!T{<8}0IvIn z7qb|rAmSA@9T84Z?A~=VK+OF@1FBDH!t{HbtM;>`_5UktYoh!ZEXd9XStfLPK)HT7 zHq7Kjk7sGhmLZa+E8)E3=l=VQ5&whzk$qNu_a@5&99pDFJNw72EbMyp5$2#>Q<>oh zAHT&}7ZPlt?mH3mYvxy1NPJ>7l=i;DKUiKNMWl(@Y)dA;BIh2gj3 zGw1b7_jmOq``S6Sp9!~9Z>)(pfYBE@`>p&K8z_I?55xz>FKZDQ(m^=sx+X>f}*k&_OEEIOXaii5q0onyOm zrMvnIQMSAkJqU=O)mti6Qm)8v_v8CIZ82kBwF z3+L(x+2r370ep;<>8f9b+oq|?TV7PbFjAo#4PhRe;#30B@q3~9S=J^VNRa$)>)!l+ zf714=%vVOukH*|uT|~}$kDoN1sZ2>yPJINIh1(OX{VhaiR$lk%F6Qxf)j&Z6HtWeP ze9x+5uQPqS+nxJHmVmstRmgjxtNhe{KTe=@R^7{__>>a`Id0AjkEgF0U0q~I6zP~+ zq=n-fjtpYpY)R)G?}T09>&Hg&_t*GeO0$MOR{?#;#>aTu_bWVsM@k}6My9dJs=RQK zWprQloe`P2=PuVVJK-URjFzW!pAk8Bqx_-mbbfEw4fs<|8Oj_GZvN6Aqr?{F{X~R% z)z1;qFxkORFli&-G6ZA@R>O1TFxj3eL_fxmpL&09KVbpu>(S2(dP|-#>^sfj=FrIy zIZOzhX^UbZ-_5_pr2W`REXfO4v3D;+?T*#b2Uj}^yWmP(REALH;njXytjBs3;L{b? ze#L)@_iuTqt`{`@`bOiilKpCh%_$knns!A-$n!DXB(jdY(XUX(NEGq8 z1wh43#O5L!)B5w4Usa_d@Af7*0bMvv?}s{DIFSLL78KiaJBMpains<%Y;C#vl9*yp zn!BgR>ia+%WRdvD{me|8kIxMVh=^3KU8D9{|0*OUG?U2kOsC4~NAJB8%f{wMfJWco z$5vqZvS!W2fL)hd`2gDf6t;d~M9|n38~LB)6H>d%dLD0A zHdo)+Nqsh%tBtX-{ug5DGQ)J6kejlC*=MwCG-*vtOwfzl>#hj8ZEkK3 z3=iWWWhQlmo=Zbm2+;JMki0hg{HCON@aaXhT8#AD38_M;q%Vn(ntYW zlKR-eRnxaRVnsq<^5VQTh*0|M3JDn;$`An&!jK46na_J_=*44O*X+)`&pDcA_p^2H zYj>0PO4YqB`>9W#y2i(8oaz{Rdwa`2+c`LN&(5B{oR$6GgJCh5k5T?c&`)Rs@1lZqb?dIi<-QGr^{)-h5R zg8Nc1@+CjK(8wByVSlPrFRv}c?lt6ff8vs3x%~7ts9jrH{}Ok}t!{2cv_Ae88-hkB zk+ltmwlG&91?GC|_^L!&b-lQYNWJ-MnXgppMwjN%(2m4LaA_Q6P*`EH7tj54OyVKy z@9Z;-lAdMlMAOGKknO@b$sJs#6uhn-c@QDoC$^G0NH(yDp6#j^--wCH;x2mq z(g21wHS{aQ8lz)Vw@o0m)cu)+R-DsfO{$SpgP&~QqJ7s>E*V_svKN#dii*&z2Zf&P z!MAQy>=!^~BPu#{8HPAlg`|!$OunTXnWYE=C7oa3Ujratinu81bYRrlHZ5h7+d>wM zV>Gq_5DBSz0qG~EokB*^84)BhOtAq@yKv!G7&jGE37)kpMuU7;PDYfV77srG9=@E5 zADWmBX3k{WTnxHErWCraKIN!}^@JrG0lSZIz0NUR-FW+g@(a~Mcfj%B^G#xeL8wkU zE`@b94s_c_Irn2GL$nuN!t7qb!_Dovy)_Yy^yI(defhSnta*z2U~Aq1>q2+czZlZ+ zwyyM5=peIn-+T)#Qll+AS6t1=;7!aVE}e!p?3Cz zng(Z6mqUBWLig|6vAf<~A2bd;Zd;~9MIap$a84pqfjLG~1pmn4t?|FWn34jSYY!0H zED&;___-MB>aZJ?L85r1#cG6TUWCHV=I^0k0-xIMb4*vPuY;OZ({2fLk##s}XHv-t!@W7i9z>RX4Mh^Gl8OXc!mB!ieDuC$zkHGN@=X+OfwyFNw=rEF%u z%OO;7qJs&sxbiUxhP-0?m#e+8%Rj>&VVZY8CTpTVHMCTy?GX(b8NM?*coGaQ0Gwed zs}3scwlMOBladfWdDnwyd} zJmYvXNr6tdfvWv)#u0o)3#vd}@y46w8JJ_|vD=wQ(=C%cR*^FKFrLF2PzYdV-^KrM z3=v}hqFF50MX1Wf-m(Yd13Gbg>$R5)juRdN)=kovO<2&tV1jwDe?yZja7)ut$|G7) zj03)8$Xq70@s8^lR2F|@rY5(ittL(qthAS_F;p#=#VSeoLjdfuw z@%F=&1!T3=Zc#+Zm2Y(T`q#$UWoQR`K&~yfJ*zVH$RaxC;O|0&mb`W0H&dP*){}DH zj3;;<^lDc^J`;4Xu!Z19X0pP-9X=6%Tmk$rdNYz zX<`>}Ar_-r^uC{N7dKG6&3@m1#Y?bA?^&u}C3Q|*ZLdUj z^>@+umyG9uLp`}DL+K>mUSEo$wQF0{bK}x}Mad^~hdpwUAY2&TRv>VzgNY2VgL5rI zXR&!p164nqa8wwHO4ADaEHy`#O4EhD0kO`lzZA?vWgSqN3Ovvkblu{rwfSlpGO!AK z@B)}%HsyNCF~j2P!;Dr&Z~&9K;$r_C1^31w*7GNb0mnPIf}p zWI?#$nHKRje25xpSO({YHiv%VKZ2=r)+zpo@P5!5Vkngjq?&Y;WK%(|taZ#V<0 z8(eGPL5*I%`_YpvO%r-xFJxg6LI|?B?zf|i5Y-X|MVO)GlxR%o(AUKU?4qE&4M2JF z@Aj-XokJx^u24lM)hvq|u$a;6uWe6y^6lk!BM1P}u@QjIeYZpDz+F>37r|?Ozw_6i zF4^~e9Y=Bpn_Y|Y2G8RBgQREgi!wI4SSYe3`02Iv)>NRm$gA;~;Z}C@A1UCT-60c( zy!^fv8L9Xpw*KcQy^6t7aXW)i8}2oId>OWo>?AB3sj5d{LYK)v?XlVQiE1j-1RE7O zZYzmo9M6f4V?&hyd!$?;49GSpCdTdYZim(iUHMC8o($h&1S|zHlHbC!YmPgV_9TRT zV+~QAeIH)kh!n5G29-@OinNo5wNP{Y)@zXFXQ%Xd(DDsO6I?P?Nw%KtHT%x6pFAYffuUO_A1&0CbJu?V||97}&!A=Zzy4iVd&(r;GHQ zDgcsAn8AB=8++b-X(rc5=wx-|6fWRGsA6@8Bc&Ph-4JYnihvrsS*kF^vr|wz~HlMlBv)oWOn$ zX(iO7_E#H-pJYvRfj+Q5CVCE(N;T5W%66-;3o=Hq3uulVvS(LVua&T-ki7r)Jvpdg zZh1N2CYB?>5mX&$D$uUIQ3}3=^IuU9TsEL$w7ujwGXOY0YC(t6=Jc>vprGowRP`c5xm3DUHU{n0!*xkJ}ieX;}6hd#>VfQ`INrXKsra?_S zBIwwfuU7VK?02}>14^*#XjK{QNVB^{gIKw}mSs)c>aNlx z+>6(+5mc2qHAkMf{+sBWMCB$G12z$o76x)ks63+LI#a{=!Yl;;oW$MrwJ5+|5I&Au z* zP#~oboWgL{jR4*@+_3yy}3Nz{7N;r5d*4%T!D(tpIuHLFWfe5*mAE?pJj(Sy=Omc zm7iO1Fee&Za*IP(BJ?kYE!?{g5C^85ke^2#}i@6(vhHdeRly2#=r zMxPr_Q%280*9~1vbJOl;{9I>(!67(0juuvEB|sn8wTT8)x>+)Qng7Mz$QvPxpCcn4 zFhT>$=*%RA{BiCm-+K&5?V^unl~fy^&tTZa#3(_4AJS$mJ3cYd_4R98x82q* zJ(M5lcg4h{~Mr!@SK ze?Ql6AeLI|Frp1V`Jf}x$}NAqJ$6&B!Rx2t?fs4U^c$rQpzoIlnkEEzcorX4in~mS z-iG#=bZ)H=zs5^T6oL-CJpPzoy>^Y;*wj=Gj_Q<&mL<#n;!H2&~^S5?))j|D3Nkvs1bm#+j6@R_` zv@P`h?}mWAySY;C*cvIUQI8%mfrk{9F^n;N9Pa*sCl_S&6f6%`dhwtA^_ynfg>|Iwp>cXwp3n(ldz7OA01w`*s|y&E>S zws73485I70&+vou*SD}By?JwzbkJY?lcyj)F@2~-t3QW;z|Z(yLi&--CNtArAqfc@ z-x+T@S`mxHFdTdfUs+gF$j1rWx%Kss-no}6$4nR0*IV~kC(2D@et&N0o|xEu`J=q7 z3;-4jadUU?;d;+h)YLFHD$L?w$Ia_z7PsrSuZErjcDn~<= zLXDR}R*-V8GSddqR{tF_t2d9X-n5$A0C|?5}LHdH)B4f0f-zJ7;sh) znY8uQ3iyf>#oVvQV&j(syQS0C)|MU-5n<=*D)RT>K%42J3;cqF^j9Y3+xrVCI+re8 zGIVpR+MbVLt3PQYVY;X(?lA0fyptpD@C14S1q20kf6X*Eczx?Rqw-t18Jv_pqnzKy z^%Oo{UhQIyluQ`Q$=SK&YiocGcu~U?R{1CM-7z|_7tzU|?v6dZoYCaFF5KJGqgh>D zjUuOMLB`5vlU+|NMS5**Ej1O@*g@^Bx3pU6-vd@Fe2MLca|Ifkn(FWFEoND2cXoFE zo8ACdisrj_?}|7Zv@9(0ag_*3N$<+v2s+$-0PnX5{(I{usQ(_D)|%i@Any*nAFr=GoZKb1^hAyLocsaV8uK$o+I*x0HNGkbSX0>dsnp5XRDjJ zIXEtvwD@h(qzvv%y~~$3{j;<4;M&;--{G8fSJu#k(p2x?pJ+feLXjIEOB_dqMUhho zy@61`m;>Qy=d0UesE~AF_p>Von@g%yI1}JC%-3PF>)9tDGl=N2_B8I)D)# zNc=cCxlqx()&;n6{`QA|Eu-V(yL-OJDYh6Bef=bOGayga2uCB#L=g*mSK`FZ=w ziHUjqA5VyS-Ml9D;HKG47=_4N%iI@1NDa{cu)+coxe-LYSsSBzIq=D^ser)CSK9G6 z_XqTX&Jw*$SJT3w!j3>VIkYG-xVV(GcrxSDvk)JfywOseTCa0S@rJ&WKxd?a(oBVoXj&+F&K=C`dK-I zl9G~#`cg_A!jHlvpMMyE-o&q_t+{JjMF_cBsMm- z|IGjOLoUL?!g_wVTvSnb;XR38Mn+KG^Y#Cc+s5EogcubI4Z_-RHTdV3=>GwIJU zks&Jgc@F;k;gpv@dNfFxw)Mx!mT6w9PrVzl83_0V_|yj@sW)A1&H{4Y;i>$5_9|uIsMeE(LE~%hllxjd5ByNIl|E= z`MSD#Zh1N2fM}FE_3bC9@N{sdRd=taoN_oGiHcb-b+nAb9^*&+V$a~ z&_w89O)fXrg16vXsvBo(vZz+cNNS9p1SKtthDSXi);rqdSR$in)ipVcOTOqt7f6q! z**Cpe6joAx5GP{TmH%$k+>Zs(xQT}#Tr~!SKX1frP;U=S=F_vr#Ksouo?G1+zn_)D z5fF?ykcmqk?z&DK&ZC`0S*ULALA__qPx+t6el}ma`}-TOUdrzX9_{>vHxiG)mrV!) zagYnSvr}N;PD~ead!l);hVc(#lW#H>2qNFuY8mKO?y@c?Tr!^#mLsR69MXST>ef}h z-5E>d7yY(6X+kx8~W zBB3N=WE`6(YT(Q+ ztdYs}r=;#swD&5cWL+lKFhvl%pv!BRxQ)7V;xNugm+hc^0NJ_n-mpvtXDkNB@A%Te zLLmW?nYuXClxg!luM;;6mfEMIwA)6JX~Cb^?vJ;U0+W#89cC7))r$gQ4kz^ze184 z=>GHZ=g;c#l%EJ*S4_Dr7n|&RMZ*%|(Qe=2XTLlu?HFKOwIT!IgZ1@x2<0ngKM&K_ zNe_qU5G3ouCjvpD@z%nKxL7St*!xI}v-Te<`X-o#3PcgMNxM80G_q*@RxHj)QYgg9haYqr;T`yW7hK$m=>M_nHJ#Tk?(py6H&s?mp zZI`58HcOJ{ZnpP$M#s9`kl2DCt^KMkNVtEuFD@S(kn2pt!Km+uV&ok>zEuWwn(z|~ zzNo-)N0`AFF2v1(;bOP8rS~DYjT79)YdmrWG5q<6*8QkPf*VHWGl@CNb-WN{88dU1 z z$v+!Z>a^h!_UqnN)$bb?WUZ(nut%lC&ZI22e;J^1Y@bx`UZqi|MRb#h!9}>6pVRTZ z7W!wEQUMBUT#`C&5*~RJ!Xxo=g@Ppra{7+9HRzwIw2htwZJhSEb-ml!*bpd3c6M)J zl)W^MQ_aE;|8qhPBj;BucQ0cdy5*c%TIH8BD1yh3GG^Q>(mytbzp9}g)T8GiZyo#X z1zkVO^QM5)a5a+F5iF(3OTOqrsIFOukPDv|)Qh`3(0ux?um^kA;aZ%}9R+XxGSYhb zwf{^r{mRvZ0>(x3_@B6oz(I4y3nMCPQD^|ooqdG*yBRDO`_eQz#yGaOuD9WiUuFB@ zLj9+;`hN$bkzmtxZ=rtk=IgFl4(TBu&n$<3-m?>-)FWEaF_d@{HUAzx79An=P-h$$ z%#CMP1soTi?(x^cmV~V?e!i0hhCk(D9kRA~+DI#RbV{X8AC3kpf}PgdVZ7o}H#*eX z^sJn%rD~swyiY~waqGUuCHtDtSc9iueZ$V=ALOnx>!iZP^~1)}V6i~E$n^V%uy;iV z*x~~1)Z|y0N|iD`lHG+kXn7}CnE6(Qt6uyj73<;)ffi)k!d2WqPx?M_iH}@`u^$WA zfKidJkk5s8#3uL$tphsTas&D%Az&xL1%DA_rprf?gObue<%`c(B>dE!YIsVNP-IjFTcIk+xs}mr>F5e%2tDrwa~&D$}0sTu4S0I~Jg+Gd zBxh!C#ZCcEr*3fj-@ZJ*bmQ!KnGB=kxVhXF`)dO5BB^@FGW#cTMvkm+iFmp4nf+FE zemC=8Kt~rwxFdtxCwiIO7JQ$%4gFgy@i63(jx8(Px^G;(pRV{l@wC5>r&4xb+_zGU zxP+;4Uo8$jf#>4#1GLXdYl*7!^}Wz_n^2Xis(mELn|mrYF_d+(oRxZuuUY;0V4b5Un9?DX$-Pft45Y^^lCJLu%C z5sm1&j_$AcGhK^$+38rlxDX}dxoug~q#vF$7)sgU(mFt1Q!Hyf# z&DiNw0_o-IDG-lm7u+M$+7uybU4_v`1c~-Fj`HgoC>sapVO#x7ARRqA?oZh z##XvAs(O5QJ!6F*BduOEJom-awzDgVIql)YXzRvXb8Q6dQ3ge8oBL)BegbbSJSI%_ z_4TEBd5v?wbiaOfKRh^JKLA~-Ei%bkCUG+M5UaYcPLe~wR80;0_x83=pU7L}dhQv-_W1F{p0k&iSLHFLOSGto91c=~x1ZI< z;6na_pM1I)gf}OZJb(RbT!p`Pchyx@u?C(hQy^OU`sx-IOllV|O8746g&c2nBjI&* zGT#>$?MI4@xE81c27WkxO?9^06Av3QB30v-3+H^lcPsK;iO6W@vfb9f88g@Z{QcCp ztg+)ZFT)zmKnVH2V>pf@C zms1?=T5cWd#4pebfepAX-1mCr%)QO6>2t?N-8@ZUGb)pet0HpbX-1!1YkEF@q-BlN zsuPL(6Bx9sEnKfinxL^u$J))&zf`u_uWDgde72la3lO`RKMzTUE3M0;O^AlqF5tC( znI?W46Flb~#Auu#yPX{yYhlg*s;esTCd9+2lIGR&! zyXwsi;H=w)mS&lA!%J9rvi~uV454hZ}KAJVxvn;uNB8%h{!dQ4INzeklD1 zFBM1FY5hNr-)c}n11pugu7lDmW`A&q8K<{@o0+Q7(7~-k0+_EP+1nZ7w=Zv>WQ*Jr zJbB&o>r5-$a>;Gk)>z)JYg!*@c|GYVZ_RGfLDPv=YPu|~jOnH5#{3XFFK4>Gd8@9U zP=NNw5g|y3f0ij06k1;drE-n~;>_v73CpPQ59Azu9oPhaJo=aUa2m}fqSy^+?JC14 zVAk=;+)?JJtIAKZlYI;-O;{GZj=?Os{N1tw;Oug=&Mv-y<`Rl2b<{p=WViCSL6F%%k{IAMnBXL zkxLeLu>|lU!hVH{4~L2}JN=60YYy$!pPWmSw9;F7c_`zUg7L6o_9@+X?chkT->j* z@Zh~@i)aGJW24JoVm*pT(8J1qywmX#`@z_Sxiu*%OcXWJd&134x@t6`__${zPhd?h=cX?|Rr2boZdi*P<&4pF$_xSZ( z;~lDgECuhey=f^r_wE{q`DTK*;2j=n(fI{2`Z{7`G$kyA5mPkOg^Jc5ESX&hAmZUN zPSvm`LG!T(1#{xB1x~r-AqT8FVt~n$b6ETp9_<;p>r`5p=QI-r^m%Vy5cxVBKU*pb zGwsCoCX*s?v%mJT3+n30v#GIKSg`2dIAw27raCN7%j587nOMq1(1eR3C!S_2)WI8) z0ZhuIn??gl_pYs>fjzE5th(V{sXTUzZKNn_U6E6oc#5U%n$x2{)`jiOikhQavHYzk zVru^d2!6DyXU~s6yc`8+^;6$R16X%A_9rZgPJES&(=g>5fY6l6wrj#QH8!WhG%FFm zRsfz*J~)D<1CT=9WoW~y)B{DS0KD2$ZA9}I__0Y;2q0m`Xzr-_N0PfO-28XgGdHZO z)l)Pz_U`g*jlN5^!&=FMLu>_j-$&u3GWMV9IrIyZC~)9&i%v<}lr}IJJ`84VSuDZF zi`=H&9S^O&gf9Q^%YGal|4YyJO>@!s?EW@ zqK*OMq~Mr?xa0zUVI&8|=1}mYWm(2KGNO-Zy}5Y9Sxd0AOL3?Lyy^_ArjZ#UcjF}1 zCY5J)`0sxnfnhG5#iAfvE(^=)#Qvlmq4-OpC57Ntu9%vIHdNif3klWKF*T;^ia&e$ zpQvHPLKn`wxgrvQgf9{V(uT)sJ zx|*`#LBsfL3Ag!wGewX4xpQyf`|M4h+P0`rHrPr!l2$U~5}y8)U(rB3z>9TLevh&&Er;Z?6IP`q~r7fze<3k2PxxMWX$>}61UHIdXhP^jYhWmvH$!Zv< z-%8)o@kwf;{(!^3fI)ZyG~M)AXCoc67qxm`ob#b*VCEwGf^0J)GaWWJ9&8ei zjrD7T_?ZgqO95`~?(fqLmEvY+?Vy^OjUZq{kmt{z+Z}Aq5fTxp`uUw3$W;`Q5ilA% z3iM*)Au^K@yyQodo=3^rN)r_%XLni4@Hp@V0%QiEcQrL@oZiU&v$}x3MXl;!uP>R6 zH=N&Xk0z|(s zl%#dCW>VpWE65MtnwlE3mJr#K-HNapk&yY-)wub2hxgsxZ>`C)BpmT?-n^Om=#ikL zs8Oaxtr!_ndHu3io3~_h(6T-pdeif<$rpL~MMTI%MMVRD)r^S;ZrUZX z$Wk@l`lV)IK;G2UlsELo=2JQkQD|sr&%glPldNL5?>40!8BrncaT^>sGXMUP6h^Eu z_jwd9$Pq&P_N2m0sTB=#3JHmr@UjvarJW{ARZ6f^XDgr z?kCP%gQFkr3v@p>^EcouUAXAE3;nE|YD$Cr4S9_^Z)dnGOXchvzvomEFI$@#Y{5{DlZ!6Dirlv5&-3N8G2Bso`C zSF@DElyr1;pBca0+<$keZRnhy zK!q85XMtYktC`){yph%ZyM(O^t)ec^uG+VWL>zQyRGTqBjjTrz0T(qD14HaoV}R{e z;PvbLO;md_)A%E zczMkA@)nL=93loTrn6c>^=M$y*w6}E8~qVL@fjFC3qO|hF6>Vq>5_<}bg-4ibGQIK zqzwh1X3`X2p`x2^7YS=*hWTs<)N}xuB9motZ^4`%MMjbqKG};h53b(3ffF*j@xkK@ zJQt3o;Ny0N=Vi@TDoUfH>4}Hf4{;TIgrxsU;L;&Dgg4)IKPMFXsV&;}a`GP=+~3%SDeQ+;#3POC?Y7+ys!NhtlAEd;8hRgdLOxQLKcVD+M3J6OlrP_0+YPm z>af|BPqp1mn~qT9*1D;MAcKArwFNiS}Yp{cL0U?H+*&YBZS6-X|%k`sK&jwdPV}n0ysOq@VzZa;>1;_wOZ!WcBCuddxlET6WyOq*6Lov6 zGfsgUqb10i;dic*L|-gD)vH(OmIiVXrkjHoe!ZRPg0EFKhIuE0H<}4aNIK$ag)o{t zlEg1Nzl;YpAaC#OVZzF);l&AfDrX><1%?m;A38nJS%SPki?sKNj8dsjpQfNy>srOT zF7Ryc^+{RxnHE+70fB?rND53h57m04tubd`S%7+)%zsL@CHK8+n%**Hr1JDB^M_-+ z^RsP{u}Mj^tOXa}ScpKpQSauEx^H6~>7%>Pb)kpM_9MHXT(bEBEz))(BZ?dJ=X4|b z>|*fFkY<(JSa~1Y#B1k-ymOeY#mK3bpZdzS^R$HNkT!gRy4j4>-0>$_gI}=p-vj%w z)vbI&`B>VkD~_5^JZR^7)A8@Vd`C*6OmmBbk3@fB$!>PeBJ@K({cI%Rlm`oSqhGLQ zzV^aeTL%XzY(xK?U2oh_n)K;r4g8*_d4`=`OpY$idt+Tk70A8eri~c@_Y4scp^D-F zFD(t}IbNp9;|WgLp8TfQdm=+QsJPFfpr{B01fKSNOg9(R4>hCn7tVgScdBH*hu;7; zV}~Wq6vjf2ZH_;^cm?Sc5)n~{lHMltk28c*9IxhGx~t_@0`SsHUZ+n;&GB;|pAnQJ z{u__is)f0pBi>R$5UOAjTm9!@{=z5y1L$nct*#Ow-oCyaK&13ztGI|r6k#jpcvx>g z-T%u>L5Fbv?ynmi?3AHzeIp|)J6H5HlnP4bthb>C_js@dr@I19yQ1(~V|TW1wf~yS z9rr0GEb_fgt8ycmO)==pvb($cC0pAR-{k>Damuv7nBfnV%7rumWSgq7F~B76Fbg9Z zOW8i0fNEEhora8x(``bw)Dzj2*@R5X-`D#tU%GnrUQ?3-oPt>3$)9CPYU;@Re6Ash zI8rE^ns$99&j}I@CXzt$9IDAJhgge_3}dAq1uq=E4|#trW820YPe4qpTa*1xR8|%P zE-o&Iv^4##Tentb-YL8EXGKI3P_z#W82IUNMSe}Ux(g9XBDk3SUs?EU#vV&tEulNc z4*D!jRf)UGKhqD-GR9@893Gp}dItyyo2W$3(L9oS;JI(Mb}OGPbxH zfN^o5Z}dLd^i_QI7(bRDdCI4M1{o9r#f?o&d`|!F|MRU}#o$XtV*;&xwP4}$Fs6KS)onjGMJkLyMYo?KSo~i3k$y&s%XLv3k$;~ z*k(PGO<|qDrW;@to>Rz_l0*(9WBFZnECvA>us?yU^>y>=!O3N%7v!6itZ{NGg~oF$ zLj~TqZgrKKSASzO)SfHLaZyzjWt-DtFN@tiLq`tdcg0^{uIW@)5M?|K^dKMk zp_?%g+_!-9xjb_I z--yv44qb#N9+N}y)*rtIky9=lPX!A|eT864LTC~lT=#l}W;oM>>xN8%Ymc}3>wtv{ zbTz_GzOOd9k?zoe_K(waj-f z->9ftUS16F9cETm#sZ2FK~d{+8exR^Ce&y5c5b$PJ7BTme}!UdLP#K6&>5Yi z`b-VZMD|Q~oeV#e5^g|UfoC+^_piU{XWg$gZlr00b_s)PAT>!*+d#*b<68_=R zxA-z=Rdim$0-U;T@zE~;DFsY|dR7r6lo4%s?M~5zn*B?oIopYWf@o$u$~2^bPSIu} z1J{j&mM(>YmNmu`AqmI+(=a~&Y#ezaR@@%Iw~a1T>dgfu`j?&O&BP^BC;kf3kc6u# zD#;O|-P}>b-eNCTl(g#C@+crj&F*pYS-Qj@kQb*o=#c1}07QlzBaO_ygwqm8{TuDI zyRDp#8`DHTx!t)aV$ zq`7WbOZedu-SOg{`1KKmXnsab!#Uoa?e})4Y-V?a30`(uvGlMwxwy;^8!C5J+IM_o zvwZDD1R3fc^!Q7y>Z$f;!jvC9evJ2m$K=6fvuI#`#f3lN{p(jfd;A_d&l^3bfE_fr zyG=mAe&+dNY;CKDJ7xCo{!GlnhgT*RAp3OYt0y4H(9qE4-X5Ax)jN5pcMofMR-9+y zkk#(jeXsajg=B@JY2oZ==65`_j)pg(i#d{%A!;2zK5j3@efGt5qQ%wKwLzRS`_&Q{#K{RusmSGnVO-HeM?o`0FY0YI85=um z)Xsg2klQjQ5XA70_BS+LTzKzBMp6QU&8?Yi*LD}rtnrozC=ZB9NG6g$_V-6UeL6!s z-FR`XUD zvy9)$8CZ#g*R(>ZMa_=}zOek{!0jR)^s)KxN(z4-Gr)%>UJEa@7^ci#*O0AMkhq)f zzw#&$FTDIL&{M-o3bErHrlpURA4r|*lU5*E4BGcMQ{<0Su{VG3Uuz51#7L`EWNv-V zsJ>JZ`Zv2h{ar6471cXUERbfD=c`2>bRAm2Z=b6$8!mCeh`>LcnV;j3BlpLlL#S&2 zOg(WI-UM5LE+*tlXDgvS=Igu4iwSaF2n85_A-tr+Wn=+HFm=X7I0DCzBt$=NS)tnXd> z00*B1J^PuBp9#D2qKSzArMX_;0a zFk-+}ErbPsPBphcxems(C%@6eL5w~16ABrzA)g)na1-3gBey`xpQ zus_LdZA9x|`}C=_Te&E@!?8u5di2o zRNYe_!yHv$j!PBk?Xymf5vDE5F+c9PK+w|4i*Mj<`u*2@r?RG%Bwz<(Dk&_xzwVo* zeeW-O{&LUvpIPbABaArt>qw>J_Gq)6_0F6FbnVC)8A!qzADthkHwqm%052K%eg&-# zuvzrQI^O!oqL>qS&mkWzblJ~=XZE+ig$@(R;{lb5d0_%Io4h))v1LS#0NK2uyFlLNU-DVXiZM_}#4{;r>Uv>Vi< z)U3SmN7|R=j+C^-BsDZg941!P+?7pGF@=8tgidea0u~7NKGp0X^O{|J`FHkuS=)^C zQ&nfhF?VI?eXvZi4Dy)7 z%ojV61vSxdAh>1-AtLUZO2>V7a?`_#oV+jt-9GEPo%3KRMB2lIU$<_ti1QFNo2FcDo(I)s&peT-Vc z)w!=VasSXB2J@@f^?H}@8nwOK%PvbP?q~C*VGZOkY&k~&fr2t8O}4ZD!Qh?~3|q`v z5fVm@_mC`bF1cmXzY1K8CLAwZ?mKKg1J&%^K?>)a6$lr1^@0`UDEnY%acV9|0V-Bx zo}YombHdI`U)zf*D`XlhQ;vRx@5!v^MEb$)@n&XH5o(FdQir}}VL!y_kRRei6*l2bQ z^b?^|cZT}tw!;s^3mn(p3@JvN!ps5tF^`*RZ4TB+!HCdGTo+jHK%Zg8x^L$5wgEnm zZGR}h1kQn~s_Bj)5489KUG%a2CdFfW^87@Cj_r4~FP~r8eA;-_@nu@akH;90Rs&~& zT95+}+NgMIrbXU5L|&}a%Wl?kc`oe74x8(T%% zWABo3;>KD8?2=i4f+?7F`kQ$>{5_sbJB0FUT$Ok6vM1j3cy5%6w0x6f%~NnJF4$e&oyzL>1l0w3na&C)yF{0Ll@O!MVn~)I zC5CEuqxLu03FU>7RH5Fn2RT@`LUqw5loYuZxCa>v_)+fblRWPFOo7&cx>H?soa}N%2(LSmsm+=Eg zAHr6&DRj+=6xTGL#pD#iT<^ldEYZqZ$mEc-BA+c`j90Ba^v4rvhj6N;{)qM|q?C8-v=Q#4&&*EIAxJ3F&ve7I29$HtZn z{4$Y&uC&A0AFigiLU?mZ$p_2lJhybG67a$s9+nm2pFUP3yg=uwu(eC{{lQpV^7HE; zgGD)5Dr#y8{~wnXe)n)A;b(O-?8YnYwY0U{0Lh~@aY22yn*_hM%MFoS^Yn1GTDpUS z2-V8kS-I1ZX4r}ey!wfSsbGTq{1(QPP{x#R8aXRk@lGBdN!sbWHLw;CeMm}4VIlt$ z=2kB>c;)ule$KSpXrj0yc%Lk)Hl_^r7~c%(;pp1kZGGxVq7IQZcky|v=oYXz4rqlf zBy`c&R|+VZiCoa?s@%F&+v+!B1XyU0*?_ygm?`YhnRrwPqRA!IhOL6XeXuf}H912v zF-SMxYztA-=*^f-FxktOF9ZMXj>+#H0iY)?yE?IV#l&P-pXg=5RhItu`*DBJc0)=M zS~_J@(jk&4id>pXg8&~JaO;KLQ8xBa8qI3i+v#?YfNU+KD7TM}(v_E&gHjkc0C#y_ zDJkmEP}2bp+y9-5XUqw`1}X5QW|sv!_}g4rcG{C2P5e%nrnBSAE0^JW>Xq$WpV19ZMh_qN3!tZ{KD(@A@F`!3ZUN{Hv`IX}&p7 zkPa@9-iw4BtmWjwlPzDHifm;s)@=-PZ+gG!%HY#%jTXwWHudxr4Y_lNl7WGcfPerA zfB29VsG)cuaTI|31KvNpu<)$X!7R>X&|2Bp-`xL*oTpfGLW|zKphOWiG;u>@!wB!~ z--2!qD*7hc{#E5J{56oN1KWD@%keYl5Z-<8tO{YU0YK>zc8jJP0$&m%Wftwn&QLAV zllN!s*IDOd>LpHO?%O11);?L>YjgSy0sTH%kvGT->87cA(v^u|XVjVjZ8$_)ZS4-Z z3r}QxW3XtMFiQ5n5GP?BJW zQdq?nVyu)KD1!zL_^RM>8BI5m(hz>8+~mG10h&Tv2IR(ORRF4Zd79=ZN?xo z>Awht5k{O?nsPiUe?Pl!=6cy|^NNBfs!YR-oCWMAewq-dMYZ{LvJG^Cz~c}iBnV@g zl1=i#N(BFibdB9~yd%ho&alROY~LO{fQ3fU{}ESrgm5y1v}rfI3}5YCHxgA1YAQYGO3tKqc)b` zoj&tK#cD}iK{B5nHk}`KtWk#cVd8xr6w}Ixj-HJlsnLJyOez>_I%qRl1Q$e9o$>#JO90|#BGLUi2Le#Cd;9#tguH|!_+OkR{{}p#S zImIqGy=JJ92upbMP$S8ZjU{md)N zNIyu-O)6ySTUO_8?SxsNPAOF%z1c3%l&;C@QA)EwFd%H8kx#s6tY?WGpOa z6JlaG#;4dSJQY*Cl3n1qa1nriawj#v6x0-cZhb81_!MbrnXXoeq&n1%o6oOl-fN%v zLKimS$Mo3X<_to$R{eK1(0}bVZsXhB9emDHkfvpn%ec3g^ zi=H$xrJ5|)HjKC=#m4|)?25->L?QL3#v<01+kViydTu6+JU43*tu?C_$43BX5eqUVcJ)O{u zX`4!eB`QHMBm!x+S)({UrIJA)fSQxqRZ{6Q`Hx??4J}m6dIMN+~ zQ_C^Ofm#zuc7EVE`nuzv>m|_S*S*53&R|9LV9<9D4{#w1FTAHL*t@gobv~Qtp-%e@ z-+t#d^~E%he6OC$1H-~JRMpet{9x4KP%{PCal;wblqUDUBK`(D8zxj;@kFXX8TcAp?fKrPdh{enc2h9^(fqJ%$~h=Sn)V1HC&XR(2&b1`|+G1UR|By!H~=uoExDnT0g5`824t31a>%Yy|8@ zM}KRQue@5K?pglFvv_1OzgyRGV1BLOE1`Ey=QUpf?w%=CKVhy&aQf<-RkcJZVRx`& zhWpM?uf&5tNv{2!_*jpi5}>Lp-9G0ESgKUZ4>nKuWhNeN%-~5XFa6z%={KN|*F^(7 z8_QBk$EtJI;hgF}ax{Td7=*Yc$_nA2g~?)GNEu{jYEM_rW(D`JuKA%wXY=hQ-Bkdn ziUrE+i92+xy|evW#I2A{&0f#ZfRedM@;u8v#V$lzEkZCPH|RcWj{HdHFT3&n@5R5H z`@MJmY3=*$`d=cbn&Kh*z#Pa~y{q506YNvGuT(J|s)~(*gRVBUnhL+xqTl-LjU=dx zW;?zbtxOHu_z6dfXJV&bHIC$KQHlULKgf&b-&Ny#ODjtT!yP6B8evM4Iq?CvY{F}z znNAyoSpK2gFTeVqA?|Y7G4DbHn7}jxU91Rm>&_FpimqRT3r;(hnxFeNcVMDG8Yo8A z1m4h59=CY3&b0Z$3PJ0&+kLX7af1<%G^U#aI2?ku?<)_Th4;NP0lufxjk;<>jp*3g zV+$Yz!{8S9r5#8nP#EL@B>6`ZF;8ymvalgh;P{*YsngL-KEdH2@N6eXM-8 z;H7#>y#y9yy5e4IGVvPhOEV*Pq1l6~m(W(kag=yJGh6HKaojiXH9s;C7zKv@6?lKm zItt`qs0H48^r_#+L=ZufaJ_$=mROnkgQrr{j~L@rq_X?9{kY-sR(XNC*uwV3Y?N&~ zcWzC>t8UebOgtL<63Dq5<;BozO4mmOk5_BY^s`g;#D!wU;AJDKjDZVJtccy zW8wjk_@x8I0=?OJ<%x8l^P+4#Z-Kdpum9Ze*m?VuF&OJp%}Ujl6WjDu_T8rVARtfY zvVGc`CJjgMV4oYb{4Ywu%vwS20egF~I0lDqhVJgfVGzSFjH;su0=rUHL;~aneX5Ny z$u&z7VWuz4KtkF%-cWjcp3jZ+FCnd@nlZ zp-(BNoiJWremRIn7H3O3%%MjV^H3uiD+m%R)&xlxJ}GgS(3(3WkW-84qZr>dOM z-~wG1u$lX0TagtBWuM&hNm@Z18RElF{g~=E5PO=S8}DcP5px8LQ=?73XBW1L6UVN; z$hbEbJt)#R3f|BmXPCdoLx^+$b(NVV!%4LVC0<^=dW!XO!sef6dMw&v1PJM-f7it- ztUAR>k_;y2NmbS7elQvQ7h`?nkB#s8Z^@z^&yOOKaOWpWu9ZLv{|4ntf64LZsuyVy z^Nh4qlL)vFH5X%o2O7b<(H8Bjlr~xN3gK_JDT!LKRd_Dl_Mk?YgBl-MfKm8JpscxL zh%LqB=os}y9BaFwBsXHeYgpHZ`q0{5IY;FE;4*QVi46q;@rQi4;7yjS7D<4n%@Q9~ zG+cQ^6>%o@57E9nJd3$%&Wf~x%nJmt;&N~J9D*8cwtdm-i~TwB^o50m-ZyWyFFy@S z4*h#*y?r|I1uyS;10{ipZWXj>gYPF8U7f&1(Bk{Ox7g(QPXtisX#`vHq{%`=l$3-T zNX>{WRLL^-=^*W#pN;c`Z`=AF#2Y-Ezd?3+Po;o_{bumOu`99diL9?U%CXzNWAkd- z!UqPw{Lg7aHg?`vUyoo#M_g$_>|jIeLI2I?G-GcR*_T$s!9ZtgLvvS_Kc*|CRiW>@ z`GT7k%g~X8>tTe-nq*308~*MG$K1FL@~s_h#4Q%=EHd7Rs;a8# z-)U9>L?nn2@8NEbXvswjZ8GRVc(+tC0hYZqmFFfu02d;Lnytho>-aQq>)VFoGWX*W z8A*_|yRezZAMl?5M5i{V1ubSA^k<82j9A}#qH$K$)-=L~ZGdpcCnllnEKH=b`g3cS zF_~@+G4M>v1_^DJ%oNWcmO^i19@=dy_jPH^y%=xIw=`vcpj0`D%U zFjiDNdr3t5@Qb(KO^|v(I4!7pNhJ7?DF~_i@a}iUw}eX*HBvaX*q86)*6^qn-p{+L z{mJUEqG8v^u_(%?k@3axq28Ywtf~D&kZq+scrY@zkhDY`zJjOS@L1rTl1ZpXxTKA( zkB`LNyLT_y*pMe_;FxF3EiOib6pTZ>QW}`4;#Xc89_i$u@`e@@m?*yT? zVtZm4^|3&OR<%Mn_2Iw!BU>SM?i@`F1^fEQhL5-R%8PUJ0?w135B|HfttO>{Y#bHL zy=%fx)v40ve8$NBx7)>}SCLxJsd&{${I(Ath@l77?>xA=8>Fy1VzM&TC=ENZ3Bneu z-J}1TEOFvvulzSP>E?pt>Y=&QDu_xSZ?0=th)kN zhb@=jf3~}3XA{S~n)j!J2`MNvF&Ny#{f!j3A8Wm9R+wn5*=_gd_ab^h1}>p&trVo> z*Vlh-)s`=M_6%$Ih5kh?EkZ7CZi&$2z~?Vs*!WmMe{RHe*ZGup`15C6p7kc^6-M2= zSG#Ca?V{hYPj-(w#(V5+98wYyt0!`a-x&@i*Pspk52)XnenGj!vl^vnZ3!`zV01s$fw=HUGgva+(KiRPMN`0)&yk=9ssBcIPd67o_o zt9Bt{yR&0d{Kd7duFh_>)ZDB&XqUE|7A|ZnDX~!~Y{J#Ku0+P3-rgH;cbQ>x4zQ_t z^}>sa;I1ux(fchX`CGzIo;*R2mX?;yogIvULGtWn>GA@{%Fw?-dfAeAxw*NiJVXg} zBCh*0c@kB%wO!A()4yF{Wcm-E)p?IfCC+g_xGz(z`}hxBE~pcDJ9(4jjm0nL6#u1b zd9gm{;$@MqU%zhd?|U8j!y&@u>ovP#Bf61|5N~V^U32;9Oqpm*p(9}j%S2rPIc&bj;cZq|G3wwKcP*YpGmv&I- z&QEeyxu^tsF^AvZdw(fae6L#TA5@`S7)ST$^v;T`*Mf1Ipk;_ddhij$^%MivuMf1M1(|&m% zXZ&55@^t8t2bO@m*G$VD8UG(N22W(Lq@|@HO`7^W7kwM@=VpJlRMAvPhYp+k*_GGP z;c|^guh$>AWe;jw2?+_rf-e;A+*|uRsi+VmCMM1sUi~&IKR7Vpxj()>GBnnJjsQ8= zwdU|uH{7GgzV30)Q0WiP$xe~-v(i#hpz^Hm?`rtD2s=7DN_fwzfSlNN)COyTv0~;& zj~loK3$I~rBCXI>JGe_`syM*Vy}mCehY#A|O#SkPZ*V9(qn2Lw3tdU$aA@Fb6@k+b zy4Kg%5rm$eUg3DN<6!Br*XHr|AhVonku?(z2?+_rH7QV3-`Hm;Ot#k7CmSudP5=wP z_0;tDI9ARPBfkSn(mZ!~w$wFLAEB0Zn!F zUWl4*!3HlE{Cn$s7C_-~O%{;WFSnz;U$2FQ0)CcXzz4U=w6?aMNIv?WZuq^mRYg`@ z{1WVZ%;Jj|yhdsAJbZkb_#6cI__ax2QaLZ8@s!>+#OMU_2Ksk6m7c$cyXhe05ZnJX zVH*0omv8ajJ^ZvGc^(lFeKv8sa285RPIRg!FZ9x+Bqg29Jy{!dm6e^%Z#xEP>**yn zIdsPNv6=iB7cr|;+1uJm`{G*jbA4TOe|^d_W6|xDltwYxia4t$F*-Wh-}Tg+OA_Q; zAmw-I;a@_36-S!=|Ce9sv680A)&>fG53_CZHq9|?rk_RYDDt=%!(?eB(8_YNqLG)6%Y zkxux{5wj~R#aU&J(2m^VM!2L*%+2Gr7P=R{UVEwzrj;RPn+&-jK3N@u-z9`#T%MPg zlc)0;cHPAz5qBFER@iLCDSq{;9YiV^O>Qn6(4YPT67cB%^t(jhelp()

>1$8j|>k!)kb;8TE?% zNbkOGaZbTHmla{#=kb?=Dc`bIoCXP#q~aLX%#rZQMH=X;$efM}fJ?~=V^5F@=mYYs zOE;`Fs@RmNm5!gZXV?ldYai_u1tglAar*oxcQ`_KHk>b|gARs~9r6&f2?k;(TR2^H zUL1E0CyUD9L4MO6aP(k6qUN%LUdmZf+xu6Sx*8NqgM>onU{qYoHc%PT;cHNR8!e3?#DT)8BleHNW;A(oqG*OmTYeWJoHnslSM z?po83-8-oudp7zTrFM2{ABE3u@)|P`#w|iplBD6$jIo3L%@JmvM%>pp*6N@W=-a%> z&M+S|a~@*%rIo98JCvL6Jit^#>^psIFf^#XZXa;ZyWF-^UcYjh4IiFoP}&OVZqc(l zPv%q_Di$nFpGN&sNSeoLGxLQvO6#;FW8wYEvWc-J53{GmpfXq_>{hiQ)m zttDP*3S46&@R@rEq@-a7WT`|Vy=!iyRJAub1Ban_azE$*!`!O0JuNQwni3saB3iZg zN^_DumOuKYQzD^^CY?;eDQy z-WST4(sh)nzxdImp6fNdNn6b(cKw7Aog~%e9bIZMA2!TcUeLFb1rpo389ranJTTrP2V%yz@4 zD~1IS*>(1CNdi;u3gGpu8@}4%Li{(gD{vA?zw6IfN<>s3Qvwp+#UDWv3k3;+hd^C% zl#t@UV1S#SAGX^^ml00*e}}eT{i~=jpr3x$;2{^vLDufaxomxgC1M%*Xhgw9qDvxL zLYUN-;?$r0bU8G98&98w5Uc?H5OFL*k2nIfCE|dz-a^@4nn!cTV!tDGCp8u$E_qax z{hyfQ{g5QNbUxGJhFKxd`6LprF;6Q3#b`;+MN~v!@z~_qnkJ$2NSQzg-8jwP1Bw^T z{c9TDb0BjyKh9Wi2jUdsu8+z|XYw>gOiRg#S0-dQQn~7FuvR0s_n^?lgurASzyLCk zcLnEPS*vL+OK(enl|nO#aOSq#KD43w3weMc%QXfN9LtEZh(LEaB@cHK0K%i^+j-~^ z9&Lu6tFC$nxY%4rptqTBv(SGNVVKp@UcfQ(5G|xetOEpRvUQ7pBI`~DwnJ<-eb>+?E)updzI5C?0yVO5?KgV*X+Kz77MicLxUhzev#b*KIwJ~!j>iYQM z2eX`oNr8v<8wrcfW2TeG9sTA1JqQ;SWxDc@$5H|nqocZ&7a4gkSj$vY2_Y!6c=b*; d3f}xTRUVU_^6OxcO$nK0tWW*D&#w&K`8(fxD$4)> literal 26946 zcmeFZcT|(2Vx&&xoK2y*nx( zRk}zC>IjC=q<2sPNQY2ELh@cWv-dvxyzlwmZ>{gI@2quLYgR@`o;=TeU*&iGuHSY4 zcERM_t{n$=U>LSb|NQAo7{(9(%UAo=c6hly&=CkP8op<)_?me;`v&|>z+=Wg``+;I z_VsYPcGw?J@Nx6@QdUqprf^K|u&b}{4Id3fMbCe|L&2Niq8LrMLV&A$edD~94~B`o zMgQ@5wfgB`m}|cN>64dlCC>~7##`V&=_~|ew@-J}Hu4Xgv28bszHvsGCfC$9aM2b= z+q@r29UKVAv;8KHAWI`q8+U#Du-8W@;H1(i+l!|i!oszFOZfe;vX66fh)(zMIG3Td zg_`n)^tqHAN58;OgZUVdh;#B9>{}9KYV%y*s#DiuSFTCnKJc^+|q}P2%gct0B z;|@Lanx({l7`=AH^ZpIJUN_?T3cViB`2W?%{jxRSrsN%`I$i`$K93_w2+EgS(C{P3 ze1)}&#ltPPnp7>f8BPvX1_Z6mX+QmH8#@=4 zvVN}|jc>uB{s4!{YULBsdSqsz{(S1dKYT9zhxSaE z_*eVf3#wMSYlt+jkylr3;2f98&YjXo(Wn zteMZ>QFu9b4{-aV<%&7taGwaIC?mXHF^cFdK>EW?P3 z9=WcrZl-)V%*yR~Om^fpOi%OY?Qs8sC&uF)8SA4_E`{&+(SE)!+9fxyF0dLpgb}+8(Kj}Vg|in$f@cc#Ny;r+%7d@{++)`!J98|Hs}wNIGYLIeLQ2ro ziv%3rAlCZ&i>l4l{t7mOrd!nVPDoeFkriv>MKx5cj+W^4C~iv3I|iX6^a2D;mEwTm zP&IwVa=WQZl4lvSV>3!)DoeP(MQbSnu1ZwD_RUtv+zO$3%9RUm1>1XiPP7+r?GDhp zY`jwz*S|HCyLj~mL{+pn|F@`m@Zh0ChjMoFV0ufithNxtQY3^m{XK$Krp#~tfMM3Z z2ouo-{+osE|A`0xP4n&lY~25B+`mPeLKAZV3_BdSxk8_-Oj^_CY|aanc~i8RZ}%sz zZEma>jwcla4)b9|(@e-)uFl<8<08a$mqJqmrPRmcofbyMX-aNw0{z{#WZ&tokon^t zS8%?rMRbz#u=l6CWMehY8W9YW*ut^q_W?NPNEsVMYI=>cYzg{p<=!}l+Qzl%*6*3U zEr|;K+=KsHi0t&3_gnr*U7l1Po@mx2*NdC__xwE0+FZ_Tva#UBI#M89kC;UWliBPE zaqa+}O7#v;N)Ec-_OxD_Qa6<&Et}t?#dJ0|+(#__{P-M+HOHb)NShd~_A4?uYvlZ^ zx?yQ|giJP;-BLp^%Usacm8Ve@P7tHVk@`?AjFEQLJ@1)e+&Hc4J8K)B zb+@5VH709Vm&tsnW)f@98J$=)o$D)o)V=aDj>^Gx6Eh$fr3H)YZ*w+LSmYe&zzc$+o)LQ zw09}+czFd3#)#Y+5g68G-zXZ3rJ87l-lD`_B_fV5xi^m zn4B*g+IYvxeLZ!bCi)#QZTuOTBp|lF;Am<4c&G5Cx#RKCKP=b`U!QcsFrTxKD@(42 zb9@NgP4Tdq2;~NRWlrv;n)xi^VAuk?Nlp5Jg0-^q~4L!Ya6ooK5)KzjR0kxMRL6Q;xK+_LdVkiRn2_WQiJ4tl9zRjxVDD+YzY`3 zSxlSsJkIN57C=P@fQqdW8ODa3h5JRJQ!l6#?p2G)*&%IVovJ>Myf@`FD|s`oMk9L( zH2L;I$NDHO-Jjq7y7R!X!;T!EU6X(R=138&fvVefWy~fsCBS4Tq&OGHzN;v~nza-g zzV-koyAN|Pfka4bnNbYa7YlpkL0Pk7gmdF|9=zUB2Ha1YK0-0ZQM#&y+Y zQcVeU!Y(S4)3TUNxqJT6oSml0@wT^qPLS8^wjHa8u`sCNtjM(UV4evOlHxsCGh`K2 zDYe1q<(Y&KE=ydid~@|V=Co>@sB(0vQQ4G4Pa0-B=U2|XmI@8!cj!NM^BQB?K73&l z;#U>Jpy=aS{Zpq18MPpyl(cL##XV-S)bH;|X-CG;Qi_i;j)haPYiP!Lwc1f<8o(TBF$_L-0Vn#ij0i zYK*1SIg!W9ljKJ2fX>M&{GWgSM!77`K8(48+?tqMWWWq!%?jH2)qZJgEGBwFCI;tGeWm6zGve;!qZ3(mZy*5&m95|7uf!8)p)6uRM4H$@+ zFYmja(;N2i=4f5hGIMdXzGcy^LWJ9-M*ijqNiz1w zoWBLkTH~#;^y4>$^svKG+Ob9{)^qayV=)j!xBJRyW@8yRiJeBT9@7B?k;y zh1JzZFda@l4%=*KIf1oue#CgvQz|~)qrb=`-4{1ec%3zHPEJ2;`KiWmp(~yG1$NJ|FJ1Dz?ga)G3v4lo~>H{{9v-D z&@un@RCdUO=CE7Y+CPhr(>y&xY)0G|?$aT!^K}mmRfnsz!sw6Z_I`!U-aexTG*UjL zrjZdmUriSZKX0NbuRfJUFnwum@j~M&YxVO3MdzmvRT~~a1cm|-7KXpcn)9)y+J4!) zNWWrY!cb9?HJ7Btbi#Gp;{8X|C{}K#v2@`C2;0X?2K~oy!;7QH*NdBFq6%JT_v+-m z`St5PsFWT1cuw4y#QwaW^1)92*xvS?dP8b~1V$|%KDb4j{M#P#-Tex20^D)6n6rFX z;%%s!F7UNygf5hJT%x)cNJ=L^3YibqpJ>)^Ni~o`H>4@@YTMf+!2c3 z?8ckyH{g^I2-$N1)RO`+=Czqd`uP=7R-UEL9P6(a^I|^DJM}QvcXg5S%7OW>{;=(< z?723!=$@~?v6`oPNPK0r-`i#Mp;~iFz)*q&z?QJsG%kBWewE{l;c{Ya6arU!>5op4 z^2!zNehTMIL8bZ#B0^uhKACj!X~U{%7|AHjPA7hCa_Pw41np+_^)~xjrf^Izrei>|^VbQ-tw^u|>`%jrS)^uODCvQ59L4p`yI(#@s8% zwijj-r#wsFRhobHr2-58P*Bd z_gkqzOGq`PV@@VUDTyLJMi3aO8q*T81-5hQ8m<>QsQ?y79r>^lg6_se#(iCh>HH** zn!uuVld&{R9=H%3>sE|8soUN(pQ58aUj@K(FboP|O@J09KLrdt771Ap=&u(~Lvd4% zak78(55cL=oA!DhFHbW1hht;zaEr72!Z=G#v!${Rwqqf@aTuSTtWTfY7_QPJg~XNH zmvncZfzDcmf#XF!1)hu-)k`LfHbZ=HEs>D0(E5a0!?HLih^>nQQJU3L;zoU-7#njO z?BKP(v1;Fs>RfgaLrP^Y|KTRLjb*3qtK=jv0|;{(0SdCQibdz!3LQHqAs_pEeGI$o zH1LYv>q4t8ft=*D(n&Tml~?N)aCO)4J+JU8-2(v1Ou2o9=bO@Qsimekxx&+b_-rR$ zN4(}<$YAt1iji0K@!lKn7(J7j(t>gqJQb#zcIsKT{rWXkhZQ}W z85CdcrudjxDHXeSJFN|pfj2Ta9sC4)CiCu|pqWvu&zxr ziSDE{ZdJ%g^>`wqMh)`kkvsU{;wF+}xVrlKNYO4#MO+!~O<0t0 zK4FpZUQtR&J9>H6#_tE>6yO{I3j5ZVCr;COG>{nz5c&V3=1bKKwA&!<-L~b3BT*`a%M0JuPK)K8)4x z^oE~27HjDB`Y15R^k}n&U&OJHE8Y2H2bgV!WAPOOgs}q~U@(p{SgVRH?@r9e_0PXE zP6B;KexPVl!y2SF$dV&Pb4<3k`scp`4CC|2UR zkB5h-zVN_4x>xpryoHxDW#KKA%L+Ho{3Xieo4@t_zQ@$4E=uu%v^F=Sh|8fyh1>ec zV6K&b4v8%eZ+|7c+kkkdZ0_GH32`RdjHlxri*jCATccv+mrIz=;%TcZZnycfo3>+~ zk0Dk#w-0k-Mf|T+*mrt|kv*ykg`QzeKbLkkES80HohoNZ5GW&0{J@;Dgj>fvA3)T0 zP=&yWf8S6qCL5RGSzXEyN>`VEsi)pG6dta=>Q(8fzK;(pHUYC!RtgPbj3y(v$)_vIr5Jjc%F}izs=XGSL=zH;U!Ji-AL@>)i54N8 z2hebITUwZg`b2WkFUPPF7x2CG!9KT+(YxO!I z;Y*Rs7F~PviF@c1&kL0*nBz`R`_zjWM(Su(%oKrnwc09F=88;<2j_~gylW~V_<`ev z;NhwUesgb^A;dTax?ca!x2Z{K2bI66yo?!hPygj%CVDEHMr4sjqVV^CeF8 z!cVx6TR2DuzhPN#e-f0uFB&UXbBj4~Br5vb8}-QPuqGN*r5$}y;mPb_uH;fn8sy{# zU992CLgjEw;U_MqW%e+Zr3-1Hw3N*lOEm>v+1B@BQQbjvY2NhGD~=Cwsxvjg!m_dU zHB+at)(|kYj)s13>GHu?-23h2vL3pm8JnE=o>`|xD(y0WS{?ji(xHTJWRLHc3w6I|rYShqtJPerBe|sI zfk~){io;{wwedQ-cH^Lq789bb=Dg8s-xnHtG0!t`3iz4zk5LU*7^C8Gh5Xo*9vDzk z0OThz6S9r)6~aNWHAS2su7Dg)*vr~nGvb1Vyf-*a+W_2-`m?Z(gl7Q$iDb#-;1tbeub z08w=^)`oPOk5zrUV2axiwlFNq-f>v|k zq5V3GU4-3V`^!7Fyb*{i{0i&)7Pif^?v#+^FvlO~aiwTFe~jfdNV<0~o6K{;a@Q_= zZs3oyq&D#4+8KDo-P>Ha zk2lgBkH^*V=yh&I$Fq?}3KT7M&N`jDNkLELQoitZ?9#~dScB#hPuV`u&oSZG3wGIl z7>m)EuX5^nNuWl9t-M|j=N3eGLi{M)jb%TBFUG-2i-g<&yCck1m}l}3GyLW%@DZBp zBe-!MJ#%o@%hw9u1BNx;t#u5H8e$T<=XPs+46aV}mV@xpKAT+d>k`X3*zgBIYl8@E z-Q7>3aJ8)*AENgzC4_Sb>I)mw((ZXNS}T{^axB}P8-iE6nnLbPe;*;91~g+)BMt%7 z!Ai@NuQ2PgYjgM+8|MVvzDRMj`h9y~_2tJ4!sUw(Z{KC$Rii%HUyi~FZevy6aX9@X zUXDF&pJTF3FBlqq>1PIRoB~iAO-sEeWUAqxi=b9+q$uq`PmZPV9`9FA&>imwS4kYa zSue?&PlFFrFP<|`*^XuVbzH<74TN)XXLA#DF;c&X|4iR4Bk566Q{KF@?FD$ps^SfwY|_oCD?O{LT*?EjyZjJ z1SY1}k8?UNe5!y_6Y&CTy}b1fxDvoqVU3b039MChm#B4J+jK#J#@Co1+64VvN*M0i z>7oI`R_57`^<{KgDmnu7gZJPkW;pD1z{Wp-Kjjp}?%kg)_`OVqZb*$BQ0}gjoz(Oow zy>*I#c=HaG?G0I?ulAGux?X?@biC7;jxO|r-MgZB{W1zJG(u}2&y8hd6N9kL zX{X;Lw~+lVtfOBnI9h3~o1)-&3~N+?wJ)BXt0W)qI^V2SjFw9WLXL3od`%_%qvQguT%|{+8x${B{Cjb$LpM$dKj3lj2W${8*`6sKrIT2-e2Kte&TR@{ z^0Oa~&o=Xc( z3J^}6D`2;OHVo2NUIU>5q%t^t;B+2Xi_f)zS2vLygyb~SQ;7P(?|&nzE463=#Um*o z7VlA{4^QaY1OdPyqb@?U5g#4vE~fybg)CAl-51WKzkEk(3D=n% zrc9||wc*pll!%Y_MJ?()uyqNv-CeJ4QkPn!HD?}09JuIr5aKty)=f>MDLSfQAtJE+ z;?p+624Z0+to(bk$rz?wJX3^kQOy`6TozzN9kSytIfUQ*NO9=ukt~*@DNO;abduRs!$m{ ztG#AqVUyRV1@D1^0_QJ{mkXb(xV{9W9NNoIF_sO_PXW&%SM3XHLF_GDZo}_{q6L@1 zSIdG6N$5i&0H>g>-a8}(aS=8tUVE@IPD$&i<3@}nY#Ooa6a-xo9U#AA$oC1j=jeu# z<8jX;CIM0VeT!KO!jmJC5om~e_qIX)hM8%Mk{AZxL#LC;G(}U@p;z#6 zJ+q!$qqs6)>d^D-farh(W&6C_MOB}WfZ_wb8emP6Dm7$DGI-`9JV>_F_QQIbDxTK3o7dWU;^j&&w-vj9 za}vi}0n>(}>{nmH$EW0_WPgFCF7!ffO5W%`hw|WBDWj}ttZVhVGVs7j#Bqi;s-*u%<-r*T!3%? z)#wOO8^0X@cZ4;|l8;~)!qE+l)bf!5Mt5B;N89fHa_;rm0Q?SoP|tAdi~Bvu0Jye3 z_hp!pd*bj?sEc*z$3wy$-~KNviU~Y6^kO zF}k3A7NpJAM31VQM>+d!UnVPK7wqBIIy!(r$-0PcyzdvF-75I76~H7}FCccO_#5~S zC{4CK2Y=Ud?|5#gZrS4|O*yeGOPT+$-a}YuC^B&KReybX-~@cRb`S~~<8TGI$1UMq zN2_FZqYIWJ4?I+=Hm=8 zU?@a6!6ns+Dv7MMgx^rXs#z3T6v>9z1w~lBL}9HH70Yc-6=TTYOQ0sTZ2o?`P(I{7 z<2+OzxCY%3kUl47_19NJ`);m+j1V;Z9jGI?!T%)vOFs*&18hAqIvdsNm(??|be#dd zzonn`s*pr=glE|c_-N}sz^!dh&k_3EkX;=G!uEpl1I5&k#Rpr9_=jRx;Xm*2V7$ih zz>(Wd4bdpv`5nU>sF%lUppd1)4=cE+qgav(4aZRBkw^cVp?E)5xR88X_ku&MNbd4gBrOwm4Go-96e8@^v2$-Qzwe)#%JPhql+?~SGddh#cd`QTgr zlW5YjM>Ig<-97UZUM#El=XVY20+=U+%zU+Bp`XeT;8s!v4wJgl5UEA8_W z_+%X@6#?3#^_gDJjs5P+J=c_HNeYvTXwf{eXSI%NTu)>0R9t zi2iamN-QO>d`QC^O8#;1Es@aWkIa4`(UQDt)GKGpY)DRx@k+hE?Z!*vN!}L8`!J#g z(t*j(b(onpb-XakiM;q5u-eklm^9Jwn~Fwc{Hgo9jk%mn}<(TyVkATRdy_U90;p|cIoXEC6=4x1T5hCh1ecY{uk>&Ye?h%&AjanY7 zFysFz8(K}NCkwOi!ct;HYoDa{(2>l!e>c!0uX*?LQWs2OQl|+T5 zbm#Vm6317Ef~kN0MtybDT>7?pG1R(ais4Mdd(hHqH`Ucfy_wzW^hfL|OG<-j_(nT) zkN26M^T3g%O`D+|M3T@BUTu73%H-h;Oz6Y~3M-e;*~)*+-ejqJRq_qxU*sGs(*MW4%CU|bek=ebj~r*87@zC=A0RB2ij@N zmgRN$S|w{|->ol>wxi}7Gy;cH;IUtQK7B!vPe4kSbCWSRugVQ(24={V4-gC^wHP0? zRyxewTwTw{DO@e0DOA#>b(tUva7oP`Z7Q?03zW>se|?<YdfbFNNE)A8=c4}2xs<`FFvZYbk{y+rvy+l)8=?C(pn ztC_zW5^dOGM9^GbUv!JS?EdNQ{#C9>Vvntlq;`;m{N~fKiGmQsPmG8AVdeI_`Y(;`oat-7631Y@77r#F-p-m z4vkhf506HgA|+XSZ9q9EugrQ5x*OR?T8i?oR%W=gr0O$XJP4}Vn94~|al1r%6@UXZ zNbY+V@WHD2-=tGNfJ`C@$zj(9d`!h|joe02K{=H>uNedP?Zh05YxzY`A^w{qXF(Ps z-WW8U7bgzl0QIqGGpP6DWH@`BX**(i85+GTC!o>y7~5y*KcaKe}baZ6hms+6-4 z2Obx<=x9DY7u9Uf-RK6XQ{EY_wsSZ5V+wq!bK5ihiuoEA`efKl*pagl@rBwBwZz!p z1whtYvF!lndK1|Xv}Q}ePcsS&l|(iD8{;VKG4_{px()C5+b1hI);YcX_3H|dE&ykF zpYCqY>Wg3~>UROpIRHaEmWhJdDOPd_gBmzfSWl8*%@ms=C5y}-yx4^! zki661hxYw&pmr@G+V-=bcdJ6xx~S_UI6VsAF;V zsj$du`fXs7C{pgtZ%T2lb}}4*Vx=7S#1Robc@h`O;a1Xbp+z`<_CyR z%T!npwb9{SfC_%)edPQR=*_5sMp4%!wpM!|dTwCleQ=n`zD~VI0M>m z^ZIyC)DATPD@-Od95p}3gQbt>g0H~O|1B?Xg`WQaJ9>xwCZAJ}cV7nh;VP70k&zq> zj0Y-h(#fWvT~V%>E&D4^dzQ!eL_zxbD^EYN7;6D3)xm=YokK*!)<2n_`^CbIY)pE; zzd+;6;!JVNc%yPlBS@eV@NrjF(IdU~pG~x@4#F=rskNYW2V=4j-P2b+ks7Q3VS*kp zZwYxIx3KP@I%K3JSZK@mo$-57=0$1Ag5k`Jb_d~RUoe3 zN;{yPmjvy`d{NJ}2j-8yef6JVz;pp6_5T3|gdh!t+L3dS><^=;o4&_X>#=m|tsnN= z-TK*o;ATBYH3E^0p8x1=^_5yaA?OsEywKQw9KZc=UfuWiMM&uR1ws1Jd68(P0y=c$ zp^z|p!&tK@+QB76D_{|PsFHC`4}oUc3JXB4KV(2IHBUa!mj(gEWje3C8F0hn3bnNh%19mC^B>|V9S{i(Z_Wi&u;wb2uXki2D*`t63|V5o zeaOx2yAEFd`4aR3bV7stheOvO(0009OT5eb$l?=#3>umsP`LUUrRRK&-NzmTtnbAru>txa384LG1lDZ1W%7aet1ihm&(6V8EYJ3<-4TH5W%u!C*fT2Z>lMtK$jhWp8=WRNJkd~72%KBs=wz7LB_QRNi(BAbr8&{iDh=|Da z^hprK`|)fQATMGxA(1OXSXiEHmlhE9z0i3x-MC_@nf{AlwuzDtLLf3Zxg?3esTY|t zCVaEB|2IUYx2NCX&Ms#UwUt}JZ}yeBz0;^XE~M zG{zI-pzvJd#IUN(l>(Z2y;!iyB#jqH9Y%vKd?z%8&Y5UTKFc0OcwMFxHg$Zqe7G45 zG7d1Ng{VMZv|pEg4I?JoEaWwqs(O_6>J?JstH!^%3eR(A1Y|)eNxZA;>JJa2bo29{XtG3~1nbp>o48;GQQQ*ATqK?odmzl^ z?AkW_0Rex<;MBlznC%!=#D-xHoN3!sqRdRSkHg9akm!|QT}Fyb0qgq+G{DS_X{JdE zbUR%#pFDXobsh$19vOfT_BOB#am5G_tPKVfXzXs?37VqtvEX5rU4}_YBGN#C$0h)F z$%*8jtpl9w;?dG@{g?US`)iQj+{%pf+7BsRI~}&so+hP_lw`?%T~>Rgd3BnikD5Uj zyfPEO0C;<-_)a#2iNV^9E$MQ(Q+20R{x>c8ju)|Ej*&W(d-~ z=8&}UjX;hBpa5spLEmacK)|YKkuG_Oa(quJ4&RVD$K~+yrm+Sl66N=_mO!X~ zj1V`{wxOIb%vmir4#PLaSjPJ7N}m+*X;cbiFV+`BAa1(y-JZmx@w@w0KxOD0#g!8; zgGlJoX>OUP`nQss?)eG1W!BTyG2RS16?%d-WOyJ&{e(qL*tp-#PO{p;sfGKC30CvZ zK>yU(H}+O<1$HF?<&waaPD>=;w1wKp3N|r`9lF}{G}%43!kJ7_DKU)F<=l$YUhR>f z0=iZo-6zsIpcANmqOUsR3jYmQ8%`@ypUx{gH^w&}@3yu2`R-lFa+x?J zMPXJh)RR`ga!s7r(?RWXmp03g0CnWjX5#1sa}D6Crurj2u1` zA9}UY-?$}Jd#ORTpfUa-OWzLSs4&07{7|*c4`Rmz>_FU#^nrnk@AtR2wmyRVad;S3 zAaQncyO6?!NNw^~c)>SB%Yi^G5H?tMReAB>#*(-R_bPjxlaB6WHhxD8`J*P3rOI@# z2@m`TSuSqSzkk+j4OI>VSZYaqD4g=KUt6-&!&1535U+|Mc+dfR>61L*&Jn&z+zh>K zTK0B_EP`x-463wCZr$chG(jcY54b$U@HC&!)35hPAy{dh8n!Vhf#3cSgmG7H$~ah5 za}(AlGt-(?`#qLku*9KFrCgR4I4;b8I4!}D$m9AglzsIP!wz0$z0OQ9|5>rL3x%az zWxNaEUS$Ou_r$*tuX783i0Z$zcdxFELmfZ^*lT`M2J7QZYjnMM2bye-j-y7DA&T!Y z{oR@~FNLFo4yt6m9%*ebPD`y~6L6l^$LA?r4r>CrCCTH}r+ds<(8Zdh7~$?`d)6?= zmCNo6iE|2BMxZW5xsv3>VNSGcKjhK+?MGtoGLq=E8>=;Kt_`RCCDFUHTO+G?$h)tE z;05}Z;%fd9Lx2aLGQ*@e^LJ08?H7(xEd2A^PX5d$Xv~$|9ITW!l#c=S3p(cVT+V&* zuv;eDD;*M4OUgzkdoe2922;CZaf#6i#)Ww>DAP`QtxOaLB^Mp*-^ zPdEZPAN`^)e>@ofb&tshGzQnMTRcFZ9X*iFp8~sxB;-)3q5*NuO|){?g*hB)9ec8Y1OpL(#3UC^AO39wtom@!m7Knme388a?nm(N3E z#ATK9gSI{c5OCwG;hsh zAnp@^J)_%mvo%0Svk$0;FjYoZjvM+HIxruKf!2(&Ff#~MP zf(kFOudrh-8*7Ra-(em1|4()>>&egWNPI%M=-RPBx2xaB(!-$qIj#(%2~fl7a#6P> zU7k6iOH=>#+rRzw$M&b^051Xlq$;*UYG6jPrtiF6vm}z|(;r9JTQ!qUHaBF7{MjSM6-i5h}!(GkR>Pt(8bAtho zZhiJnzqjJVcIlMM@c7nSeViV*OlT`1PBl+|erQaDhq!?p{|M;EX27_BHI|vBP!hti z*@r-hrmVN8kwpE^gEA=LMB$W*o=*}G88z$g6*HbZ`QA{z^fKc0q6X(7=Wm4wpe>$( z#Jgg!nm4^m%0zC0S99jVzwYid2=Bi&ln~O1Mc^a{V}E_p;al8~oWfWPY$wV*f; zi2x74eG*D$z=ifMgMQtflUaI#Q^1)Ef|~SSy__S#^C_Uk?L111WxNyT9D5*Nc7=p$ z1I`Dz+R(K@weaTJ?PCt+VN4qCQ6I($E+}Etyj=>yepE3VFNtww|%? zWSiuDu^?9xNL$kY7TBqeR`>u(?UEYkOrk>x)d;1Fnf}>yeASwrFl%u8w)D_{`KkQG zR+sBX_0=AyHq@Me&bvw`0{nOPT6{p&5DI6&vaPo+^?MW>hb<)yKLgD5$FF*Zw^*}4 zRnobff?Rgx009XGBvB>&B%Gr>*>B17)$Ds9TOW(FM+C$JL+5!qjdAxe6CSjeYlnRG$>7AMaIiO+lPlly4mW8=BjF0DnJ(O0bQAQKe?gCW*dmCt%pcQ*%xb;FE2MJBL>Fq_I>yb*5fc>)dx9Zd< zjx&Iuav>Y5Qi1tIu({5*DdA(Ny-xH11FQYgIR&W$ zLGFz9G>eq&t}?nHb6A?t<*Mrwn$;)h)4-CQTLpQmAOk4&QeTyHe)e)E-ork01=q#b zS_7Ncl{(`^dWd?;@eO6#Z!L<8S@q*fJ#z9ymA=o2A?la?w2{Kq~9I5+Phi9l%|$$XNDZEc&T;&nclUPDzJXB|322pEB>+YPuU%h z@g%g=E9Xr>gb9oxoo1g8@{zo|!qDA^elrLrnIjHYVNTK}H7Gmc)1B=xN}|{h%w9U& zd%xclNy^jwEO0@-rGXgHN;$|^xRQ*E1r`ea?RpiqCgjhBPt-JSGO~O~Nmh$6KQSYw zQ-zl8EG(N2xSFj-2Q>QFi-4;wKoJ$6pxh$o=pQA9-|6j&q~m!I@rY4=v!zr6SxHkZ z)FgLsPQCRLJPGCz@9j3W3q-x$ z)|zUDfiT(h#FL1R*n%5cob0>%P5cK-Jz(e#TnN@Iz54a$DsG=N-UHAe(od+ueaB0p z`Af!m#!N9BAAn>DeVK7~GLDO&T`d&GoRI*}s_n_CqPIJ!KMBSN3)~m8hP!aJ2hCu_ z8|Zn~(Rb@K@f>@w6GV-%mGcT}hk$>e|0bOc4d2;!drYGX1IWe=S9W5>AhM|SnC?~t zrUV)ZsN+{61pNfzVAe_w`~%6siM{?Kx2ez*4E`Hv|B-lSs98NTqN3m1zRm%Qzlt`M z{7}`P%ci9o<4La&4RRIsQR~Y>JB}oqI!GB**7HN)Y$>DVuLWGe-TZvNzVCP!+HFs0 zF%nyHK?u|5P6pv)*HtxP^&-&wTo3}OY~jjO4(&=mf?J?zLM=LCnR^YBv`fth#Ka)c zVs=wVN6kphDO+0f?&za!FUkp{8-7XUc4Z4WR>m{2z*1Vo=~%3?1fW z1me5xWOMlWI{!IJ^>61m9M-oB*9I_!CJI1)@>U#cjfNzoN1pCg1_lmBi;8~v^x-iK zGMi^2dEUk{?(FKUO3{A)S|`3$zI`e0?9`UGZOQ5YtvkprK)0{(n3t$=V)0L0*)FkMHeY%WtddN5 zvj$Zt?2(A?g`$a6>iQyjmKJCBIxZH7Md5ysSAs(!S)%oA7!`#O1sZxJApCTnd?ZQ^ zj7rbu=5!wQ$$cr9f3gkrg8^3R1nB%_FaT$*22h&8kXQ`E8-{N7+at|sW9oi;xwuUo zn9>FsRG{02r`6y933ELTVov0hpZC+o%viH=FgV`%0&^I*3$Ko_0usLN~XCE4bG04bhA%K8Q!S2-7v+8vluK10`;AakkY~(bya1q(T^QTcJVNBXHAD1=W zZRsn0pdPl^WW?cTz?`9C)XOPlj^mXcQOV?X6GK!iKmdVuyl|3~se)tYcoNdy>cDI) z(ZaJAPuuYZW^rr8g0kRkB>_U(%Wqz(___+`K=n|(;~19LckO}Xse2Ltb!H0B!Pq2> zY)JuFK+4`I1xi&TJ9z2^Jv#?ZoIL?d{HSm^y|bcD+5S7+GB{9rVsd#LGnKuDVx&*X5j1Y0LzS9<^c8Xekqu?V{gun zg&8BC+es`N84RFZff->mB54>NcjXVHhE+kDYSq{)KfrN8%%wC#o>%bU!2s#@Ojs#m z*L4VL79gJ!*5t4!aIrsfu`DF5F2$`4P(h*Ho*}u^oCMxm@f(Z6y}C7!5zeiQ_+~oS ztS-W>z2N}75gv+|0g}n|GO=JefZzn7OsGBQDv>{}Z!tGnmZBJcR#F$%3uViatS zHS4`1aKXmFM>B`k8nk(NT!$5^UPgRfP;F87cW7zDM_a4pczN|^XJ0uMeg2)=>mm(p zE3GwKG|=;tpgG)pERf7dAqXIJ=CwOiP*OPscHn)kVPN}xcR^fStkq>(Y&&&4$d>@= zxX&Fuax4t8P*I`Db|ef1Qpc0f1Rwg8@Yehf^dI1W40=WqNkClgOggOwo0{KG`LUi2 z|8%S!c>}X9eNd`nvj(S56@9u#^(>d9DWq~{tM+lGl(_DTV0i=|;07v`d2MaMfjUW~=-ph>Low_lINQ+lqU6}^r!W4VT( z%!AwT3H>x3>K_lJ!q-nh#RGpHDF$seLC)UyBf*0^ZBHw#Ay=mHwMGI)cU`lvkr!6_ zp*Lu{$Y9~(IY}f=c>$mUUe)h`GF3ez>cGXwMXYrQ-hG$~Vh!7{K*EvVU;z;{jCye0tZ4g>)x&gjeSAkb`=YV;;$WN#4A&_9b zKj1A!~+fu+N&#bI4T zBJi>LtHZj0OP%iQB5^j!72^i0Lz=yzYuW8QCEhSG>AV5GBb>7l0fH}_t^rY`_8e;0 z>zsredp#`${k(x-Z=^GaaX*+2lmw&l(;%)+ly)~Lt;2)_!Ken5ToHBwD84kJ)1#dK zICY=#q$qd|#U}`wb2XZ9&<5zpw(=%#$8d?;SbSxh0SwD6e}rK<&SJ$K)8p7NvwH?u z{4S83zI$x~zh)_cRo)((D!LhhXNn{u<`c1q<$=8oH80#mB|4 zcy=F*2Be*kz^m7OQ2Vurqrfhi`T?4PY`p{KuzCfKyU@AAzwf+>t~Q92(Ws=s8@PTE zOm+-i#zOq1Q{!P&Vjw)6!Co3W;ob#vl+bGd@CLV2#Aq1%w$#SkI8s9f&O9N@78s$i z2T@S%dsuA>Q=1C7$-%HkBo}3R?#18|XZ{vMc><~`EDroY$5073jip3?w=W!;0 z>pjAmG-^Ruj20wz)*L|6PG>$>ufN87=a>Odw21|8!DkdWN?vNOZe{y1MKsF^gWn9` z@og5r&58mMRp{!`ezoCbz*j}xb|_*c31WRm;A58^W=qMEvFAY?jL!W5@j8duLhmr! znq?5JO-5tiFmqYMBDohBuMQN8EZO?)#ySCs=$#2#k+FwJ4hRdFtGQi0rS5Q41)2~P z)wrDUtwWbl8VaB=S2lKO7;5A~&&Ov-i1`rMQgdT6U4@Py?S&&%n4FS!l4Io2v5}O3 z*!q3eKQadxpuzwS1gb^|;V{f# zr9x*;KVj(YW zox7>$hcXbGjf9GD;qomSTTrp;(PVq3%WeLBA1tA<3JjI*hc%$ud>Oj27Oqnrgy3J4 zn}2+;H?NAoc<3#0XFH^wf17i_oSWdll{mXZks#Ni(a7i6fLA3_zLFQ+kWy|-(O6tGX_deaJU)cU=NOy-LH}@s44wy5-Qbh8xr}K%=6WjDPNO%R zTXgLPiA|TLiUvfVIlZxbQ`pX3_1}aK*B;12K04$KOp0-L{?(-($EdLg<>n6{?jj?V z)*;W5i*wMR0fC8@d3}Z`3+5kT#X9~sBi1Z$=+g@RghZw&JS%KX)y(LcRx%lqh_`Q6)`%%-IVAn z$Mby1gpvZ3bq%X9j{&+3k7~cRQg`MV;IdUA;-qiSFlLRozj#i9;aN1yIkX04DLEDB z?GL%P#$qf%3iJSogrhKc6tgsPM@SW&=E6KtP(}L3c@U4jN0U0ik^VF5Z}$Hc#?tSV z_2&;L-e9jkI~PUIEp8ai$+vc9vrLJ=54U3~ ze9&Vc9t`60u~)jK_g}s2%*TPrAh%3OLHTGoN=Q+IOw3vOo+@ad>XRZfu72Dp7IF-f zR&+QMHFV9mtmlsbUEjz1@MeLbI2GDOBK1BM!yExeS5q4@a7IY$vYPLY?I* z05hD$7#U2D5V-J8D6aQ*l#aC+7dCjWWv;>zDv0&sfhd&HFN0Q4FK21A?qSm85@=4i zMis6}&{@6{^X9&gVllgHpvZQ-k}3u93$u5m9j3*GBi);=dic zLeyHl0?`7_%R#{Cfufxlmo-eozf~zfO3^LB8*&w(>eU8)&9?6rIniJ66!W0K=|^4G zIUc$I1z|)}hb57s5fdE7`&X=r|CvEYyi>0Wd8Nznb%5zmkSv_{LAvU%ui+1=seCHB z$=%-M*?)W2uBm#{zv7wNQDruae*`W6C>UgW@GR4C6b+%z27?HOKVR7o-S%}6N*#3k5Z~>c!9tdU6gWPhP?ga4 zht2~MQu(lllpXhuluf=7AiJdMr-tCv7i#JK!wOOJ)d3JR(02E2ha_{XAN1629!79F z!(^{A9JZ!=%L_I>S3;-vAB~MMfP>K8h2ATSI~cZuaMd}~e(NZt&jNx066hp1n9}>} zB&39gg4i)lRO&UBtqJ~}!j=RrD!qEGp_{vD4|M2J44V3I%BO*2ne|q)8kNeRz=iF1 zR^+;F!U-=Rqq~HGB+RNQ0ETNMYh?4HLpG=P3T(srgf+z_ISD0arl-*Y?A_=XQtblBH%mPn3YTQO&|#C(35S zsExk$#m#c>SWB|1$UvHFl-Tl8rLEY=ehxHBg+_*O&w|t)PY=#aVUsf zB#ah>*dTY~xM-jZDBysBP;4o*-TytZIH!Iw@q-I|fP~9A^gTW2eb4j!{=c)?ne!J; zveb`ESjX{dfqtv(+{}B{L)it|({{>^)twf1eV{cO*>~!~)h`(Cnob4|jy# zJcpJ^s6pG^_EnN(axscfBQfYp^wzPL2*sph0~Q;>?{t(-+yHWYVs8@=QLKTUCu&sy zF=W-DWXBPFEVfc;v!J-k^o~c{CKIBGmR#F=sS=aH)HaJckGcviI%9ClwHjGcj<_Iu zxqL~i;dox=@+O|dm^gn$NFhBTU}do*y~<-Ll>$+!K1(%e%M;IWOUX6Ig;`UBSTyQPgD5lZla##D ziY^Bf55?V%RN7uL$QPg^a*1b{%5?}>ytwS>KyF36?lXzeW6RM1zEy|Z;q9~8Hzw3i zaKT~bka7m=C4QLEDvq4q|G|wMUO?FDH*}n}4>{?g*)Cxx+EKYTMY*XQ9&ysGY35Fp zcRE8+C6C;gH`c^x2PIP-+oG3RM)u%LLtw_1br1`BOfnSc{G0y zqkQeh5J%ku^m`tdE=1-V_8>xr9jv9|noR{Bd_1(=oV#grVN@1$A z_X=lrEItyWAGvK_g;uv(3@PH{l#Zun(Aovh(OA3(?%ehSHPJKiW#3WUYHyPbN(w?P zM30wD`W8iOlg&YwfE=Nfm-{ce>Fng-GJIiPa9DR`{EMy0E0@c7T$?h+WUv5&VufX7 zOD=>-xTx|KY7{tAB5ny*P}KK$J!x!_aV#%T7-i5YRbeHAn=SMy>cm=mMZ<40O4rZ# z*@>Ye_r?u=`GwKgVS~rJ{*LH$qZ{OfyD@w`Cr)>qQut@5J*!Wdmzo|r@?L+csM++; zJ*%Nh3z3*cQ-M0de2+Ct&cDp}1VI3C#&Mi6<)ZiRgTKBCEUs*(eNgV7OOaJOPA-7X zU}$-DtGf~jV6ur3d*Ju|Q?Z;4GtX{IISJauoe<(AAX0-up5tsvnv8xI<=;VqdVP%< z$hf4whFeCq3SkTSffw!rgi%3m<>Znz{n?jE9Owt)w&&xDDYYwn6n(}f=?JOxUiXbH zZ`KlkWE_(*A!Cvh_t3EqH%uZBmZCM{y89|-R?0oJvoZk{5hL{Z3!?=D;(gS7zi8G% zQ7{)MD*;YXVQiz7{3gZ|h~Fen z#v=sVRDB+C}SwMRde$hn4jB%8NJ{38Ktyh)NpSr68R zEc0mY26+$DG1e%_^0k1Ajpq;0P%|P8@~*8EmCqx?Wk!!d?INkA+4B)B8^em)4o=)O z=0GD!oSMGZHI-x{>iO0OpZ_`6Y6T5x?;-ysztc=Yn7hq@Qw7($%q6F+sr!Bk{OS{* zLP8%4>gO@6-;pq5tFYDY&}YD({7)Wm@?bI?Hs3Can`;%~WPRxKD^ABH2W&PvZQ8|H z$$q(}WEUCFt1oOIU##cS^QY6+`@`^-#Y^P7(?5I$gOFQas#C1Dq@?P#y*2I8;o(hz sqwDIc4^xzW*3_^ENy%d7`92tmQhr91^`4!BjlqZh2JqW2)Bpeg diff --git a/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf b/dev/_downloads/ddddc4679201fda850a702ce6ca7ff1e/plotting-5.pdf index 8fa23cbde9b5ddbeecc6f89dc5e13af04f4ebd05..64f4bea0ed78a11dd590efe291bb1abc1d3bec56 100644 GIT binary patch delta 16 XcmccUanWN#p(3-fnd#;d#k))ZI;;jg delta 16 XcmccUanWN#p(3-9vB~BV#k))ZI*A52 diff --git a/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf b/dev/_downloads/e0563f4c3c89c72192ce76efd2e6fe6b/matrices-3.pdf index 38078e146d19299a15a8dfa0358bebc199b8bdac..be1b9a9e65ff2cc46ce21a0ef5f9c5cc12ab2582 100644 GIT binary patch delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd2{!EViFaVv%A70ImKCMgRZ+ delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd0t}Ot+s*Vv%A70IkFdKL7v# diff --git a/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf b/dev/_downloads/e07f3720dbc2048eb106de8a904dcfa9/plotting-25.pdf index 3727588402601391233b5041debdc7c181a28067..23e109afd453b72f50b82062785ae42ce4185ed7 100644 GIT binary patch literal 39794 zcma(3c|4T;`v#1EC@CtkCn5VTMcGx9P!x&mOR|-H-$to4vV>69N|K#q9ZVQoVxpMr zHP*;7w!tv-dtWod{rx@9KhNvFU$4?!*LywB<2=seJcsZNtt--UGV%<wG49n zr}^FOTo_bU`DJefdN}aQYTEkP-gkH8m%U-@=-|zN20UQMuddGE;C2^!Q1Sn~aK+ut zhyN`30a;T6I~NCgAO7={A1?>^XdC(1`Z(~*Q~u$Gt&fj`mm9wV^dp0;k(2FRXE#Uw zbJS10-0h7VeE7}5v|3ldQXB$&_+@n-fF)d_{;5g*Q-|O3|13xD|Gfcd-O%d29Kh-* z%a=8D@OJn0vIqNt)(_^t?r_)H_L6%5nDI3DPyXC#8AblH@(MEN!0@t~U}NBIZ+<1p z@-Di$xr3kNphy4jVL%`6p58SFH%A{QemUxlSDf#I{qoCRxepFO%fa6Lt^>4eZyzrQ z+XoB*>CyFfKCOL=HN}T%tcUGbleRFV%@PfuhfB-kw?thY=V9Y3*IXh}I@frIy@M7MpBu=7PeO=)bGGh_L%ymYOC(5?)8jt1C|>TkK109GfCxzGjSxdJ0IjT;llL$aZ*QD zt2FE{zkouqB)C^#J(xFG##*zKN`IJq5oL7pdaNC+fL>4hwq|F#FHxW>wd553*68;; z0z-y|%2?^DUjvP&Rw5!Ng)>v|ohd&VRoaDO)rzg9qa!3qExA1pufZPFO-eQNPo1AU zXj)bJzJ%^i55iA6siE>UDvtZb+RL^DP0RDTf51Tz0>xyOo-H5k-TBqv9*;1b$7i@6~CVpZa=_$Aj`!|`1L*?O_1(b_9rmy>+^R$vlqMnk- zuspv9$Cx&q((;FtjmG9>7IbGb`@0kM8{pdP)&2zt_`0dBevjV>3m#LxI3k1cF6?n= zsHco`u`cHqw@Ss`u%*&E)XH+erYf?DF7~b{X7!acJ6smmh@cs%I?5uS?;;QD5e5 zLd?~CTDdU=4(++>vlPkbG`+h+!nkaDHjO_@k7s}Rb&v;-T;d24`==}k-OpuS)SMb= z)Xo%`aL@%Dt9oriS^0dzCO8-YrauZ5R_BH!J+U1*TMP8=DV<7@XI8wrvG#|G2^GAr zS(!?*9?0ffFTa^j*y!0;sodcgU&o^H`Gl)uuiLYfUft23g3!W*c~QY99fdHA&_(}R z#)dtaa<#{Ez_aAv%pOA*wOqeVGslt4X3p%U=8G)TgHA(hW!(3$Pr5;2vmmaV{+0%I zK%s46l!1D>o2XzU$G0Y!85CWJFQPu?x|p$M&qg(ZkU$ed2aGVB zPwmatF#~nty{xNNa6VNjSscGQu{~zQao1YBYHp}5nq1wUq3MeYh~CZ@y4lxwMu7gE z@cIkP!n-D8#!elnXZV*V5Ms}$=Na^b$IjN|0`)w{OAp@9rdVji2A6)$*Q4C8$@A3J zS&oa$2GC!joI+cl$az1Sm(WeKFk$x*P%_~Z>kSM=>KsQ-;s^!RNS>lbozFi{*k=;uUgGalAKno^fLI z%=!F`$cDg#&GtuS1|*h2zBk#j$#Cjtx8GZo0r!oyXVc&9&G*uKAZRU=&;p?Kb~-JmD@khy9UUPCOt_i1hZBDM7ZGR2Sb#Wa*3?nmMLa zxpG=1J=4kvI-KppFxPOBdRij>Ai6t}kCo`;LfXyy8=zp?o2f+mK za4@r%cxjCc>G-y0uWf!LDt_9kmJ2ic2aXF{&C#fOEbWNvXxp}+ZwhrkG3k>eh@QD! z<5xo5d{xXfzFqV^xqO2q_&PG^ipgqNvetNeL_nR3NA|m#`t-ALj5(@I@xT3EY+(P) zw+_DkoHlWBUK|445lqc}%v{Pw*~o3n~8yWraYZmN-^oSvFM0=V?)uo4H^ff2RGej|8-lJlo= zsfNd6jJ2&}_AhVdKLyAZC4CS-Gi|6+p|}0xXF=>)NjjdRwANSxJJ$Wi!_IgBk5O4m z1O{f)?2hdlOs)>S_YB1#QAoo1Q;&PIC(TrMILkER-+*QLBl+Fi8nd zcq@DOu&n1qp2@dR3q9gs?oR8n%C+o71fTp|pqj3bzWhfn|C|J`jR#WGQVq8krx=ZO zlvuPgEjQn|B~M&TlY}lhX;x_H$u`Sa|4N3>zlqDD*`+3A~~W);>cD4NlB> zg>MSEz~1xxvcR3C2Lxo7T_JK`U;f<+#kxvmoL|o#f%*UU+`2HhJ(F9c{DPrFL%MJ0 z0Fhx_su;N*f_W#@5U?@GZa#O(^>9LDp)tkTeG}#{g~9oTj{IC7whD0qW(R>!yv);f zSx=vMt>*0@Qo`~buR&W5OG|yC|LqV?0~%ODR}#l(#--7R`jRvS2@2y4s-L8dF|$@*_nR~_*ax=YGd;qItY~ShIyz&M9v3C@%(kkJHSa)KBbVds%nIs)C*~_ zfOnU7zk&kV_T#o**kZFtpfCgj?V1}iQ8Ar7c)j$1^f?&%Os<^SOihh4MC=fZE7M;i za=&}^o-W&7G8g)X;~p^=Tj?UcKO{tfTw`^amT{KSufkzcPv=bxCq^~bvrtth2+4;A zZy!P&dQgb+?Mn3tW|oRPoS?_!jJ2+k8*5JR%Xzi4BJv2Fyu#+#k4N?szqFC3@~GTw zJT+y(vU*FHLgA)x$d9TesCY;Jsd7oW0c+V36OVB*c&8gD*n0j+T(Gr5vX4RhzKSoh z-0QC{S20`MuVaCtIJag9CJy*jz7D0+u6D%36;h0Fmboe{(;<=Rm^sB*-2U z&W6AaumB)-Jm1(X^0<9Jy21UD$bB+Iq6F8HtdJG86*`3cMPGu~beC_*RRGw4GFH-!zNyZfp$k5I|&c9_?Epe^s3UWhds zVe+ftaoY&y#B*&o9(Xz%V|`4ZqO*)7Ha@-*bP>;qqm+i z5jb=aaJ*l$7L|;XNgHoROjQJ#{`jt{XVG79rkLWyDZV1#D(^nVjk`2=WJ0-K2_;n* z+urH$kHnABi3Gvj)#jKoVl`d~XgF0f|n%_X-7 z^Z8dd_-VRgJYS>P`uq3nSF}wBQD>V7-D=wVA0$V7Fb4n6`hJrLh?mf?W@YqMzLR>rPy0kcCqB&cO zEnZbPJ?QW8kxOB)X18%NjS@h2Mj*zf5*yf~|E5&G)h|VzC7rz~VG}_o)iWjsS((4q4x6Eu6F=+#N!E@|YaQ<(M-M>tI=RZ|i#f@8CEXw1r;he1 z)n~;}@Ef|GlzEeI=zcX(7lO#0V&d;&qi#SOPEn zJk%dB0fP}gP$HeI^y6t)^Pg1vYYKMl;-s)y!2Q=4)Y|$@kf=D{N77+9G++8x5I@X! z)+D;|o2Cc%c8hRT5&`dkn`#v#5i~6+Y>ntgmsKxGUaweKQ(I2K&(;-P>Sg;OMY_F# zsrWup$lRE=U*Lvld+5&2^09h3?3x}mN)hoAW>AzO6K16KL9q?MgL7tG^LKWP$8*W| zF3{ChkFd~3=H!^j{w}9uQ~6UCuqfCmVN-vl^fD`c`%X+N0M1(<>xMOMby>)GT9%6l zCo|zwFS%LB;56fHVnm6XdYY64hrwbRySDaeAIp+@({Zf3NTffx^ zIrY{LUZC(uj=N(l>#GaI5D0_gr)zI4=ciEU4x8@E{qnnH4?$^+b>~wqr$nxy1f>~7 z$>XikTSrR#F}D#YCWS}hLGkF6S;)f8=l@3G^*)?2*fl=A*cD0WLNzmNVzh~P%g4~^ zTICTl2|tgA@+zRJOsBv-M#rO%YOdat`jcFj&&@Nr96Jou9{xm=^AO z=iKDTPRyIjvcHXDY~Ugb_@w4D8qQw~1M3rz$iGdAWao^h8=p1L&*&5m6JsgFfn%^N zf{tMXGbY2iJVR3qRsv=DaXr(i0am;Ifet4dd(M^~kJ{)La2F6GxVRlAXYhA;?+jMX z>{?ju*a~)THbrqA<@ZGWfXJUL!m+o?K}QYR?scYYgwzn`6&#ic7k?8*hyrby-xnfz zNuwKQ&k09zW!)RK;TU;pZ?$}dHJMQKRRX4fuR6N5!cX9;u6&uvxA||0MeV800Ksut zysg(B~g`Sw5(>H67bf*PcJvLt(k9cut_zi5p5-|kKF>aA$zIBYET&4+)`^R@& zC;VZt=OnjnX!Jtwx?a_X>s5RUrJ;4iWxL-rn4PQP@#n<{so<^3G z%5{}gR7}EppLq-_US!pEwVO2hSgA>m5b9tPamQy-2GKPj8zFY8u(}e(y{D^y{`ztBGTGlYM%(V;MaC`(tZiYKDU)d>+{xW zzTb(Ab%P^Q=R;FRFdZ>L{w=4@H>vfVloC$9ifJ&A`E77Uf2MbttBF)pAL|#q6?x*@ zyKMZ*_4g5R!PmqtPG*Tj6OE9t%OT@f^N`Hs0WXd*%~bqZ!ABdi!CKbMs^(Sc zEf@l8aU3bE`Q4&~x~b{y_ZLH=BhB^ED_&P+f44juw0RowCFX$$MWu1(69AaC7H&2@ z8ex9tOZ%hPr7B(KYOkJ)^ws}|{>whi_1AnTtGoRvxA>IJ0$Att4dWTs`9;e>cb;Y`;CuMb+gtFc(m z>L|5wk@SnXbe9cO78Re%;vZYS+7283OAP{D1I^z7;LrKiKT2kh zMLX3aXJ&D1J1jKlmpyl=#x}JDk|sSZUi9C54W_>S1|7hx_?#p%tfNE$ z%d3f`62LR`9#{EQ?QtIPo8)RC;pIlU#$gr&MEG#SjB&_w!LL^#iA+~(O zur*ZbTA0DUkt}axMcnrMQ;lKQ%(>?D-d{maII!DpMO=vn(In%$~#5uFElsp zeGtC!0ncWPG4efm0Iw{v0ket%i(yeCw;+PVSIdjUymG0nKfYclHR#ZHGn?5$WMy?rc{_`rr|PA)NPU z0E9~RGLJ4~`rQknVeJh0O#39_OUj04VKr{dvxq7+mb)TLdLe1}XS3PspEdZ9E^(VO zTn~-#Xw8%H10y>^`bWh^?-s&!5>Jh8FCrR09};Rdu=|IDfeB<~o6-R|{N#3g!-HFE*khRg%YOxn)rp&}(3xk-P= zh*6I~Fp~IbW%;e%69HjLl>D=?a@KCq%9|`2$>fl#^6iX9(3jgVF8o8!#VC-#K$L-Z zbL=Rx74S@xd}MScew&?sk45qZJ%}Mth$c!S(u=wVT&<&x-W^Ju4#2|r{1V9Ybv()F zl{MeH-TW=!#J=h2W+rOn1jIn~6*P&zHH_Ob7GD(#X-^q8&#kvt0?(0oqK4()Oja>y zQDm9BBqx%m2KXMJE2K?i+oC*K9okx%ba6u)WS0V;Qf}lxZe&f>kUbH2*<$6jD zxhk^9W}S&eT!;i)&ESwPCZE0;pRfNLF)awK#!Og$O; zWMN5i50yEEgj-Wbv630#D*~0Hw#XbXj0W^ME1@Xt)} z)wD938c{^S`~|x2gm~d&)7Lf>-z9tnRlF*F=IVt&JOVJ#(!QGeoL|A&BFg-(@cwb| z`piqN{{;RWA&Nc(KAXckO8mDiOt?H4x9BP3`B#xCyPSh?7CY)S8Nw41U7;JrV6FNL zJ$K@u#mXB*OC~Rm)O5p@PuELA4dUkMTvT*17jHdB;rrh7CoL2a&T09J0NtUEPpq?u zxOUla>F;JuHxSFXTkk#YaQ%j_8kLV#&91g0jK$Blc`R@0;Gcf_^{TaIpx^8+(abNY zTv|A3QF?Lx-`_@>jM~r*mLm3xJv(Tw6vJ+;4|wl$q{Dm2l1NFUXX4L2eBq- z?eqdMduL?Fp>=q~J8969!&>)M%ENQ(8G7TdZl3KL=#{e$NvurR zx1&h2)IcSSsy*_^?4z$_tY&?{iPKB}SL}agJcb@9p?vQ27V^$nxGXO!E0Jg2wCc@V&i{ji4!-Ig zfX~KP-(qsR`_^~8FR}A8N~25hCrMpM-lHaD#@oynP-1RP>@@uSzt(WIU`}JA%jpJ# z=$Wjs`))P)I&%F2y@~s-vCEuT&0$-@n9cB-7Ax1rqgN2-#UpubIe&<;9)PbgQ?I3p zd@Tg!l=&b4Bb6t_=Ec{p0}hokdum>)0$mvvRH_pa{CQF`?pX5*YsAUh=*V+hv-mVc zHhuYL=qGZ_)l<0fg!6-P1rQ|XDEIgsL!#F1nV)$5d5~zh+Am;J!}b$p_@n(gy#E~F z<>?V1?sW|2p)}Bb(wzGnP>BkE{GXamX)}TB+MYPnBSnrwoPh^rYw+!BwCcA&ASlfG zG0gz7(7YSLvJSC7^DMD0F*ea6%SyNsPs`>{3$6y^`(tJLjR9i4wt3!0bSGMX0e{UR zMXiFuFdR4bvaC%Q1vW`swO!WvM!R4tNn-jOWAopAET@Tfcb_0n=Mi z-K$ci^EV}0^QO3s!N}&zs6(;1{#4{1AfAUs zPSW37b1_g8V88ur$TUpDQ9WK1%ZqwGwE9I*werK#{QY+jg5I2`DgM)Sm|Y}Z??2D>7N z`(J%XyGnAA^^A6wzyOvg0$iSShiC{XaJqeX)4`R;>OG96CCBdfpwv#V?ts=QRZAvEH>z-^4^b2yJ)8+k{$ud?&3RVsOQnB+S_B_RwooCo}%OkENZV(lRq|K^pSskk^ROBRv>evxDNt9e$^fsGJ}R zorORcCfOCpb}b7FV{gTH0-2ezhpc~;f32RZb>x{+2z&x*jot$?F9GEN8uzu>$Q`1< z+SL$i11?xCQ59Y~8H5;FG%}PcJAJs)X+maPIo@(!LOa!qgsuEQU|B5joH$RC$HmIx z#*1GXh9vWP)o<@eZ00YuM9jX%@q5_skfSL!evow&P-6O@pwiRZ%_2Ilp&W|mv|d#nK;8C2`bQ;Dbm zVLrp747X3ZHa+mYYpz}q&h#YQH1neq9<5UM2q*HX{J=z_j_O)NhNO*vEf?^K9fitp z9edc&g13K8*F6VQw>&vRgV1z07Oh7q4b#W&=iL*_iSfRUqNh)H%}&GR3>j4f_E(}J zXVy)%F8}*m{47WAN%F7cZOf(obrwrpROFXQu-e`^U+7)dOf21P~!a+XaMeBsbb1-jLy>2z*xqW(4xb8#yVhT7)e_FI% z4z*19K@P60B#WdUl+@7OzB$c0h0TH7xPl@TTY!?R9}g67iXV2675wo}7DnQ5YLF2m zA!f;eGijDDb#q5)mLlbY0hfCeL3D!B&ga^Y2>=m!)MYQh1{onAHJ^+da?8>X{sP3w z0??JyhfWeZCd<*?$Pu@O6qbf(^4R2u49{fDsh7T_M8sog;qx(|@gV1hufKv?;`^V{ zIL#PHt@bZ6*gdrxmyeVfmo>s3;^i5*syTr&8c{f~Utt2ab$WDBYG-H|IBueMx51#% zb9}F)_LOsoWE4{0k*4?-;p75}43iHgW77JIXgb9$bp-%uZQjb zuBrQ)bnbUE2m(4nO|pm7tDrX}JtU7K6fZ9-L<{lBn8exMo492ht#>DscV*OWcEjnA zuqq#Z$adi7B2!dsSHc?!)AD&;!694}e)anW8|N(t?NEn?>T^8RgL?cfqW2Vu3^l|b?RbgUhb8FAT&b4F(hbvC;rw0d|u8fvYZ{_W-dpE?%&p*0?0DK}72778FI0)+eR z)^tnSUR7x9`jtk|Vpdx+YOUV7RVTr_TQ(&u%82${E;CeYV_6K&1x<3a)2Ta235?Rq z(JUIb4nkNkA`rvMGz|e;U<4J|;{G@XH~4ApAt>S?ReAg4rSxH1+>WZJ$Pxz-FE+7% z02cis`JSN=UXK<}5wwycwa{m?jBc*JQLH0R7;b*ads3>DuuWE4Gey@h6(~u*?^<)F3co3iQY(IP{8;JVjUUCAsIpORCtiK};tQ)UZ4waZ zEpAmkgFAp=X0Yb%Yk(4EeC1+*pJ>^xQ@l?UAyG%J}fQmVWl&}fo`4Q&y6#z7){Ja_ReHO#GQT{n#WNgHDGfVwSaZ$^3VwFnWmE6qCDz^%s zmX|9#R(f!OmID#e+y$;Wc>37Ox@@dfVHM}h1iBs{mP{ziHLK?9IJR_?_9<;g|L^GF zd<>0O;Jf#VS&I&BY9A7gB@S`<_`rm-bOX+K)uQ@;Pj?O;=&G2?WZPEqGYD?vE$Nxb z%L|KPeHVS=S#|WeM4cdkmygU_#PEbaQyZ_PH^! zwucs8I}X`$U!Qd|i9J;(VxF^Ypq02(J@t9onM9g8nMqgP60hl2>J9`!vT=9?J_xHeug% zc)jFCV)UG?M|N?*_$xC5*ql8u7}ky%)YJ|3Z5_X)aML%XO7B@{7|l0xK2su5|9M{2 zxp*O>mv{`x07R=so97}6J!c!NZwW&er)L`$=n`q%@vC{jpUTz;($Ug3^(@~RhIO0R zGft>!(7_VswN9Dlo<(l9`nz0eZ2tsERoj-5%3G)*&&`#uzCHlCUTb~#%9Z1n+1WOd;76l*xwc$Q~LUoA=&jqOQfdT^Q z(p2U%LAstsZ952dD?9&zlT0Gv!QGio=}wCDuByw(L@_GX*|QlL$`(*C066{uZPfE8 z-lZ)@JLzr5aCQ*rnUcEcDXF!u#p}?c4@Hy6Z6WXwnXk?~u3QJ~g{69b-5wLQIbm-1zI7zJi#v;pA)^hIxDvyA-DSOd)n z>S}o{P2s1Od4%5*RDLQ-bac7ih-x|wAzFs{k6lFT?sX=ov0JVs6+ZtR$H)%~5uAYK zZcrry!lY$XPs!eViJ_GFcnQek8n5lq$q`V;h_eP|>bRaPSG8rRQbn##O!Fwjs;ZEQ zWqCN|DnM=^aRUN5$v*4Q>q=DC4Jthy*J6;Fzk3z@Onh-!JvxV_pCT2KrLD5P=jNxK zT3XER>arb2dj z9V0hJp|q76&|tKGg7$L9PVwe%kcN&g#f(S2a0@}cYf#4w97FW zO{HmhNedXYIEYJet#4totnvR!CH~4x-@Y7@5T5hJ!Mg#FYDt=+FGcUIvX!H>T2QA+6Tm}^^zR?Z5ySkKRz^ntn3*QpfW$kFcuf|zGNb}Hk<{A~#7TS0 zPaoJA$Y)b%LTmQ$gpS8T*p3U5ubl-aIba7mas2aenac@s3DIS<)jV5%_%U-?wBdJ- zA2XK|>JejcLbd_}w`jc{HckE3-CsANo6yUAeR%9PgXvhniy^I-tAs@%3aY_XhBGp_ zFy}T;$KNM|oOIu&@3;m?%D1C6ZS~k&W}0J&R_5mW?fXEj__lWCq!HuBjf2l7;Zaz_ zZ^n(k$_!7p2zb^Gb4hBw#_Gh=Jvx^|@%-eT%;k7}Z@@g(7;1(-{p}GIg;2AJyRBc#$RFI?+L9*weEGDk|AsCJO=d}If{%Njk zc!)Y7+q2L%j-ipaGwwuECxHcVF#dPW-`cT5Co%<}8FjrF-+97ujE~2oIL56t#m!(% z;6lOm7twAmM|4on0XG1VjLSPFW2+E$Uyf>Z^P`j0FbhXmHty6Pv~JRRgbQ`dH~4zw zwy?w9*^7-@WNbxP%NVC%5)aweFZfDUJ^1wbH_)H5BtSyw>D{|ipZAWc42_sYsY#Hr zV0C(ZAqvKKl=E-yuN$Q(7WX3!PxEcC8y-^j-%K1YJ!OX@7nrWD721$}PAe^9gqmO` zc>4>BQQ*Wgj^J~|lDdT8XwwDX>NV45E}f>n?U~f=leh(9G-?b>I$F|mm8FE)-dN1g zgCW@zD;+r8(XV;J9%};QWa%DHBnjP`U>iy{}2}dBFfqCg_A#2FR+QHOT z5S!_-kppD9Xsh7kRoyb=v@oHo5%d(801$X5ROQ(wBLMQk2;tP~xyjZVE{yAVBsGEh z!F3(6_Ht_pC~8obXSz~xVeZdJ&O^;mTUpQZ?uu6M=`K3t3D>M`5Gl{1)RY%OE#@%$ zHk(a9rDcSx-Rp6R9Y6obWJ&Z7+qE(+RqZ86q}P2r8Q|Nc*B3clANIgIWX~IrqHI=4oNG;sQT7RD(0Z~vf{OXuJ*uIxH<{=$ zDhFsgH5IfGT%`fpFDTMgdLuQxLy`3D+jmu`ZijZVpau3XDo@$JDh^rBeMS_Z8=0(} z*aILPme;HX$WNp+i8vGP>9(;nc0V8ZK^d!Ydv zD5Ckwe4u)7dj?URckcgu6kAb9&;Cve*X!AM4VEQ1e6#Djca8N8QTslckW6_HM@c8z;txhzMH$}z)}+~c?z%s4l7K794*)mrc?pOa_wUi)%~k(D4 z%sp~S>hCFF`!pZE8E}{0$}FB)bdOkiPi}eHK$DIgl!=+%NFO{ddhW{m|lQh=N;{4(8}^+Nxi^L6Yw-`h`nu4A=_3rABa!US-w_B*>F z^Q5}#uIsgZ-`mv%v%T?CspDf|Px}}|H~>@IsX=;Hv}$xEL#qDtZ?nCjZ1;wW9M~Jm z)O>d+$6v)Zc6aDE`H$?hI6qpjv=;qvNaQFOFlHDR^>*5q=CuvgrmsuC^qtyoPp($9 zt8IPDS^ZpjzLlD`4KFLp#!&2`Jx%+3@GxEfq0`av_GB&5+2REzSLq;?QA%$n)KY?i zAbuu?gR@!rH5?>mWY7C4_hp5FYUA1NL8Rr7k(ONtD3_HhL2yy#M~&F~*@BOD4gUDa z2-B(syIls0XX+WOeZK1~*^EIXFQ@+o(#Cibqm90h4Ozp#*815{Z>{R(CD8%sa{YDt zikMz97wYxDyfiYF&4>aC=LP8BC2KfJC;_=$EvWi|mI6rC$&Oj@d{mT?b=-{)zGw}V`U`6i2t_&&-avEl4rw( z;t@D>PsyGY@87dxP)pjS!i}Z7`l7d1;jUO0*|KMP|6jcXMs#1w$DuVh@pa9~bD2ty zC~_k8TVAs?75W`#Bhh=qa{cEVFLs@e6!VciTIvJ@)|r|vF{~hVLKTli^M?8fmKX^fipL8+CNW+iex=33{rsm8BCM`wdu zaVY<_LRJPu&HtRI-dK1JzeFRWcIz{sP_&H+Nr589I+T>c+pb{w^af*H7 zXGAO4Vw(1o4Usq;xZ2{{kt4B@_z&_cl{M8X6%@a^K0Gp3qIi=U-quZ`PhkpoJ-kc( z{d=l`?$kN(QEFAlZ{It2_GzRCocA zIkh^tQ0?}vclCIpa}1|+#ULC(72u*1u#$ry^_F0k0@{2lgWCGb%h$kAAZND> z5wmKg5Osfq#VTIRxJe5nLU5~L@il@sl7)KmRlT|g1=MxE7@pr^IN4F18x&~socPoJ z^LLjSh8?z{zsJCD;xPE2FnVX-e<{$uJ+XNE;a+)C=n+M9wchp?xj6M4h%%t7!Cm(v z3PqXKJ6v|NE+{g*UGby1Ak)t7jma~aSiCNbZynMy5hC|;9AN^|_aF+Jc#7IW@X z85TC{>``E}{`@By!sIrS%L66?wcGZr_|zxhe3+weK7(exMfvBgIx60flA=8?>*-8N zsCybPAvzB_Vh9nRtl#f!bZhT1JW=8Q7~aEH@Y@?UG>?O}y|A+f1k}yG+!h{?NH_ix zB*%{t)1A@+!ZMYHR$iJyfjTDWd-eW$iLzZ;qLTY5Z)~9B|7Nrk!54*D(LDW72wDp_ z%>8Wnkr&=M^n95clrj;Ppfzfr*t}riXwBi>C_DZ5>8>BD6#U089l`GTiD6pqk-nYj z_rF8mo68aCxN@ovXQY5Rt>)ipRm_B;Q(Cj+!j7RrVojgweLN{Jk z4F6J0@rn08>~)38S6XEMUB$Yoy>FG=`~#|8zA2Ij&j?*9Q1AlI6*G(W{`vBHx^7RWy=*N5%5 zjS$aSgc8M57%C#j`e*NV`rX@$AnM2{@d=$+nW_TwGw;2@m zj4Dwnv?b&}^6da^;E2{?3kNrvIl4#ETizHs+WbF@2mt{q9q+ck;RQooKv8nzp)tk; z2kHGcEg_{wO&`sMU5SDl)aOQGp$;-5r))_fY)d0q<8;)^Iy*#(04 zwW8d1Lk7yxsL53S32QP$Wlfxa=oxoyXlGyX(_Cd{;WDSMf723~abR4ismxJCtIiZC zAFBPx6;=U}WRQb^lC{!4P_jmO%ghIkg0B^#Rouxk%LoR3o)Of>3J<)La6qSj+RcGT zU6x{8cPNEIM;3X|(ii!!)i_fB7JqT@l+S<3VeT88=Fa`#ob^-lpgD2lE$@xlmsPI% zPENbz)95g_Ht2(0JJ&KRkkNR-0{<=W09kjTHUUw^~65lq9cqjKSpQ>hTUyn|fu4o;PT?kL+;S4aNUq+Eo&=d|Q|HcO6OMNj+>@qN-`1D4XC zCl~H)b1CalIF}%v>&rQ7Lqm``6!$^xP^rtIj^BZR`8YVmZq?_}QO}XHxjmHDQR>&# zDITk&x|ej`z7G9<5rhk0n|W@c-!s5-D?}*V5>CpnPTVXDE3H8HW`eLu{zg?GV(MBN zU>Ml(xYK+$Mm@V$^sC5489ap-%dV-e+&jN6o%FIp=tPsNyaX|W;m5AtJKek|uAaTc zExNXnarA4W&A=U6kU(NACAC=3y9B`()853sn93Y`;9k>zcQHC0l)-Oo_sR%CA~pR> zWq@;OiJRDqswObl)&2VcpzZ&!_N13f1~mM9`R8f#I8@nm8b|Gz;g7|*GI?eA;|&&# zVqW1j$5$KO>(5@9LQO}vG^RtSc-x15%>{w1-nul0GCHDqYO|}ITwKE&V`H}d1qVsc zO)y;UIIECt1L`k4oExd_g-lIR6B%hed-bVgCkt8Fi0NDB8=47rLNe^*b_MF+kMpA{ zuw#MTP|;r&cQppS4Ju9hTrz^uD)!l)6Bkv-g1a4+`BrU5&WJv^tFLf4LOiv7Oo{Ea z{gFmcE>}{h8_&O|pDhOc;-?|*lMByZljmm1WCi}cQ9G3ZD z?7&O)xMA&7R~X1lP+17Je`R)?9RE`w7xAz5(r5<3=O)8VbL=jTD8lWJG}}a9@#=k^ zxRE>XE##5nDG7tDd*=_Noq@QrtzD%MCdjfcIG=+a2(TyZe-b<`j|3+0;^Lv0ve|I&794}p2t6}9CQ#JR3toMb_8h%<{;DpSA*5Clb`s+YcN6A?+IFR<*v)edhAFbJG{I4B-?IGcj2h+b+6C^jn{ttTyYiIG~UkgE><90 z>Ylhb+rV1}rwk>HKcK#VJW9hCap~E(ourX*+0;;<#Uj(-<$GW#9#HW1)Hx*t=RItb zS3UY1rjN}Rpy0*SF}885yj+TSTKpDW$iO+hKZtEm-28#I+x_AaFMSIlMB19#=( zmOldsJ4}21k`{Pyp{`S1At867o4}&nA^HF@A?9{}Nr2Prm6EsLlv==pCDmh2)BQ>U zHa1jW*>@^(#X!#S_A#(ul0LE!mkP~x@pC(vfMwOt-rJY`DkbJ5>bw(d%8Q1t&i`fE zlHYW#qF$pjDzxe2z|gU{CDzO2Wf9P5l+0;pe*{)dZ~v~@=>iMBg{vwX@05G)pS>u;~Ey!kF@8v8cE;KB9iw-z59Mc~FK zPYotNt5H7SYg4<%WHHRg3P9Za-IgiqebiXYiOH4gU=}bfSBIaw?^t&BQ^juL>?D>E zZ@jj4{w}1VJFoS|90x0GAunru#p3OrQd6)5_W% z2-v-2-ju+*=a$n#^lPy89w>8%p+J9ds0_oxTR~?Dq_FRo!@1yu8OaoS|5A-;hn4oJ zTO}0pE>yFYV|?BolMl=0PwJZfj2m^XdC+6R%_U?yQ~Si|mDTY}cd!`fBv*W@*7(rtC{ zZ;Gt43ZAwkgL;&})Sx%MH;-vD7`}(1W7h1o$iSnL|s-UI~s7 z?8aPIUM~mLu3I%ddt{|X26>4H?lD@E^kzwYu>zOp#6EcX+sXznaHQdID(Ay38~B^s)7aI`gONYB*6dZucUT7dh?m-e>t40A;{W29^S23tVt6j9q%PUi7DGL{~i(d3>@2bVEFNIEM zFvw?Y2hOqOq`vG<%6X{WL>R(kllxb5VEHNY+r5TpEEfaV$#Eq^*)pe?nRk2P%hr0( z{8z1XC)6J5DHX5V3hTG`+@gt#OGj+OsYmC*h~LU_H-+6Fz#f9dc(XVT{DH~rY(C8P z!kZ0#j#wk={@#`&#T=U7w%6pbVDaYTGvGzA-`RQLWx4Csg _hOU#@g?!La0?qSJ$+Ryag`c@?UlIrheZ<$FMPCKbMUEs+_ zhrY@e5xN?JmFaj7J0xlnbR*jf|{|KI--k zyIey<9w}xgX$Nprwhj(CR+g;tV@Mx^mk$Oj8td*e2!l?|dX$jY86Euz94fN6HRh4R zt9$%G*L^Q6hV=WItb=*kyG=pd(8+eXxzyT+-dRwNKlpa#W~-p@g~CguPjkBDdylfd zVi<1euJM#r4b>Ipcsk6Y6i{SGafqNI8kn8W!F_06f#-Wp3RvfN&=PdTWL81Le8)jip*Ney&4&E_nh zc6cr#(fkd+ZdNfftSfu*%DL@hWUK!scpF z7V#o%e=(`~5Wc-^FEU`h!mRGitL?3b;Y=6$cGm97n5bq#`)9$KMz&%}lSHxYg>nir zy)CVZA)f_=xz4Bp>lFuIN0Y{7{fQ)CSv zrH?Uq6_8NT=zW6ituYL&I+aECMwt{jf^}&bWiQR#vphXPfSC`Pve@eFESewB;;{EB z!&b|j-`mbK)h~8G`j@z8{qSh`oevXx#Gle1wDh)F6<&NV-)l5m8p7eZSU6K%uX9@LvWM_}ln zJgi&oE<>?(uIx=*W-1&T&nDSp50N9@Tf6$NW~|cUdMt2ZzLr(ta%-JFB=30Ko0F|K zLK0prlEyYSgaqr$UN{DB=m^gZnpetlBC{?RTjX{w-mqlVpL&{ppZ<-^f##yAUiv5Q zJXsgpd#jmqdlxT9wE0M7T~^b*=pB)U7oG^=Fao5gPg;Crc%i6|$ya|vq)X8f8H@yC z`=i+L*+l3g%ZpepS?LjKzXdk&;Rjff9#RRZ%=y`)k@HVNUUu;}!jFthjWUq;E-kAF z#<8JO8aJgAms<)-&`li|siisetrkbFG0BXMyOHCze9T9soK4l*Jr`^>r^v}YI(|3b zu&>1r*IF26ULwc5D1WWsidLq_#vMkde1giF8?3_*&rlg&j{l=+DY*-W2c3QpJe}f{ z|8#a-Gr{lM*eF`=y^`joKGf4vgK{ee$As&~rRCxFn`3RsV6GtuIYh>{()mv(ndn4? zE~8Jk=0+IoFK=c2jWRjEb=Z&#xH#B35otRilAH{C^^xWpD7g^Fyy;EY~7;h=ZBucX7 zI)V?iLfC_f^-v~0R^-BJzAUG~)cRfQvwWIeq8fQ(Ld?ErwRv?FmYg_Yqj;L|A#V*K z;p8#dEek~JR4gAmR_Y+GuV1pswc4m*;o+H&#p=g@MZVMF^{Rp$a#)ft-JQj?e`!p; zUPsSl9gqDD48;YHG~Mwce|A!|rh9WFai(6+OP*9;*%(Yj_s|eUFMN{?hj_aBrJ2^AzSGJga@l5f)s*dP;fSLR9UdN)4Ju#RU{)dH27~rasdm%^M(HIg z=L(ot5f$4u$VG`RP6@t~?vu;(%O$gY#v?IVwfcrpsUc(4At$b>?`r4E=|w^m$)@P4OVQ?dy@H(N}!esv5Macq&hs`+tkj2*^)!Ryfmnm2>O~OWnq)>R^1^ zQ;YNKZ3p@c13Jv-igdD1irFWwF>QSeJXWaDB1BW69&k#;BHLh6a|py|jGK=1(qJu= zN%uAT?IucH^+=jsnVNZ$PBQ%gAKqQ+2f z8G?k+OTK=VI?IP)1&V`yN_%`08Ejqsib?hgsf=1NzD)LsFOOtRm(^r<9JDc#uur9b zI~Br?e$U*D&#XwhpU?B5>Wtrl#Z_8!4wtj#8eQ`q)mxB#JLa({I2!{h~cpaJW3uBeRJCa5ahuh>9f@i)wF5-wP&^rV@#YZyGh{bZlv`h3X1 zQ?&;x{XFZ%+9NlGxP!`rA!ZXjzfL3rCF?cj=zm+lJeBjNK2lFe$h-Cxvi8{tQtD$i z#OWbo+PEQkpzy=E=Lr(-+R9|XZl!9yshgO&P5+w1q!%wUf+`4BDNZ|DX(kqJTS&Am zE35#TJan{4GuL-pGudxS$$gp8iKRYpd!FWW;?x`;RgYss+cLhr4apoE)g(lGpK$rQ z+qvyqubQNH_nF2wKKIO?ZoZf;P3y<(mk=ZsU(?kRK1^&?BFjbdxgLhh0QOkQ=?F;S zOcigU4-cR{JFY2{u07kZP?#%p2{YrdyBD9hnYH<@npC;c60WeLK<$-9uVp}rGISJR ze)A+xF{(aZCo`sfZ=}H+w?2DsqxJP_O+7hgAu;tZrSb@ zk^;Xz9+I9M%YC%dB9Vp_b;Y|J+>zcE*v>`8BDpad>5TCy((9gZr)dL=kKf+So8%XY zgjMqF1&TAjW>ey6ZQar7#TV`teD9Jwax?k@bU!SFfC6HD_qi#x^Dg{Cu_3q~H__we z@`uJ)BR!1P@D>XnEi&Lt@+9N%4V`&my%E!M^cceyt2QMcIGuwtT{_Jg6hGgGt75JUcl~fjg9Li0riglZX!1 zq@?!@>VRBWc{$htG)qr={JA|Ous~n7VcCoDiJ=l6bzxk z35;1zz~W30B>UbaNuGSgjn1v#6b+gs$kCmmlTqBT*s!i!^ECV1vMbX}&A^cdU(}s{ zZ@YwAoRM&#VNn*-C1O6V^3y=n=SN$N8KTq0xRq%?6-RHE7T9% zy}nU1#oi@%d2rsvhMiP&?6P7pI8F%&WJe4Bbffs{B^>_JH7r}xx}7;^zQ;N%fB%b@ zK!cJbY(DyeHnj|%6cVO9>fYH+rh$b6&P0~pC87&SY4*$%WEpWk*=9JvG5CE z{Cp0hxwKVai03xn^k(H6RR}mmRab}Ak`7HGJ4c}C#)lSO*GFJ*uwXj_W<>-Z14&|Q zv%(QG&aE;*SZs#TvYcpJKDqV)hR$t-h&x2qx7DXKDch{WNv{0jfG_3EIYvth_aU2u zUAX1XWQ*?0VJiuDOZpAhX9#G1BRmWH_5^L1Xi(VB?A8YKiQLRZKNbGj15dKYH}A?K!b}7 z{Pma66(%bp#yglEUr>J5TNP;CHry&hZ75zJC;QO!*(VH4G$f^RjN4l758krYFJJ8+ z@e8O!<4RlM`ZN#FpMF(EiO)(SgTuasWEXm~KW+ZKm~-*l;I8w+OBpU(iidJ7wKau{ zLb7=#hO#XcvfaSCsJpneIE43e6t6he$62j5BcT1hLA?q zSVF-Vz=8#4CY>x32m=O)W)@4queTVLNw}dn?qLGV%#(m%@cQ5z@QrZDxfcC&7cFY( zZT1pLw$1`}CJP@TV71mQ*$wD%7ZDWHLqJ%G(T0M0_9KR zLz?(&oFeM&zn0vF9jG*k3=B8g|9v22>?um{WTXot7@K*q*Lw+fM1Q@6`h|lv^0CER zQHBjohH3LK=jE(P#=PCk*aO8|4Rt-hcACpl9+_dOizA8+AhL-Y)!rYh3OEKSsw5BQ2FxG?j-NR(IO$bA2;@CS-(_~ zPmWx`R6VfwH23)6$>4y6Uj<|5Q!R0%$b6vf3oHK+L^4J^l!_eh+ zgU>Ar0l-uDS2*T1MH)i?-p`w;puxXzMOPtXwR-X0YUEIlXcgqE4CPrIN0446j;*)R z5Et3xm3bkk(w^NuQ3GmN2$@ro$MG?s${>ZXb$BCAannjU(SD5!O}g|fwz|%4@!ip9 zy;HGoLkyc{(fK~54csOv>XVa%43A5``B{lapoSpfmc8i2;bz8{bT=3T=TNY@^lZrL2^0U{Nd94-w&Pe2==v&FH znNP#ZjJkc$NF`1ckR_G_ZtHG9tXkc#$6q{d2jqm}XfDNP@W6x$1*zKIZ(SDGx*L@K zm2hU7N4Tu@djwwJ7JEdoc5ZUxD4kfL)P}`GP^d`j+`vA)PzqKLo-Upu(q;qiO5YyK zp|?&RZI}|dP6aKMgNt2_ohHe&-|{@F8<%C1jt{B*04>kc$YyNdZ+@TzUzIKgDkBPt zIMD#Z*u^kJko8bWigDBSYbq79-3l^W62+2S$#x|=Z z7G9`%tapJ5Ac!vB1oqBcZgfk_5oI#r`&u!x9n~t%h$Z5(Y16o`q+>L^dd^x2?B;Oha6GAlXD=<%8fEKjjDZ zem8+_TQ%k8Tx#Gd?=leBfptwvCAQ(at8{d*Mr$)dk*E_%S9gG2ENPK7bz6{^3D-Gr zNmcq3b=_9tf*1(EogH^_M9CRTa*pC-(s}tm6sz?gXRRSjd>ZDepnq#=gJo;zBA*Z~ z0JswZv4zH2o?q}g(y(auO_jyXvN`(qt3eKBPuEE(^D3~H~rSp2_hJUpqRep{Z!b@T=5ifd%gcaUtW_PbODrPbf z;T6bX75=z<;w6gQ8fUofav0a=ZphgEw=>? z1UM$Yc|b3DZurjSugtX^9fjnqP0xqDkY(r$!w+EAsiZ3cfhS5>r2O$=!;4TThqwS+ zvP|i#pa^H1-tx@(^v`(^N_%v9UslhQwY8@Co1AiRhMH|)>2iO*ZZZH_JE4 zO#Eoxob0n_dLN2lln4bl6+Vo6h{J7iJ1P`}-8>&=2(>qM0jK&o7UL^qV`W&^{5-Dt zVt0^|Z2vJTC&VnBih=|}JGUX?WC5CMr18kz*E>UKC=aIGaQCgl$W*#_Cu7Xq+Nqc$ zS1NhmNgV1UT&$iWOg!PH{A_60kgf@3uSZ2w~=+Zkrpn}^N?J8G$NKFj$W7LpNz;*Y$LVB0v9YB;G8 zkmi6MA3$>r`Fy2qYDTX&tyqgh3Q<13Mn2+Jj@vu zy?tVy0rwxv7iZ^$G>RY5ContiiVQ!x&!yI1(9$sNev!C?-2ob>JY?X(reo#dYx4=o z@uG~b!pTl(m$KoHrjJ7&;qLzNuE?Mzz$IAhRe#H-4cpi5Gsl%Il)cZe`|BK1C)U^9 zPu@?wXcTg{mFDS)e)fnvBFO7Bp(M1=GE+dTscI2rTw7}aGx=iL_xO=(N%jEK=!i^a7Dq5H!;~EzR06k^~GGWhLV4r4! zuM&d{t=sed*;*k~=+YWKGGfN}N>JM!{PZVaz@t_pgI(AtAhQkSLY&ZCS1<9*SKP1X z;4yJ(Ol4c~>+rYUg8@Sw?r)QDl?=|%Tz@W7BThA~W8}zXCK*MGg_N0F{ptzf9K=w8 zcUE$L7?yUL(-Xtwi+d?gS-9&G*Le{jQW4SVDwJj($|_PMTRx8L7amnf@QYapov>Tr zWB4u#6B#ED$)?+nn!Hl}eG`LYfItA&vlND6AjDUz%fl&S{7#k`FzKMT@5XpN zy4}}6w8dYmyti{-k-cs>>((7tKb?8X44fIP#M#wA0B#DI121!KQQd#nNoi#bZ?r6k{bYJ4^#z8j zd!+MEslAea93odA_jcaN_dof z8=Ei@(@zZKhoaw1b6UL9vpkGLwR|F#6zhLdm1d=SAK$$|tZ~fmh3-AMNVhK;*7BFQt}3AU^t`C>6x??qtmqN za~1U2ulO=l$T4*5W~x;m&(Q^#gb#1y>SJe_=EltKFFrnnyGiw!>}stZQI8Mm0rN$l z3%Mx8gQG}!x&~MjKh)2nGy{{@q8f*C74r&+MT}L4KwQ4=0ACCX`aNrNL7v*xA`T|> zx4}$-=iG05G{*zkfMeg`>}uV9^^b>-@@PnEn5|E=C><|Q{yxzo=%SmD>5B`V=F~9r z8_`^!QBdYqCCUH6yJ>n|T82uAK!rzz6Q)*Q9)Ab19zcn9*H5Z|60Mt=R?jzYt}+yb zsjklmE6a}F4E0&;Gf?Q6u%iT30*@kf?THSLfx!l0mAS5fFja>ptR3(SITZToVLGDG>JE2)_UlPTLD>F}cAXY3XXxMZk33A6 z`J-jXR^aJj$V!6&W&7cKw&44V3=m{|aDRr?u@Qs21$hu^sy^KT=YtBeUmICtSsL2- z@88Izz5kYH1d*QA`Awc!B9zF4Zj*R_-<2%2LwxH77J)*6!G@ zB%=AFcq!8xvws+*v%J}tqi=)d*cv8Wl3P>ULycqlbIZVygHD%T5+d-gM;<25Ou=qF z1AlcE$R|H{4Ti%$eMe94^X@EzS%o%GNU$DerTnlmTJ-rf#u25xdvk@79v_c8hSuSg zVBSw|(DdHiM-#gfk4-1w90aMZ5w0nC$vyDS(lCv*h($h2;+g$KUJ)sw5BJrt+ObzS z9n6<|P7A$x9y9m0C=Y8K?lb>Od`woye%K8LOd*9j0QA=KOzr%@%;BLZD0BFBi9rF! zg`=||+P}X0hq>wv{ZBOQqhr}Nark^z8~q~3IK$iNW-j?sBN`BJi5s}nGH4c|@61Sw zdEvB3JGAk{?o{*+$qEWD-hQ-0Ti>}!)8{v0_*@-|uVJTieCkCD_F*WF8?8xifT%$P zJ}WL-qK-DU;U3zg-yTIR5T{-8rHa*hn+MEe_Roq?Q58bOu(d=3TE}T!tSkSX%5HX=z zViPvy*u0(6Zxo`Yx;&FlY_nL?>a%CowH=?!^31_C8~+`2TBtaQ44pVb^$M4_#Oukw zLvA3z&_jniJbSJMZI@qI`m*#J1xsiv+zoayk3b;`4p7Y*`ILNUZt?b4#A1K6vB|dG zz!x>kKLcMub7)}%)-$YYOxsY(ZvB!u;Uolxs#JYCx)N=f$jo3S1k$tzl4!NSj3iZX zL)Q}H1wga|0vP+6Iwy0ZiASg*8wQmKt&nv3$QduOr>Z4Eaxo>_@Vke!aA(Av{;ez1 zIoN@Zc5}7C!WyTyN!u(^`t4*rwSTzI*QRPOKW?|7yXKrnESng$Y*>m;y3H?Dlt-1z zA4DJ0FjCvy=fbfxT=am3k=pY#w~{tvP9bJjO=PQ^(Y5L9zkKCE$Hm9y z6Ypq$S4||SQ$iZKH`|M;0Y%sv zmikQmgL3< z@5FM2Gq|qF3aiaLf#N>70XO7XZ#dfciT9tM3z(1~MTaKAL;x1C!bPCi7{qggA5L{h z)9n9#5iE&HIQ;07bjT+rnGWqd#Ee4eM7(^NS)!NBhk`UAuNvDBTRh7p8i;nyVwR*$ zU#t$8tAY?3P}WL!T}IRQ>BTe=9`h-1YDd(=Isq$(O06;?XB-(R29vSJ-4)$Tw}W+M ztj=_(H>q(FF%vOa9co2z7^9(JI7b3)H*jaVL7l--M+Fxyzo zo+&I>{KQ~_tF0vl;PhKImIBw5ve%av7?u{Sls9EJy|-4|ln%Nkc+SqW*{p8fY$hsf z&UbE-iRJ6dBW@8}>kD<|o3G4HdXBHnB-Qk85pdYm)zIl!E9gn@#`2g|(E7}nkB<0e z-R62<;fB-toE12ox_m1ZyWWIdj#XYCG1=(dnoa_rHDCia*2zP#UZXA9tgDVZ14_TN zn-M-qWWCzzTv%0Becub)rSY{mshr%-wI;!~)$3-tWPg%Ki_L7*=!j)BeYfPo(ctu` zwD<9(URqKWa9Ne3N*QiCR0ereT^;`x*ml~xBdTBuhV_|M+9M#EqKO*Y_sxWBBwDtn z)F^6kQ~o?Vxfzk^TACeEkTmqnbMniRf^pKfKkD2)VseqeeJ{&rVrLPXOIAS}v;LRY zTLfkoH?*49(7Tsz+QCp7;U3c8b6mf9CvNH8sj-+6&yoM?r+1|_zD1gS%kDikLWS&L zHB~T0(A3+VROQ%bJJYyc(7&a*n_w|}uALuN$CYGJ%-NfY&^D%xkk482wGEuvqj7nP zpxhgt7kZ0)&Me|c`lX&|(+4{!ZaF4@T{o`WCc=G4QgKE|T=N-*o)Av|Ah9L$$&T+e`ji6V)(!I61)Vn!3wY5mJD&J_aIUQHv?%bjbSef1B zdu%Rn#+@OKs9dzUx_$>_nlA-pc~|Ar!|s`!%fg~%7J2KMls6GBpYfmpx2JwpyeVzinBSXmlPp?`5qe zbCO;t!RSaeN8@prQq=p(%Y@&O<1|$hy1Q8EwZji*n6k1aS~I2QA?ue*PdZ)E5*&4~ zUnnmb@T1vE;uQXe4$1z#nc`C7{}b)RiPKk!?c3vTnFBk$%h`E7F(FwfV9SkxaE`9( zx=P6(mGCPWm%cWqesCga);iv_nC6S#Ys_-J@UHRio`TP1ua9K%F}j$wmcZtVbxD!h z)lun+t*b9W1}47Pxi5qsk3~B*sm^WK ze~oQaK1w61^AEj3{?x0BzBlYZf81O>;D|HU7(42nrm6|hRzhlaj@HJWhSsha5j`7c z2ec>js)IYmL-o3~J6wzoao&3SUIGbm50s*2hp}~cxZ&aE4i}dK^%%erhMqPalv<#= zBk)-Ir&e^&)4=gb*5AGjG@L|jZ<8ZIJ<6o-pTON+t9#iV6{7*VRyvG#CxfL;<4 z6%!K&b%Fms?kwO4sF4@k-E1-7Q>Z0$2z6H=Q4X&5a7gT^J^zt~P;mazH!#h!T!1j#2wR}TR7sJhqbeVt%|F? zvmIzJ!qCIc#TdHLvG$?#40H@B1`V~HZbAKox@88J78CpLNOb?Zb5-y1nqa-9~C-fY8Us76}dXIwa^K z`H>*GfVc`>|FqtaI^EHEK5#&5ik|m{10q6qf2t9Q9X0Z&b~M$qakR4q*5-#<&~S5i z0mkQt!Uqx{A_c~exC}}P=wV4opn`Wmf+Pwk$o~Km$P!XwhGNo4qfY}8GSa(p-9HHP zVff$&j)z`RxhjeO`pc0yx`4l%MTws^`8FnzmHf}PUOlYj&-> zqNn^2Bfl$Npj*+LYk!=et7N6>-o%5#_bt%3=3~STm}_2$cs8D5-BvcbCw$?B!Q2$X zqr~w{()}@-U1!*@{X^4!w%FTElavDL`#+HaX@GLwBYtpfgDwz$)3tNzJN#_qdikN( z-w*Fbdl)>DzkJcFF8JQX{Be(!yvH5PGX36m_p0{SW-w0}+&}xO)R?DjDo!H15NW^X zlR;WVe`-Iv_O^0m+RFokm4ck?flpjGZqp-t&(%IiR96kN$23m9y=E2^#?cD1Tuueb~I@NpY6p4i5D$m0SE#Pf*px9`n7+Uvhrm{1zrtE_Z6g?D8esuSy&f zk7|S^M*K|YJ?7d8cMeERC9e;)9b}fW3y-Ryeba%upB$%e>{F;3eW*d4z%xgmSb1!} z)~dqcavVPk*P~Cp^oO2ft+-Rd5~O=}4JIqQ9HFHrBKqgtcdP6xX%d>hd+lYfZLCmm{}yrIXWG4o zLQi{KCjB0k1Q#|b9f-`hUfC-te!KVA;28_%ZuJqFpQFxJ9;NoJwt`c@;kk+xa$YK6`rQI0?}_jG_#DNW(PN z`Zrf&c1h+4se5O6?xn}4Httbj4$IOAmv%qAmWIH2+&2n;B|eT3aj|OBk#+hqZkjpU z|A^ZHEh@l<$mE<~klxLv?~plr`s{}dSB3@5yXamY?V(227P5as?QF%xE7kEt*VEE% zq~6jH@>*E-(9p{IZmTP1A^$+bfA9w+fGYcsG(_s7=y&rR9A7%JdHQ%5!bdOpWW#28 zLs+vh_eb;ld5?JFW(}fW@eCL$`NfGQ6n7Ep9i@h1@_qn`!?c>1qqp|b7|U`Jhl$gV74=RudmNEy%|O;2-Or-VtFRLBqK#$jveZ`z z=GGdfOvl}&@*85hzx=|2uG@7rN$XK=f0bL#eC}S8)lHft&5JSrKpzO+?r7Y9hU{l_ z^!5J*vO~oC0o8#5{Ryg5LFP|T9e~|`fa>sVsQ$O2{|Zw7QDZ|e_}@cxx}PAr1mrvZ zuR(NRN)di`?rv~|n=5cAJiNi3$8~o*I|^i{`vKWee>F-w4(Xpp>A!~Tf9pFSD+Q`c zO8iez;r|L$my-C&#)?Dz`~Oh=|3md1I7`La{|>4H`T6gK>HwHRApU<3ssk?spx^%k zs4npXrbBT3|1DHU{(Gn{3*0Bjh5HGnL-#unedqe$2GuEQb;oc(YLbF-K~RROC;`JL zdLPoA5|kjxwn~+tV){Rk{LesMLjn%kO!-hl91fH}bo=M4KjUZ>@t>?@e>~Yv)-R@*q@m{0}Bmtk)I-3E)K4q;1GC9 zKmD9AFmecl%a3QGZtnJibO;czy6R~QVxT{NcH`yMM`(mIdAXOP&nykN=t{3w+kU%j@bLiiX zdcnOkVDVq_B!OT0uX&P^(vZ~tJaw>(J@KmF@_V$k6I*KcJZW$~9hq%;V&{54M& zsQAC;p-_M8hqRRV-@cWW`8%CuQL;br&BNW=!P(B867n>3@B>N(#32pb+@Qfg(F*5W guK|4m4F-x{z<5}@dr(AB5+x1-5d8e=dKz^91F<)|wg3PC literal 39774 zcmZU5c{o)4|Nf^%3PlJ>_9Z)^$TF4eL?mPxYmy@SK2u4OEqe*mLXth%m!XD9M2j_B zjje2BXbi^id!L!%`CixWdj7~fbIy5hujRh)*XxX!*#%u$MLA_Av7%wY!a62JK?Ol? z=Nn8K8iMkdLvFhX%4<9MJKgkl7nC=1a(D9+JP9r^7u3>Xa`SS9E>!(LH|TnM`3ovh zFOau3b-v-|;xBlb_E9I;U(dqd$=^*-nf5=-oc#UWe7yu!ppQ)Q7T29zJ-plnPtm{i z^>(pv^B1%Q!(Pw@Q*jIS7nC=+1*UMG{;xLuUjsq=|1%xM|9=6{yrJ3qx`ElzrY~>q z=I0&Y>jKsT%^!?!;^yk%bly7{jHm$qQ$D32rz)tVtRi;`JYHTKEDYT3C#Xi7-Z?KX zZ}3SGy7d2U2K4pz?isszx%*!iRHTon>v0pTS5RK}CfI}vZZ6)gZqT&-{C(Y=ZZQRC z#bpm2ny>S+9wS*5$uEAREDbQ<9vzBCoV}fSYX2VPT|dW4HS%AZJQ8l*OLitn_~i7)A(@| za{#Z5Lbiq(4@?&xW%L4Ecey?*< zR%8khjzq@$eEPmhjzes2mQzr$3(4o}-wK@58bwk_$c;4t3;w2r{#r27KZD9dj(A=s$A)r3+lN`qbFl z@L8emz#I(|qBB6l3wZdwVM_aCO&Aq*C>H?@zGz*L%*} zIj{W=U;F7NWhA>>%iydZTD1~4QYZ0<$6(m<5pyrAgIs^u;+TsM)+XGyR_oaxtGI`( zTPuSJt@c{h6PLWw@FjVcMXV6y(1 z<)>cuC8mlMNAzt{soG**y}qmUVlazZ`M5rYk-6iM^8E~+tXO0DUy)I6I=mmkZa%H{ zFpUurg=+*h^UHs`wV@c+oY$k@;|1e>ft|E zbi8a}hXq@Y_G^a_R2Cx)r-njDwGZ`Z`-ka&)waShvUV70d>4AO!7dT)DcLfvQZa)(3|Q_0w!wN5Vv#yyr`ezw$=iPRLvKyVDtP zu)|RKVKpZQjNudgCc;t(OTxxX#_G2{Zv_acMqcsLY0w4=)2J_%OuFd@`Xzu+>Bh=E33 z5_Bk0xOPUX2z=ChzIvcr=ziOZEppM39GtQWI= z&1LUbk&*t+=J4Z9_VMp0C34CwNN1+T^6b4j@1rb~re(B7_lO0~q^c1X*KNWsQIZ)e zjc|Ib12dxY!XaXaKd1Y;bH~`^$N7c_12fiW8xrBq2b*lCZybf`iv;3x3T@vMwfr_x zC8(ytkHLNtTDHjPWaUrK2u3s{NG2}lWd9RItlXK=)2P4NKXRq5E=sJG>ptFOvhUWL z+x8#dv48nUnT+(D>k(Oc#dsNplkCAwU}?uJ+_Yrrfo21ohaa>_rS1U7N~aJP%z z?|gmQsS0X!E#AzPa2ffK?A#IgW74)gd%l7l=5e-HBq#J=RQ6rk6C#7>8}|ji*|wOq zrII+cxowM?&>p8y&0mZkQ;3%=GfJQ>oZq2D5sq(wi6Q<$>u!6@tbT-MsEh>m`stl} zu+PiN7>?2wq0!(V6x~d=0O#-qfm!B3Fb2+S@BR3D?lm)A=(vqESiSpsumVO%PRvhAE@TWpHuS3`OPfFg?8BTCDk?Ubf3du*(3w2 zmUm8(NxOZ8e-}#TdHdn6kEG$%^9Euip4L}ho@;2u{akODNQHJ9%Vwx2-$nhHN9$eaSY7+noNH0+hG$PUr?>Frs|!+WqA>Jj@7bS?wMuZ zE)A{K5VYT7pC8|?)HU2WjruE1ujXX?HP#+!)hb$kgG_c|R&@S6h`r>4J)5aj+;8=u zEL1-xkWOJ-6HCw_9e=2?@(-q!p!BI`c(PmH4UDx^j#UnkABSH~6Y1uWt4&{i1A8sq zW<4`KFyhMvPi98@w(VDnvt!cb!i-x+c4&3=ftk3xnP{r!_mS5RCoDR+G#ZDREIl7h zrOm+ZCvjB_F?ZUGZ1L0K4L_6@@CfAdde-mEJT|x^_oS;`0Lu2g5`7rxdh|A#x5W?)|UGl`)rxgB=;zsAjofc3;mv@;*Xuh z`e^C7Y(bpWyT9d?NQ3D4Bh`zww~eg$eoWYJiG|(XQ5ha(AJ^x zPKL8tX=3f!O*tKJwb;bJn_|r;Ys^)b=JvVVT-24zOr8!Rq^%C_d3~lo@CC^2|BlVN zPb77z?CE30BvsA!DH5L%K7p3_w17EI?j@s*uiizdBt71}FGEG4@R0F9N3;|J@1}hCEF?vWLdS<_d-}bs9hYgkuejiq z!o9UN@~Vv*7})UN#$1j}f$@6CveHCE#q=@O-EbWFh_jJc2~mIJ&#qR}Ri0;R-RmY( z(V^C`6hw-KDbg@2cmd^4&TI>jSu3B-Tf5VeUa|Tee_GXK6dy*oG)axd4@nN=q!^VM z=-JW$>sze7$IaRePx)zpnH0(Y8u(*Gx=Rpd zLt-IjVPcSLn`h_Rf08HM(!~2<6X5%8Xnsk_o&IY#WgD(pV!#o^8MOtO)g%GsUImDPw#Vg#8M&> z8@}YSlzuB14btj6^jPg%*&!DS+5d@a%W+9U%D$UAINfjW+55>i=bgU0eYkeMRo||^ z$e>!iqg}cfnhIt6oo&n#g7j4RF;(;7SxY+0sj5DcWbm(Am)bRVqPcV)|fI8mP> z{YJvReVN~8x0bc_l>)=>Z>{8iX`{-uba~&+ozxY3@s2r}c8n|3+-C?ER}!5ON*C@9N->++f$s2~HHib015n=t^^5@vC1@ zjV*1@*j%1i2sM$S!nTlA)xUXMQ@iMVnCSG5x7>^6ynP+H{i3WhCNX$h zvNXqpt^roqqX+{5`$I&^3;lm!ZX+jIZMlSJHOS|f9O|eci#=Z1b^R}cv5eD(7?*%n zevt5o4%*wZl6dm%ZQRj{xft6*vFNAiPQ3G_WCq{miYsq;Vo=J@2jN-Sg?_&u zLg36Mg}o#8S-rpp&Nl`h8*++qsOY+qfu`;$6b6b)>(xxFAn@&=xX)GEI zJb{cp0D;TV2ui?-q17QOpnil}?D6%VEz_q#%lrKc(}k}J;85ZPK(o4on7(nQkZrB} zVp*&F=GdIc1jJapN$TaHM2%AFP6o4;B3K^w4Zfx0w^6*eU430w7X+mM4u5bNS7-fZ zQ9Ii)UT-rf&j1=nx)-J^(NrAUvW<1ISAW#KqhZ~gXvQFP?{vueGQnurOu`!X6e;)2 zaQN3QBg*OS!OFQ12P#z~2#)%i$oZjZQ{Z1HC5y$@mIC9M-D|snL!GX4g^(NqdC+Ag z=0ARU#fq0?v`t=pWz*TNfOsBoPc~;2Rq6j!K+~}h8JA05wU`8i4CIGT+QEPGbh`nd zhnV6yjRfrwWBX;WZ?x^ee_=f=AnRDD7i+;X>J2rnxux)2#mm<(EI3Ed?iBP0Dy za1>RK9%#xBjdF}d^mhAoFF7>R7NWbUXfRflU4Lm1iG8N%P)5!X|lv{Uy?qO#4ifHAeEG7TH2Ljfz?DTFCUtJr$Ut;pqKeA#i3$?Dscqtfd>LJZZsK zEvl}{2M0@PkW{GYK&}F17;f5w%N{x`K0^)*3S~>*3+FR7Wzv?_q2n*u>~mQ=)cJ-w zIyqE<)#|p~-adepXaf6Ncrf3Pw(JzR&SFH1{5$V?Y** zAarvtw1Y@*OZofA>EmR&UYM{1G_d9#oZMvsU7p zlxN1ygB(9oAGG#aB{y})zqCY`8{b|4c{9y19!W%J?CrQ5RF*pQxnmN0q+m)%?pMlQ zPPN|!(Q2Mz1`I_R)Gd|o>xH(IDXm|zC=?&5*xQ08#-RR<1*N=79GIFY=s;t z@1&Bt(h2N=#wDr_1t~G>>2|-s9HB!ebX(ccEu*?4s>jHFn^nK+R)lV#SfuEMWB#h1Zx*)-4w2WMMJ;6q?Yaj688arP)Ca}z+b(P)X^4e@I zI^nAe8ooCEJcfzk5HK>HfZa%ICHebQS=Z0-T)}I(2Q=-HKIZ zU4trwSXd49{Wx7EA47F{?UnoJKSgbq^<|1G+W6WSQkEW_3@5E~&NP$%!}(enyK z#UE$?8vj0NIGY5SZ*m7^^W8-t9}>$J-1XQ-rM~N4sIS2Yd|8?KQnE5J)2NC6TKJL{ zzjK!bmyGyA+J4(#Juull?KMwHs__mB%4*facQg#gY28$L|JrxrfXl;Pazq4g!zx!( zBI>3Z5F;z`wt?3*0R*w96gB1|+9Sca|A!<*OzXIL*Hx<)B(JiPO!qn__W${gAL}>H zipFpDzWEUII-h4|{wT*5SzJHIM$Mg2S+$v6h9$?xjSCi2QPsq`aN{i7oQMbic00(t z;cog}hHcYIsfCmu-JkdM<$W6YzP=r{)n_%@=zX3|mSo>slI=e_V%rR*^1olPHVj4F z75rtcN(YkNJ&m%ie^zztA=|8mF*wGJEt97GY@09{v!@UOFB{+&_>7uhqr$#8q3Bfk z5Jaa>N97(EyfPl~M@k|mI-_v%8#`>-w*m4i6olDdol1;Ii*?Ti@fjA@J!1!i^q z+^?T2!qUw&#sr(2m4KXgSKh_J$SYM44xeSN=TDlARX(dTeJe)9w8osz@BJM;qTp>_ zB<$4b&6Q5>wlC8Jg%C?C>ibGSaMb{A6fR)E}m=mt1~kaYcXzdDr? zzAE7LU#XWs5+K2dqPt|cVa8gYV!Xg&l;hrRgYyk*M~Ka{lIL}1k^tjQU}mcc{4PR% zMskIBUH zqe34bJ}-EZGG7fUYf#-n9 z<*ZKsaG@s?kGM02f9NVDd}I0VX)1bz*%#bjiRg@<+Qvr#c5LHq!1)0BMN;rCR44&b z(VB0iDt3b%)_0(4wG}3yM8ghP(XuGJ(>u_?V??5ad+~)KKq2eXPs15zxzaDcX(XZU ze_|-QvcK*6Tnh;Z~GLx<(N0$xa$~)7(tVtowPh6 z^TI5Eq_);Iyu0u79t)Yn-L?h1R@p|VvEB9ih*98o(JU)0E5vEYVXG? zq(BaW$WkzyHwo)}nx2}MV5gf@pvXdAADYA`PF3xk%CgTD+THe&@gY;<+c%f0Rn`!; z5eaF3={r0G`=6sa-Diq(~|_mIeXdJlzYOk{sXU9dtoR+&NZNituuCOM%e{B z(2&Iv%v7I>Eb`Xt{bX-~Q=nl9(_lK@AWPSfM_&DB7Ab>Nv)Fo)wK`UK#REJB0#R%T zwEPzN8yjE)(44?b*{L%H;BHu6>tDi}7@~;dCLtE76(dJA)iI7VAGaYO8_}1rw}HL{ zaqd0|q6!rvVqmCW{WKjiF~i93U;JFyqvL~P9TsXE1g|(@ySOp#@HvI}u5pagwJ&gu zs!Y$#%>#L#%Ed=Irpv`)!RX9-xLC0Jh%YaGWHMsCtB;XCJ`n}yS|Hr`OBt>7n$weR zO3cD9@@8kFP@JY~h9zV2?B7(sJ$JsQv48k#0}UtN&&gWR)J%UDC|__}T4>~iPwvrv zG}(;>xlp<cbiYyj7`*79U9vZc?813b8K9VM5;@5IN|%Z$PfDTBoxmu_j8fjm zf(6gUyuw;^kT^b*h91}kjGe9msk>A&UCo9+a??DbR7!#$6H$*8)&S`(IJw@rgJh*g zwJ-B*?|Oi@KWUG;O(D@kK>{<$~*%_wVkP>0TNA5xGZ(C|i8) zs94F$ky#tp!=sXVg)|frG&YYUL~pReXMSsTCs@7HSsB6)7LqRi%>U@lvl4N_vm?#L zdvVG))s2vd^-9tHJB+ z6ee=Dh+}U_*w;X6G1m~JeIQ-1Qrgy^2IrppYmtbV4AqAjQ7TGNbKdM@cyF`;^IUl# zm!Q%`h}xxP6|FFed^56>XPl67W6q=)Z1naNGQx41Mrhc?lOfX7Jd`sZ5b7C*25v5F zeywavioTr@x+x$h`2ABzQ|C7N9F6g^IQQrwMGf6d^JJRp%xQlU87mW~ zre6^qm7XM3tDa1J#@>fn!TV7G_nHG(e=bn9+K6nUdWh3e_8B4#U5=P10tin%nPSue z^<>s~B~t!TOlHz&u{s?>!KJ>qbK#>xkj)`S&_QxKkiae78}m~Kge6G7|L*-gDMRtFC9vT zc9msWpUwxjHzHxh7w6ewm#K8ybCynK9kk$)?(~38=qB&kPHTMi-x$#AwAeMURZ`wT zWrieQ<1JZK@(%AJ?N_EABE{v*^t6Zw1TU%j&e#YG1CTvto7Oe1RXS-2J^Hs>t9O6; zpH@x$$4{X9!Dw>LurZnwv?x&JiX~X=FnvB#ZT#PBb~1F51C1vmS$;fF$p0_DT)Ri* zjj-3;O(U$w-_hqYf%JMnO#yl9o}UUt7q%mE1M(#;(Ia8Xe0J8rlWoqXi11-87s;1T zm`M3l>MH1ptoaq{kJmkLOS>VUbX=g;zByVLGT!A=8TSI1jih=;vF{hiOQJV2YOad# zyo%W%f6coWZ~!PW4faCSixdr|cg(Aog{@!4kZS{kmQ(i0q*Y62_z1lLaF$hviW!b` z(7Xp(h-eB<275~r1BMCon%7p5L!gz_4z0IMI0@Itii9*NTNN50L7N*DKw2&hzbs!# zp=Aza9Dg>%dZE3S*bFf;rfym>(%5f=@^WR8>-DGZfP0cT>nPh$VOUu6<*i@sVrZ>H zFSlh#r5*G z@K8RFsfX}_wui#YVKH)EbGspZDYys~)WTV0Yi<5wh2JPBYDlc451b-pt z^G+;<&g)Hehh_n+2PqP>HGFMbJgM*-!@6FlXKDh{+ehk&HP1dSWQl}+pj@?BRKr7@328mQfGY1BP+EfHvYm6!m}W3 zfN3q-W!RDy>YyrFL%c=-aR%;>u*TxL4nGbw&wG` zTGC@gy6WGpaK?x_*f738mp6A8BnI^I&XgsVh97A(# zPL24C{IK&tF$zH_zPKyT{zNIp0R1A;6Krc`R-lPbVsETXkgNGC!E@@F zn51h#f$mm&d;>E|O1cNH;sz{+_cPs^vu}h)#2L=GBY!%vN8r=Hn}!f+LN zIT!p2I+vv|S!*h_SQ@Hz2Qj=`F|NfVR^GXSyMinIGxWqtn#VvPVf^f7PDY@0T937# zK9hJdcm4WW-Ql@%;RB?8(Qpz|pO~lNi?cm^b6jPkmY!IqXLoPDuV&vR($1q+MLzNg zxvtutJKV(lR=q(t@!j;R3 zJuIKhouBMS$#b<%!bq?E!rIuk)w!C~%05<}29@~B2R<=8O6J0fr%QT>sC%8&%ECnA zN1Atwvp;|&eQ$5(C;wJ{1fuH62$>-5Nd#{SvB&Q^lWqbxjFDrmTuL%;%?D!u3i?KO zjr>MacV7u(!fX!VQ)*atd3RWcTK;)_>l=R1w7KJN;%{PSUA)8aGGAT3^*QWvE4c?b z9@te$Kng@IWkmqnoKv+Pk3r{7;4=bFY?#43<)8M?O&*gnjCGs+$lpy3Co-assUAcM#&m0Egx9T4 zd^V~KMsvbN%+`v{_=RmdJL<| zJ;~6dZpo_7f(K3tIxcJK=ydS(s-G}{s;4Nmd=D|i37{`yU>S_tY5CzL?TMZ2ZtG8v z=(m&`quh^90WM}O0qL-{@nU|sK_95J6QXTQJ3RO4%%3Dmw(<@iKc+yR=J)VNQDj>7 z!ocvG*Rz6E86lyTtWUpSG?Tn}@&6<^gC5#h;7M60kZ_wvVBe^OcdPNZ7_Rk$0ySwC zh*6Vfq7k~je{vfb5W1gv(;vDpC9-&VTZQhv1!EBDNQhM7pGA{c-QKEOf3}|-v~S5@ zjCg^U=2l3*95ksoWc=GyppO3sX1fq54OGH(;n*@e`{#N1bJznz5{KiQ!rau42VH4Js13bb` z!MDawW!9kj<|Ho-pSIUB9VYpRA15Nmj#qtDK4U-b9q?Aqc)rEzFvkJ>O}5i_-`9So zysXJ}#03+I4y{-x4SOFW-paCcEi&p$J%88rM}ya{*|a-$&rgI@m)?oF?^LG4L8`~^ zw;szoJNjd9J4L$Wr#+iul4F)0^HkNaqop~Ph(jFG$5128ZI7;QSx4daeo8{RDdU5z zCQo%fxuiD}KC+$V(?!3m$~{h9Z}fQ^Y-(^+n!!kh&~)&yf^TYJ$n>zPcf5;w?Mg)H zpF^eJG<%gthz=IAnkRS+P61?zvHw0``SxDSM62TKKkjX5QjfyEJAf{RE5|+0zc|yw zRm7zr=^AHyL+UjD^y@Q;7|;hZ_HKwWK73f{oUrxKL1%9sDK3S;BL7<>TIml_59a=Q z{*u_kW_lR6mfLUUY^4ym@u#A|DbY>u=pG9JyhJzY-}C=z`*b`V|03a7$?~``g%6$5 zog>Hepnv)2Dc-^{i|!m}286XThJPHd*pnt#K2fm6ztEi~X&rFKd35XcuOrOX@_XLT zR3(=?SzK?F_st(|22nMy#`|KO?Vjmynj>3-}%#(uBNHsWm za0IA2CYfhWgV(*qfE7$^hD?5XBf9P|DARhB8dL$p--t@yWLqmY;ZW zfnYZMY8D+X-ODnMIDbkS%p~vB_XH~$$9I+khgg;nviuDA*GCkR6dD#zomci9HKkA1$A%n?v3DSHxyj#n1xAWb16ZW3e$Cr#VeZx@X!kKsiWZ-5GWW~y7Gym}k zKiqKLWwMFm8*Vi3@&zKK2vnb|y?{fnz@LIKjrXyTh^0t79C;AnKX@d7#G z)ZBKhGo&SD4ImB(t=XM%qt#aPCYD0m`{)Iz{kFl#HSi zyM!9=n5x_p3-#$f_T?m8nTEIPztD0-gRk@&Imerxz)UxmuT;|>#Ie;dR!p0Kw`LvJ ze-p^|ju+_$aS2F-$339A;F~u6*UD?BUI_r01!>2mo&?)HlO{4D4kX>PCyi|_X+qv@DH z!+XWO!yxp8sdezp@Vv)^<5Js2*F@Lt;EhBrm_bs9VQ;?=4-y%6?%!^NtgM4(k3a0U z>g)32R(v!bpuvlpUsw~X{YOyuc;+7~Cf`&Tco|clkUfX^X@a?M(r4Dnvk8H$D*O1z z^=2_)nr#0%EIjqji?cuZvdo)9#RR!e7`7P?MhiMg`H-YL%sY{F=wuZ9*x*-{s(tur z{y!yl*bp_TRiB$VjFGbT&STMq>qkCP2nU`De~d+acTBW2FeynV3e|9(m`S51AX z$qzmLJgqwAIdChtA150YREGYvQifoA!v~(7{fTweLBn4EJ`#6ao>)>F^3S_$u4XGs z@BUuPmdsml-W!bUc*zo{EUpG}R`RoD4=?n=*WYp{ZbvCrzR|(Ny52hVFx%&i%}Y!( zSSDP>YbXBx= z&4aikSEaqXLR^L8TyhNeHeC6z`17;Gee#lVdztXj zl;Nv48@yH(qwoY^x{!l%vgOW0a4OPJfed;IM;9b?XC z4*P1CTTLuOFN#S%(FY9cU*NNcPn2`038=KX+U(D4vR@AQ&pv6}*JG#~OXbvX3Hq!? z^c<@1m{L<#L9t54kqyH(kJ}e=GrjmMX2<4hK6)xArJ98^F(Jh24bRG$T|ZQCq4~V@ zSZexp9O9XXVL8u04DS-^M&J zZa>#10GObONT1p9&q^VhV4mRjkJ1*Bex;e#c)iS(eJ>^oL@uEG%VpDq2(7@PC#M2q z3RUhYW`3H!m)%wlz#z~sDqQmkRuwIdapFt0*Yj!h70}r{oab5SfWw}os`@k8vHgG+iu1g!X0*~igRTLnb0Y>>Qtm;6b4xJhTfBNX$01~gowfLIvZzH!NZ(`r-mp|i+E}EBJjG3WI0AqZR2zMQ3S;HI zgn)OIO836sU7Z}-nly!&Ip2KY})xQoI8KfnQ&0Mcpy$!m|;?KxSql}rZA2NiU0$!3scq@8UPI2`-G&6#?_bisOuC7s#!98(c;{GZm_DutP9>;Or#aCT z{c`W_eyi70MHjYH^3yS@^H&qcP(v&(rAx7J-1M0iPT-EJu^d`P}x$bAS~?L(87u=Fhc)FKC!W zfO}+VEvpr`EyUU#+zF5A7nBn;)Ip>K?Ah|fwzwC21VW78Z%zJQ>Rrpc0)!nMYKxN_ z`%`%U{Gj6O)tJs0cPurU-HV|`Gx&zzUma>RW3_rqGRU0%ueO%ZmIN*afN|M|Kc1s| zeU9~J!P2T(?FNq#qQ977Eu7t}Z0ggvtIfR&tV{}=)$b>$9OUcUA@$G% zQUvo|z(QKs<9l8DEVUo*7TtaEH=j{uKvqVBKKGuFjxlXBfeihArR-u%aUH70--D2Y zfTEpeCduP;r~rVsmON=*3-^?DXb z)x|DIndXFOFMP=#oGMIuHEoUxv>uQ%pF0YN_{fkxx+(zzgMn++b~oA{rsc>RhXR>_ z(*xvT&^3});s`thaJUiAVl}{bsoH5`t&zNBiTbfNefE;63RYC{c$*AP{rNDUxCXc* z&KnI_9gP0F7AV(|16FR0u<&pk_~;m`yKvZ|v2^xY^ArCgv)*4%MV5UV-Q+4OlQsD4 z0vHYWa}Ya_#u55|M)J^Ojpt{S-v2Hb zi^BLyGws(m`21s!wDY{rXz7>T`j3eBN$;vXdnws=LqkmZ7c~OM)H`&oIrL@Ew_X6# zjByzDFuwG?uA(s*3<=27h;yRT$dbGRfLvmkHQ3-Yr>FZ(Hk^eA9ihVVNmK~?A}wra z?jyLo9qa?&$qbg5-T~_G)#>2Zi`)6GJ7&8ioA9wRXs3)|r}vef+_z*UPw?1KIkKkJ z5#@`3Hb5N<9@X2{=EqbDc>riFkU!mKh$@|8r;!|><@fG;$^jSx)VL?cNV94H)$1a6 zs1M=X)Ih}~^d6F*+F4rmrMs0@7#G>Py&hDkPhXSU`p3_IEeDq zouKuYUh6JoZdCbiNvS&y*(bB@kSJ#E9hya?50JEF^WiIKRDqO3q@2{wSklZ8eFU8h zF5G@3cYf~1JBgN{jdo@_^T9)IW{AtJyW41EFz?14WAoQ*-w6S|M{NLCfROWg7+elw zPjC^k@AL&@8FldITX}ST`rZa>fQ~f!U`ArX;^~MShDaJcoxsOQO4{V^J%J*1f4H5w50>X1*`$hJ)IZ<*jOhW{`Ujyt| zeBo-gv<=PEl7_~{T57rXxyAwB4XjnJlb`#Y6&pEJEUms{YkCB(#@q)L1#Yj?e)|y2JmV*bk6(R!`F9g0X2kD^6ok z`IT~AxVzy4OM~vbKH~q{An_q;w}Br3(?r9w(zm6Lj*~O-7q;)}&k27ld8vp~ru>s_ ziK66IIExA9Q#sW`*(0PHlDX*)s`#eM1yh})q_8bce9yG)K1y?6@dclG;{eS}1^VLV zAC-h_!9|=!fm`Ts1RX3`Bc4p4Iqk$khACnBPr}0_*GNc}t_^p9iC%hXEoto>Q+>K0 z2d$0|@R{`htYXf*X8oIA^o=d|z(1=vNgrU7sr-HF5&Fh%hQE4yVmtm2Zko9KDsiNb zJo93*1Uw-7V&s`GT-PT3UQ6OAuGwyyZ5EWQn~zpqcUjE;eME|_5jLfj=+H|+355i` z3TpmS>*!VOQ($SkE{dG0M#Tq;8KlZJ@hRs@GwGWW@zuq<&!x zNeM~}eRPM|Qs=&+P!2`C3557ZUcF2zYVJN-zRl5m?XPWN;F(ce&JE7t+HZ2%hg6PUpp@y4HBKn7WJQ`3MNP1O!zcWxC4_Byb?MPrl9u{Gx(NlNnG_Pp^WjDdrZ8vPYr z#8B_YcRC4_NnfE1!JNcgv*;V;`0t4>8Zs$ z%no&1aN8ty&D1o6Za*A5h}b~UkQql%;#xuy-7NVG(9><<(HSW9~a#CpHU;;@4!HP{tY+B7_reSzJ(4g zm==&;lfvRWv2Ow+K1XlcXMhWHaXgkj(dZ7wu|9Xoe!7EAD?ec5r7q88SToV@yg5+# zp!4VdICy5$bbG1m5i9oFdu8ure7G+kzx{v=9;}KEJr;$dXa)jK zJ)~sk)ZZ0ubKA~f6*}-j{cxaxH;GL(Qtviz6>r{2gEnP5R(0e*tBT$+;9TqN@t+?3 z&w#Nz2F$l(z-pKJsLx;R-|BQavT=1kfPVf1%lBQ;z zAr)=qQB+E+DD68z4d<^-}9K2{JCm} z{9n8Rof{r}g@5#r8(^du@rBT}_e~FpcP}(k<&`FQJBLog37&mM|8NVkb)X>ln~q@Y z+v7doa&NOsX1Ns^8oP|Chr3|Z;m;deB@S56T>NveTr}?vaW@o(#S%R|E>jKcPk%O+ ztv-FC@E*MV5JcK6x=VncLMTmqVZlXqC%eHF6Os%qwms(BR>-Cfh6csL;!2E4i%(D! zPu*BhJO{`;)KO|HbIqusKIwFVj}B2$l1Gh-aIzPI{wi;ek#2rtwy$;Dc@KxjXq8gp z%fYL~OaW+tB0*5aV7LdSWwb2&IrYR9rgZCxFBw4#%N+KHMX*$sS%Gi5vi&fA&kl!e z7hoCiYZn5gTUy}(d$c+Tl71$uy#6r==Z^lc2!TMh;-x?3y(ccc8~}jMB7iVHPypB- z0DHWJLz6FATZ~dqoC2)yvgU)4V)qy-VmIk6es7lvVfvmp^l`nV1J=@qjLY>k#2Jep zaB^;_Ruu|@mnHd2;h_5!z>VVodGvN4*?m|Z=o(y!M8ER0cQDP8SuO>EB^(cfeIUT{ z7G=aB>>vY_V*XiF?`|OF0yGB@&zwCbmVrQGC>&!`a&Z+9LyU%O(Ja>HQ2sKiHDxasRK?_t;E3UV5>U6vT2St`6P}`Edvn0uM zg`olPC?jQ`#Flei%NJQSapElIdE;m-oZoasjPu zq7fzh?;8UH-3exE_F6f#$I>JS(v#1*D{Hqa{sUczd3oAP{a%~Pel@+aj*Vv_q~^Wm zP_vy8<*a=FA}&3=kaW+Y48!ittf*V+h@-B;zErWyPmWgA3P>FMN;#I+RKpN1#RkgJ z^_*4<0vXIyx^x}K&++o-IK?sLP7KI8?2R=)D9cTtxo59Tz!=JE*5%)4b0%wfHi$z; zNRssS0lEgDA7HXaToPJ$Jk`%vkvdjX-7KZZ%8?cT)&u$#S?jz_B^c1j$05CEy8HNH z`u=+%)$n#VAhG)Mt&#ElCPIBx+tX8zSNuo0BDzZ+^hAL93~9b43U8CSxIbDWjE8~l zUr=vP^0b{kbQefm)Y;iDm?wj9SfA0_fQwr33LAA=f7=-C2`l}-kh9f9M>PJ=-0 zJK)LZG+Z-6^O(6G&gS6RBY{jy~b$Dly9uoAG_16(p_ODvQ)un93ZDBWGMYhTjlv>$*?Kjq;2&Ko$?R^gtR%) z%J}?ElBlo`ZcyvM-gJrk0~|WbfB9%9f~5HO>f>CA4}d(*0lTV_3?iy*^4*$1@#6Qb z9raJ_EVrf7=-Wu7In<0J*+W@NNOa%MQsg%xj5|>Q-K80oyAAz{zYr_YiqtNl1qWU3 z(^H`OAP8YZ<2PXic{|1*eo=Cp+hln1of)O)La$kVck+@=)^ku%X4(r7z(utl@==*> zyT(pxj0g;}FB{9%Zsjy> z86!V=%v9);ic!z+ewD;7_9zVk?qLS9dl?E3sa_c#p#a@id6h~^uG-X}rl2d5crPmkA&C4*t-Zd{x zTZ--D%V+NRwIVvhGoPt{kmgz}I0MB>UaW>z>~<_lY1Gh7Gr>UEhhP1%>6jR6vX3co zsTsUPQd`G%L4PmQxzM-LcQx^3FN@=wsszu~VP0!#$KsO;t-?Na3rGFhnGnab?n$OU zv^^noilHz;<#*N8?b^kV6h=$XekA~!Ow{2*@fGP8V(wX}V&z7C(FzKWR)2wsjSq8K z{F52UnW?-hyKb3yV3tR9O6G@Ed7}l?>U8}Z$wuLa>Jr<6{pVXYiQ0CgPD>?7P~HA% z3^Ud@0fsrXuKC;fP39%&?P2q_nx99!;s$-mooUM3;iua-vonzxS&U5Iya0au!i@Dq zz~}i)W={~Q9wz!ZNTrnw2?6-ft3p$3FMgMs$XGS+wiBqY^)9G)V_@~+N}NG*HSR={ zH2EE|=W1%30VTXX@*V6+RR#tWysIMef^m8jc|ruN=diDQ^Vd90OeG?W>laiD#${BA z{FnKqeL?1z?;5{B>8LfgROFsePLO4Zgw$s-wfMrk()r=Q&)=g=W!bTrL2J{9Ad~Lm zp0if5Y#>e=yqaLkP&vM%YDFF2h6`wEIq0c!B;G*LShfAq$?oksSU9Y_qT(l z&wZ)FZryevK!XzGx9AG788`=k3A4fu=;_zv41beTd1dB!&$C?K80N{EfzWQ(Rz|11 zRrg!E(4!1x&g+3+reSTpb9G{LS>^`-7Hr)lU8C}^mV%goZo9&y?QR9z3x^fU9mCP% zJ~pi9tHNXkg(GjJ`ohU#gUQ4AJ0Gv@@@%~e47DC#E6(78HEiLG#RS}c&!$pz zrtkjwFQ51!L*aQ`(#2Q7B1=u_R*^yu6Ok1Dp6lj`IzZZLDwC zYgB{Q7N=pHlH&KAPqyR8Pdh(L`c>)h0kqO93Mc0u3#u?lEGCT91_W2GW;$&#f76yI1#0z=BX{rL?poMm zwQcL6zxbB;{Q<^TQpZ$x-tSg5D0+Fx>q3NXZ%DB>p0+uBC2(uM(6OYn`3EIe(OZ&S z-0a5UiqBRarS34F;!G_TO3(7Sdkri)skuQZ?Ci}BXGZlrt3vxgXaKfMcvw48@W*@B zfrsS1qIG|*IzFa8BN|GIi*4}T%L8v3IJHc4I0FKHI?LS^=PHB>a1)cE9cY4)@^Ek|)6Abt8ohm&Ym>S&$d(vkXq^x2D+}Tb zzM3|Np>Nt|k-qAG_%N8YdbONOF^UB*^)mn`hK!5=Q(YbY-oi#pqZkS5a8byuEP72h z6~=Y7GJlX-%q}}qQw2Em?A2l|nE|`G#|8ST(oZh!m%STjUN3SdaB5pajiw)g7b1{! zM12N{K#9a3^A_F16cW(46t0J=h$1S)YLvzc+x@;p8;UvfE$Qy;~2e zX(r?CF5rQF$kv$nMc%p-EZ{1zK1LVm@Ms48^p*9Dkra({@@tuYb^cK?J-siiUI;1~1rnTn**hoV5d6a|F|E{!ze=KVpjS5l`gr^e2Z z4XYHG#7Ru|V0VzFkpSbJxx+pATZN0)?Tm$X+8X&5QQ{{o=CKsTw5S!`%G`5nqfTPV zQ=BqIxpEYG>AHu8kN2*_tTQrh$DbLTTBrQ@$IjTD6U49C01eqEKWuR~}bz^Qd~TC!)k6BiAYZ(3N9WhXmV1TAys-qC!#_nNScsHRJ$ zG5u2%EzP3^yrdxk-U-vRra39{-eVw;Rp2sv!9Hb-_v5Uwc&jP~Pkg7uqP(3heR*v* zb%jlYmpHUblMh;Eni43LeSoo=$L^0^Wm$LDXG=rNYERxjd+mU?C!lQx4DFVTeKO4| zjc1fg+KP~1kcvQ4KNc?x4nQm7!HiG;v{X#}>e?nKJfS6r=bkhyII)<|+37sAY`~bkm!>J zBLOVq=&K-RC7`>$!=8P-bCEF@EMC;DGzSl1tXyqfe)sXu1m-JqMoazP*`b+NH)@zw zngqYoi|S*2?_|Qr0x)fv>N@uTVn{pbFPz&^bO*G^e$XNnZL#KOpoQ{I8la`J5qhI1o`a>u0w>eE1CJsMl4e&**?njs8EN;9dkBEs4QBdYDmTB`_XA^o z;){t}{NB6uqtyXgSE=5CnVPjVi6>VLpd4ww`t*p>RiQB(I&T`5BGP3!fOiah;UIZ2 z=*7K|>ThaT{Uo8!#Im>au~Si5A}!{Q;b7mjFR&2F zGwFPe?XVgFEZzVGrCug;rD!UFeUv%D$z0GE5fa@eke=qOy*N`HN?gSvL6T;V*IDTEFU6xfV8Lv%9&PrbhtFP?D2;W2|ZLV{b6inE>ck?Zt>J9t$ z98vA@>l;D@8}mjX3|P9=-)6Vxx~QLhdLZQPEA8w--!8RGoKCOr@}Q`J@YB`_J&QNF zWl0$j_b1^dGLwdr`&b>TitjeWiI%^~E{m4%4lHu2{VrS^ z7*QAT8-?dAR^wCc1lY9JmGU$puzS>m7L=6`Co5eTMim*sG;os?+#EySa<(U@<1tbL z`gbPXFw~N&yAy937QY>gSx$I#HODvy6l)*>K|eX ziyO(39il$?bQ3g?pJj!bh5WFEb!td;n`&1HZiE(0_D^YGwru%VDLTbZ)6joCL%j5$ zTE;mYlQY2-658wuE6&<3kl(Po|LtH-MAvlL#S`x`x;d>erj}_!Uio$NvLVy>lJB)! z-0IF61)5e+9P`UGB@@>BY0xI%Or$we@XX*K*%o|}v16bhap^rR^I@R{HN13uk)8=_ zjj1nxaVcif5|bOh=bF^*-)_ynnDX2lm#M3j%uO{6p0qrOd|BnN#bckS*lShuzKGkK zAQ7L61o@q5yuzv85fo1`Acu~^Y^#1REKY40?D0dK>EYjbbYtG6zU+;+6w@n@Ot{?z;Y zdMpEU+v-zQkrtP}G;MuwZfc7%*(K%dIXiaiw_-^I+CGO%xBSh%Tulm`y7A;aA!d#& z=3yW^puHDuv1I1i;WZ*MXF=uoMw%0YT6;um@;g;5lO)!e&=!GtuFfr)Obm#bNlmf2 z8KiMM=L6Q~t7b4cwcb(Oo)B@9s-f~V_)%6KS2@i>dKWYnt*J027EAB!%LW^4+}y#{=Q8rVF-LVageXX~SA#!+D6od;9!DqxmuC8W40I*#Q@Qk>LBBnFhmZ zO&HR!HMs|=v0rFog~joO-4srqCf1jf^bZ?;yScS2dND+n`&k{UoY!rcimQTuBFx#a zzyQc|c4Di+@WMOUn2lX}TXpmvP7cfx zYr?qR^onr={o9CNhKWG^u9#~b?_iHC8ORH|4;y+WjvR z!!=_{&A#nse?H+gFgIB4%ECh>9mg#6!js zIFvHSF#9aAI}6;V|NsI4G3}KsW#BKGi;>FjMWL5~hsJ?wsz4BqImI|T#-MGva zVC}mEx*D7$ggp${E;rBw?(nuHUn(v){Wupc?EqES+FPCM|A1l8L)9CLLccVv+w;QU zBUS-gf?#}>EROfnF9d3Ass+{h+|gT$3N3KP^G4N0zBVdIX%v6LdM-OW}{&xJ{1x!2C+=PBj; z2?b}8IkbSVfiZO-!LLPx{N|e}>!m)Rp8!173~3?<0a<&5 zgFZBB_+NO3a9g-xSQt80?=mc!G13;d{Yns;v#W~vz- z8xp#IkeJo>EpG!wMpP=F%YuF?h+{+Jt%ZWxdHIL+frDG@3WKt^&y(_LU_bcDTe&c= z{6lZ+2le&v_ zj<1Q)m_k33w)N;)y+G4I&7{Mt>L0O9=(9qilG$>}RSUf>uGXz?!IOpuXKF1LFBA`( z8??Hd2#W~5VvxJnEB^!Jkx37yap&PfuV0p>R|u=78HGJ%y}vhXx>D)R?f+Pzt+BHy*k%BJ5jG(Lko7%qynShfK#)I9=QswW3&N+zqgl zw_igH5fw1mkcvBd>}o`Fo{kyBoa!X`P`IRox4$3utW6jXTDr5TG%Kqt{862Br@BG~tCwb&~Vc zvrJ;y&O}3X%5F1nZej286QWa1`R^O2`v>PUHS8_yz5(|edli3HVPj==j#Ey7%Q3hJ zNA!XfN^*;M4u`0B^}YFBlLi68RnhoR+Xw8hVNcfdl8Q$<%Xq6JW|?-C=RCu zZ?t}Kz5@c4@&4P0wPdGMVXuK=N2KcH^u z_$}ak%8JW9t6j8`{Ou=g&5zC1X%}2F!B$Yw_{Y8Xc@a#O^f1` zuaU@JZqwhm3GC@y{!@b+y?lg%kHi(!imJw67#J{Rm{f5Ag*q!lV^tG4{Rp zflr!H*!b)YRy`*>MmGtk;X-mh9%)%T6=%_}@@@gA?!J8Rk16G5u3n?dt~*FIsl5C! zrSjeMe$rv7k+`sL_WB9!Ho~Qa77h2*%1PlFV_ zilcw|4Dq3nNxfe(ePwzdFrJ9lajyI`V&$0xSWN=1JlVP4Z?2CPZwK55esF(3R+jBeZInsL>5wZQv*9 zrr@40QiDz$XEBj+bFs#6RFJNu+m4)eGZ{2K+;pFdkf^`)Xz4L0c+f`{02WI&J!028 zfnNA3d*lPaCl8XM6Q*LTL9@I`@wB#Rj4Flj2Kga&<-n6$ew_-HFBjyjwvLX4S^M3v z(eTeKNvz{-*$M#-^67)EmPa0>Cl^prFnVt!coN0w941}PvXavS`9s9a<7FI(KE}Bx z8^sIelaD-`wT%fHm#QL#L2kaM6BtH~iZa5`-s zYfx4x`mUXLVWGGc)~fej);OS5&vHel?wal_R{Y*)7OL3!GcpBt?sM!ZnM=r zg3`#bq8H=xnZjuWwK&3C>qA!xV^zc^71K>@FJ7Vfh70@5Z{koGDgv#-w`??P67YLy zFiY~J4cM@Atk5KbGk4BvHZeFWRrG{v951k`f})*J^{dkTOP5)Q>&A6LTb*;;l-`vdbEJ#u1r?DMO%ueg+(*X!{`Q_kj^{TjOi%WGrEOa~~rLS3#?NPgN44Zo+0r+1K^ z$AcCIZB3Q4I=vbyy=JW&Q%)akV+5w8xvr|zabDRooNq5WtEs$4hIz_voOvGZ;o^#T z7SX-0V1asopBZu@f{*xG`P*E+0ziPi!gWr&6PMdJWwd?i)iIi~PuiO`cEzGKPw8HX z*k=vh26^DuA=D1DSls%cUX2U|W$FvlW$> zii+QV1kW?-K-}Kch_3ur(Ej<%PSe%f$zOUC@$M|F*$Jc;nWT6;jxpcH~7>ij_ zSH~-++YOn1DL`;^l`~bJv|Of!XWt)lV0hgI%=LJR=JxgM@Pvi%U~je3!tmz}ovk*x z>7;|Vzd$kfGe^wO3VDC4Xy#o8Xqp&o=ac5U!+Tb9s!z&l9gtvzgO3`K^L?MPo=eXz zi%9PF4T{NeFM8qZ@f$HLt8GLS1pTDOV+q6WJE|vQ?}}ya2AT1!;^vFnsgbWaK#u}6 z>Ah#X`}+a{#AzU$A{G^sxwRF@VWzls)DiDwcMzZs$f=Y2-wP@71zN_1 zEQOEz0^TCG!ms_3*vPw=Wv@enz9Db;gs9yDO38#xP3?QvHLtplwU4W|!NZRku}|7e zlaXjpIxxE_)DY!&Gv(fZngQCoi*qpTp|@da0*D|WqUJk+e1b4H2~{2Ox}tp|9UyGT z_F+Vz_2nfRfEzuv;sAN$hd33vX)YB?7!1 z&3hKOScV?HC`-c#iF{6abUYFQ3l8^L$q!12#=(x zLt<*m=mkbY4=T&Br7_i(M)mBa51~6f8FB_=l1SqbXm{(=skNXDzStda9_Hv#)u}z( z^VKsLr~e_Q$ky3htv|aqsGKdyalO6KO^?`f0Q_PSBxnNlW(4Fzfy#JoG|`{V74~Xt zEeQEQufODZ7Q`FOPVy>fKd=twG<)F#gfpQ`?^Gewes8AV{IH@`C`lZ|Qb^4dpYw-Z)K~|qDId+cR zb+Skp>SlS)e)O=wvsp1ljKNbO*yq0&k;Oo>vg4GnyA2}A{6ipK>Sjq!S8`u`OS5S-7>w414I(DxSFBy zz>Q37nm`_z3KZ$81zIo$+0yrO+$5+Qps28#LQk;V?hwX^c!;uzGj!YIoNsNp&qv(+ z=02-&Ug<03PwgCoFxLZQZ{%id0E7IV(;g#{;h7H#t(!{oKFiG)Ci;!X=*|{NE9%M; za0qUdh#OSQ)azFtcCKag#jh1t;NG$+!>qHmsfZTrBLg-MZk*nGDft`l9!4VV@_zLU zji2GtDA%TtH+fdw3(%3yRVBeXlQ!@)piaG7w$QBEJ+i&KN;jx}P{G}OOCuN+2AJ#Q zXTmg^>3h33{#`Oj_)ki4{DrMe~$*~sr^K_}Y>omIEzXCF??MApdiB9+o zpqxgF-0(@c#qPpZUerO`NTa4t09&dzEY{5DEZzxo<%evGB}v7NG^r=lhMJT9EPQgc zn7~?{=2%=I(2Gx^Uvh2A*~bNq#X+q&KH%TM*mE_$J|Y9)>PWG$*k~qfmu)gE7j97< zCTC^2{E5;v#4wdW-FH5_rq8en;HMDHu@ClGBp0$%JFprt+8??Eh|M7wpS%NGseo4f zc#!ji6f3Im%T4K;JhwY8oGv!i5#*5lEgdUj=Yv&=5%+^4DKFJ(i^hl5XmOzsM4RJ* z8GdZ5hrr$PE13w7D^Ux!W%#H7NK^!sYl^e$rOb&u!GTNaPamBx5#e+;f^yWqGrJ1( zRG6kN>5pT9c+?lg#p)KwW}^0n%Ek|i3%tD>_^H|U*s{K>XRk3F2kXA5MqrqXx(Xzw zF>iLrIR&*pIb^h9`R0zqaGp=E>vec?ZQRr+Zc7|W@}DY6CS2d&;bRDox2Pr&Ih-bP znjY>V3<&%YR12ZHeRbE@c`l_&dciJ3`nhc|gntH!fBR9X4KA?-cTlk4 zhlsB%bvsC#xcxlMjk(RQ8aSWYGGHE6SAS56qNnwW9CP%{&Tsa`u!+6>BJ+KXAnMQ! zI?*I~en(}a=p~O5!^3sDEmA0SjzX&c)XgPXHWYD z-}I^1EhTz|$a!9)@!grtmP@L2)Yl<@fI@pfjGBF1HrJW}V|IBo6J`0uD0Of)9N8~g zKF`CZrvCBWAkZ9f*oTIG*8?@cm7P*g8F6+wcraKwUpG&E;Nc6mx$z@*&fIT@-l2K2$18tld*w^z4(yvtuKMW z4|*#O6@?>$`2a~#G1w@^`C;oqQ`Js0$cILa?eD5t3YVUg=uF7(T0FcDgm2Ig_vybq z1Y*M}Q{H)rJz0wRq`)gC7S(v^cGHS7>zYEQ$h9sRy<5NPCHXfgU5NcwP>WH8$uu42jl8{5M2p~TR>N$h|7Goj)5=J#rr&}fF=^d&{V9=bV#f02yhik z(X>se7Dj$KAX*^KU3S?8LKtet{R>GMjF3{E_=#>5%Z?s~95=+nk~^z9dA!Uqx|ze1yU&PMbCZVjR)#kqF3Q;h zqAsAbpea90QNHr=h zE3Y|#Cx2(-U<}Sq;>(t&jNp%sJCGF?)ow{i5CJ4!fR0-3Wxxt2hd*N!#QHh34zm+b zqyeI7fTsQga~TUukFjZh$P%2>>-kCK*^j`N1J-)_y$vSzq<7LVn8^a{sq*|OqFTc4 zHFF|6C{y=zFOmV_6Dl4mmk;Mby>Cep=1g=c6%Hu{d=tZne8kl!{J>ilmii`uOND%X zH)al*6Ow#VBBc7PQP<*jPKgovWB5AnqZuuD`&srHIxT3jCTy8uRDD1MgAYt=09%GL zV8l{%Ab*xY0R{n?S#elx9EE(@idg^%ZlKaF;Jez;96UdkSbeL=*e;M) zy&n6mfM(nX*gn%h72CY88XCtKiVtD>-cB0z7*PH-G@N+298c_8!vjxdp>>4R zRNPCD1kpFdhVq22A}Nw_%LlOxkd&c0hmD)wdl{x)`8w4`rK-GBqdEQuN@~O0H@yLa zG;SAX|Gb>Um+{+hMnf#@rCrWoZvYwsiU*ioQLW=8BQyr}vD7@D%z2MvZE}u}=TYAp z(@5kJOkohdlS7;JQpSSAW1ln3Q!AI%RZg0S{_I+1rZ@%Zvvt6jFk2j1Gk(kr@ES}M zq~b5ALw?VIe%Kk$2O1;w+FO{YF!;pOLvcuHnK4vN4Et{%)}ds+iJAti917iZ=ScEa zha}d+2pB=eIsfK5j;b$u@E7X7^m-0r)R|haFEhpFyb=iHfX|i0sFKtoe`rguxh{U{cZ5aK}U$y29*r+v=+O-Y|IxTn6O=xCt;&&8I}sYNKt8c!o?JQ`2k<#6D}-s zVz-sMw&CVwCKvo!Z(%0z-a3AxcKWrWyHBZCM(Wy&3w#*wkK`a-pn=c~!gHm>hDP+~ z=5;(rsYsy;jJ|?h0GuTFiP&6~r0jWtQFryqcd2d@(Ry*Y{KwWv$|^g_y^=#4DB^%! z<#Oj7Z*=VVmd!+VI8POeO&p)tn5d6BaVE0 z=$E52m@ym1LTA_|5r_|OmP>Z|SBiFaF}|w8O}9n9xW0CsGM1`} z&*x&m;cdjQaWeg>6tihD^I!84^>EBuMAJl?qRz8bGy9;SS@N*$ZR^vYn%_R`zir?n zFJ1|zxsM%;_H)&dKFpkix|>&sqRzH)Oc7pj3Q|B(km86DTh4RuNd zm_}LHs%W*4=^z3tRU*YcXWDbP-8z;$H?$BHcum-ff4!G=B5F5L5D)G6Fr0fFo(ZFQkMb333Llg{PbSc_Ke2%*qfOVv}SZ!j#_OX-E+BmD{ zM>-v9Jebl(7$7*-#Uz>@6P6taJ}(r_#iaj}UT2?*#ymhoeb0+_vhKXFnf7rw;_FQa zV6;BwD*+@bu%y=%#hh7=(C0eEYzaB)y0|w|QRcdgDTzkxjGTtaRL-7pF6JPL@p~XM z&6s%_5h=Yz+7Q(n0lilM1`*YBYR1?HPz6JRbOX;<`j2vc3DfP zP)53*!-3d?j@>VfBlnzGvvtYdcMDBD*6<-ez=xpx4zEHD*>GX6pd~B9Bju0|>QP*Z z%JUiZITJOdZVS|RIdCv~mc64GVuhbf~4&oS-7%c00dqP=$J zxy}z2@XRs@RTqj%u5Z~RRIQHFy!KN)X%b$R zOs9-2lz*cRk~Aksp{omatD!S<(ybf?tM8s;G`7z#FAScW!&_IlX@)E};8RvEE|IgW zS0?pTf@IsGS3j?=WNEH^9Y-u#hb+&K5TUfetkCaNLRNNC^JkQkKT@wzowOA97?~Gn2Hu zcWgQ2y4>yd<)wXv?tS-`m4-umOXrCv-8JI`DWPJM2HOsH6bH5VLlY*5|t=sA3JqpS5zViz!=K};5_M5Te zCm^2gpO>Xs!^NozxE(cFH(i6`hg%7?!IQdsRab~8 zpQ5aa@vFp%!IynYQ=!WQk5C#dls=x-x8jU^eB8XF@T+jh(yZxxQf-it)s)E0q9n;W zCG=aEaEd?Cv0Q9KHE6e$c=1Y2&zGo!nyU*H8)?X=Y!2@BSRZc(8#n06!}byzQXVb` zhb~Ykq!Ri^s@z(tIo$F`n$lVt1_MVNcW`&~ae}L$;fN#7u09Ul;OuJSdcfs^zSNkr<6K3_Z~)6{iqOG- zsF3o%iiuP}{!hq>NA9ea+qOB-DqHx_MpxIR3c%pKob? zUg<*6tG{%`@|#%PRudkl!s{lFeWji#JAKU%<8m|qTp~RC?!>?ygPPda>Yo>1gbz>s zA$_FKnFXJ$(ou3a@md3V@0J8*DWmgYCt7AZ>|rOP_Q!j<5VdEP9b4j?H21K`8vaAA z&_C7cjK8M?sE>!c4;*pW2J67Q($h8tA-uGX!zCLN-_thkSQ#T*S7$F@=vHTMtdF*n zjW=A54RPFN?OGlU^&ZGY#{p~S?d<8};SEPBfO3rCh||8dK8#YJvQTV@6EwC9e})u(>@MvCeVeU z4USPWP%*R|G}P9s1=SO(mN{HePVT?sVEfOOMkzt}|GR^2{d*L+7doIk)(j#(0z)GMu5&x`HW738W6|;8kP+z z6AhkWG|IYg(3zn>P)Q2V2RW#TAhDsUL1%C<`UNVEd9a~D6&X)L?fcgS5RjRLJhOB( zBo&Z+T@BW|YyAwmjBQ;IhExhlNbmr&A0a*Xo2XEo7|H|`3VP~CE|5@ia%_z6)-q60 zQ~?8$c|eN5)B#8j{(dmp8t4V26F(gceSmag{b1JfOKR1fNHKN zrwsZK$O`GeKO8Ec42E7Hp_cmVSl5a5GtdPfp8^}>3|;?pF#4MLJ#^2H1JVnqSE2J? z-WxKf>oyMu2W`!;^Zszqh|twvW<-A7jQnLC&l%ZXaUkV z0gNA{l8OSb!zdIm!RsIar2-7(e*g)C@(OaNxSi(6gTF2R~{6@iox0UM_tge zM-{bf;GJO$`d7Co|Fb1u!z9Y6|Lp5^qf0m{<+kYrzPPYCL}Fg!)ZGug6&zgR?nRP4 z>K6O9CrG)YsKnV((Cux`*Q3SdMCmD(9dkz%Evax%)Kz4p>W)fR@UL}WE*|?prRJT_Y~R8k*^gJgL@QOO{`S?}?7UrzhT!Dg+Jo|61J2F* z%(N4(u`5uXE|J@I>{4)uiLGUQ)2VXvX~HQJT%mRx$0sB~WM*e_)!yy;iJ7}mv!erZk1K>@4Wi_E+A@1J3jjR*VQa)emRLGyl?VK z?LTzR&!b_jbL0VD`H!6=bLyD)CarBHMCsY<7hm?-#Y=|`t&+BVWZlXUb;!qT;Bj;c z{Ge&+@SSw0sy-C*YTuTy5NVRzxuHX6;K%GvqMux*2F${~csPm3(k#q4jx7|$yP`hp^ z+&C(7<8|Wmrp;QrqBD=gD0=Uvry}q^H_yhrLQY_1+^mU)$}WFQoXeOVx(l=Pl9l8~ zWC+d9DQ@CF<(x5n=xF7#JLeoWC$0}?KyKn|9SrPLZ-a9`iVtI&R(Iz#& zI;G7I`{Q%!=>u=OH)})|x^wo}<^LXEAVQ9S+aB0^Q0r5gE)Sm@QSv#u!YWFzH-56G z4$R2k-}C!c787M5(kSWMJ#{0AW*=Vp&*|ufJ==M7MKRxRy=dbZH&bYl-}SkcJLA%( zQnh8d6B{=0cr|RaPtm`dJ5=qFJ)67Lba90xMeof0e`p^F-mY8Re}?Rb4Nsl=8)SzX z?*~)|2J|PW&IFl1L3IFj{{gDQ*P!~pWc@2h{YQ%p!Qg)n(b;~2=<-nP_`e3xfh$D> zICy)&5gzU!pz!enS3XYO4h{^+&h`VctNiMe)&tVNoYH>{+5e^PpjjDE9VP!i)e8St zpt^$mPd*k2)$jj9_5Tmm*WoM^YyUf_4)o{07penb3W50lJ*W<%5P*LF51_jI510FEi9smEXF2=mfIy0S)`Z&mlOzq delta 28 jcmdmdLU8j5!G;#b7N!>FEi9smEJlWgX4@qbS)`Z&mf8q; diff --git a/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf b/dev/_downloads/e8a5010f49b1076156ddfe2fa5fe6189/beam-9.pdf index 1d80a04541ce271945c8e034ff1aa50a69b8ffdf..047a354c7a8693ecfc2e617a1269f468d02b98e5 100644 GIT binary patch delta 17 YcmZ1FEi6ZqSd2|g&9|RSVv%A70InzsO8@`> delta 28 kcmaESTJZ5{!G;#b7N!>FEi6ZqSd5HJEVrLbVv%A70ImrNNB{r; diff --git a/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf b/dev/_downloads/ebf272f79479d63cc5b71ad0f0e41f7d/fourier-1.pdf index 1d96bffce068d9fdf4928786152fc7b821515bc4..53c28f19c995652d8c5459d02f8cc9736b91cdbe 100644 GIT binary patch delta 17 YcmX?9cBpKFpaqMug|WqEQ43vW06mEXbN~PV delta 17 YcmX?9cBpKFpaqMOsgcQMQ43vW06j?sYXATM diff --git a/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf b/dev/_downloads/ee22a6375b132bbe50ac86a0282c8f8f/fourier-2.pdf index 2e21a5a5582d087000351cd6c667a8755bf223b4..74de43d137664cfd7f859b7b3db79c61e5e156af 100644 GIT binary patch delta 19 bcmX@Si}CO-#tqjZS&S`=EjQna%wz@tSk(v# delta 19 bcmX@Si}CO-#tqjZS&U4LOgG<(%wz@tSd|C> diff --git a/dev/_downloads/eeb0510df619706f09011b7e73e32d5e/plotting-37.pdf b/dev/_downloads/eeb0510df619706f09011b7e73e32d5e/plotting-37.pdf index a3ecebd177fdbccece111f03dcdafbf92d330a67..5e3532703ce8b827363b691763e9a84a9df51c5e 100644 GIT binary patch delta 17 YcmZpQXo}eIQ-j6W!q9T_Ukz4f06$FzKL7v# delta 17 YcmZpQXo}eIQ-j6G)WB@>Ukz4f06!B3Hvj+t diff --git a/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf b/dev/_downloads/ef1b602db6b31a5b8d8b9d20a2410f41/beam-10.pdf index 7f4daec6bf755887d5ede1da00cca9089674b940..f7c606d94c430e15e1d4b376c0dcd7af05e35bfd 100644 GIT binary patch delta 17 YcmdlRvo~hL9xWDQGb6*z2efLL0YoSUwg3PC delta 17 YcmdlRvo~hL9xWClV?(3O2efLL0YnA{vH$=8 diff --git a/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf b/dev/_downloads/f0b1ed1309beacf065f53d41a069ebe1/plotting-24.pdf index 63d72c047fddb146800bcbb5c462b08e58eb3a09..b722f06c34a0719d8fa6d23b9ac324f90997d815 100644 GIT binary patch literal 31847 zcmc$`XH-+$7B*~0MMd;TlPYr1BUMB|5^_Zm6$KR)q>4xvFhqKZjiQvGC^S|s=ez`e*1BwuCk7@{}u0zFqpFT`Oxcb%GyUzuygIJ;4pywpLfX-CS=d8wh_j3%Ox#eZ%F3oALqSg)=TUZny>b zDeFVOZq&B+bh+x~=b?O1^w$7?S8KN$%J$%Ej~)X9%Tqm+$=!#nKf=MR3L=d$$5(K5CWpKn&nxH<5l4Gso9|)E-DO=eQ|;w)b@zGIt0$my>h%^8#bc zb)PY-GUM%h1QsQ;BKokpjYZ=_RSElDHI5SFLlM#^4>+3oyleYZ=~{bPTz>|yr|fs) zyt&F8o&Gi8we4g1sUN7C)TTWM1iABZSVi|gFq`ZbWT#=BC*p})tcFc>qw=2h{jSj#j`E>M9?Gb8tTR=^^`(FwbgEK=FIJDTC9k@}t zx?+(6J8q?hM*JlE`Teo~R7q_>+UprO9?O*a^+0tZNm`b^CuD;wbNxSCJ|&q2y2*VG zKU7DI`@VY2_Pot&7g%InOYq&$)^(jl$u80`>XYHT)n~h(*;Q`4WzW=XAzR1!-WzSu zNMKkQ)_G^7t^e7uzvZM)3vF6z;Q{}k^Ox-TX(N>7P-d(0L|FZAJ?!X@`(1`Q!LVGy zq>fX!;cDxh>xaQA?7+rSDWSV7Y*&O!eHh$?$y)L>GXQV)25(v&l1LB1Cmno3pu_A< zR^mrd>(#y>Hf=SQYJcqYb<1bY3h>i~F+XN+fBWi$pe~QZH~RZJ+N!%5_4y;TQ()E7 zqv~AY&zIV3dZyk~R#k_1y~2(v#}T19XY?^d22tH*?^;gZJ!0>VUw9t8(y^^P+B9&gMyLNnmg&hqF02+j_xkS#P2vZaCKn{*>UXz9svR$z{Rg zLqq1})zbd$P!+ybe)N&?*IT=#+8^1=XjP~Ms(D|xfAMkSmufacMr`)wMHS&~x>%LB zpO5>)-pURBMHd<#)XNxJt0CCCjnoAGeqHIFBdq!t=4a zwZ2Sh|JZHv%j_)OAdTF8t?QivtjOi7RD{3u`S`IT6zc>wQdh11d#n3GM%b1r?^{i} zQPsnb#qu9xioK&}{lhwbzIOB5aE_adF|^vSQ)rzMWUJ#I_t^zT$>DMz#M02Q(d%>Zn?~3G! zW?PlnzCJ(YVGz@Kabd+jbzrsE{_v5ZA4HtJ2JMjjo9UcG4vW2~u7m+Ql8yRIFI_?L z*3kvKTbsS!sV>J?t4jc0>E@FrQD*{LqiUS3q&}5(KJFr$dMgf{bJbqmd1oRtjb+(oeybk{-I+ zq{fRQuwl&T6*io_=!K;>4y-uAX6vBWftLtvo6!is!>^Q?MO2huDXVIV?vS>3s!3Nz z&p#lTPqi3YuEBTzqS5OfzMa3(%hzHrMH43z(A-ISkplfcLEQF;TqT5eMPV!=bSn;a zh-BxKsuWripaSNV7HFC8(2SWKG&*N&dDiOY+xY`{JX-x{08df`Uq`g}AqJXLOoql7 zDx(`FbE0@j*#VCX8Ha&o^h?8>7@y-SMc)KK| z;gRi}HM8ewCR4B`I(iyH*GX|FQ{%SL+npy~9J`btHw}AnZ?>>dH^w&fl%4B^Uh9)) z5-UHwK3X*RP>gG}$9&;*&UK>!hwXJ|cfa1%xZ(N*oX=(qw)QaeUCpW?%zPgH<4Yx^ zxQJ=nD;lIGQv67~0cHEdElOIJpzQE5d(0ScE}r#3KjqckT}IvmZmf`!g;O1p7LLgbx&B)HDUk0S=EP)=w~ZD^iNB3fR&f>ulj1S&o^iK=cw@QD%v(#u``@pc@0k`$OxKvF# zW45hley?D*sW)Qee$T`};FBIZHER^0Ns1LORhnwpPDjcMMuv=w!YDMsgj-NXn?9iR z23g(HaKyc($UH%BfZ%bhhpsXBYnS>;llE*1@)5Re-n56ab;d%GzchcWc&)ANcm4Ef zy4s8#v-bk(0*&4IxWMvG>ExT=-Y&S`^}EtGB7xaGPiC2(fDbSYBU1JU?I;|9JvAI? z{X6ibOl9mePnP^3V9EC!ASf>7xaS^B`77?S>MRBq6EyMEc<Z{q03Ek>GcFU%w43Q;`eA?L+eDs3y}Ms6Oi0Lxe`UVU&f&RA;y zctZ9?_Tr=DU-u19qA;6epC~EWfll|#WWUCi#I`)~gWBT`1^q?vB295;vtl5(a*)j;^w%mYi+pQZP)zMl5jf7yZJ>Xji`tklCrJ*S zNW7JhD3qJ;G5X)_e3R9AaATx`P^qlEkdWm1(>w;46;5}QBoWj;2?3OX%gY6Ul?_XlXA!eTS740TFY_O~Vt+i|NXMxuaqqR?x8ls93iJDW zka#z*by8AwxJPSBr!#eV6$c(9t`d2Zq7S3-r77lljt@}dE;;f$3*`#FHRdit?gC3w9A}V+l-_A z1hebNH?v%*VQL#Q=qrSb%hfkJH28C8@tfB@Ro5|e^534u(DvJr5zDozpNiU(!ITVk z{q9sTNs3(usMq)q3+FJuXujsdpBSPk?=LX(5O%Vsqax}q1|Y`1@ZuH}_w#Nu3VP9N zcK=z6+ILY%ouG5y{oqu77VZiln5}LzOs_Y3?Q`2!2Us0>jh#C0{g(aszR+hUP*Y8_ z2x*%q24D7u4WkLNkYlF>E;0MdUbM~Gtqq_aiE*CHS6AR}S9!iX9404C&2a&8RN8DE z#n=xebCr5kekZ%$rp=SYE$+g_ecdp)DRH^5_S2GpP`v%B<7D@S0lVXQT}XWw=bzNW zR$slYu0Gx&&ZnJ9fW}hRg0LLLbDJr8amfO*mKHMeFmRcEa@($m3&{Xr)pOfV&M!ns zu~jFAUsiY zQ)Wih`Lr5IusSo-&Q@0ya{lTS7$KnLR3&CfsMNQgmX=+49!tShUj$3aAm9p)x;a~u z4}aD8)hW(2qFmV7Q}_nkyla*-zhU8~lJNFHB$JofL z#A%j~jS{eTo4INvoFAkZ8a665wHXRT$cS?zAn=67F1@rsbcq+x9PPcu7YmgjkOA*k zA&-o*>=N99USuhi+CsaE$zynAI=2^4q5$BykOqll)Dm+a^l2{VcpnB^AZOK_m04)7 z&EqQVz9jra|MsdyU01wVXF;->hhg^hif#)KEjAy2+J0&YMsXK-nla6ipxt@GjawbU z%hZphkyn)}Aq~{W+pU%sbpO)~?RJvl5#uJ-VYMI2YcTFfX4|TPi4bnerFDG}YB@5j zaC$F0yT?Qj^y)=WuheB|-cgH-11na80OYT$1Y)1|L|PE!kN!CzLBYMK<1L(ANrmS0 zw_a3aO~HAv(!zbWxL-^-KLj%8!3khq4JXPt&HVC&D&euP;;-tP!QUTipSdk1r6;lQ^IKK~XSI{)RnjWae_v6 zCZ<^+$TIRGIL+cphFvGZJhl0AC&;DWS^wRTd3-4dGa8*KT~TP)zZZo>N6|!!=(>@c zcyQRf=gWz3P8C0*eI<%|Bz&$~eOQ(Id|}s8Sfg%;l7}%rv!B=ZFAq*D8?=s`?X%_e zO3T8EE(YwM9dvLIY0mb ziqEi11h3f1y1Wr!oO$90nS+C&vD<$R{d873}?@q6RkjT5ZUWz8nB{03K!8#F+(Trq1g|$h^1T5IWfNjvi%n#lKr*23FjJp~cqK zL`wJ$Wv0b*%z9)E^jofk+Y+=Nh)q!ox-{2MX#NaQH#k`1`=#f+e2PsO>5*zn)m@*C z-H9n5r&b5{mU@#ApX>uJAhh(Ws>#FKPHSkOOPzwnT3H0v#m?lK{Nwr&l!>j}1BKhq zY9xE!H*9qvgc=8oIh#aXXzUFH>~qP;)o22qoM=3d5Djm#te?Nhe<9TKt0smCBE9hNjE0R^b&u=_#V0t~^@oCm; zN{1xV#G%C!MTUZaB4OvDttO#crLh5#ZhMuat#F-~1xcKm4TrObtMqd?EYd_p;mcsN z>g=r7Qsm0OXkQC&HEhEmaPMX+wWhid&z=e!*u&F&SLHryGV^^!&iV2KiEC%S{La$} zDx?^mHab%Les8)leqhSX#rNb; z`NSRF{IG?q2=h2`jA1|$-~JJP=S%%Ksy;wqWLZ}Fg<>pXXkwlhZ7*iJECJ!zk0yer_5Lws8O( za|%wUs;k@hN=hrjC$8c#Lr?DQmAM&hhS+@g=G(BT^R*S{1z;8C{URZsS8@L2yeKg5 zvriC*f3iH;mB*M5f4mc7bxmWgWn&e62J`8F2dMg95T7d`UYYRn)DABXdRTCwR|7_{}e0=9ihSzL9dgENABElk*Bd*3de62055^M zwQeb#nK%Zhxj^+w_bq@p)!C)4q}lL&=_0q$&p$0K*O~tY&-~3n{XS>?^!ExNa)A&} z53BYDzoJ{#i;zLYjlko(Gl+YSI~}1=RNtLSD%}ngp=dt#X(9AT>RdO+V4(u{$J^S$tAWP6_+=`vc5pLKT&hWY8Ybnvx>2)6jPHcRA0&9E8qPp zCTUiG3FzP+^l6WiX91}RfUfeFzIQ_6y<;{>%YYfl${JZYv;Vtg(RBn`H4!`|Yj9+{ z&&EsKHJ$g4mvJ1>{0$#(`Nn&1{E!y)D6>#u%Ep>7!jD?asS7MCNSh6Ju77C7;mrR$ zyjX$oo3slTmy*UF+>$pw|95LGCEx@p(#E0PS&1~)yGgOUCM@!1`#`hmbPtfDf}#Xc zbX_PM3z2y9!~z)up(l0lr^4~%5d2Q@elAyCuH~`XE4tHJ3*>$SjOz;&s)^li%@#-E9kdD|eJU%+5!)_dNZqEffbNV0LhE^*?ND?JP)qx?gk8eI{a z;`9;?uPO|Ukt9&s#6Zt4uD{rv$}90eLSS-MzRqmz1)ywQhknV5{U(T!tToa=cvPP< z-+7?Pz-r@Sxk2s@8;%B_BZteM13Kw%!(?5PopVzG8!*G(p;WNnE@{il=YdGc6n>AT`rDAO4PfdKPlM54MMQ25uN2WMf@<;bmLGN4B3d ziF(?;k1XwoJ3cT3P5B2w86mRngyK(x@&U-3e>RKjabslGe!=7#q`?T=pfir>0=EIJ*%>S*1oyGqQJ z#c0{}OP4R77^RoCpVm4cfuW{-W-*i1O5pGWdTcEe)?}svh9p0 z(YPEiEE$n`r;jqBO&rhBbR?X9F92478eFR9=bc$Q^WF*4KC1NYJt z4Cm<_rv!UBDuEv7HPry}OjEP)yn?}0#=J?pVc3ooz*~Z|tTm*es8~f+eJ0^?-}5i& z9z|Ix#6?1hReqnOG}93U0>h|-OK~J@`zD#Z{9JdoC#6>zat(p-(*_-E+i%2{u$tZ{ zg*J#emi-L@V&M?FHRmlwxTnXb!H)^?iqwKSc`@wfctW9#W)ErM!Mb8KltpqGW7|n< zznkMXp{rcq^APrr><^tw5YGvq*6~=qLO0Z1U&e3&%AdKt}U&!Qq4Bg)?8NC1d#iC?H z$)qkIpJ^45b;#+ZZO^a8mu?3h5V)&b!i8E2s)@?{Z-{rUX*uN5lb_;7pPmrLFaV~H zeGSA-jJ)1D&CHUHNlz3nYpaf*7w6J$NY-HQ1_j`7GHlrkWc?!gHz$1?n)T6jQro@=rs$qHS2l_{jB@6M`JDIXU%?u=PYui-=4!P&ykT}j;J7TEBvd~2rM58Qne6zQcuLe zOFJzNk~~awAgKls(THsGc%2MF2w~LSd{-bV>_ID;GunVyA)1O559Bb>>GFk2)+otj zmpq-d{Cq{T#^UxSq{M&z8UIE4?D&(Iv6))x>9aU%@-CYA)zh+!Lm(-*`sY@3 z@;Jw%hDlcY!Q=PRNnJ45LqQ}Vfc^qx>rMmNr#$Z$5jKXOTIVl@^gT&!Pg%J1BQ8E# zNqtzqgt<@EoL~6l$WmV0jxt^a{t5(B$1!;l7ZEmYE+ zo=lKUzrk(qkt;#U$+(_4D9|zg<)Nc$7GYP19m1(%S*U<|NlRJ&7i3f=W3*)3+gy z=O%AuY5|DBj_iv02IuM0fr)iESVG$M8d^bvg!_(XgdS%w3Y+EfzH#l<4a;$;O zl~;6izvQcS^%~sMU(!bbsk_lXGo+@2FLlvHl~;6A(_CEqUR9yZmmaDG#;5V0`#*!G zLygP=-cR&ttRTF2WaY2FXwq6bc=7j4tvyjsQx(upJZlzX@mz)_T_mEA z(n}s$0$Byk8_XXgIa~f=kQKyBqGd%Nv=>TR{;z5rivC!Uj{s2c>}*PD&l@5T`5^cN z7#y)`xT;`4fTZag1QL@K^%+wm8)V2K+8@mif1zMaeirt8%=em;TJwy)KKq-cCVQ#3 z(?AEMp)-C#oC`O)EGYQ+n}XBBE^^1$X_*UnY7gI1!leanVJV=jpM_Y6eE6Ww=vW8f z^g>wIQ~!g~9y%IA`kH#6W&eNeA0--j8s%FHo9m(8BUEpr`NZw_h?DOO1u|mN-vU>H zNufHS+I?3-;`icP^lP6@%^LfFfjXeAI%J?QO*tG+=Bohh9f}qJihZmZAh_QWghxiw z0w0)F5tS5D6Mp{*$Oi#I9^h5Brw$HaD}-X!2ZYXs5Zpiw{ik7BWp)2p8*L8!s>c%J zbvZ=-Xw5eBc+uw-pGCzp3KhvIVvELsHDiZ&ZMi$3r47LWM$=-rZ{VA z%PAei0&uca+#m3KXrn6$PkfVkTTg;c=l%Lf|II7|M0k*8lPth}A+!wNb452#h1rbP z>){pY{#?h)7ruNa=Lf$^ZvVBuMSo)}2+p{_!&}Qf6Jz>c6gf@2-njE2b8}e#tjU*^ z`Fqc59{x`;%rt5C?ImBAtA3#qskcgGbjLE@p7wG?%;DM-4HaX8D{fy{Wpmj$2|Ik+ z>ay0^CkNj;2P=kO_xI}CxF$+%le2&I#yM`W~k>~j(jJ3GZ){j`y+3aZjVVw?nJ>a zMdWfmmriQT?5Q%A>)OY@6p+c)i&5V|=YHM#vp73D^ZB9Y>jf0Zl4y$o!T#p-y;N*i zMI5!R`NJoOYK?W?D*ft-PdfbuJ6D^(8kuj!IZwhwCMoe=6w)l_Y(nr+L3gjqyKXvZ zl-m$}jCJPfm}dx?7r%P)>e&#dHaC4#yqRf_!m8UxTtmAausKtI-4Tb}4TZ<(^m}NQ ze#E*fXGh<;E5E!))=Ep&k=rL(7BxP8p;e4u^ctI2e+hPwy1iCEP@@H4O!awWnId?E zHg7S^DNuJQ0f8OrJ=RsaA!p)JALEW7_Wr0A2FG?i?@*nndD%Np<@d1*W|@})1o;ar zP8drgVql55yD%Z005-|0a4`vm7ONjU(eENqnrHhpJ(em~+5FMxX+DLelaPCE=J&7* z4A}rGfMyaITQ8)S-JAgGYoQVY*rKuZ^0p?it_yfb6K_NY;l0<=pkwQd_4kX5FG;MR zT`>Ct*?D2l(0+WCF*{H7@Q+)*nJ-2jwm&GeK+`B%V4)#(&nYMa(vw&Kw&!I?l~{O< ztp(|b`yWcqki$B{YOD!jcak_O8MYX@x^G|ePmsESZ1=~tF2Ze=Z# zD1Pt9Teh}RPl9sQxsl!L*e6~Xjkk;QQ43-M#fDsg`{ULGr^XW~i>W(n}2RBSh$9L4{5%OI_#npNvEIO(|*c zNszc=b>9OMjg$aPox4Z~;r52lYyBs_P?8pkY()3K( z$Dhq9c+3yylsd-jW|lsN&*}~a`g4QcQeftfpDE@H6+Lx3tyHlo&a`Eu!Duv2Q+uGr zFxkk&$4apbz`sGM$Uz0AA~iiH8w3l6CQihq;fuxUqCIN82vO6{=z?$UGoK8(lj$wU zzj8;`kC@bclcyxaOey6TBcrcg?*}dd$VcOENMiMpB3G1++~wTJU3slW^pLcNsC(;z zsnW7c$uDv7Q|9tR4RZ@BMyq-napb)=ColQN-WE_Wb{H%jB$XfvrtVBQ@!|dZ-||&l z8yK&pmJJn*P+)HIa0+{V{oT*e=CvyO)NKEjT8Aur|D1UY&W?{Z?U7xxf1Ox(m*H&P zweYQR26vBUn*{Xe|Or2E4%x@7uZ$_%|IG^0AV%Pwc1 z%;cso7%}q=TSb`D;R=Ow&v~z2Pj&xMe^~{Ze@65p^}pj3UFFZy3JwaX94nG%?1fm4 zk26{ZMCPD(8pK9I{t&)=6{y0F?n0|h=cj84G+XLiE2z@l1OFsU(1#~&0q+U01GPxg zP5AfTkdIYV4|*8E->XeX$QD(HnuwiLB zrc`g~>O1K|#cK6I)mNblX`&rKYEwk%2tUxQM4ss|O-FxRemEr`d%;)Yw#Xq?^f*5g zVb`!y_Gv2bQCHuZ|ke>#8us^6B_ zuD0c`S5igiipw^LIIYRSsgN~AIU7XNj%)qVzBYPLum#1@1apf~Pfg)q2#BQTeeIa% zAXgLEZsqeX_eaGY#z6Omn85jHWvM13IDVSEdqG=9e}Y4--(z}By^*Mg5mF#{?9*hr5yNj6{*y=XHm#i_j$V z+?cog8j;H;uQZOSHPjI;2ifXST@EE;wQYdtUMWgJE^@1Ak6Gc)B(cxXl|^g|?X|dm z`9at@c4rGYkPnO91>$}I7wasGLN_Ie%!}sZN4_F2BeLfv#{9E;;G@e1p_{s&vf-p? z4AlIrSWqOlewk#~k*xH$2cs)1jZ4WiBU>~^_7Mpyi=V%h`IU|Fulgu`Eu z7Rz`tV7Pdet}M`Em$>_WiwYGl^nV(8aSFiSehGr^2G8tUfFjx@s5bxpyj(m7c1E7pxyvHo2{NkTrQIN zZsE-?`)s)E`Sa0&B*fDh1Bxs1^50?ocK1lrpIFHWxEU@U*(@RjH0Y|3vHjn! zf^GQ!z5{QvndaSBQ|e2TmGUl3eXp`0`A1nUMO1gA_p(Ngduk>1Euw7w9Ff6S^T zQMH+6XF&)!W!|G8Rz+V;W)o#f{*ZrNzh%N(DO0lSza0|nm;HC;p5oF;oh8^%c~$BV zad$D)k#P2S@flN0sY2}alh=rZYE40Os-J?8W=o;<-}<1dxNEjm#wMfglX=v+Ou>9d zO>>dG-=#toMRrTU9cV%1HdZgw!Gkjl7=MQeBL%1ifH?0jp6VM;Tcra+3T-%lQ47>xb6a5B+PsP(TLxv_3DGty$+vp- zuZf4M$j;CfQwHd}Pzvkp5_i1pyQnycgf`u5em->B#0cbXlsP@PaNqLh*}6f5CGMBa zHO`cWkXFs;IcY!WBD9=-CG+gq!7L1p zDqeqRR&q~Xh8tJDx7u6SvaOe#M>!0-2*ObQLjP8g0XO5os3xj6d=iDpocgIJq@i6z zLAcfIT!(+$GPm!Y#%K9vNgksa6}!7ou=t z$Y(-kuE~*W`>F>;p$Pu@)G<(C56gC&E^4*FkJ6|UmD!hs(GLhSTQ&Y@|NnbcAzlyj zlf@iO>zV1vHWupldsE|=3t2)f3p7NKfyTLul)iqFRly(8AAAT1xpQepQw2|0wtBv0 zsB%ziYu~R^FB-lp`;k>Lw`sLTR^6F<>B3uFqCB+6l2R0fiGgz(?Qg|wZLv82xy^aN z;4~K51%7~CZd%o!e@itK*LO)68TIqC24rn*|9V~FU5MQ(O~(`M2ydKbf6O1@ao+vC z$}90g(G$yZ23VvJZ8ph8=>chaVniEa%^(q`)$u~C^Yjt-#v(@gjXwead_+W#o%zP#Mr;0L>q1*y{TXwWC*ubL4*Bi&&dCutRGQ&$^ALFbHT}FQs%SQw;`_n?@ zGFry&tFR70n@3DYA$kh^Ycz@b7s^2B=LjTu`hiHE`N27n#*uo&kipRsB$(&O`iI9j zXO_iThPngoaNfFQbD_{@m(HpWh%iHE=>>Tr|46mg%>HpdT9BDK>VwW<#!r7A9g^*T5)wz3Qa$t7XryPo{=5Xtz-4r zYfxmHL!gd7O_;j+4a8+c6Lbr5XgV@T_Od8YaKOw)cCEckF}44}R#z}O*t`9*o{H~9 zR4@x3x8~7_xTuol7c}eQ@w?dU=vU39m0O zW=@)Rpq>r%1j=Z605cKLjOzr_-$DNr#Z% zgw+*#Xudr8M>p%*za3xQ3V8Ou&4a1i#f zK_KgLFIqc-9JfHb#<`NTMiwH}meq*4jDCr~1(1kdtjTx%eP}_FfgMWF2NhaB5=K!z zUk6081y}PBl$|GE2vc|(no_btwgg7eJR}g`|7uc$^45?}(NnTcSK#u2+~vRdiqMlx zp#8rAP5ogutYtC2d~JQ{IMM&xAL-xk+ohfcLTWJFq%}lPu*OKGaEhZ3Ci%b{?T;o{ zai}V&cOy603sPH#Mcar0eq2rf*zbj+F!rqONNb*4ohAjPS1ZhH3KCdlq4o9m;9OsM zfMDMIU7yAme^(A&gY;oVrByxCu#!w+^@+8-7-(V;Bza;LthS0sFp*h6*zhERd=ItBnA7`4I;yxF6uA9ocvb_>$}?>ynoloWy$b{pZl0+SuTXY) zGRSR!kNIE>iANkVd%W;13TG=O3sR2O*r-1qm3kAt??TV$CRhGRk`+uv3rNf$wSuS( zi9+1FQwkMKajdH(DQ3$8pfAs6{c?OvFC8$P=UzlWJ&|T};Trl<%gG4@euKC6@@=i1 z1p7J5A*ja_>HxTtKGh6Wl0wz;XgtT*S`0|VK!1!j#yHML*-L^Vx}b*`>v!MD-_C&~ z#0F43U4^@nLag93W;*gi&^F)JQdx4vAKhs-mW?lH^xnyB8xNza}@jG>9g&^KZ^l4_{1;m2S z@&1G-3yNKhh!BwZJ5?l{^WnTTa9oV~B zC^|8Vy_=yXKS8~qkBoZZXAzbs6nP74;m{nU{K)`VMs&Ix5W28Tl!XT__CJ@qpJ!+l z#8Mt$Xel2Zw!BYCF3u$yC#u%3-=-6^yYR7b#DHNWGaeiFR1(U5wblnjYX11?@B#p{ zc<5U)cRNAY2kK-euijuM%rPpDimGJlXJeHCab zj01S7_@0hGgoO|czz*(5<*GFy+a3)W>fuKhE>RBTnS;wIj2!h(25kCJ0PO1gw~!Cu zMWJrSOdpAzRy9NqPJ$#|5$sZs0&&^KIF&{fmW`Fjc<0Fr+WA&O3Q z9orUIcTymRvR6(3_JZo5%usC3<9(FlDQ`3Hg@TtI!QI;iL7#H6k)dBm`I%iw!`@zk zA}o!X3KwPAq5A3O7LeszAHhO`Dpw-IeG}9{o_tngTY;)ytcu>?In^Y`74b*XprD^K zR=@r|>eFse4-7ZBJqK#!UrC{H>UIH5?B=tAoFr4&be72o3*@o%b3m06dia=-S1vO7 zPxC*uHQ-Y(Ts3#C`=H$N9mZWaB2Rr+fg55~77gcCW*Mc8EL8}t3ACG-e5_4p$S!7Q zr2d7^2|l(SMK+BIuc&>W6lZ**{#5DA`@qE61H&0_eFa&%z(mlBg%YQJNksm-M{+J# z!;O;N4)0VqSRCeFTRB{%TAW{oT~She;(-_>pWcu3sKBfTE?RLvd3$K5q3T2eLYBEU z6l=7tIof=3!ChgcUwG#iCt?4aktP)!cJSqe-xaW(Fr^I%AO`fyZJqdnMxrWXXdZ)` zM8Q&;?h>7c7o;G^He(5K9L=(+p*Rtkq zH8Ot(0Tnq&53#&7!aJ5pU|wB;y|6kKDuN5h_`M=r7Sf8k)fM|o`{LFMYbOuoTadWB zn_kBmt3XnpzDpLS#o^TKsp=aQ$W5*;kWNOdOr-TQG5d4`rP6)p z;PX{UrRfk2v@AwA87~_xfw0F5N?6*#~SEvf~+~-T6QKlb1kSqR$tYKBd1oGa)ZdH(xV zc2}X|Wnjd!O&TezmPc;SEd3baIz!nm~2Twy*mv-SAX>j z?=yN8^wPQekFV#}6LLn*C{T$OC&`iSyL;kx&Uq42(+OOg2*z#=KfCi*kIK?idp(YV zX@}}{qe*pBcfLYNE1KKVbq89rA6NDp)4Ydr!k+V;R;T;ncmA|87hd=nJsD9ENBGm! zgQDcAiT0m4iFN7Z@~j|NY^0m23OpRt;pK2!;nEzSrNIwXYf#txi^yL4W2QjAv#G@t zcMcc)eHB}nqvGp@-UP)JOV96sZs`H-BNGie@!}HnU`xRC;()XQwGS<4dWUE3z^+xO zYIQ8YD+2PkGGu>ZW+H$xMT@K#nPoaUY41;u<3Y9NY3sX!-tVeAL66Cp*zXN5>TCy( zVuKH?T<40;%!?sKUyvc>c=*+SdVO`G-r%;I_p@U?mZrx{-w+vhH)&`{AWS&xsrKO; zt~aqyeE|gHHaT@+vEb-@y(HqI0b=2i}eEIGZNv{bgu3|*tdxHMHCaQim0oBi~t4pabo z_GJEf0@x3mF3F}n^qBtyz~9f)|JbUYPMsec&3m}XBj&~%LHkgOxo`b0Mi(0&0CIDo zH?u30wl0OMCOut2N)7&?au=y@LwUjPEeGxF*%z((>>h(Dpma+RNZR-6jc!YKr!HJP zG>nazF|`!0?b_7>qg4C=f*Vu2e4Ol}MznMamr8q$`&Z7?Pi^qE)OX zNXpW_$Xs?0^~;D!Mo<~GhyBCEIg^Yq%Kh0n$^|>-zEPpYjfG7d6-Z`?#LB?AkFhRy9;Q z|Js%{rA3vU!!d#itLXxP>v!4>&RVz@eApobd#QkFpxcJDGyXE63yx%Al3{vo$l-oO zZLm>Z{#3PQm9n4D@auuWRr2miMgx8_`c+qIl4BEh4=^8~XKt+Ov9liYSOr+(Yo#F% zP;E5*28V#!i_I--qGKJm6k8czL0Hb6m!o$K(b>PHhErmv7J4#Pl)wf|*Fw$)kGel} z1q9+qRTS*oka5!;!^Y}5S?8b6rmj+t$AJjQGGPU7G@DrT$Q7OofC_Y8qBiF2UTzIQ z`}8kF2+kFWpDvl&$qUbk5jITBla(;^?G%)Qg2*Oa({ha>aFjpU37?FK;4ue zo0HA#@Ln{@ixE7w_6Oag%VMQb5pDOrV!$wJbl6 zYSl7g3(5ci@`1xE-kRG1aZWJ#X{w4ey&&k|nX(p|iO0V21^gw^fU0OF=9|deW(C3g zcY9eC6BkO>3br31s_iaY10^Hu9RW>Urd!^pCm(!EEE}em;;nTKs^t#t z59Zx%tL92xQZesoP0sOvr8!*mmGr=Rpf*wMt-CqecJ!P>QGC-GlQ)RBawvRgm2-%E zP}PIMs{No-PFIV&OS%zKHFkh}vrJFJf#r z$$owRV9jh%IY#QP&waM1+SR!|tLV8V(MV#Kf0We^kT$^X{dOHL_rO%!%<|cOllE99 z#bp3?7!)SLtjBF4bBQw=*~79noWOSsuXWv@nyZfW6EZtG<@5j$TOEl}%rpHag)~l* zb1}JEKfOt9;QAnI{N{?1jz^s>f@29fv8hwhikHbxs7ow3 z-CBzZNQjcbeln^85eE~tj(uHf;KjXIOwDsHkA2RmKZpWnov==1G0BKbvh3TCcd`A% zL$T8fbz0%;>IO`!EsZ9^R`nb*>qo8-?Dl`RzXpAnPESH_n$^8Jx(OinEp)L7K<=|+ zHXHsIxt;AHDZm07*)3Lo?LLSQ%ND?!#ha zih&1!QwwZOg(VxpPNC4c?a2Pnzc*HM0vOxS+88I)1?O%_*YY`k#TKZ&37p12rF^qE z?fZT8rs_=kCT_A`{HCYhSh9xk;$N!C8*Jolv>jU}b^SuIvU~rl*ZE0w!|JcJeag7v zveiQ_KajR_)k;5wz?vYzK`*u6zV(Xh3fp4(7R7#2r!9va4D!R|8IM{ACFs_XA16{3 z8MMUm@P}(a9Tyn1L%@Ade>=+zRX5Y_>oV+;GP>6|dme}I;75MH_eI|ncBymA;=XMC zi|uo#&{k*TG~$3ddcm{9T;Z8{PtuW#jjzm-bOtU9wvs`|qaNW_n!Gs+RShO~g&%D! zG9OcmBXDy=zKCay`(rIoJ}l`1HPG6LbyWG}D^d1XaOTq4|8}HAiz!6nU~wqQ^wxj3 z$PR41X?Yo&C5P;nG-x{M%cV_ezRz_p>A=Q@YA$)NskCBjxNcpIms%kRD)va-`yp9k zerogk(i6n;#QN_m5~|}?9y?O7Nn0y^MU=)E<`v;y^w|gBX-YeNpi^xgFj+G7OY3FX z4b@J;0l+lt>|>6~-vkY1jhep_&6|@-6=Ir`|5JTT=JJ6_E^NojB%8JawfCUJZEei^ zMs2~dO>KEk?wctdWW|Ci0h6tV!zsRTV*3U<58IQL4mJvWsDxjF3L*+EzIQpEYC80}l71#v> zVaWkI@WaKZk`a)>1q1{)b-s?p6?r1*r4H*2-$WXY@psnm6QZV4Sh+(KQLr~yY6Kw@1q+QF+B zc|3O=lw2c4X&YYr(?sdW=S}<)g$L400g5Uf!mxp)rQVbSW&%2AO|h@irUW#&2p@Ir zK)!PcOIPryMMeBqU#P8i#7A;A?5nGaSm!Bl+(S>+M2f`G)6w3gr+P^eBZDTyl{34q zHp)_pV$7^>j>kdOsd;HmPa8l__+PvI;i)}^@=(qAj?|sm^sr9@X98*#lM63sFS?3t z3YBN*2m>5s#0lc)@@s=Lod6vW^n{=*`a++I7K$CVXW!s{kt?y{d{lq7+z!d2rx|nz zBcDC!@qVsiOM~zvvDm5Wa60zCWW>osd~2ChmxYqa-j}H6V4lOj?&*Sg` z%TrK!IZDGqeB^+LQE?q-JfP=6C%`zfCNLj0MJ>r;k!{)bf@=2#&V?A7vxmj)W<=!#(GJ&;8%$KF@tF&wAGPeR~b>de^(w`mOg{-~0AY zzCbDNpOxHUBEvhZtQy?X63EvJi z5B4o%v5v$ec42@Gye$TL)LY>2F9Z_wd~@jxd6r5?3;(c=-aO8EGWevpNt>hM;r#4Z z(gD5ZOU4Y5V(t@s+x558Oor`m8iZuDlg?M^RInMbo6M!>xpoe|)_SMOu0LfH;1N#y zeB=CTxL0`C+ZvrAlouz{bqpZjchU{wJtJQhLa+psHrFn)BwMsqATj`kVyboR<^CNVEmy&9Yb zUajyjG~Roc5M)bIdeqZc4a2~dVZho+ctdp52qmIp5>6@wM0#IuEWB=}-jwq014G$) zk$UmV(>0nOMnem-HMRySl(M_^-HodkMW$DUoR7^o#=g8^E3xU!SpK9((-EMfk=7 z8;GxuTv`wI9q?B=u$&5zCPul_FTGo-SLrFnu)m<5(>wk1Kmu%$(KbaiLV$x6CIitt;sicWnE{sH3?x@|SPQwmmz2TtOW9>^t~^#D`}x zUC`{+TWY+&%1lf#vQMmh=;4&Nm}Getj9zKEJH!d(UGvDs4+YV?D>ufvc$ab(pDwh>2OnkYi`(P!3 zR%H56V&coze!qb1gXQ{1T;7ito%|&TC>$TgjXy4%h<`Z1FUT@56SjDQ3jVg zAk`i1@_QN^>OAHX=Wa6CquefH7(}SxEb2AU0k#L5Dwft8KZLLyd=xi8t3K671AWkU z11CXikiwk<$g}lh;0q)DsM^Y!djBYBP3-uIp6BZN6xDf8mAXsHO`rwC*CR{YLuc|# z7A=u}LTJDGc%BC(YMC9*wX7JRudMvR{PvJWy|6(mt-10y`+$|3m0f+nteQjFEfzJ0 zaA7}1W5w~jhB-@}c7MYAo9uYu#Iu|rwu}fiRe(CnYiXqs!{8Wnb<4&8;|$sH{(94~ zQ^yGrR@HZ!rYFif$|O+avLdF5ES~`_ka#ZjF#cUDGIz6?btL!8+he8E;igMHXjiP6 za#3ZkQu^}9j>gEovRZBdz>`ZH?_oA1ChtXbCtzC>F6;&j`$+nZC*E3-yjl)eaI(Xj zr+;vIlBKZA3j%at{K{Wh-7A}WVR9laZ93}L^!&~G>LX9I0!_GUcdg{j|G)PG4MbYECbO0{Mx>C0Wa-Tj zOwhx@T71vp@iGly(l08pd!1vF%GNBPJs+hNE&%pl%-yz)_ub~M<85r>RORS_0Fa8Ac^1E37^WFNFoVrfz`GnGdD-gL^dW>?06@pffp>F3$-Txfj+9VoW)O_m7^ zri(Z|t4gB%fh;0CQQj;ubX^7-26P_T#i_l>IT9voI8waFYW&F1MK=!oYCd51eKC&o zspApT1!oJ4qUL|-R%e2-zG7mu;CTF)rmDRB2T7apu>~sYReOI?hA&1}@0we3Zgp39{4(G$`Ah^yPpM5a`*bzG3?t9xcw~!*v963Z!eVDo_f^hkexzFq6 zhqSicuxq~f^`f`97zQ*C-&dXwr0?RG{{+a)AoE<@b=8zud_i%M-cip$=ITpx_`^5#M zs6)#xl9;jW4N0;_u){l8HnpD27}>BZhn;d zmS?EXJjjccuF5kWSlKr*=uKAMyIgHa;fUeToZ$X}w!fd$39ti&bbyl~n9wJ-jVp!Ya|% z?HUphv+Zx*r^}R0uS>`{kTkTgaRCpW@x=w)ywA>0PCdX|<-V zJ2)0nt@ttL1UgUL@Iz%odeo?PV@|?SDe)IAAm@($jOpp_T>nr|dzey4aLO-Q%)(+! zueNFbTcBw>JL-+ru@YwIWY&ZoxA2)WHmn&~qS#Y-;@awYtsV?p@55Ktr28>Sb$vWt zx0p}c$)m1!e&JC6;Q-$c@wu(^yt1Gnr3d;W%?q6}&08HW4&UovuEJ*L2I*@Tru$Kq zGAr^k_f6j@5x0XFQhdc%&%%#)6PsLqt|$Mb&9MNiT z(LGppyp_mu34WfQ`ZEPu*8H-Y%l8lIyIhgXbSyuxx%FA`f%E%Q0~gQLmR(j7Z@;&9 zCkCnLI)f7Xo_*c+L_9AYT`stUpuITLlAf|H$j7+h?yKM@yhgEgvsd8mj_ek>8OOdW zBlYB#!{(bIyz*MCesf6{T7YmYHn_af!`np&Wpwv#`brNLwKh^abYP{txc2v1qo$D;>qwjl{ zwEX${j+)zng z(szDNj0e-SDR28*Fi=L1jqKK47h}pB3&*NG=AEe0z^_XjyJOzsbae9_VzLM(e?LdZ z)hn{VWrnMKzF+p;8-C?mvv3nfqQit-vmC&|tOFdHn6$67jy~#X!7z>NU8{ zF-j|uk-M*Jouu<8=XLTPK!NOEVzo2Ot@@@n94IA0)WaHoHqJyd9~Cn~lY8AiBs*`L zbJj@FaJa6%4`=J7CB(YXes_C*20dl_)}hwJH`?`2o58xlx4j;>{9lPhoHmCee)L!{ z^?uR4>y_916eBhctVmg~Cn|b~&V8}E@$uzW5#92t-y&uw@J4)f%zlG~FLR@PxG5A| zMu**RxBG)a^Q$z#kl*dBM$Nk=?5tXrZ@#lj!uQ6i?##ezI?9se*|CeF5+y7~Zw2HX zOFf&^~rpoV{?08@1RDOK}W^0g7F~B zSFGJ>eYU8(FZ!a5QkkE0;(NyS>ikh-x`8d!k~p&~Iu~>D^d~DK!Cd;ik98oY3`1g= zpV=HGC#_!9e|owWx!ZuMd}-xV%=H7)br$LN_VzY6bbUNDP}^*(sg=-IbB}}Lpa!|?&E8|cq zVPeUv2f}FMu7;c$7cqnb^Vo4`RNGq$2|M1XX>n#8d0%*GmaDe$8{;O8xz6`!>s?i6 z4Ss4`em7q)?0MBhz9*AXsF1<2`_gO}#R~BA8SSa6=xIsu-ay3oN@qXzqp%Azo6}qG z1T9e~j--C#+-r@ebCN%fM7P{AzKD9`bx6|UMQ!T&FyHPItZCVbDlegfmPzj-ldf72 zS0vCq37$lz68H{W5GN+^sR{bP)HCR{o!;~vl=Y$;FX%6RwEXEB=`GO(#m1$lE+=Shz3_@HA*vm*=%$f` zL?V5`)jOohq5Snu7CYoVIN0^G?zj0(pGaCE|C0s@I-lYDTOs291v;Z}q9xclGY^?% zNvqCqb{Mnw95eXc zOYRcY{(YLvd>50t`_iB9?P@)({U|zBx$evLkhZRxjhZaBfacF*IVsw|nVsPmInL6U5?J?@DW{ zq0u&jjoWM-=>}eUbXTT=uBEeshZpd3qv^n4dTzC+GtgKRW+#2}8c%|~2fWy9vte2> z9NazK7--z2Cmua7OHahp53GxT!tA2EfO7t-3Q&$Z&sUBD4vQnB6$m688b>B$fkzxN z6^Id1l@8sL;ea^QQN&`QTORN~bp@U303vq-KR>{a4&wC(h0$;YZgHR&ps(JCrXFFo zIoR6T03SZkX^#nTtAj;je9#zQ#QP5#W9VS*X%9+5ybqzix+g*!`6Dw0*nrUb_ic8j z+X44KWM0$$vh`?;8q*5;8lvH8Xbh|g-YDP+Wav!EeY=f=oxLaQ9V7lF@MHvhEIC-I zx!O6~05)OtJZ)SI;Drv|2Wc5-7zr!r<_NZvH)zRNEc)LNQ2(?H0*;C%g8l_Alh9NG z6-_3PQ8Yj-g^ESvDI_$3hD8Di&UFD6i6`o9V&{_g~k76w=bKadDO?y!&n zR3ZqVAQ}}-p@4e=9!&z3Q(z$B(RdmO1p=B(BBMzpPzafTrVv3|Dj)z0u3-#+Cx8Ha zNKrt3SSF2112OLzjFH9=C@2_1B4DFnAOpdJc}bw*yfQ#qP%m;#AOc2EkwBu*keEgR z^n&MP93C`~S1%FNOTq)j&|p3yngn7hU>1y#fQRYG2oqoo>qj~bG7!)J7>j~+l0Y7W zDSYB!jK~kHi3o47kVTMe*fbb}fb6EF2?!L-HB|~E3X4S{zfBfEBh$cuOkZI z2RZdM@MVG@16cs{5m87CuLT0q*Sz0hnyCQg0`@A5zpmbJI_1xKK4`#e=%oxym4J!g z`YXfprx7^ePA;G{;@_{I8W9f`z;%9NpPC2?)ug*NCU{^XVm|(`MZ0L%G2yw{zM9g) zv1`p18_nKf#oisITF}B!C}#_cxvvXos@ZoTuJ)kA>0kBb*jL4UCq(Vmp1R@t%`EmP%BR}Es!8%_V(dXA#)3pke~2S zP=5J51Ow-9c}Utr6BSzZ%g4dR6kSRvM1HUca!znD`toUiWxGnxjzu<}vK9Y10;Z zRLrnW+HvOg+Y+~|&$nk8ei@&hq_r>ZC;a)*$Km$?QC(-xo^JpmWZo1o1Oq_;81f*E z03rg=3Yjpb#ufq$(UZXNhoZlSL_ZyQkifqNgeU<(h)0|z{+9qDn7A>1HVikgOrSBI z2SJQSV{CzwN1l7gDS*iH;P@3FB8~laa`_G?3jo9)+78%?07C-)U*f|52rwk#1%V;o z1*OTjd|6%<9!0`V#Fa+}R?*)bc20_U9&wwGoyZ~$cH-I623KT+c_`eGbNq-Ft zsQ|3Q4TAtEgx7pP$dCVRzz~^M`EwmIHzEKKU_&@zg8o9LePkBJBU^HTiA4}8YU0s= zOeC=;4h`n}Z&9TnTvNjdZsw<)0AseQflL@HIvNM-z^LK>(_{cUO(qkdMgV1foyrAZ z!`Fv`nk-G6f`H1z#lh7J_%r5dLB3{yOAnt%Jg~`ge2md{utqcwyyij$hMO1I*dq;? z)Ue?NYugGu`$9d-da&-fJG*&0J6NK<35qzN1d&JEdwRMvH(@X?Q@<&?G3?|}7@!fc z_Ob$=f(5g=Tic>7=~hml8h#NVDN=!ho9i~{R(bulO?WJxh{NN+=88ZeQjFyU_~pZ} zu|y7QZ7;D-F;GXmK7e47pr_FvyW!(#DRu+RCXJUkf-Hb~z+qhP`I;JasF z@AzY05)}4t%cJ6c;1!_dC-f1Z=Ih(MH1dyi(1<{7`F%Rv5A7g;jr$Mjs5sIOG*byb z@EK1f(!TFsJe3OZ&o}fDa9EN6PdyoQ2WJ}w;t*WV!OsTB5E`@B%?%1ZG6VeTY76EL c-X0T-BBm#u;faVF0qE!`C|OwzT}{+~08>78Hvj+t literal 31968 zcmbrmcT`hb7d?vQii(P;6zPbHA_#~`CpJVyK}A5ih!~23^qyEikg6h8AXh+o5$RH* zv`CHAC?Js_ARvSQA(Vu?eNKY+8}I%8c;mfs?-+)ZbN1e6?YZWfYps3g+W8Bz3dc`w zKa@8pp8IjTg1Ef6^Bsrn8XDqqH+>%3ip!m|cDKIoj1-r6YrCz} zUFeG{|MP+LQscj*Bb!ddpe=h**V61VuD;VAq+ zCjgBb8ojG67#(Z)ayM+6>-IrO2RqvQLb}_DE3of)!Tvs&uejWW`(P2y z+uAtawS|W5=I&~1{b0LyQh1F?LF46u3|dN>isUWhP|GN%N2^WYw%e08pm-BjInsU0PiU9hzk{A`wQtY;ckF`ItloNlreX8y7QLA`KHS_`Ao zPB7;lt4o_Q9%!A^5iPR_sS@qaHMk%5C9I;`DJNOGN@3`%W^4A;nL$ccb=^E}_1)N? z(KwZ59*m~W{i4O$c{lU7vDkJ)??^qIhmqlqv9oDmQf_Gi`pX|%{7(qNzpD4nKNP!s zTd`u~x=#>i>A;B2Aoc4IDq&HwHLM~azKt{HeRajNB*(5saVN*I^t!p=`tgh7hOII> zgWWG|(JpO_!i?wxtdB@Hx?6U>KboNEiqkEe(vb6*vvx8adwq5;ctlFHRM??h;`qs$ zM;4TN0j=$^_+=Z{+KfUTk4ac|1JrOdEUKuaH$_o z>{L5eA$l9U3UzY|(5v=+)S0mQho=x zHR&EZlob$I2`%~fFkxJU#M4`QVUYS_0;#bm;cZ0lV~;Ox2q!yPjblBirC$BIoPu-l z>Y_2m-fP~PT5rkkeUvx;G5zvNG099TYWa#nMgDb@pl6gRm3dW+^cF7->B3nJIz6!1 z@=U1$sUY|YVnj6~e$1fpCp2TxCNnLEl&UN2?^QER9IzYPQ4JQ{38*H6sd3Vv?FrZ_ zf+@aKbbH*vr|_LcMG;8yj988)YoW+b%lUdnH@LCa$wHzd?l$|2DOx(shjK?aT?pqg zFqCh;$~P^z72rY1TNY$o&=45li+OD(nuO31>-p{WkBk1fj1-ChKFjwjYe@2zH}Y3* zerC_!uq%6IWPPmuXPE|6J_-0y;f*U7vY)_<8BEFLE?Usvwf;o)w;I><=&Q4*9`o-h zt~&#%uUxt6^P`-fd^~yE$?>MqTOaS$g^urU^?6w{?~XArird0|0Oj-d9gMo*(TP-18wy=ev1Eg=H>nfG!_4PcY4{mcjksek@)M5ySh_3J{1J+ zsQgJ0WEx%Cz%qBs)%Qv|?>N5|W#wI|Us_f@n{8{#JpHZog*AV5ln9>hrqLsju$GpS zPvZPXeOCBvAWMt*X)KHLN8SE&>!wkLwT6Ek?<+MIjzx#`td$RKo{RQvfs zd(zEYYY$hF2vsLnDmHi?yqjf}7$x{b%}8FEE4|%Lf>||;`w4JMyR>|Ft15BA{vq_> z@%8iLS8y&J%FbtJe7`Ix4#|C*h$l<3KqZ)>wcv#FN5p-GHyyVeCe318iCD;4IVI7J z_nx#NpCT$FA7<+HM^Vef~)F4@{XBDH+@dPRxA$9JO6XH zIdf^v#xrJ0`R>T5xR#ImvV)_^@)yZdTo48oOzj(Jq=)FINcOs?JNr-S43ZB&I%G^K zwbFdmZxyeozp~(TUu#p8)F*Hi$;6grzb{V+Pb;P*>gBv;Xvu{qWIyRC<-};`O5nQ_ zLq__rQCl_+_M4IH&cWO3=_C@>kbtCi=c6VYooREV`8D~1>~V43h~rP4FF&%ngw>!O zH&OZCspFWJs{4S@yYMz*9c)@AXjjsDBs(;Ul+TFWx6(-Az>o%{Qjn`ZV)4K=QC|%6 zR|od_{i`NN($j>z78pWGi2i`k$a3q<&qBdMDt&Il)JPx5Fl)# zypaTO)K>KK)UC_g`+)~v5H%9EhyfSFkm@rrYt!Ykt?&W>SdUP8mpXr7rYEi6q^EN6 z{o;Aya)f%pZ1a;yG0!~`$2C?qW}reEf*u46`=F2Pj!V&I-iY|*UGDZncHg;!4OZ=x z?8US1S|yLBqBSd7x#jXQ7iJf(5(Pid{b*Ef2o;?UL^ zwyq8@)hNZvdre9dca-XsD3S^@#l90kXQVVdUdV+Eu_^BKd3*LQuYOU*SlTQ!Q(aLwHf4IpR!yG%Bxx5Z9G zM!4HQBIQhGdp8dU38CdFU-lXxsF&51M0N`aYUSbg?M#=usBxg_jE?GNzlU#0|x3td+fz-tN zy^SqJuuz?$(oRdhbU==jl~NV(MFq7PUql<|@p%mSg9OgfH!K7xvg(^|0^5h06bXL)U~3+Nhkl zW(@tdIr)7mT!EIx7_w|P^lwJiIv4XzKVtjW+y%$eU8n{YJ|Ylr-(`8Kf2v4awG$ut zeJ1~Kq%{1|V#~+gK(HrNyRP?_d$j!CIHsOo=eFS8{heX=($2Rb=)$!0heh!Z?={1q zy?OoRowRsSm#X$LKE7Clu$J|o%oF@iD_G!PFtq~^&@1%?=G5*;tY!PgTw;-;aM4($ zTd)ctZ{!J$6@L8l|B8mPR=9JM zDeYRkn9GcbUT^lYt%6l}2K^gdj#MZ$)`9PD@VN+fjnQR|aYwa=NNqrSn{0@)l$pLu z+%T_OI5eq;YoJSHu9T(kEz?pcY# z^G%hr@@vM2@{2wsQL1M+f0}TK&)9$IQB1iJMvKb07*=5s*EPu0cJ{8aBnkEca;FK$v{vzl^N4XF-+xz*S5L-AsicRE^% z#ne9$-lxX!&X9jCz|`1dC|z|LRvh9m<&g`x|8gvCkWJ$XwaPBe2lf4BDPQHtlXcrF z&7`IqxtM+dj{u>!WDuliMAu$*CAQP-o8ujudJB2vRt-5UfXB1`7j~dg4FS-sa3V9~ zgF@?H<(v1}H?1?69ql<1#4L<+fJZbXMmwK8KfCD~?##1<&XZ2YiMZx1%Cgd#@8vDc zwm%T12@Ynz@*GKE?pJ~cOP>dIq_)Z_sY!Zk72keL-63h~+=SKL{3L!7=aIWZ-3cqf~&pfm<)rMjx5vU_^c zGIF&AQ%A10@_2=&|L`7Wnpr5o51C3U7)a=@{u2HkDWTi(P^`IBt?=Of!M?1#v-L|c zrdji6YuTg(kGa+);ISwPEYgos$2|TV5E;9|HJ6buOBIO#5Lr~iv-jq>(D@x~PU2s; z-z?er(WAlq=tYtgljyqpS3&UNq?nh9$XiR`?N}t+?`fQm$8H-IHzW%RHkD}~vgor! zAfM~J;g^;G5cK;W{ZgxqV*~qk!WZVLwyexg!YP7e#v-iz4Qw)0bVLNUOq^G}yU$^0%5 zGvi-d-E}*R#msKdSFgmfcKxt5y~UU;X^$Z3C6@>>SBN-c88C?<55~AuIL*G~dlaA` zf8sQ(&OG2v%{XUEcf05-LhwPv%MFGIQ9CX3xQ}=G~?6n#GpSw&}ppM z$_o)3m>7>=HDZr^Wm|r-&Km}V9rP!0sF!O$geBQ4RfopjXo6Npn`$*&fqf*&VBw1B zkd{PW{QMss*i?g z6*GM&Jf5dBC<_}pqtCd_f_u6b9WcieRs7#VkH^d?du;!^)ankhkSW+Q#wn^cwOHR4 zddMm?WLob13Sx@P9P8oMG5snFAA?{gG^g-gjPFrR$O-T!24gU3qa!}#WsK%Ewji?L8p zh1p>U1?LU7z(W?(a`D%!{aqb`O>y;)^iO`b=Jt%jyW)xPsrqH$zm%kep)_TelKonE zQe?u%_mQ0S{F)!=7ml7NvbkofDK0!Jb0}~S753}c{e4=7VD{7Kw5oRq(z_9nXS8?3i&h zHihDweXD8uB89&8kUn&xqR!3zC>8a^wz?|k*Tdw)$izN5F(uw%3BbyGKOW6><$wcL zd9B(qUxut$rkL3w0k)7(%*e5 zlK8!tRF=6Qxp3t$yyZIVt3(l`ij*OrwHhJ!p!`Xq+xMS^_dF(Zb%Ru>kH^TN9Pb_9 zCJT;Vy>p4D-0X_ddzD>%tCwCsU79jU;SR*_b$=U;+Yh5EVPq6&ej&xab+;t4N51T* zWiBp}V_bs9fBX9ntOh$yFn1m1PYfm~Nb;ja<`0!?6gl5)mKB5?Ve*}-^Og+><9=4x zbqR6h^MW>8H~NQSn}qQUt$lrT4t+jPE#mOziq7jVdRYwm3_)ZJxWC{wHG=3+3&+zY zEO*fI<~_&;SL5fKcDk4;O7ZetTb9%@w`(woajTvw_H4{AzP2NLH@~RnivyozqXdq? z7rH4maC}&2&|bN>BlX8u!`W<3m*I)DSJ%u$G$P&{n28gYsSGXDd5-13H`-sG+e2CN zeySMtQzv3s`JeJ%Wm2W)1@~Mb5L9dQR6vlXd`X#O{kW%ImhICkg^DqIN1EqIsGc9> zoo3eOy0mI=ub#GpXx`l<^_%!%oxulkCkA+?Gs}e^B^;tTtc?21YRuGq!7A4ruMEXb zE?4>7sgBDPt#Nd)zISv)x7zp;{hK5RB{gQ6v$@e7wk&DHrh4YhNn5abIwkcY`j4E; zgkYh?&#O`>Nc485U~fxm?~CBl!=$$QjGVQWbfuKk#?1%R>mZ)}yVE}r=45Kl%g;k( z@Vj)(XIug-vx%lIwfT6?#W#T!vmuW6m_!mo@ja<8sD|3UedI?!AAd@4uuJg*Z-26} zTdP|@olDc}9T3Xv6~&Szr)tQLq*ZbUe!5CX|euCM#4J zA4Jq5G_4%Pf+luL5} zWW$c1==TG%bqj(Rg7TXg3Y>VkUVj+>8n&MA4&kg{FV5vdIx#%w%l7vGni4L|qDJk< z-vI?xsmrqDAu;zbz;3rL+fjS-iL+V7!Y<_(`@_c9yqY=P2K*Lzu@MK{qGRyS_|ev(CuWRmZ|K9=6hSh?lwO3W-9*$;W^drThj@E<=S>x(tlz3N%CHrCB{r|E^9TEeh+kWFjI|r zWlUN@q!)iQUSf zX*IX*p^R2#oJ?=(-SpaNoJ8a%T1GWpuoV;^3udUP4l|6mDB zahhg{A$q*BZ^=(Joi#W>?)p}LW8)?+{dKG#vl{_#uPR{D1LwEuBmgGh0k1DP;4@71 z$EAXAbgYx7I%bs*4)Uqmz2*C&R#Dpv0I`0#n3}L^;#N|TpAdcg7&k`I>S%}4qaS;~ z8cmXWZ-i)aJ?PaMa_rUFepO0)Fz@B5v;?{dwhZ1*)70(5wA#bjI)g{yh`6AfrwlB3fUCm}v0mxDFOF`i3K=p^|}R>=Nbef=qZV~uYd zBhCwi@M>Cqvwr$II1m51x7IQ;`BpY&)u=@muO{c`x0?<9CsT=>U)AJ_o>6vVKPTw) zxPgd%fC_KM&X(4(yS|TpINUrIW^_)pFEKoARM!D<+Zxuf0E$S zc=y_{H^oJi;2d!q=!FQy8(f!ok3dWNWDjwg$LSH_T?yrTAnKpxF>{yPg`TMQYC|8M zF8{LD=)>+$1kR~a%w|+TSs%{FOtH}2sp{qT6gza0?{1_hMK8v`afHU#1LVFxA~J8C zjfH6yW=TGqxl3OYjVEIV7sGQOT!ehAT#mtg{&~sTJY?I87)iR(4uFe@$in(x|MriM zc1bRg-7}TSWdDRdhaO~{c83r(Q)kfm??IsDJzn zB%YH6*Kh`3Y=V?arf7i>14(qH*F<9diJuJ|lqzR6s2Y^bOZOPwRl*?3=t+@b>w?K& z=1ZhVb;W90y%d>9{T|G1oDeBhQ1(hPn ze_|dUj8^0x(NEZ1G3~Rc3KXctNfyb=))8q<)%)eMs7C5`A{#gJ&Cv!OjAgOot+D>0 z<2p#j@wdGpl)Kl1RX$6KVWjf*0ky^r2;QjLY>uaVOO~B>|3sASF}~a&+njVw<#cI1tO#aQ5DP4rj$5M5J<1c zP-ZGI)%3DP;owYCqFE^pH900Py7{Ea{8mwXQa9~H#jmo=vXix|EMQ`pnqF15Cm*iP z7cw^fl#{g=P~n`%aP_tXk0xj2o#ssMPN!^cBm9)#KWF^sAP`F$XoWkr5|ANXKw zBWPVCC#UI-Ys2bD0yCkyTxC8_1-hW7k25=n6kkno*~5wlfv3FW4tYv<6Tj6Ysz$#m z2zMRQ^X(+ihi4RMCrga|R@3|Z^3P;yucNEidk9^xGp0kPY2F_eB-bP20$X_Prm$K_ zm9wpE)Wy(gbsONw4y$!Ewks3}7mzPfWEMZX?J{QK0>$xu!=G5*jUXIlRLTl3p?B-y znf4*HY_G2z^|*>^V5r$211__1PhbGo14E+EeV>=^SEskz%O&QLOZRW$dOijs{z+!6 zu6(J8^r5V3QS0hSyVyJfiN< zSNk&l^Oo{=U4}c8AdShgggxg&n30&hEm7-p_c8R#MKE%rlre43H z{@&o3D^c81ni+u)Y9L=-iU$lHNgT%pE5r>h{u**=ZvIs_KikQBb(mH_0h0Q(!&P8hmI1d6t{&G&>;|k4r@vK4P>f$eWnO+rD}Quxb*ApsK+3BE z6(`vsI8f{MECLLX`od(qUr}qZ?@7O`93Nk#TP4XkzPv8upcu9KRWl5t{A9M9urzdnj3>0oL^%UUS3T!0B!4r&5hn%q zCHWW;)I9>u6AVzxwsCTg5`qj3bT*9jh@?T?RphVtXqsm3|5yqCH%}?E;{PVVa1A0Jmd3LPC zS4PzBHWUV3?dlXXi=BI387puF%5>j6IB?`G2tZHveo5{8swkc(+HhUdS@LP$=ZNOR zF+AgfLH3G?&5eV{N&fiBZSFt@FScK*5>ZeRksfh)f{pTT3jNnr(y32Jy{L}<$F@y` zYr0niQRzI-<8IUd$z33DsBb0JrKv)Y;}#E7@T|2y{ixM&{=YO@n}wDQ%wMdZIzqZ)DeJg-hZGw0fTPA z6dp75pwc0kMU6FR*s#;_ZunQ-P!wW(6pljBWY=`Q!hhE#Ms(q;+bzP0kcAH&g>mc6+U#dBB6uaFZm^%lCNvQc&*1kD^#*zi>bC^FM_8Gp`Kzzn{D(0%q|Q8 zFkIe&^KOQ75^UIlHow%I`9wu6jRuS(T&#%pa{$%>7U!oNh^zPIktw`@d=3{93ETF6 z%eH(V>mbsXm@3#X?Yh-?TiMYCgO9P2@k#aqci#ptBeh=)LW%1q-mMXPg z&uyTvoh9o46u}84;NJQr{T$IL!H!KsoL<9tuGJ;I4)eGmGTWN?cdobe`23Q^MbNEwHZO zPVS~T>Nq;t)n#&5sDFSNV#NLEKoOTJffJ#DiNcXnEqr`@z@}5C3f)VMWazj0_P#1n zyq3A-$pBd7a;#a-20TxFNS^{B@&B%{!KR+xX0^@ zw!@qzTZ<(tpuJm7(0HY0)=mJ)o5P28%E)Z*wmj*E0M|h#!q$qFiiEJl@+LZ0R`?7k zID^s-W9Y+qG93T_A^AezAC`w&SGqgVT{l#xe(4MrMwgM0OiiBc%YQnP%1G~+2?BwG zw68`Cd-HdGoCnyO@Bem7_y2CW!oDS!(mS@qq%n_hQ{iLpAnf=J85ldjjNOj1XFTtg z@$GUv3q-4D!MEeN@SzZhGTTQ^YnbfINVXeBjXjYE#MNMV`BF`x0^Y@J@F>Xp1u;_` z%UB$xjoGGT2CHRjrmYN;Ia>$;-$*NFeWMPI?=*qK$R!;9-UJ(GZT3i|{ExUHwN(KF zh=V0Gj==SCV5R=ZufMD4$tHO#Du`eMHu!?O94q;I7d2Cmx>p(fBS}`s{QhRvZbJE= zkDsJhwr2HKPWZkuUk)Ww?HZ&aa)R>q5C-OBKV-D#C++#zY2JQn&u!#D^Zn>jDOz_{1b6JZ zBgI;A*U>yp8>9e^@ypTQVJ?qq01p8>S!|DgAW-Uuxsn-)2HoBcksLU#w71N2dHI&T zKkJG~CH#oxf$LM&lxE=08@bSv77I5z{v$%agk@%C?L@h2w_jyO&d(|bEJZ>T@ zbMWK76T0W$EbwiT|90(VPsBZ^T5XPj0sRV-f77X4GqmyDZf~LJAOXABs#A6RjUq5a zush>!6q4~0phgy=9Ox;joA#OQ3BeTP*VB&%QYag;$av}h4bp*z|8l$~`+OLC;})WP z8GTQK*nDl??@R=c& z;eze^(d+MCQrF<)2gsldLX2HeEUgZKirhyUw6168ihoRf_MfwZ$qr%uvG<1~SD@Gw zy!;mZRqw}$Sy+B->Wz)}`7io))&+Q#$Q(Zjb7q8yY#4jyMDP;!Pk6e1Fpks)o)~ad zUf?C1{)_T*E-_$3%P>~m^zVQoV?k&RBQ+Vk4AKE{Ihx@d+|K$LZC(XUu1lt`YtXvR ze}CAk{P)&e4_WU5zSk?iJ_@{RJbS7EBn3`nyas zk*BwA@x^0bH9EmOP$Klb+0z?{n+Kh>}QHIxG$?y+H;)E>CoBK)eeo2AZ_dZ zFw~FX-qffUj$02?q-jHARCsO{Sf zbG4LZ8$^$3FLf*1e_(9#Cmp0&T&oTpbEBvCrYjs)0AI^y9<(_eZYyb+%dH zI0cUfY}=b;4?iYsP}jntD-T)sNBg@dmm7#UJXznru_&@~16xAGu1JW6)dp^3&jK-| zkS1sSWSxXDA9uyce`XsjWhs5+;w1eQohrk*21)~wd$-~_2G@51?esSm%LOvb?lP8s zVyxyM4QljQa)=_we<1@$`MRIl@ky3_Yo<`3(5+khGHQMk7`raYt~tcQ1}FN$lr_|0 zENA-Pjqy02W%p?Jf2WoigE1hygmNX(OwmU+Y{LiFJ0~N<1vYu~D)g>Bi^y;J`PY$g z{$!B}P{y$7VH+E;@f^Z#?8uYGAw17QVx}So4p6itsN_VG1IL1qI_8c~3hP^o`xDDm z0zbX8P9g>H551Cy2yodTzz3m1iT^Km_@C*_pgHG2IOY0N-}~&R_|ta7+X)&vM_K09 zhF*-gk9;Hb`XJlFaGf)6^C*xi%k4ZJdW{+H(R}|gEJs%MEioJct zhiKOd#b2!(r78Ax8|@!m_UO@K=XcFpAD1tdk)PJ)@(P>IJM|YW8di^L5)ntBB1r;u z-YgE3+Cteypm5N9daAywut`-W%7LnT=~P99d%>2q%}e_bSH%bae;Us)`u||{KxW*a zGR9^dWbiT?_$83*L~=x~2iHV#VNx^OGjK#Mr+0!45X9X7$cByV|Fhfv-`@d4$DUDX zsGAG7=0uZMOlWo=cWX3ojzz`P<6IHY;4lC^p-vsTg-JtWIAvc%NIiuwp&2Qp(GY% z1#wd>el?(qgDVWye9aJVRyM@Sw8=oxiaGJdZ)8x=gRsln9ne;vj;&uU;q8Xx@UJ&#oMg$1+8O{hlox*RzrdfW|)=b-hz|p z7VUMwigh?P?{(oIoNHq;E{Ck^@tD{wvX-QOe>~dPWdF7+p*GOKuN$F7u^Qr z5fsJIbF~K7a|q^l#H@tYN#GrgzYB?{5jMMXvbwCAIc&*4o z-5c9v^ocSd%6f8@p=e^o>OwhC5?LW;0APnKgdu{L>+BE%*rDXo>Z=tXv3P+$Ab#i( zI(-Kya=u^k+@^h2O#d?1RW?xs%&wNr4v}k_cpH~7>m;J@wfbx zMN_21Rim9GPu0NOzyWufk30sLwiw;SwRL{MhZW3$q8m^eJnVz28VxQ6tro>A7%LB8 z);S_y?8F9Byu|S9{`v=w&FSpW636?k+)B~ct7nTDA)rR%IGyLGw55#r(ErfSe^l0| ziQky?m)O1oq!eGjOyh_hoTJNzoLP6hmb>Z)Ws?^ZFPuCi#|i3HPUM_7qsr7)dX{|X@UGOhn{(ggPS3z-&4#TD`6Um@mz zxmpN0hTI9EeR6d2KCVw~9}=&m)*O}7lImU2!`AVv?OL(U{`W!>8*z2 zhj+uVfB*%Tw&cYVlEDox?n^D5M8rs^a{->zHVGj49 z4*HsGu<%$!98?lF)xTOHZuzdy1ehOO5x2Z;nvU|=aNFACcK`E~L8`_|(D$FwASVf6 zSAK2ye)CT#xv7tNy?XKB)ViKA-WBPaxbAHVTt~Il7Et-Cf<&f!;!;CmMKDIt8n!+dTQLGjbOVj{|6jQPITaGg0`ZSmO>`o zOzZ_)dmY1S;ar*oud*+QA@T5yR4B)?d$euxEg<>Qn7{kskJt3lgf^;=D>%a`3hW5*NH;iM|70uJo`ti66S z%V$_*6S0i$4&1HJ7i2G$SVf#rYpc94cXQ=oTFb=grU!UU3nVK!m%wyx>G-5ab#Nr) zE0&HK>?GCAw{b-9A1}FPka#ag07Jr+o+z6euSB~4C(Nk*Ww}Tr@NW3{yvCguipt?; zDad<`aMqD^2%*5EzlJ?d6-9XhW{Fux_u&RE)UmGUhWd93k~7-_tKcTY?7KO*>I{Aq#<8 zZ^nO+n<$ctRgg5?gkQrlA}flB=UOOU<^8YBaLtNW?VtqJc5XGN1h}aQ#Gok?mjFl- zWr#Ej_qP#NmrZTxc)SuHwPl$24n05H zR;e>rWpx&4AjG?GS#>q8{W%EDPnHUIdn;at>=GrVKFzG0Je}%2j12Kfa2+lq^bkRJfJfO8Y8NaV=dBIPk9UgzaMb=Q8`C^ZAG#b~3Cd3hrBV1h&!%Wx z_3QOv_)?U!^%k}klDw*#R7mDD*$runKIHQeTCSa!*ya8D3ZO#wo;*8NHhYd0YL;h} z0#VO={tt#u3PG+b(_6kBeF-m) zt3UbPvs2+~Mcg;U_mEu)w;SPs9~^x=~(Ey=fQz zR%r>gsMb!xogS$xj(r&EK6yxlxD9T~gr|S_2Utw+ntJDtkg&SAh)BNNVQ^Jp@ zW?Sjhc{^>mgFkCl8mupKXbttz_C`ayASA9Ds10}{^FFi59_4w1!X?{>W@#T%`*p=` zF~{Q4MO`wlK;58&auPLRyjNlTX5Km&mAMES`|yudYfpV+D&Di-_K+9T?Sc3`FY5T0 z!O*H2gT|f8DN4;<=mQ11Wr`!xYid(HiSgTU2CX7jbw8RY4~cf4%@8R)&>C7{65(KG zG}8asl!rq2P#qlt+5qnl|27c-2|Ia9gmKNJs%*8qli$oc9$4U4eZUX8;%5iBgoye( zVpW`SB!N1Z%QVS-4Dv+`(53Y~bSy z8b7!FykfbE`)*_+cA|yS_}#SYR)3~aY$r%ZDh48&H5nm*6h}Iri1hPM84Oc|>Sp6y zaD5eN5gg^3G|~>ZDg>@oO7cn3j=8R1J?Sm;6wEho4f(PGC?^h_CkAl&V$N|{I&P&k zQ%lXv`}`y)^%tF5U*=^xZh?9;EM9%%;39PK|7y)ZCjDNrBR4jDgG|94z(PwN7V91) zb-as)?&`a3EIOF-+O&GD%*d^EKF{J7D|rMLFdJynOmVcSIZ8E3KL?aPqo>e>-5>|? z5pY6G{t6G+-o1;dO9Z)cE|ka3%H=W8X$*C>?pJSF} ze`_x&EURz{sct<7QUNCzzhBs{gKzM(YeVKD!Cd49G_i89q_N0$>nnZ>j@PQCI6!9^ zxjt|xI}DxTw{wHrFptgvC~r2?$;^U#O+%yY0?M|6@=MLTWm0qRJueK}qfaby&1pCu zj^~Q{N!us7!O8Di1KjXqK~Q}_0B0!V>s+-90|ny>!{IpUpU&`0|~1x)wAW~>CzW!yJFld{8j=_XmKB$cAV_dLFLVs>1&*Ic7LkQ zH|MCArpWJJtK^ZB1}a|)DHV0L*M=d&Dz@5NC_tcDFR z%Yh0Q*k7ZagXlG#|3FLz^z}$j(;@`_*2vQRZE~978dt2BO$*Vi{jWZuw1`fI)0XJv zbl(`_O7LG`{(VLwJXmnYIs+>tD>@0N^TqHQ5-AkFbe-QD${f>c?8YK7Yj4oug%<<{ z``RwW#SrwxwCS}1bw4<&4s}^p_hj}oUG>=Q$Jd_|;4fZiAu*ZGt}-h(EtE`vm~_@6 zC})%{xd=+i0Z8NNBU3ltCFh7j)izZH*nmjazN#M}*kQ>jrBM#Js@ve4f)Zo2*q)wK zLu%>lzLz%4YVU~{vf`HbbtF9&dFdvr9tlx9Yy1WjM!?NaRx3&}>820{f&h|m>qrGE zSM+ZX`5MuYjb%)E8`@O*-D5{{0g&y1d zw0~F3o|{AJJ0va~;{28qRdy$+qRBIo^W#qFz>eIUdWG6I7AQxxwulNV$p?+P!0om8 zrgOOw&zVuZhU5$w9}3o6jxdE9wej}s%B+#qu6v{GN@uK<_gM$SUP)GUFb1>R)$swq zZ%wl4g%BiS$YC`?8`MT}V`dq*C)&xS+y1Jaf*XJolkY^7&@by%A(tX7nHpV$#YG>&7Mg?dPr2nQ1frnf>JP)vtcUMy z{zM-Bly7sR=Ls~FAkJjTD6#T)22l<+*QMq(@+&i@Vi6xF_c)q{lWG?7Hku5Uyl~l^ z=fHQbA^Gx`tlfSyrQ#5gj?$kFSe<%(>?%ZDA8Y|Ip;6|K@c8(tY}8Vs2r8*1XzK}4 zfAio*7g}%m0?0F8t2%D;lkfpZd3Y*qGUV}ee{aT|=7;+VCS0WIct7nlPSgz<8Ye0a zG<6F{5gluXVm5|>lCc_N-u{w}brsW<#@p9D0#slLH=(2;^FNW==0)#21E1mY@B<){ zpr@U?gBP@MWeR$n43j3Lcoj+>*JyQApJsT55CvVnp9d6pYKO#vgt=zaDOp{4&{Op2 za47<>8SD(g@}(t9!;f*jeBa6j6(^u3t7ESHM`HN^ojrW-+>wCUI0ISN196n2wTowd zeMixhv3pYh@Yy{RHe0IM=hhr?&u@$jw5=yZ!#zLC##3rpRXWN3#qpxItJ-hwotJzV z5cuA7cW`6K;R{!bk6Q}cg@kRo3YUa>ibF1ahyB)N15z)l5OK?u7wuskV-UOLUMw;) zlPQC`bM@^$RjG!GP&vYN6kfd64FQ}za^_)Aw_F)x{9K0;;Q2No^ZQaB2aP@mv^pu9 z-FZ88cf-}zq#GAM)!H~UOq<>unA=0(>kJ8z8=$Lh-1^W_tVnVPbc~1CYkb$nKR44l zgszYF*LQG(0|89Lgb+^|Do2!>sVAEZ{mBBNw85F;89?rN5Lhpb4NeU6Fkh(ox$w8q zzqwN|)|VFBDgUybe!ldPfiXztC|~4X^*9anY3fjmLF`P;veLXh-al`t3S9ZAUH36F zj%t$P}`D5#R0{9b;Kw5wi=-6Ws$Oi5l8 z|2E_9xdY&shSC}BNBWfRmG4V}t=?Lj0D%MNt0b*tY5uJODCcWo(jA^nU*Y}97?FU5|PDv9{`a|v4yoN=ldjxJCP*3CROm=_6` zUhwA}OK$$fI`<>Z@~u4!{N(7%4hl)E?yj|Og};uXFzJIJoG^Mkw*hsc1bo>WsJXsM|8he36kergC)b&W`H}3%Q zt+R0WKe2Z}$?{podIO=A0eL51G%ThQagz$?*JFG{gip^(%{eYstcPlTk3kRL^BWZ`BBIClvF0Y336Rl$^2Vv<%o62aI40WstQU5r?3_TOVIK4RIdYSJq_5UQD4!382i*w0a8 z-il$I8bcO+eqxSjI0F?KP5;2Ml&UDhOwGJ8~l67 zVUIG?L!jWR_@ViV+&Jy}_e(5og$qsWM(VO!BA9|!``X!=KQ44toq}iv+%-+0M$tZ6 z5@?RNI;cq*9160Z{B;|2ND1g<#?y!Qs*7UM;1g`FGmLjAS^m9*h_gdG+vbdy#- zVRVkEQvCJ`B;PUkqO+_x$hFLej77dZ8UE&=FL@-T!V26pJk#<xU_CBAiDWYlkhn$I)2xGfucnn7|wk9_qq&%ZnMXI z-@rLBx6VP_hxD&0zuZE|!07IRJ!aqb2QKCM@LjC;?!Ay-WZ`-y#)X$yaI28Gk5bHG z2b@Q2Or7^pyicF`sPsM{m;|nR+`Qim>JR5<7b^>dyGsr>00$SR2NyGf)H~<{X`3%& zdK>CpuGHiD5}wQ8ZE-2J|GanZd;OAy)CMP?1{7?et!ks5HK0D-Q?gi-FdoDr=|DKq z2f~T_+6P7$-k?P6yGtaHY?S|mr<_)adU!>dPoaS1c4RckDX^$w_PyvAh~R7Tu@3Iw z75)0ycY&j-H_M36us}0aiN~sZ&28VFpM67jus1@WSRxA*3l+&xr;bgU`+YNssF>Bz zjkT^mSjznjZSWHG=sH$RmZ0oz-}8wLGEv!})mV;y+2TXo+?2yQ0Y@YDg-s6>ja<){ zN!;nPmbmw}wNET}y?3zNC7n01s^GblicBQNj>7JK*vA|0d0R~+nReXNm37U2=~A`m zcc}wfydlcu$ZXfIS7IZv<0ct(aIG}l)SB#RFfG%+b6U=b8+2fDQ^=oBAG0%eZ8-C+ z;!wig(6CgmHEXBXv+qy;xsBXOLdPOsBCp)BP$-#qPS&^HpWO7?erxv)uCbJ7?~_N& z=aypMUk(KiIPLohw(?`; z{jWZIIit&f7=8v1|T-+c3Xn`gr&DLTo3z>%RQNGgniEz*~ zx?DuDY+dkbts0X~Y0uOwp9581o3X1iphw5rW)p;!>*b`=8T}@0`UT_MCYm85zUS4` z7EK6pO=m+8qKjDzw@iNX)a+g62G1@N|I+aoIx3wQB>^({-yHR3yf+T|Ccjv>G~XH? zP}BrPzF<@Ccj;N9h4OBQq{ZEuHaEb%bq%$#HdHSz%r@Bec;)@${AGzX(^%U1uR}FL zq@mDn__kWc=UzwUCe{CJUeI0+y}^eG@Zs)OT_Sbir; zwT754+{G%U;6k@cJYzRN6cP^w@A>Pq1MI%n#<7|`tgvaJ8QmKp0gP~9R$$niYdw)M zs?k9?Wc!ru0>UO}7gKsz-LO91Ldm0i_3LLAV8xD8)EpFGFEmi$cz}Lk^aLDngY%bG zW9F1YlYk@)H_m3>D5RWFV9^LBbz8syddd(4OfbY3D2ZjVn_{@oLWmq_y^rP8T2NLr zx5zE9jC9Rgt*K_80$(=gxBQolF7yDycv@-HX>5RHlR5#S!tTl7SHZUDu#a8suo^2JA z=mbE4!U-8w;4@eUZ`60H(~%!TSwS->HX96XfjU&-Go6&)5m(-?H`<_c80hCL&j@u+ z#s`8FCSYO!aRdun$@PE!_Bd%(gl_SaEin!dG}u0>EGF?`BXGz@Z>_7-N0!?EulBA4 zoXYLp=cv?fAcg9PEtMqpJZU3CG%G`dNXBj0hD~jmQmK)qdae-}~QI1S57(oA%A zeIjMbUCr+>@ctCs!GFolTo-R+q90wlq4RZbB{@~I;g(PYE9y0SSw!WjY+Y%1I*R?e zgZ*^!Rquij6CWpX7%$2OCRXTy%kimSV3s;DmrEKVv)s6qSHs$`))%G}F{{x(?@#XG z>2`Ck1~r$M0uDQyXXIU*m>(iD%-wshh*f-4K$`>n5QvYxwVN#{3B01j8r<1rL&edR0Sn6>jrvL7xeIc zzUowAHZ@rQV*rH42*&uC7K~MJNrjOnrHh-chED!m{J?jGO$G9(-yWqaFQwm`DLph} zOcdW8RC>WPYnRn5cp6%*i2c~+YlX%f?s@2n25+xL1&3blg?{0+MryxAM(0F zLFc(%S%x_;X2|GVgL|jz*K)17vSls3pEge^i~;)u^Fiq6XEh~`M>ylBuYkig21zut zGfk6Gm$I}~1k=R9+=obWwKz^6_|n@wFf*dfZq*XaE|@7lG>fgqq<5;#0k3ELD%6=v z)|*GR+V@#Gw@1w>lLBpgo>Opd&7{Ja`mBg`KF+=a;?MNLuzo!5sse&{KWOT zc2&1WA3k=L&|-8ZXn=`FM&r*9*xLJ< zefO@hfDO?{x4Tj5Cby!!p(vs<^_H8@@zE^H6dr8(2Ge?<|(I;PX=<2qeLaM;+nwbtGFm|5; zUe~)Q@SCV4M`t%j1&LE3Q8IR|$ER}B=px`hxZk!Qo)i;TO4$(58Eg(?N|pDw^lV7) zsp0z&@n^k3h8XblYM3~5HeIyEq)S>|`I_>?Uil$Md#%N&mEBD4%FNmjdQpGR5mj7) zlA80di=yczJ&ynSW5AwUedb7sFcYp4dLII;jKOaHOnZ)LTNV45MRe~vkDSpFl#PS_ zics*vvA1P{^cL~uj|Ry6@SOfW1DfM=5cMXj;*mp{d#Q#V60gi(VDJp^rdW^UzM+V> zUJs2k@y+U!qidD!3iT8kXehUXaY(F0L$(F9TKlZlGFdWkNXxp{bFgnSV<7rA#-NYX z7FTg-Vj1$}6n)Mv>fGL0xfwWVVGy&Fq>LGHc0CfnkDYn3LzX)SsCtHvEE4k^?p5xI z_plAtcgxYqZqL04Lq+YmvN!f*sDw*_xVuK*x;jyp4)nd3FW(FMQ=ZT!)s zk3EdUDj5vz67gJ7H{vNe>aF>(rM$nI6QBtq!O59*j}GLCZHG}#*AbIH?b?=Ie^ub6 zob}haLL`ON2Mna|HP*&!;wg;$ON|TmsnuNWPdPZ@b~DfJ$b`5na}9_T^}bIFxMy~9 z#`!dTHd=twF)~LK_i6NjL*#tOFL&H?*)ZBlnm}dbDXz=r!fWHoW-xg@7|5f`h+C{4 z$!=*1JWGTDD~p#83?5xt?$7a{X;AxR?j$u}j_w6J8cJuFlWO5vT8!3c(dQVg&&DFA zAeQK}MZWubhQr;VW3V*XIgZ8RJO?2}m2Cs;zKXHh_f|{*SJ=rF_HeBhd(QoN8y@Z) zxIF$4Znml$`_Lhh;NVTWhu{ECNxyTTXPH0eOiRL>!xaLw7PWLm+1f3ucB0;y2O~iO z>)dy~9{Rj!_+qfL{iuONIaDl@-wni6n`d9x5<}7UkDG{OWjEDkx2*H=y3~5HvCs-Q ztiH^Vx>j(g+ZH&;98$JB$$(>{36e{O#)^D*hqa}>=lirO!=NQ&i<8cg=-Ijp))Q^D zZrLGm{S<|Y{ffQ-C*7GLs+v6qm#-7*B4QSD)_3^cM}F{9>QkBHihhRU!2IQdKT&|! ziG;!C1~8azo8_*(t9DXnhqg;1vOYlxstPae+x^g~QN*Axf7H34q2J?qGJJ0qu8q&O z<^vB^bB@__#rpW?tq#7J`7gWzBv(Y}guFkO34hD^a+D)2F+8sTgznj`lr!AjsU)QH z@`hh=sSVBjd`mNiW2pw-;}ux7OyI^_oaB&?T+#6r2|0h|z2G;4e*HBBkSY2G`O1oqmUV0px#+hqAbS0LP8V<(%w z^%aaOoK#KEoA4QqJ!c}LRG8|&eM759!ztIqWaMZckyWR>RbrTNfonfB$>eLxgN3hr zOJv*qYZJub2fiw=wufXVNjY$+Z4(7q>F>kq=RElMrr<%Tv!Ro(uej>WRm|V_?? zFF=P~oRc!=ae?-5dG@~Nr01Cdr=2&pg1DTUa8B}{n`rMU8~ldxK(u1s&Q~-`5^%n+?wT_i zM{^{eifui5^4&^p&h_ZHvhz+!d@7}zv?E9P(mZR(Yc7_#fQsP)ABEnKl#X#kg;DY| zvgYl!+}14~YrlEjGq*-&`0`^bcRX@=s(an1@K~bfmB@BilZ14-yZ2jdcl+z7@wy7^ z%?bv-2RmJ_28@e~(N~GFXB@iJCq+{kr70YKQXHBc`pK2BEDGt#PoVE?zg7Ct!TB-9 zn>)<;UOH)JUb-22Fl5_B{8QIKq|)Ja=*3lFhOK8BgRdrxN?(R^RE z&h`ljjKL4__XIsTpD%Kj$FgnQj&MLC=&Ro?hTJC4c-W=qeD>6`UB91u8nMRJ%T6lt z(QoX{-5l%MN<>QW19^!Duf)(1zG?-tQ%<(Wlxxx<%N{cX-G?b*yC1N);xwVig$D^k z+5_nuLhT5d_e-oTZ`#TdXoboiDJ9|fX4Zl&o0b={#-iBb>lSl~NTt*$JInOqxZ^Y2 z&EM>jus!>&RL&!Qww>gz(BB8=B7G@RjHBPWFO~6*;IgH&BCvI~_k&r2k2gsaTBJ^t z$TE-*F_qodyLJ|=?3I}uaRJxIVekDoP#px{KDDwam1R#>d~^M%V9cN-S58b_rHqvW zQdQgr)puI@MwPPW&GnB68NXhS>3w9_oPAYRSLy8wyQD|8Rg)aQJ#basf3j&Bb;qYt znaMG5SR_@{EtgS@XKT-zN~CtcrYXoDiJfi z;+-M$LE8Bm5z@|dYu zDG+nMsm$Shg;g$n-f}g=i$7leR2F^3btye7Y?mz`HETn^=`HZ!OC@fu$$1l$bh6xX zv$M(I*+fa_CT7sK6QYv?rR!FCI`uI!9Pz9}o!2Z&EU>o+o#qW?mgy^|cIgvO5SLWN zN8p4vqj#3f-m&}?hgGo@wH`zbJGhncOilbe(LYQ5gO{`2mo@drSr5hKpL`Nc?cRuK z`J74aCWWLeIlItBX`OaJc_Ka5zGT;an)6G&CyHle&$S-AZuTlK&1~t;7l(!}(5-Y9 z9-B1}YIoez$c)8-oQG%k1{QHB@t8@YX^^4h+T(lYIzye4=bUM!r<5Rg zPsFYZH=gr(BC*KqaK-zE`keBCw8!!Kc5UQ=cle28sXhvW8E%=ipB8%@TG!I=9cq7V zXYMGi`lVvcP~pI7AzO!B;b0;5wYXURu7fO=(#O12v)bzwblz51Txz-gxSn+HlV(b< zp731&145y6T^jx3eZ9bYB-&7fdi}?XTg+>CXDSv~Wq7+hrd^@l2ksOUu0Ao_GhG)deoZ+(S_TBmn0dAipH2Px|%^M z|D3nhe*ae4PKM1;L2lb&zKK}z^}k?fI_eD%=!J;;7w8PdEiA^)ndxbIOLF6H4h~;p zqW+Zgns5><-GVB%Rn2`{gx;UD_u12{h4!UdkL`}^`zU>8_MXMIS;zNWc9*?EwSAu~ zE#zoin=3hZcV|oZwuh&0DAkT$|D&y^T23>I!511sdzGtp=~x+Q*{n#atoGiMJD&}{ zvXs~rxaz!%eU028J4YdA=noIh1qHD2-^9pE%Nh0w^9b6{r!?)edtv zR|bOQqkzRiJRtBtbp_FU0Fk=@zz_iNLEwf^m`zN8#{=PqzQG<%6=5_O*49=4JP4u% z83Q~YEE>Z`V>}SpAvDH-Vd-WIT0&rtP~UKo5GH>X<}@)NwEjKM4(2uhcZkeo?Jv1U zV^mod5afu4r=c;hC-^}gPas1SC+E#p3>#ZFI68*BO8}t+z?~Qts!SUPD7$ae)<10ZvxeqNFi$(t%66&9}LBLVbL@>Sps|igdP|;)p8ASucQm9xo zoS@Dhmt^bQLJKqZ0%8lq9r6bkrE zz@tf^a|%o(JQ`0Up+G{DNn|vM1R5a|&=ex5O9cdA!8Od`_XLmtcohZQ58I?sX&~p8 z!5m?RKtaJA5&@Zli3}7E-b(_EbK3xQLBGf~fd~XaMG}cZLvk7g&kSahqPYrm(#mm8vp?HKKR1qmS za07Q7p&ookD&z@KCZJI8uBlcaQCKVr`EIfS8kq(jNN$3Pz|{e$2j3?|)<7?yPE1RP zK0uw|B}7*ybpqcvjm-GeCwg4$Q>GP9#Oh+n zB>hKicnbNqbl1Z5(kyB8yj6kwRV@kG&t`}WpuB!T>-5EYvO7Fj9sjmJ`Q2Mw`BmrS zR>=(>w~lYJI4^hd-9+7-Cjzq<1a5RQYPlQ~i(YS#*A|{+Thv6r9c`L*(nqe&(eT|y zJ@gifU8E}q`wkCEymYxRxBSeDoAa%c1-}HzHgr5}#x1kSs-L!@ z_BKwXXickU#pC`5dix(KW}Nu`=fO%D2>Az`ND6u-}sMT$Z)#;@?;1eoWGSJ zX*X>lztsE>!y;cdt_s4iwf|gO@wK2L=;zqlDYSUFd9H|g>x1p}w zj>w6~kY^pqzLSSZIbC?l`j2Dx85gqoF4Fnb>z*d;Ru_|~uDzza_GZIO<$x@v;2Vof zzw>vbIH%AD)-GGGT9LSEv8ZE}%vDl>Y2fdT=eyrL(!Ev^vD9xi-yW)XT}R!=b4uE4 zp1O(PYm-Q2OXn`$w30p&a{c+@E+gVIyl`#FqGUV%yba^noik=Eb}9SKGIs0P^moNh zw+7Q^8;pMCi`CML_=S9a23P#iKvdhYd-rz+A{5?~VF(_CX@()!q?u+B0n-YZFs7a@ z#4top8iqeL{i8|r%O?*K_}2y@YMMcaN6;GoO9mmBxG{&VT%Eu&fyTHU0y!Ryu?Fap zTwKa21Ca|I`OQE?nEifo`N2+}W+48=I}j^k7!vURk`(?&3_~J*x?#w}zBHa%*m(>5 zKg|E%F#JDm7y|wI_Zo)441y-(KQj!0%?oU;|At|RpE3%earnP$7?S?lFr)%w9c~z= z8HMngXAtu8f16>5Osl-P4w)Mf0}$ATaKZ%Rg-rX%EQ&|A6W4<9u3GuDr@4< zV7~v}s+?}Fsp6(@=BLnyG3u(|CX9tS8VCEpsN(EX$UYix26moeKImWbzp%Ps;(><%{e2m_NIHvIJ7 z)B&V0^s}r5>z=cNlbZwM0Qw+70SBBQ>(RDuZq6)4490QlI|V0K8(9*t2Tuhme*WAQ{B9tSp8cp`yhBs)!BY*#C56xfeb zQD8SW`3E+`B(Qa`Mo*PNKMedsGbhUkI2;`4@5``MptnDk(V+HxUk?Y!`MHevi+bcA z`vnb=f2@ba62Qji`#$hwJmBE_GAtI41^XQMH^m322R%dImr-zFqxeG^8O|9$mcdQv z4`oz5@I?GjMutwdAIpgFnS+1dXrWPl?t?}m|6C6b{72v4OTbcpZjXuwPKEF5;i<%* zY;53;kb8|IkI9RzNNaVVV!&X3t&=?&jC#d+y46uc14dxE0 b_y`0y%gx-?4N*4&jsWy+_3BO9nyCK(Xu66U diff --git a/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf b/dev/_downloads/f0f9e180dc0f510887f7768447a685c0/biomechanics-13.pdf index fad6362924c0259b20a08e2a5975f56f4655121e..b3fcfe4b739b46bfd4e21e1557b13da04334d090 100644 GIT binary patch delta 17 YcmaEu@GxORhz^Ufv7yE02pvuq072jd$^ZZW delta 17 YcmaEu@GxORhz^U9fuY&v2pvuq070__!~g&Q diff --git a/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf b/dev/_downloads/f143e8af7f67232f463360136b513860/truss-1.pdf index dde4948c85e7f35e27b0d5cbaa44db4f6051fd10..0efb3e5214bcd6b0832aebed11479f7124b8a891 100644 GIT binary patch delta 17 YcmZ1>wL)sc25uH(Gh?&OTewRY0XJ&}tpET3 delta 17 YcmZ1>wL)sc25uH3V@~ diff --git a/dev/_downloads/f80c921d3706d4105017533fa107b084/control_plots-6.hires.png b/dev/_downloads/f80c921d3706d4105017533fa107b084/control_plots-6.hires.png index f89eaa88afdfa1ad2653ed42f7f728d7ba5288b3..ef17946b0215b795b1bdd87bdea8c01a40bcd3c3 100644 GIT binary patch literal 70761 zcmeEuXH-<%^X0{aD4r~#3yit z?+Opw16NmPj08Ww!+(E*&&kD_Kf*=V1xBH9R?x#B2+LRWKPtyxZZZfJf+*g+uIZUD zGvMK=VY%C|sMf3ANX$|X{Bi7UFdN(BcSjmeQbqE9c>H1K>}4*}!*_pf?~kB+`S|hW z^-pV|?*(s0Wk0rmbn*~xWNYWD=&X(Yq=HM>_;z`&p~@V_Wy#_01KG0q`PnP9bw^$>p&|LyLWIOP0x0$Guz{Z^?T8{Gc1DOT~M2 zCci=$j?0X`?h0+iEA*IhCmvC={3^ptbQIa?Xyxc@HH5GdCVzh<6HNSV>H_J?$D#~o z`2Il<&x2Ga;rXqv85(JtpYJO+bx*aYX;u4pNv{t*iM#sngGwYAo|*;CIrOO;(+f&r zN)eaeA7bE|gyBRr_aR8-GvqM*PrYJaihD4Vh*FMzk@^%K7s;)|$G~T(8+=BrD@MTL z#PQ=JzX`I~mGsrwzBDEgThA3YLECT7|8co`mQY!>f>(Brjx~j?Af!aSnH&R6mr4G`#-}n4a;2O8n(n|Vnytt zl6+V7Dw@EV+5TGg{TF7Zx$b>T$xNF=u~0JD{F)P6hqI0$dA~A03%4~ML6HiFHfi=`AuY^EmY!!e>cYpbr#xa zpsVUDb|`4>YRo-l?0G%eZ!_b22y0%hQAPP|d1Ron4OFyCahyAM{WyoJW|npidgRXn12c8=%`@+P4BRA> z(mJzrDx|C@f4yfCvU)AEwID}#`bw?z;OmedjT9;v+VlWAwA6VS8RLf!ABLq=dM%fq z4SD%eJzmtI&~F=SePIE$j+LqQ-V&!|_t{?DbY~XnjpUrOj5QoLmXuQ>j9qyky}iepUKKwm6#Om(tDaU$$BZ2nfUpS--I*rgfK~C3$bf+IS)s^bMo*s zkBP_n$|A@?cAj(lkkWxf528(vU^N)q%i!RaUlw{I^9!GQzRix}Vv6FMIJ=&8A z%aU-Ne5WR}aq|?P;irnxvm>>S_GW5jMcsaV`aPJ?)Yisw>q28j&5QO-bA6Z?0wqPdEmi5YTYz_HEm( z^+osSM|aX;mO^)6o}mPj-9PoOBz)FCjkhJ|fw^X(z9i}pM82t^$VY{8l$^5@SV6quOBU2cjIJwM(KVM!eKfCR`8bkBCIm@T%ix()V(B~RmU%F&rOUmVl_WcmmkIcB^}v4Dpf z#s{CVTbcab3+pL1-o>i7F5U4`j$16W?aXwwK47J@HaF1u$xKesW}Z0lX05Ju{s`dd z2k_5YZq+2Ij1bu!UH+<-umRkeh=-QJkq-BW8WJ zY{KS$O&BQ|^urLHy0T+0vb$2(U0L~YA>=_C za<{Bv$AQdf6F)tG&Gyi9a{XPexN!iH82}D^Bl-FHy`L>#p$HWxVpqQH7A|aqzX=|V zulA)Fz9}2o{zRedMQSxrq+;nzzjwj<wug+d-`a2$?2SWAJR1;4yF=ZAz^eGAY z)9lU^w5^QCJM|jI`b&7sB`o{J3R?DK9qO(Ko7N&Kv4XeuA3oXf;nph@gzRKE*x7Hk zNv|a&dC!T@_7un;KE>COq8MI?nNTIq_UXVzbUisDGub6U0e}LuD|^i<;i|yEt*x0T z;a2D}rc_dGrS$&&`>@geM1hMQm8|am{t(*^DIcVQ*?yEif`-7bl{VSkN!Z4Mvh(Zl zl(~wwV^7(6AIXj5XjL9R?x$D`y}SNoWh~l+%YSEU6YM~%#&7$MbPen#cD2X4$e~ZP z$fo_adh1pJG2bGHo%8(pKXDWL|DxjUe@v+mDXyzmbuY-jah2H_dUC{db*6{M2$rYc zYRqfmzwH*7OsMd1npobM-`(LKSUz_AxQN@dW|8B7KA4uau5Jv51F&>lyiK|6iLt&A zBR#XksFd;h8_#GvV}4r=F-r3b3aZ2K9n2p6@6~ZioE~%ihv?|E^3CgE7kQ;ue#vca zEw{P-`SwDXBm@45sRVGdS#4Sz=XulTR5ReU3%Jr#O$0l2-jr021-OCRwvhRDjSE|;3DvY@{YL9i{7X$P9*#1!d$1*lKnn! zd0A@Ty&H;Y_zH8f+>ofAgt+D*`k)4&N^m71VapFf8{Mjds`(uWqln^S4vywR=6vU%Ozy3CU9cV3<3#cQZZ;~FEmNw8FR z`Kg{iN66Lde_n0EzMVLEGIe8lA`8xn;M;0Ekf26B>AuCLh9rU93Olwy|W%YfyYAh@QE8jy5f?W~aA|Vg^9(w%j6Ck$~CR z@+z|LQTN~3NW)~q@q_p0qrppdXI&0;=l(LxK=n-H0C1GF1{Uw;jZ)JukI{!3qj1K|YetIW6hWVLXF66H zsTPdJs+E2fwg}GSaMkV(1+`(6c0GN%kNK+ewco#gA3A)vee`E|UJpV%RbO8}^@_jx z*C`X9_g|kK&VoIGV~wU~kxFk*Q&SFetRib~FVr20s!`sW+J64}H3}&SA>lhLFJ8ZP zZ9Ng5Le1)PH`!(1i8^phi4IhqgWl{h*1U<4dmB#@Rd zEC>6UYs~*bUC@!5xs4JcHfwncqTc-sB1e+vS1(nF?Tf=ftV}dCG*Otz1;GU;UN4p$P%j-0y*{u^VbMmlv&MB>Dp9B^8*n*WhAj00Kl;=LeH#dj+|tcKg7VtT&h@S`&qg0p>nB^cCO6DMh}1y#Fv$nah|U zHf+&EJ|svNz$)eP5))yUgs8gIWVi2owV7b2aCZn5{=0q`E?@rP)e4~3?pp;e z(}1#^<$efxsouG1L=Lr1(j1!G)EfABGw(y#U`Bc`@1yikSx;JtE{k(1`t)7SKLqozj*1AQW)@3-xj+Qoa*23X|q{*)p%gL zg4=OD!%k#Khdh}eg{#d%_kLmcyqH@5nAqtzUzTxLYBaaAUxkkwVzG(x2>SXnDY z+IzKf&d!8;=(EA%pL&LqCod`XmSNJmaty37w-^hYhi^!4jD|-Ugs@0!;*=Or)SYNc z_DG`aQ0BSMpFiK8m+!OTGO-Q#Y$(=G>c|Lxd6Jh)5g2YKWJUkmyyApyJ^&^tgdIC} z4DYb+!wWRk<$#Fn*20t4Bx#aMD+H2+5fQsCO>h>YRsq_&&m&XE+Jgn)&nKO1693cuI5E44$+1{ddc~;*P2;k`uQ1!~Y;1ExoIyK>ASnabx zE6qPfA8p;5@Dp!m{j8=FjBbbyjhT5_1|_+Wd9W)g-MQ0Ymsb@vWk(AMnU^eC@GFdk zM#!+{Bt=f|%Q#nXi>48Hwbf)%`!sHhTPd0^2ZF^U__0=oIxb=4#fulcKwV@gGeYRG zS~f=fhAciZG}P3hD0R3lsOgGW)I;Kjk00G8f1PVdmNfxS*B<`*tiWfx!@rerds*4b z7>&LrvIYOs4tARZRv$VfxXZW+P*VtT5m=L6fmNnCz>+JYQJAozA#_6v^dsfJ)@S-5nh`g?5yr%vH>1S~R@jGOjFLPQXmG zP61+eLHadsZ=S4y+rhL>CYv-aA3AY)s4FhF-elVC>e>EM%jpBiHTR>y$LzsH=}=nK z+K^YhX`7n&R$Ise7^v6M{RvNO6ZJ*NC~p9Ra+8sPd@s;gOi*wst^qUFI9AEZ%9{M% z4r@**9U3wnaPM=#?rcnmc+43lN_nZFMdDYIpbj`}b#nY66g*q+jAVdp23tzq+YR+@|p32K9;VRN!(^-}_?|pJ`?53b@Vn>xG?QV8HbhSQ~7b zfqpSxP9@hEVE6qsBg_h3X|$FAtl(-i@Aq%t9su?cq;?@dRn3VE{2X>pH>z-NZQxK# zauw&WiI!K43jDK^34Yv40s2!l$KTHBkxzU0u(C&xl3JBoQsyZ@ToaT~+mn0k^2Dw0 z<>(dM22R%4v8*AA*@aCPaUx17jxUwHp3z@}+~?}NQ-A4V+_^4DVaZ>pS?{Ok_BmFx zc=@Pp zn&7uh)=`PMa&7?A29ywZ!|#oC7*rFOI9`gNF&~~by&pjqbWry+xOMa9WPSq+MyBB9VZtp|iFhDA!`((){)Op9_URrG(oQ6%>An4f=cp z&ET7O7rY{R*|BWwsdQ?A*`L`#u09jM!FX{;E+QReTQUij3GfFo)N_e%+l|27|Tu zR$p(KIS#nT2#)5Fac(RJ-2S$vX2cl9Am98}IYG*KDB$5puvn_MbWojHa)JUW5S_$ zd$0!R(nqi?g0B-g10KWDD{^_WKi7T^kU^v9*+>BLVqM0kCJwn+Q#U$WDX*o|+neNq z_vax}aqHeVh%C_XSFf8#QC1@^-@5@P?j{4rP=fKOdwuB05mZGJvB9$sxDkv{ZS{tn z9K%2Vya%((h%+?bEKjTJoVj7xzzdzjSe0P1XG`T}#6M}{?kV88^S>OmAsH9r# zU=Yb`(1rihZ-PpWgFef_U3n&Xz?g5qVe5dSqf!P4W&^%!1DlY(6+y%nj@C}C|M%1_ zZO9hfunN$n-+>y{dl!WC1qS*$Q#Au5z`w$EDh##ISEu+Jhn-P0ET2k^ms-Vo5WUhc zG{e9XTqhDeuroyg*HCN%guSOGO^zV?@A_6W{e}byg|{5zDt!R>4)ADH57x>vHiEpm z<^cWK2YNTAolf%TzDxGs(F6O@x_>{VH9`C%L@Gd|bWqT+kkW$UAyUz_?_W_nU@%_T zCJZC?yz7GLQ-JhhS_LAZh1X$vfS6LM6|TtjgK(gx5Wo?%Z<&(g1Tb*L&k z!50C}@*9}BeV#}bs+$6KbAn<6^x+=R3fH-Qab_7GU2q>Xvr4@aYu=L%ywu4QiUzfL zjDco7_vS&7ECFSDPS|t7lvnTbO(4n5?rg3=GsMrnvESbsXqFD*8k)htpI~Wh0bZvCkDn8!q8k8 zm=BjpwGUqd%3ouJtTQ3X^@3A@$)>^{^xU;vU76_-YFUH?_PU8LIT9S_CTIdHFbpt?p$Lavi{gBgWxv-+*SKR|ohRIbzJFoa8?N+o=X;_(Tq6BQows>=!4 zm8{k0ZH^!MIU{`#Sckyg!^n^hs=tTGZ2qv^f`X8O$2fv`qZ%mqCn|#fTU&Yef2!Au zYA1WaDTBlko+5mv%zA8l;UaL>hX*i_;eINE!o$0Bz#i6fK7G0Zg!2~QRww8vmLB4W zI-`VZI_hMghuM66N&^*#56ikhdd8b$KLVCZHW0n%rGw9ktHarAE|0gM)trfZ2!L5| zQbZovb~HhXi8&1%Djmdjz6K$R-}+17=XOm|yx6fw9Vjq;gjD^PwVWt&t+k%-Da5RW z=Xjhl38aAD8vhyyZ>|H&8gmP=`rrb6#FYd|4^_0H^!9@M z%D3ZclLc)u7;%n*d3mc+3I&WZNm=a+Y}kVzq35umbVK^~d7BB0?0_^{#2NbMf5_Nd zPy%bb@>k8Oy3zD%-QgqK+ohl?{8c?9=04)kN^ejUU3{|xMhvFP9Z-V)^gvM8rGKK}QQEAyz+xi4#jhQ-m#`@*1 z8ECZ*wAOTxd2EtMAV3=ongHJ{1h>jDsWAo}NgeQGb9FWgpf3v;GrZh6HJ2JVbpBI_ zUI@!StgLxpLJDZ80~(Py@*f4cBTbF9q-Gq_EzpYDqZdIubLjbu3cH#uaU$(Lb8xIe zWPR{#s7*l`>?Nd$nUE5rlIT>@JWM5i&_sW(Y=VW?xKbD1kbdb-Oz13$3JJaU?~+R) zReb>I2e@FE`&>V#;^uT#-U`Gp>==1q-~yz0P@B4D;PQ-BhX-a?xTis)vwXju;YFCwrIgR$Zc z#SbX6GMd5K=k7y}KKNU&8xpyG{W_YPuxDsysEg`^i~KLrC>~VIq%pgVc8b~QK(O-* zis(#QIuT?K-QTKfzbz1GEbKrbXv@pxGS~P}PM2+cFAwOOot$!E5xLDEDTnJV)v5f}yjtq^dq`pio?g?Li zFIlvtfmX;sVeNRsEa^H_OJ!8x7=aj5FDCQDcz zxcgI9g*o!X;{3LPqNPIyE0N(W4+DSF*#|h<68xrq`ca{31o^>(5`}<(&=X2H`uBLI zS1&(T=+7(aznpN6DR{2#=hhH&f3>?D+gVv(e{rw|+vy)InhN!UtwGh>qm7Y%rIFf5 zl&tI{$eK~qtaZA0DQ>v^?FAd^dz`G4CPBy%3^TRUL%p~SySL(GYfhXTCmK9R-&P(x zc0A|3_H+RE#}Eq(+^bV93jz`n8&SlObx%t5MCsM3`I;7k+oP?#kz5yV-BcKBQXXrJ zElHt_HO23?z_x||Mbh=`bYMa$q`&Sz zbmEh&X5$oX9c^VUgENkNl}ky&qt#FXyIJVe(g70_=}=;HjpS?b*Flio+vus-W5}5& z7-QY9x=n_vTpDXZxS=v;*@WNA%~9b} zPy1OlS(UyhmrTZAq}aAZHYI$C?3&4O8EdxiTJF_>@;0IF*bNBP0@3{O1u5!58j5SX zJCc@rUFQ|_-?&woX1Y!_i}kHWTfTG-`E*5S{l)XrowBeK$1Uh!_U?&ru=nSVo#J4= zYD&awe0a)erIpU6mCK`*5$3~foFHQe91BH_0DHwd!qFSE#6+LIf`%>ZOpJ%^K{}DW zX)BM@BSLzp=-q$D6A~6RtGCE)BD9$A+UoDfYlA-v7(&h}?!^86zR39YM6ScYG&Wn| z?dTQAE=MVm+(H;&bshyktjLMWrU&lXJkuC!qO>ht+{3dT_w6PoO1sgN+wF(jT!OW+qz)gXHDP;mY&%op zL~u+ZF-7~4A5v%w&7QmV*@gZ!b_zw-A=d8N-1@@XJupzbWcr5OH8<&fx(o8Ze|MRZ zYN>4IjhBo4YkFjx63@~Lb(fR1g?=e*Vn>3j1;URZL-A;!{qg0`NXy;nwLzRiUy4yh z^SkMx>lmv*$+0%4)=%mBom=`japI&8=C?3`T5N2!H&lr1_e7y6}Pv?B5a|-OY;HP&SzD9rul6^QNXcIV7{V zIKEWZQBXwB+DddgeDaR5dyKFK_xZ;xe#j6BJ=%rG>z>Qec@d9*7WY(Gy}$AEoR<1s zC}j$Z79WQZyiW1OY{Pt_{kA(3%E~cmfO}-SD6Yt}Ru}gh?At|#4E_!iaQIY8@R{(v zStfpO`HY)4$z0lZ=rh9hWVwvR2n^Z5Gv436#WdxKIjL69_C;6OY3Fc>I3@X13?EqQ zIE4IQLU;Z1&nwN$NVt`Dj)_z2fgg=EpT2ytO3svU3)`Dz;1qf2l)Fdg!am5GJrX22 z9D2+H_2NZiO#nGage*A*RpQxFNuWl5Oh32PSLKd6#s$p(c0xe^mu5I zp?G|1wXX%oZNGQE1|~MRx;EH#&2HHWx_san!?MvU&@7b_?`W>ggLoc8c_QKAW?`Y3 zoQrOeR{^8BWxa}6teKX&saBOlh1nSUKHUI+0otj&n(Rkic{NJW{MI}A!^2&S`kk5o zJfI4YL@glnhWUp=?-DohA!3zYh4zDV%^E)!T{p_C`p>YroKw}%!METKrXq$j$c-gOjaFj@_GrER>YesmH^2?5s) z{m3kJnb+8U=W)JcqU)$aS8ljio@<}OPcyBLx7FXCpUYv`f#(iN1)iJjv!*M2!_u@n(j5c6YLkIL?2i%>=vAFG>kLy4LkF zAqY7fU>3ugltNob&)nEAa+V%*TRUFV>RsnMs)7O}0H!lU0DNN6hK=E`iP=^Xyl}Of zHeH>MdQ0pHA_zNsP5;eV0dMPz`}HZSmUA2RF9D2t3(ee52GrhyeO-|B-?luU{pyr* zQ?&BEd$Hbr?{BD&e22x<1*-3CC1o%?LI=6MwOvwHF`TJ|Z;Z53%X#f`wVBzmuTa3L zxpmLc%cvK~%=e26rR#tGMw>&=(%iqS91*HtBp5$R^s8`PZn3wdZv$yRltKQD!Y(Db z(D{9#eXQ%E`S)al>=s3W!RHiEdNse<#wjuNq^Gao0|gLZ>1H z4q1e~%-UGSL3vTE34~jr>~e}D#>+HTFe!`S$7Og=(up&6iHVW1M7@nA#kB$J zK)tmA`FVL{2M!P!5?Nftm%CY+l1D;f`<`*~+(EtdSEiK;CS%`_GHjk_`*59A40*W? zkHev64P!?{bsVXjy$C`C5 zjg5!xye{2#7iymF*UP;7C7fYTEg5x!&!bD07_k&qe_^MF5bLcnx9J#ZvEGvC=`LI} z!{0-!o=f%*v$g`4J~Y0M{-Z}NKjQk4Qzqq_iroz#`$U?ik0QcAo+GMwAbPs2U5)Ir3@}0>?jX0 zY>(u&I=%|M4bjxbl`;7f4BS?Z?E}?SJx{ByQMGl^tnY!>?QmWCzO}YfG2eV7}6=Gj_!^>vNLJ69EO*dAkW;pW$+iTCQX%9`D_YILo5;%RV)&wH(yxR4s6(%DB{d zdt%@ISlN_fC#M5CT3Oi2JAbpIA2xqRa9UZ-SL|BPPOVIlWYf%VWyl{9YR)w5Sr*xI zkQTz`(b_+Mng^a&Z)?X%>OfE2X4}K7DU$QTvX-;`dR%(=5z9S(PtZx7JY~%%lpr&Z z5F7dSz`{z?o*_Q;l!tstSM`x#mU}fkx9s(5O%cRx!Z$#^=+Q$90VCU2%;*W zoP>)y5wk%*BhA!k?4qr(oEoX6V{T~gDrj9+ll`DJOtwnSyEc(h0b1BX83PO5vNkXc z&@(-=w?HW}g=%j~wJ+}2MJbaD$Zq}4T_m*5u+)_ANP>ixehHsNn@#r>@j@;WVgdQw zLIjsqU>F&=VOAd})t1S|x*_(8EwIVYDwFb-$&yoTL+Xk|&Ia0XofLPG-%ZS_FJ zBiD7Tk({iNm&B+qy%11laCC?clnf1MH!Ad8G!Ln61yLc_tMdHr@4W%?V~v)p<+gpI z7Tce5jYXo*wI*;5xV&P#PoCjq;F%mKr&>q%b-|*-J@$R)YexK_zsc^Ff#X{i><`*p zF0CaW-vD-~h}{8I^e%J*XaZt^KJsIP3eQ{8|K~UK5eeqrJva4MzS-dRCLBMf^hS!f z5b1qT3P)1tbjPA&3*vJG=D!|WV2#r&Na55-;Wfzh_gnlke#F1ZJ6?86;36wA>UXs! z5|EJR<7G2>7fRzeG70x^q`8Y)C$Buodn#})dp?vRBXug(upZBODGKbI|b@ZWf_CvMakT-5!n|N}@JApH4dx8`?;1f{iVnzwXzLqEc6TF$ z#d}5o^sR4mO9*0f@KD%Xbzdd3(Ox$HI+? zy1DZR+b_nzGVZpCte+vAd;~kRPG{QpeAdGnA|bGY@L4_Z)f)f3A=(oIfvhR|H{`R`ivIj+vcJ zWhPnUIN_iD9hZu}-4vREd1PqwPHjxIq|TSQcvaXUNwuJlefrXsGtTkC#GkkRn<1qi zvIFC)W`oX5V#bjLcD0sTC4Ih_B)DQhf-+7tJJi|0<95__b#+sX>)yTyS&jv@E$QLd z%as9-aq0j&g7M!mtdj(yPo3nMj9mKnnu(|4o!7#4Q5$t#<1GXkF`hfq_98@}`FstU6_d%?FS2fzKp^CH~#ViSS+@7lV`}b6`&Zl?6rU5G} z?N;ggYj-~#K8JXA&kc-o_>1+kLEWdQE{jVmWo=L_K2kN=an*^fa!>yRTB9eLfaaT; zY*K9BV@HIO9BFl-LJ0Q?Qia{K;WEbf%xYs~y9_^<5|hyFOx@oJok?$lU66G&z%2xn zUd0$pMDfC92B@b9QjBmHA?I-@vX5nS2Y1jcOxJ1Jzvnyj5Y1Hj^He$HAc!A_zu(ki zLrXGlyd^wNSdmf*$&TFD-lCRZ=O`Wlv39B<3hF+==P%#@x*8*e&gA6jzTGLaY*PAo zTT%WEdyvsg)Lu_*E37V5lGN^omT4^a7U4I^`0cf{-Q~`(i&oFIDvB9x>+8LWG?7@8 zxb;NDT;AR)*r-!~b_h?(Q|3@j@!yeNi%F(sk$Mnllznwir8Obf2(;YcVNvZp$U@=w zV4OH6rOF%kXfIC63oqkDamVNl2aClu(efKEI3^;35Gs++moI&{|6yEJ?mAzE-`cQ> ziHtI@PdQ~Ax;h`dvnDGvbBJcqu?lHUJQyzQMC|{rgdjwhb`^YDa$EsX{!N5ZgaW1V zqkKy;flKp>_0Qw?snDbY5u6%T1bD~94josENuI`~DIT}^PP z;|Y+8;SXG2_&T-@Kwap+yJKf;0cE7kr6&H1edi9m_>5g zBzx>s3j37yENlmhkXei}`yD(6L>w?;H z5kwP3b?CZ;TE;u*wQeJ43+u6ne%ZjGUH6me&Wf*)`o)W7MoAhqw%4qm_ zn-?;JQcQyBY5dX{-g`dQH#ZlqX{B6$k`lxkb?C%`s&9boIxHC4#yf;VKsQ$$Si zw!ByymIBSMyhi1kQ0Z4$OF-Mcp$i<^292VO_adPfb`hWXU)Os}?_t-BrYQ49ZIa&F z*bU3&i7%&2gef+Qj0cB&K~oA4{#G9=lr!BGsb5s??&;PhjsH_`wf9#8D@Wy?8E3Rq z48u+j*3>{ALArSR^zKeu zg4cc|%=NF7byFei{Dliz(5D{Hy$88pkLnJC6D`WS3F^3%XyY&zZ=P*tdaBYRLZ6Up z`1f*np*Dqo{=tWyn+npo^-3wP(p+>mLHNZ2+}&j3$TTtl4%S<)rR3DP@iQD>&=wcJ z0v*1tV=r}-_wAvlIvEhK+QhF;$Q?hz!s^RzR2j4C#aUwFx9yhUYBS$O1F>vA%Rnbi z)}*&kv3!kK*e330$RyRh<+WJQmRr?xBp@4Pp`*^njy0=w#EFVfn46P$FJ4OZb!<-^ zFRSoq|8yMYaaZI48?UaZs5i9A!wBxp{lC&&EN!+tfpX4w9UOH9+PCMnPo=O!oMu&d zPl8bAcWc$_*YSIg#K^wO*1O;~b9q0tH+Vis&+qyi!@&G#%{Y_1wCQ=fow*owXfw-}`p zvft_#-=QSb1>wMKLHsz$7tt+4_k#tXP+Z&m1LMukY@4~$r5;Yb69djqR#yAQ(=1v2 zE^B2^b_zn}WGF38G%|`eTst=+PE3uGAiEm@*DVaOr4~UtO?zEVpu?z|e^}XGQ_s;? zFL4|{LT8f!hazJn;d~9dcneZ4CvDi}fP@cT7@=?a)%~ZAlt4uBo<)OKjblnw?XEwjCP5-*SxxH4{mZhZ(^X~mzpYVOw*|Pw^ z4B59QNY1uXskc%uPD1O@5fAB!KevE)0dbikUUPK>YqFbU`PU2f;rF3Ss%S?Pfg98!@pqbJAqpkOvvzP-p&5~n6V|tU>M?>`_n+BC)CQ2skF(&uTtk{X)Bfxx#(E=jLQCO zGf|lUq}HZwt;UyWm_9jx|N6`(`8W%o?`B5NK};>O%nFxNpxKatm#b>Gy64bG3wgo_ zC?DzftU@D+nfut%z>SBFyU$$lIFyb0yX-7RDOxm5cb6P3?EEf5vc$sgl{itjH(zCGt(^DozQZ35m}YZ9ZF#v=e--)d1;|iCMn%R zhnN4ZBS5Uk#$qQy>b^qnnd6Ya&1pj!H6mtmdlQj_-1$>I5FFJcmQ74m2PkpOlG}_{raR5CMak%2;+MSTp?nG0}5I6_v&;Lv8>jmDA0P zP$o@b5=qIcQS~+$I)5ugY*6?~)+v*SrLkqdL>MK2zm%*E>h9EX8}7z4!;n0^3!S;V zRjYBX8=nbHdn*|ADl)O~G~L;8>(nG}0EWB4lWOX58 zr}nFpv66@B8P6M4PGYwpRx@y?K)&|;AS@F;KgwRxZ(cleT2^M3fo{;pV)Z*983{+_ z2)bV_FFi|ygu8H>(EI=iTM6ml$B<^V=W~_qeVu6SSzPCCD9Umtl5NDiWU-onJ=o#> zASqMGRCCt=&J94+AFf0BD65|WB|)A=KrZLYlXl~eaK8{?qlCp(wk7d0aGFb7oyNxq z;2la7{kP22eE+sa|2S3`TD?o8g?UdU}wj<_P16?_I4NLOWoZragFXo%9U z)Wz=late1~XBrtWZg7(jzc{kmL4E%u#8%o@FT;}jiS~QSTr)_EL#E5DU#q-ZET3H8 zqJvIJr2Eok1?;Mx&9YTNkGHMjnJX=cr0w2-=05~wgb*2XStb6GRt{IyTG9#Dd2DN< zM;u+R?B?a!0X6t6(mm2;&~lU%Yi$^kD9!CQ$3vb^Ugi4}kOwk{vr5elmx$dZ@*HpC z)nROI&Gb+S@GM=k)g@8G;-t?Vt$AM-U9l4;mU{=&lM|sYj!+$cv_ZC^b zi|l<$gNl#Tg8@cRr9z54^UD(FUh$_^8O`yQ#7G`)je|1!xY&JH-mdgHji*6T1&WLEJ6rf@6D3Gi z$9`H!L;1uCvzDPTn?d&oTAMs~aK#3^fKn}c_ue1SZFDOi`WI*ZotL&P4iIrLvvNw^%zGX($)KkG@o zML1pqym9Q}V#9dm8zJjTO`8bF(KtQqLvqFG?~bJ*|l4qSD*Lm-Wus{Jki8lzU~j=WR9(V=Wr+r@C7zqjT18ByT|>LaNH zl!G8^2k9ceheUr54!?0Dy8-e@$QH(13UI=scef-Cujd2gOU{KFV-;V%DquNG^VZnk zNWVliQ@=Cm?~#n!he%tseg{2J!VhdVBYZ>hg;}@885hXcYmYDnuJl*~xrA&vx526G z7VvcJ7z05~4t;ZNBFf3lJM-qD373$PmgM4q*@HsUkTvAu-g9pc(1n?sXE!{4+?*&| zY%kz}mfNAB^|C=%|NBqYY6Od9KQ8H&(6Xr$p;}OXOTI#D(<_`|rDF5*7-1xmD|XlP zH4E=p>+HYAv#%J^zYGoB+Mve(c`M#2#eKFJ_w1TB#C5-+4$cgWHISmIulorjd#U4s zd*g){u{P-YhDMzg+GMy};x2+9DP8QD-;o*Vx|%Ir^rZ$4M8upmuKU(&PR`AM0| zY+AC?#S$-R$`xkV&QG1l01ja_Ix-6%DbQL zt(TtvTKSK3s9%fNHD8+NymdRS;*?|WeKn&6S=g8(WiIvo=BslRxR3HiAs&-#5Q|$I z|Ju0!-Kz3Jzbeg~IJd1Cy$s8yLa~fJ>Oi-AzP*ZA6|PD`((E z*R}rYPdzj(HxqR^LHUF>%4B~>nBftaVeqkIDgRu6>Omx2|HJaAv0y~I{?x0NxfDmB z5gc)hl&x7A2^r^m#>p56ln+v!)sFpxr_4R5uDz3hEPCAx9GqYg$sHfuYuB~n_qU5_ zNU;o~Y~pJQv^BZAkX|9)%yOgSND8(`Bm+xL#40)tcCXdx|Qp2;!1CWIENZ zh8wOk3X!JpG(nd*Ea`k*==Tt@l2_6$->^JabwQSj6Kb&Ug)TBXmzGm`T0IGj`U+qu#@iW}89pW8eEOl9emX#*ZPy}1|81e#con}ToMcTUlU}+D>F1N+^{WxZfzT%*3U0_-3S0#l|z*-N!o2GD}QtUFstrPDxI5@c) zvDw$C3J9GQ^GandJsK!oK-P~1$zhjO2+RjZMsR#aDfO=$I1kG_hUEtw=STt4=RtfZ z?cT&Y&iCZbzfFDIL3Q@iJKv6XEkf2o&zus;jeY`3vCaiWcF;)CzVnJa9E1Z-!leZ; z{r4sNgXEYbwWs?C5`JSZA@mhGCQ7?~F$N2WKOG2Nm-s{vrG^lL5GdHeZ4qJL@(BK9 z-m$;CHV8^`_4-#g>aWVtsG$@)7NzlZLtWAN$>f6!JDn*|D(nSg)Nej5vc}r=mLe18nZR`*;1m^=cZ!4+9 zD>X$MG(35n@^B=jgeW+V;sGL+r+jK^wj{?wCl@kF$cTD1j!V5VDSJffE^fKA?lD*R zW}?MT)yQ{7z>!hr>0N?vF#B`EBDo!MPXQxlXI5VQq zmZ7B=U2-iSeGps^P$zYDEz0f+TR*6807#Sqz)@%z{b_ZLf!TpMPg|w;)AdY~!K89@ zPDm=0BYO&vMzP|xTJ+2fRLBuNS z7yd|!8}frCAJWN-`_lR2ZEi!kn^5$Llf2X0{|-LIZDPDRObuNKz~Qm0t`0PNci{xK zxVah)1+QAZB;`Xg2Qm*NmRLRX4FR;Jv!aAV8nxso7VL9BU2!U^lWbFy_b^^VcwE=w zJ2smc-DUnSY&%ZqdXePSW+8RTYFEBi78r{?C$;0ZywQW6eI?4lOtB^!jp6bjoiPam zaG*~ku_MkgXIvt=t(oEaF@fgr0{=eUgAbIWl-tn-n=Jo&axY{ZR@{wYeP5KS;Z-k%lte=9muh-z{ z?z7O?ZWsbzN>X-Pf~Wak1VyAi>Iy7-R1FP{3e;VRK9(e9V`7B%yzP4$b2`Jp073z& zwC)6)6t9FUHq+%FNmvq%k)GduQY8UQgjCw*VO>1~(2o!r zwU4Y!c-BRO%oZA+CUA&qLtBA<=`RW6(oc-WojG=}prfH@>E+8C{;McFTf}Eloeekr z9+*x0BRdQyPNbOC1=_%OCOCSxM7&{<&V&p5is*HO##G`e@5)?l)Y(cqGRudk?cLPnkuVoWi^nUmCgV0Qupur{r}hB^}W8= zecvCS{>pg-`bsbQMdTz9uwBiR#TNEGZyCi63<<9Q*wmi%h3% zw401-w&u{wp4r64mJGcFl?EwOpw&^>5q5TV6D%jlAf>#IX&J9AHFbw&FYm96_q zTh^>D#y0f;IlH%6B~0q8M3hi;^YXqwUr~KgI;4nJ3-S?eDtG`&6NQj69+;j`d4T`M zCn#9ON1BUv*0no|rsC``4e9qh5bIA^-U!NJNsu2Wy79TMBX2;nmm{WbV%Jg}_E`VxMNlMP(b}Iu#D-f?Vzy}?c z{bByo7<2Y)$Z;ycK@gc7ME4=R2P5I8Ev?cM18ZsTbp56u3+G1 zIH=CSVeRv_EL?%HF(vR?$e$k~E7CfG!LY&Hrl*$d)h^~60y^YmDrJYwNY%`gidd!` zH$)FrGn<6;E9&}UR+kXS`M=D#e0sx=oi}ilsl>_6O*gA=RNkR*qaBRk+TXk?Nk32@ zj&@O#wVTgw!1C2lw$ou^Vk+v&$M^5hR^m35QD%{EjyW2dv+n35!)rfG z765tlImz7?b4=<_7K864 z?#2DzkQQn{kI0q48hs7ti>PX@y<7)!GXD}~ddAw@57Ze~J~Bl`a{(@c;VsdyA5 zpz|E+O89;S5l1)J0suaXI*XZ}Lx0m___G~5g((GB5d_(=+K~&=M`QHUt@9)G`m)fu zR9Z!dVNPCxR&8;?k}Y_8Rj7DB|1+~ZfSDzn$9VVdl_zFj z(8Ok)f4j1L_|YTIqCa0Ow(dJ88)SeBXX!1V%EgmM@A@3%*mi5|BOiv(e;PJC14ASl z6An1xrTj4P;2j?vm~+93cHO>}bbJHz;!D9kVPK%&$0@RR=gyUeYPU)Tw-qfLB~y} zc@MW-x*sf4B85$lAHNz_CAoYXZkb}66PSP%yDV8txA77@5Ay}gcUkWp|cd(>QU03a2;-Wy(0*Rb2+f z|9yDQUCPz3fYp4-`y8Z92C;=a()upHj{uAAo78ipMthhG{sm)7H8B1pb>~b6y^cKN zA)H`g-BJD<1+#qA5_u}4EL$rVKRCr;{kok{SKD7|J8YZ1_V7Kt&EcMS%$jw|?r!i0 zh>FP*dC2&ApLB{n{miR87q#gr)0tkz^?1>|g*hcmb|p4$HIJ(c+}o^7h7)i*h3OP1 zj`o)Zb@7xy!v6gXSXzo+?3?3#lQC4~+PFV;i=dILgI%w&d*S8BAgC${Tt#2YZu|X4 z{*QBZS@v#C`+B~44T3ZkRao6hpCg-@q^@GZIhw{`!k zAR75i%H@0L>`y*OGUDGg#=nF=FVaxXeOfO3pjO#7v4g?PaiZ42;^#(X`cKgzEtyaI2v%wWcW0aegKYbb<6y>Fgkb>Obsg| zEpqCwLV@to^5g>=x@I5TFQAY7savdzy>`bkr(p)-(4Q6`6anh2Rk}yfSc6VOIs_%T z?K$!6i+}QPvV&!Un{(gh@)c58V$B=b1VF=sz}5HW4LK20tlcjfi=6@`3UC>lq;}bg zG}3J~qmQY%O5c$Fa2Fr}OWs8^hmuMyx_|lWL0jG(Em#Q6!q!nhQ0 zdfdM%BHhPxHXS3Yf8WG8@4E68jmiFJqO$NQ0qST8TSbhGRyU-B|0eB@{%Y~XzGj(o zqney;+6QDmD>W(tq5_`E#a~!TGpS7Sefl)k zsH{JMdpAnaTge7Oq&`bBSL4z6{RhB&j~~vcJ?Q=xYAq4!({ZpFb;CN5N!u zL=!i=ZCrp@synVQ{B*2B$=DU1Y((Zv0^&Gdgnu@h#?miOGTL=gZoIcyc@emxNbk1y zdb^r`Vn^vK`^xa$iV+vtUd%cCUk_mS+H=m>`YAnc7<)dSN;ZOmuQooMcsb(7i#M5a zFLFgI9&wNGYH%oHL`;)@fTYpt^z?tLFHw0pxN+gE$Nb!vYRWa{UBTS9A>D^9w%GlD z3n5xPB?1tS{r!`JgGan>iVigILaS$=q{?gdYN@R$1ZemQWw+5y;}_zgn<9ftWu6o?^{W!_`PHyFy~Ub58$`|YnhjDmX54m!moL$iL+?< zmVFXtKoy%^d;hMr=osd-`N`|}JXa~J&TJBrmvWWAbLWE*W-9l$V6ywCe({}nl{`E9 zdU_J~ib_0rUOP&!)n-=9LpZ>;OWK|T(Y^Rvp6j>st0kJS?JE5!y@dZ4zU7CflK$V{vh2Ih?_06@mqZwbe5(%?X&7da z0rfWH-+?}>-An1KmKjLcg}1Wu@{clwRhzWSBpd?Z2ok$}@sG^vAHOj^Od6|){%g)L zq=8`89hK<=_N8J7r}*}Nr=wTNs#TfNJ`b|veIjm9_+$ak0vFi7zhU?eD;UB3|Bl88 zPJ1u=&bw0fKXKC1_0CPiR$`suQfvh@HNN=w{8ZMQ%jcj|r%ZQq^d#pd0g+WOde@{v zrlCMf8R>#>5-~i=ZKJ_s*9SAi&T>;Fsl|WzlPlj=hlBOp1^nw?ckTzkR7awr=tbSL zhyQ!++L-z`t^4rJ$8(mh+_&qbrlZUX#)tDW24DZ48JuNQwsYJ(^25V_>S%Z)41Rhq zz}m%*TP7#gYOEms_wUFh(DUE9aHIKz*9KXA=eMWb{eM>SVYKf4?<26TUHk}MO=(BM z#HuC!crNS?6tw)`zpa@No~N)>llBnz?k)V*1IB2f=rFP5T-RBxJUoN|DdIi+Q%quo0UtFw(phDcA2y9)AZ*7 zapvFsAp7W$bB+Cd%Ho@SHqqvPCK?}SE~i=U?=j+3b%(W~48#H404fS+j(7#q6KSR< zZ?=VLRq0|WMTrV@S++4VHN%&}w;X?<=lk2AWz62qGmAwT#fg1!QFQKG&J1${tumK! zVMmU|OPdlE?80c+Q}cK6cJ2c=;mVZ{zQ>NmKHN2sxVVeFWMAV9!xlP{W9eT!{ZZoJ zML*Tz!hhfN8dOa!S6wwbsAAwIs+e?ZzioJOD4}QH<`>eVDe9_55$8 zEKP!{sY$bMGo3nw>{I!ZPL0wUVy#@`L)QNu^U{pExm2zt{Ej%AY*pgrUpVTNVY~)Q zlK(wLV@U^1j!k?#ot3Cs$nN2I;ik1!x*R&KRgA z?FrmN?j9z*->u>`mpY=j4mGtnFCwj!ChvKTsAFE8rp(*@c+O<`fCUbH=D%;GGyp3F z%Ku4O^A9gWqGx_(-WMMY&B_A;4S4(VhY}BcTlTKzI*Y`CU`BJ}q`}avG z^V#-^0U;r?FamzAQdaC@17)F1#^uL$-*4FWe?B#k@b_ZjQYdmuGf@Ns?C-5QE7#km z@n9=eto@SG;>3!=sntul*Li*LgjeToACBOS{AoUDu%)sW4-yKW11Bl`WcFKzWjnhT zyMaRYr+)Ffq@3QZBu@%PtiOAda+b}v77H95u>@JVf0qvB!$yG&>8fC*=lZSKe|zyd zX%5L*j;Z$dJFhRk{^Tv|;&f@N=9-q9YXZ&`e81W76m(J;@Azl6_tOEOho_}VaNWVAv^wb=uYp~ z4iOB`+M_kVxKvYG zaD3z?a9tWVc@ADl)9~l0g9)Bqv6~h#`zjYINrFMrFZgznW|-J-61#ucrbUA?{$xq> zY=SjD2JEbqCY<0jk!cUefI^jU*VfLdka#z81OmGeLrDj@a50^-i*3x1%ffvvi-4YR z)+L1f2P&erPzA&S8BBt)+*#tZ3%~jJwYyFl_l-YSO?U!l8ROK8c;|hS^RB!*c1&Gq zDIWw%SQ2`iGi8E5&WNki$(DX-3_%0e8MJ|Bfm9a&NDeTWr3 z&8}8ajQ8hOl{>)wx<(?BdcWqT!h?!9DZ_D|c++j$*BALo%K z6$Q?7N5WVn+%zG7lsGx+K=G0(u<5)DTdZ9@(~=9s^aP8r7Dx>`_|W7=y?mS4(Rp}l z+5hR+ngc%J0&?>h+$(z_6ezE;hxe&VB^>8Cs%uc(dU=XFoSt^1<+GMAm%^@E4sc`3 z$&nwxpQ|Ftec+XJ*T=`94Ss)NrMne-g07Sp% zbP29bS$u13lJX1lo9S5|FAwt7$~i4z^M)*6idPB9+_r5cFnPAG_I>amkgM~slOuI!miD70gyreEnhXFh*xzsLb*>Z7lmEeF3sgqG? zOc5ZX0ABbb>0DjH5HTT=!T%ecOf=z~mVJCMv+7u#uO8brAwdt%E!RpN;u5bXj6!z* zP@$2#ZebqGp#RjZlfxPFzBv=Nstx;13?PQkf?YaRCr{5b(o*@liD4PrP)^$Gtj_nN;{Gr=+}({Mzq{?Jx5JSpnQsxG`$Dxw#c| z54071btWI3J+WK6d^Ikwl+Noc6>as@k*>gHOc|+BvPZo-cdb4)J)+RpG&iAe;_hPQ zH3;-Y1!k0`Amqon>SKP4hAhmk4PlP6C^VWk#qOAcCG6VH&oq2&>Y*-ni3Yd$K1LWp_j#ZoUiEe|}eHJVUd zA}zot+iVvsAEd^Y;;Q8EbD8RpnveqqsDf!kR1NYiEZd9qIKWXOo_qu-gk7;%s~xn6 z9dyJ=`6H$yK`DBv`cjo4`;U?Q4Ir*|FxG>@Jw0yeHtY2(vqt0 zZySEg3!56O)pzEg3wrSVJIG7PM(9i*KPJW2Zy!v+`f8PA0=dW|g^h8}_IAMNIAEUO z$doMWtxI@11l>nxGpu+KbAc`6NN*GmQ5JL|3A;a~S4Td8px{iz|EXyTy8)gz5-U!- z9_8TQdw~kW2Cfc@vkRMVjsAh!thab(P(>HKh7%}rmWHGj(;8B9eIT7#zx|Su)Kwo! z`N@RvTrn$t0z%<#EHuSD4o70I-@7tLR-V(JU|PvVB?etAGP94crsQe!v!hCiicg0*9HG*&m8H&2F1Pqm6C_qwt6l^*g6PZUg}vkbd{haC{*XntH2nl1kDQ<0ybCi_laEzUNG&o^5SQad zywj4;Bb^OpOk3q{u588*E1e;Rjwm9{;7|((zW|gwafqnu`~B@TdAwmKRo=h|O-^24 zo{(@SraS1(7CiczFdJo9^+kmxDdg&f>lezCe06fN;+ZL4QbZ$4%rtKqUc^~KCbo;t zY(y&+_JS32Pz?;j5o0ytkdN0BN74smbUI~VA-IgC#k1$_EFH-Jht5;xxFhrtI`VXs zCN7wcYQsa9ED02PTW&o@B2EIVZo{PA3(BVwHBwO^z2Ktaob$~sM+fkJSl{hzfgSHu zI=BKOcbZ3*7hmPRp`YWDz1TZATEQWNtdDcPxGF7B#1L2^mA24%l6eWi znH7t)07%OED1PC><<$HF0QB6}I!gu_2+@*~q7sIvCO{?iMZh z?ctddvD*#NG7(63Aqp(d?$G&vQ3rwqENo9;aS7nS5;4&%Yjab9)XlZ`<@iHBm$SWF zH2FD}dPOAT5t%Jh>v@3Vq;wSh`+>rOAIv>(Hv#$Ff|iGSIZIe>fHoG*Mv9l?b_u&Z zDnIaceX)h5<4t+ zewhhRkQ%q~;kI9~I$TWQwYLtSd%t%+*mlNrbU~YDhrRJ6?C&odq^!v!VniIqCcWZF z^C5Xla3+^#QNw!k6T!HJMTY-v*=}D3hR_Est2Sn(3K}!x6=I^?;RFRoO44elwd0f| ziA@l$%b_U9ADk+g`x8#ib69RVKbF8^iP!}WK!f6!+-iyWk9?rH|Ear?w4-$7S{+l1 zPEJ6R6dPrU25M~_-0=L3hZA5g9QYMR4Z@KmDa5qi@ zbC@gZyN|08%YI@Bh)@<$qj#&f@d2v&&B5VzZg5|S@||@xjRp#Yclh_^;VEQ)uWF+} zKbpagZSWs{M9vk&D=5PN*bd<*MQ~Oo#TRjyh1o#@Oa@`A9=ZDUf5e}ZydikYI|QSq z?%32-6$nX#M37`I;bXtOi*E%G+DIBUV4_CwtJkFC?9eH297;hv28jKGeukU1Gff_l zQUrMujrl6#ADJN(|0_1lKYft zqDW#_9D-4%cGRNASkCU}0J>hgeel>+_d3=ubErL*$LdRK=BB8|EFvFn<#|_rsODPf z5o>TP1muA*SC;Mtiub}uXQh1QzLZadjb0X?7>qNLLZ|`ji=3-dB+yV&)+Q^*2 zxw!`k0`NPnPtnss`<;>Rg1y`>Y;qrV3k~Ts?$~G#+R9Biv0P4GulFfWbb3o3KS2ct zi;?kz(Y=jS$978tGxlP9>PThBSHDnr6jSB z$2V@5a;eKVGA6XBe`njzOQ--9maD8>MHH5Bx(}jt?5HRm@vBcv{sz}hGJOOb^qUO_ zCV75{<(sy+r9lgTku;hUYPwB}VMQHEi=7 zD|ee%&`4J{IRUM;z!M@itO?zA2#&!0sElx|!>Su_A}k!Tlfxja;7S-5#8i+4^!Q(z0w8o`0 z-!_GMIoq5ZW52CSW=HOU`W0tgJarOzDw!|HOya9<0T*V*0y-vasb`OY#MCeKAOhVy zJ@PZ9ar=NkNN&mb?)MLOk()bCDLMrX##9>ZAd|!Iblj9HWZ_3vzN`^jCU`HmfF>uv z8vK2zVp-$>=qYp4&QVIU^$MNNW|~$vWSP}wnN)6t|21PW34j6d?UzRZ4Sfp*0vAXl zq14kZTeaTLWA-fEO~Ay~TdK+KCsBHSiWAot3KW1%qzfdh43uD!W!wqq^%pS~!~_rr z^D1TR?n}dvz<4IsNu|Q$3M|&%`pkGiC$f7;@I=Z5H2>sPioqNp=@rU07uAYf?B@`0 zhE2Xz*!XsV!+^Od2x^oZaXUE_H9e(teNH_!H8gI_dYhCtUP9kXm*9Gim<5r@I&=)? zxSqZgyT6EmixOP;dy#en|BJ^s?f34vt#}PNk>}ufxcV;#l+X0wm69GF*WPRHKqdJF z&wMFqmr&1sPU`f2G13Z#A5_HZClOI1Sp-Kyo%jq0%rnHB-cZLITY!WdGKHQx-aeI5xZ7YWkuk{?(m}M>TDjolHj0FV->Tqn?zLXb(m{dyDC#dZ1tPF1?rXUoz zkMAB3-tp9E!*JLEXwG8go0T`ZQRsrgV+TFeGGdx_nSsKP%Ya3CQkEoifN$5@iGOu6 z0^&ZPhYG<-KbW@3%Pdq3HC*)>UukucEOGN&hQ9z(xd3MyvK)z zWC7J+erkje*E1wSw!b+O2cIOki1?BhakJip`1S1UgNJ4I@BjRc+~$WZ`ZW`*4S2_W z4;Q&AWSUS(*T~Qg0Oq7=m0Wj~7NBX^Fe7!emn1Zhb_`huJ+E10RFMp1y!jTwAz`Y` zMTP&l3Y-K)-KXtH^iJ1vym-s5{b#pI>$>#v{*^uOPbVHp2lzoTC>*DQ#|Pk+T)1;UpFg%~Exh@D(Pcs}YhA7w@8xXi#=O zcDtK`YCv6Pyr^e!Uphn(m>kZ}4KGjQEVX%x3Bj_}avpBw0yREti$|>zwksgv#qC-Z znW(^<^Mi5aNsS0O^1wJARNCYwEeZaFl*gXlh-4FNKB$vT`_?*R*O~O$I$>+y7v3}^u2FOT6F65IXp0*o=udQOI{e2%Nwtn)C$mYz&ht2JJk4N!(KT!H&uo?7m1cK zcq$eg!QDr8iE%v=0uCUJt1?PT2O&r_EF!y~hSH6M-W5q}b zHG~U(MhXx&wJKB{D^Uf8Km_aCgRtk3LK2yP(F@6IATc3;wVjF_G})wFR2Szx@88Rj zDy{3TSHzEgEwgrM*d6yZ?mAUrbd~Fn=3YGsabnAiskPd3<2IHjhO2AVY~huf%Mx|8 z`chUN=>N_q@Jsfnm0s!iK6<`zLH(>-8tVuRs?ibMX(ga4WFs|zj*2z+YjrZNc3_t- z31A052f9(vnD@g+atwEDAGv2?n^dSKL2*)bD{S^P{dy2maer&mswUkK7OI?|51WW} z592C-)WEAVmD{WesHjL=6q&Db3syy(g{8vS5SR5mh|}`BVY4R^Tto~M`NEYaN@yYH z87X-nzL6`^{}-li7UCzAE}07p$N zXlTPEV!B@>;Uv>g1B3B0I`xAn_qa(xn}TrlD^)Nx57t0OQxn>q-oQN%XS0tpjusX=4=|ap zWA(qD>^Z+b_(+tvk%uDeaNoK4&d=*e08w`D^l6l~dtZn)L`pp=WQ#F;VGme@Jzkc0 zdbaisD=aK(ett0HfG!7e&))ib9qWpH*)^LXm92}Rj{KON(#vIIpm2irZJUU?iI_1# z!@<2=W`EaaY${#29tddd#6~98O)LD>cI@cN$OH8LF|aZf12b=Rgtw+z8GsXdFh<6q zVs#c2Z!Qb(*P`gpOelIWC*wN7)@D3@>&onzO|C;sAC+ZgbKbK*xuhB-cf_w#_H9vV zH0xWsJlW7|kM?X+UD|vs?)K{DPb=TI-K_aDH+Q99ZW9}|O?1v9g>Tab=XNfoK)~9q!%+ z86@BqiJB z5AJP(omW8InLzamP1CAYAfaJG_b+!nJmoK^fQS54YcixZy~dq3z~a@DQxH z?9wX=E9jQ+L^?~I?vo7yz1uI=Cm02BzbfKa(9Zi0CLd-KgKw%o1S&uk3%3?w$2Irw z-z&-Kc>|+9S#y#LMPQkM?8bgU21<=(`9=u%VCtn(Y?pjVE8)Z{*0dJ)T&<1olh~@? zhc{NV-Ick{S0L2j!^Tr_cYYM6{z*{*5?7AG!B+Q4tH+DFm^<)THruG5^=y^Lnm0{_ zS}@-b`MQ5Uvp0+&7*p?Vnz&@?#kclcEOg*7h+4TxFbNeZNs4m_UP3Xm`Eg5&{gBE1 z9!6J@<_sM3RD^v_v=~imtkrbhBqPJh)n;?AF5Rdff&#|$C-lh!Ulq^M!n$TYzu4h1 zd^2A!fyS8iM98e^^->x$n=sQCq`FT>Kxcc>M^xeR)%!jazDVK+DVL1Sw+~4jUtTz- zqB<}`s*vCLwQEi8bc9=nHA{T>;D5@zT_2u;H`JRmU1N^tY5wQODD!<8XAn22!r=$s z>L0W|Gx_4IGFH4U(N$X))r)`HtMYDK##=}n3KYes6 z&3|9~_)xn6xs{7&M-%vW|XLQLDu>SpBCW7Fso?$$!`{4I> z@7MkEngvyi0|9H z(H-oU8#+?1VOsWHLOV+3cas|59Ld}#P~&6XT)UX~4kE}9Oibv{pN09|pZzyc{33uIf6U-_pB*kE8Ka2eO+E<2Nk{FV-mSqL**)nOwgCPsZ|PtgM?aI&5$oS95T^0bhRk_^!&x zk_Xd2Sz**gU`b<&hlhvFn;!j3T0yk~KM@{$BF02=j}v@6+}?hB9p{K-xH}xFDrI9Y z&0E7v`sH4{m+PsPF``daOQbQIulsQsy6rbrRq&t?o0rzlJ9kiS5-z7L`7zaf4T>(^ zY(bhkM>+9#VIQ8XV`QxqMw~o##G%106=GB5#n=!gc6ypjx{wtWcjUHX4#;ZoTs7|g z)TEJzk)+D3!)y=Mq3kn~H!lhn7%E0LQB?r8BM}x>7``!Spy@y=vMkK`@`u7yg z7r;m?Dv{|o4>kidUUt)V{R6QI&Cl0UykfSC+Z=~J5m41V5|GHRmGKKOzZ%AA-^Zq5k5Y`5nKhEibyIUJS zsvy$u*dLPRl+KvxF{f7Ga-ee}S*@Huzwb+Z1=rXz&jrhA9mUAKdM|>;oFgT}JD#6p z@(o<(#JwcR?j!B3Xx{xCGgcLGI*MEc@=}p|Eu?q)dtWEUUI6t^kZ`xK=v~0w0g`;W z!N^KG9FNLrtC*E;L68j(%qh3j*Th0y7qUg@3beP7pqfQ6Ir&>O!sO|^scEc<&8VJZ z=)S&}%VW>KZGkBse>wky+26;^US9iIU9{lAs@r38I6EO*4S_37qL?N8z`O_h0;qZWS>i6@@ z)FozTQdP4qzCz2ps0*;J2O>o7Av!ubq94Vqsl#rTUcN0!( zGT^{CgTUno{!#{!?!1oy#xyAGKO@p@!W>OsvrM(;stwnaNmaSQlR%1A7BElf5{hy!R zTmd1C3;Uo0AmTl3@Y%Syw`gM^8V{A$v4_LC%SUYx*P7AhKA}hDk-f{D`5jEdiLn|5 zAu7!S>F#93y{$IX3X%`vPe3J^072!KB3DORH%LKRo(priBsvcBY;oN~Z*O2bC?=}M zEvRMfJONv#3ZZ(hR7MuD%68ML0L;F?ah!5Tn>szVf7|u|zTnyX##9AZOmERBnGd^s z>_*sKgc?^wsO{-LA*U0j`o7mg4#&hr9Ik-{qVkpSeinm8T27kHocyB$)=%n&I za+&<*P5vW1#7_rZ0Ji%KZTd=PW_9ck%M|HxsIPZX$t6gzv!BjbRCn@=p~hB~D#IWP zfM5DjU;ma-q_fJ9T)XE{%YSowvq)kmVi51N9&yC@K#TK)=`PhjCvc@)FoaeZ!}C0_;c#WXI(P+{&a6z<)_*%(;xUHPgi7I=%R_GGCse%K}00EAz5KQAI@O5rmQx|At?7;&sqE1$%{m< zqJ(prHf!A}tZZI$yuj{*u6%&s(PINCD=8fVn0yG9XVih$Ms)PJtR=u6t5AOV>5w%K ziAMaFp*lX;s)K=Z)qhvZ@xR(lmn27$Ebg&PZXS?vNnRbSa;;sgbR`}7FT33TIT(&S zzmPscJ{y#KyHN>%veKW)l7;#3@3wR=Dx(J6UO3xM482+Alz8$%MQ4k6X5r$roBu0`L~x+R=nTrG+@jQ zC?4L{A)o@sU|CUV0Lo$|hYD4&ulUrHJ`oRhyJ)xpkO8Cy4m5(cOMX1#4~_0K0QR&P zQukoRDgBuRxbzF(77jsL(7PeQ$Qya7Y}7Cb`{y{mgMLn7s^e>RYXR7_Ir2eyU7~(< z%U9tGA(fNDcl*^tjmbJ84axTg^yfOR*PP;L)?CxU;KL!N*kD>E%G6T(6p=EH*0nk* zvUH7g%biw9ViH!kTwPYytNIeJrB+R~Oj#TAYEelgPIY`hx2^@T4r-x;n+}lbY{WZL z?@le~f@IfO6{!;}WI!S>NeX5B%q)mV7!Hk0OjQ5pDTZ*x&9+i|_x8qR8_ZZ+#KROK zcB;DqNLt23vgtruxe@3DfIa^FjzDJ!@BZKwyw>>2}oSCP~UcM$)(G4 z1!is1hSzYRuip?jI|boMq@=;8QyfeW>oBO)+rU03cexFAywA>Jw8!&itAy(GkSia> ztaRNgyW69ox-`4q00LnO2a%^iBcX}$!#J|bGx#5{OKBt9+;@u%P_mOg+d*f1jAY=} zr`d5DI3v_LN>U@O8v^FA`3Q@aD>l)ft1@agSCvNZSm$w*hQg@>@n21=<=Z_hRQ7v$ z-}F|%tQN>aoN9NKiD^~LtHei~7?GIuD1%)D;-nCDT3y-E@{64=TyFyf!YAER4aB}R zu{p{K=!CJcSZ}1!$=#;#v3*~zX<8i?$%rE442}R}tstzbpQ6$iKXFodnvg;w358!Z z@rZbigRLUt<*!)lEmXT-Ii3q12=nD~)*nj}r53=(zh>6$3P)LFHNCN2timaI?Jm(j z5JTTw1x8-p*9Y5bgi1p6=+J|r`9Mc1sDFA|8vS;(+fEqZSBC7!zPMxR?Ti3G#641@ z_Zf3cs)N2OK5@vn6bgMkR%d9aeGg5+LzGhm^{e+JUC@P4OAYd_0TikdGZ2hxa4GKp z0s2DyF5kmD%QLd9+ojzx??TBGf!mpb3Pnfq0p$C>_;@B0G-n+eL2p6L=l(E?D`ksq z5pnzQD9-cs55bj6rIGt3gX*rwY`m4@P%B!}-o|RT6b82=$8Rt`03ZN)?w73n?)R#r zm8PY|ZRLHX_abQkj+iDr2J$YNQ#0YAx_lb)IyoWp8dtC0iGJZ(0we7>hRQUr)o%3NWbbl~w(rj8=@-M0mmQqi9iNRr>bxC#l^FGlZ)bE3 zqJ)+U(IQN*!!QJo_lD;CJP<9qst$-G-`ylu{s(NMOND{!yr~AjH(3+EVQB`}hx}SGy7>`{gS4J{ zKvtv%fdNGw@JPZ-0i(6zhh$NnJc6B(B)p3Xb8S{a0$AGZh6@$9d@h$6@^4q(p9maB zJ&bW1{ttPs(Ol8x?d=9M5`0S#&K^`wAtWuGYN8SvALX()S!P{_(XBm7?A^BxW91i3 z?%c6a*vF{s^sl;<$k2@%g`I<|5@V7D}pg=qa~YJ|9+h6b#EZm;Eek1T?* zm-45b@&L5(yzgx{fH#8u0ZQ>Tbot+R_rU6s!X*l356npvfuWkW7G#qO24C|L9F~ow zF2iMx2xklfu$*G2oS)3xCgJV)%yo|K?(tx4^kMO-ASyiDdDMhjV_Pj14^>6X!g6}I zS7#rvxgI=X5RFdLps(>v&rwFaYd?4k=)B`RXvA* zlu#IvNv=Yu7Fb<~R}|_+L3!pfiTlN^y0i1HOp*8oV)Q`rS3!v*H3RrTQ5_L@P*5ql!q%sLJfghIU^KmoOL~-pmvustWwTx8LW~dQ97t# zJ_g$A+!5=%ETLp3s<2sEe2&}Aiq|P zWi>watzF|)4Tp8>%=~L7T&HT%v2vPx?gfW z+gb=|EUp%cz7Qc{r*0KHQ{W&lY`dMAwX|sZIm&<2KKepv4<#6u!));h&bv^bm4NX2 z+lq8Z7YZE79#eOcAA448%6RbdAq+piJzn`x8!~Y6j6mwEo~Iscqnr934cp@R2>}%rnWurKKenf{dI(KS|5q?XrJJ#s$T5=qjL6UBCWkkg`- z7xEUgE>e3wAA_L;D?fcGom5&4uHf#kq#|mmsFqnsB9ky0V@z*jYAU)nUeEd25hHne ziqL=g8KH9{4LT<8)Mi`Uz8)k)r6cs2OW@p>S+PdW=K@vI@!c|YK6SZGf-!^pGmIZ@ zJs6;!wNHT_60gE7E+^IV(#G0c;igZnod;WXp?m#ZxJ86`p~XiDTV5LZIcyi}WeWXi zB$TCF_i_GlXe}`L!Uqi%=yeZ*__dy(v@pY5(Yz_`aVz)B6R=A(fT1IzJ`i9;jaJD? zf-x;-+{&Myu=6qL4}Lk2+1D1Qh-@#OED2{}d*5$ELiLHe4_I3X!eEbWPT1eJJLdCK z#gIVN4vlAi7)inUZ5_{RN1&OtE&0mbRq46b`EUDqKv+>G8Pc}hRq$b!1`2-+b5%hY zs~KF-s(E!Y?#|3$D>b@%$l8Skkd8^&r{7Yew{QD7328A#U#KZ8%Gy#=q%LEnHCENT2b9Y0sk~^ZofkCK{^yn%9$q0!{1X9#YCoNtdTJjJ2lEGGk7_q z+0VM@t*6oCG5|C1L{Ad)>5KN9T)qTvz%q|xQ zk+L*>yqk08bwgOPAZ1OK{?FaJG-i&2N9qkcLuDKXMHNn_8Ys>Dkl5a}YC*#Oe0XXw zU)jh(4ej)!TMzR0=pD;64UTfH(zW^d`=Xhb0-m~xam@P77uyP-TDA)UpK*sfO5xXZ zqcU($>=~9W#T43duY8$NG&}(+`hkP;S&SH)b$+aC&9yUQwW>=IKop^BCXeLveDplX znJ^*HK>88D8)gPeHfw|mn;0d+7e7{Az(v#fsA>RwILAiHO^%*8kB02U-9Lkt)Ae*) zm|X4S{Yy#$WJ*SxdTRgFeK#lPEr>g+`8F3i-#P8d^i{4$qlZ{<;n;)huB zNjb9Y^+xIGtOzAjKsWC{E}p$m8K!pO zW58MPLQnv>vyJeY%X-p zoS!IJK%zv$UagFn4C4<^AYFS77CMpUp|1Wh(p}g*b0$UCB){hF1{0p@-O+N2VR9b4 zlMjCUIt!yXk$W*(B9OU?C?vutvuL8?9TkV$w{L25es(ANpoBfJP&-Tp9eco|pX zfx&)Qv>Epz)U}yh`vf?KR&5Zje0A!+A6n@7xyD)aN3J4YKh%+ z7zYHr%}r!DRK3hs!T0d_qi+!iJZ|SD&~&brVdchvs)##91FPs7{s#pXI_)><$4&4B zACe@P;fvHpg{}Zg{Tzwt|+ZQdW_HIr9$z zhOx1}vf2#OV10KrR9z6m!{TiI9Q?oE1W;BCRj+se{BxJ;lx=8A{5MXHLS3uQffc-j4$_ z5R>Q(9PHnN$~=EQJayjV&c%kL&|A!GMA2yh!5bk6lQ4HefkS0f3rM&{nZCvp|Jmlv z)EjH9AV@OeK|kYh=72=4JR@ST+oEOe%bgrRR>r=;PhW@@wqXBqg*Hc^Y=4A?I|iZ& z5(wSbnA(VW-80|~r(ks%EBG<(VIpLxN||b_I7EcpiA+jGTi=$>0%f z7(lzvR9yJ>>PFeBO$Q&#r=LfnD5DU=%8=MQ&LeW-wsDsnLL@bVz{1mVa2|d#B{FUE z?Hc3MnW)pV>kzH|Wu#l|h+5!Y<@)F8jXx&lDxV#mo4(W4GZFRVL@d%Pc1P{Y{N^#m z{Y@N+U&HA}m6uL&%-^QtIO5g0WSF(@KKnT$s)Cu@$`vaW=o* zCyHV6p`aL!>6;=|Fy{YpsTWI4$Vot$`q0ZflY6+6a1wMp80YbcNn98eo}L2-pre~w zXngYsEe%n=0NsEwvv2RsP5Ok5{|vWpej#&=64>?b61U}YN3x&osrAN{ zXI8$k_J&KDPnOVz`^?VDud0D27bsm0v3UcM#DZSKv5Mpvb5b08ey<%sX`Fuei}2&@!g7zg?| zxc)f-j4}6b+V!=!XH@9;$z%JahrU3tF3m;$}Skm2B(#%2bA=cO*`a7?DZ|^Un%+hshuK-@+DFqvB}PIse?pi2PSCpbi*Mz6KlvchqLL>H?B`D%XB5aQZAd8@>NEzf4T){z4cvteRBz+EDZZppCdH zCInp77Bw-{ig6%{>(0@!r=gj+xsV&TbI@X6G0fr6?HVWq@qZ?hB!I>Y%a*x3KTYx4 zl!wc$VtleZM)~8{Hb=yEJa~iToaXXol4}uv9iv#{gHBmJxzW z?ijQvJlvVycyHr@%7Sm~DNb`vnJ^1)&a4y+^py&_+&q9RE|AMwS9>!bc)6*AX)^KG zlH&E}pcdAlsS>=FYg9-L_M@yVyOXE?3?$-q(m^A=NFTvJ&c4*F4Ar4J<3>aJ{Q#yn z*h=A(?Em~AjYzm~2@t05pdhq^kd`D9P!Ym=4MD05h? z3bjVYF%yyS82*Yxpr6N2hOOy)b@Po-V`{j9lT&~6mDE$+Tj%HFyn{+SYZ~d7oIjS3 zhn2$WbK%4H`Gu2m;u?h>-$!#M*kQZfK?lQ41PS4)?S{Q&oN0q&duZh9M72?;JF-ib zY6^Dn(KY-Mpp)OcC4DGB$AQCWAd@|)K6BX z?T7a1`Layj{q*TmNS~PNgP^@?d%IlZgwG7`Mdaf#e00Ti(5L2x)Fs@GB3QNK0aDv zh_+>|VGt{9-9jI1F!gsSeYzq|mveq~5(blSV>>kTW6LW%vGXa*PYkV%xX-`vb_kbA zf=3GOQNBZm4!t}$g3;^QTsY8Q{&tj53dF2hK0(c!%*-b743dKc5BAdFn63k1+*OT6 zX3h^@9Z2H(Bd27(eQ>l+Mak^V?X`^W`Vjv{;xIv-B0@7%lJzB?o@@}wYV~;BUwsiz z&}I1TCT=Rm0}U{`c-U3;-F4& zctcjNU!M0K-w`ov0P?yA#=Zoj2iqm0tLz8f{GCMd=G}+Pn*KxF&<$0@rEJms%&)Lj zN*iWP{py+}#qRbyM?rqRs+(U?wL{G6jZdVsK%jty4%Ljtr;!rU#~V8B4oH;Bt7G;5 zu=N#CQFd$FV~d4~9e_%RfG85u*bE>j-JpchAkwLVt%D;{68cI=r-Y;!sFVT{(xMIGAQU7(;zy4WgedqnoJIp-uJbT~!jw=E;k+C!Sj~KM1U-}`7vdaaRe6m22eJt;! ztsUsQxa7R0Yj!+mVB(PBZz*zp&9_ck7Cy2vK=#*Qhy+MQ5^&zJ7@l>x$TvIsYG$>M zJXC6)YGi7!O z^ozZh!S0O06rdaYXG{x%;aDZN?dT8|ZlP{cxZm&5u`oDIwRi?Jd$xFM*`7EaxO0`5 zJs_Gdo{1U>;R$~O27SX6<4=r<9$K!?ehk{Stt}mIOQwUD4iYb?SbgO;0;5)bYS#om&y=eE;}J zj%X?nod$@TKzg9s)cI68`g1*qJM_}~;RBL$Q!R5!?#P~>#%rb#$Hv$*Pp^{H55th0 zr!Py%E{mgv>i2Xbl-3%kNabv% z5%)6LH0kkeuWxW3#(DBPupMii;XVrtlE1#RH%}Gh(MT>_v0??XG@`L{^w_bg$#zP{ zVJJ7GCS7|YA1uICU+ZtINr12C%e#=qVw~A_dAd4AS*@!wl9#H6(=!3R`KTezD`LR- zlvGsk=>`CpqJb#>0+Y21W3+aqKBr&Ppg;-F^b1%uW(5{wnE2ct#h-wRwI#t%mq%M1@ZfjO!Ygc zFV}}M*ydYOi+ZZLT)S<2K0iAZhgLQ5$;8KuphSw(Ofw8~o= z{QLN)0vwyYmp#x3s2mnYz*8UVYZ62OP!=ww4^0jDJV-?TtG$q7*h4{rT8Z|{BU(~^ zuG(;c?V1~VI$V_2i*bsJ>qt!xTq9#pq{lI^Jhh7Z5-L9U6_4c(G3v#N?85P-3N*S3 z#E=m+F9NkqsB@_Jc2hAutVKKc(H;ov&xm_*4*&eTr=#Bj+*vZRfY7`?HH-xs@EAZu zb!C%9Hdx)mc_??xZ|^Q%Z4OxYflfG-@{`>M%Fe5Ie%$Y4v(9zsP|HD+yLR8eVM0D% zF+DMqfMs0lwrA}e*e!3_3eINLuZqtqewc%%S`!&fJ@!;86uf%vn)2|N=p;SR&yC4S z)88J)MGxo(a=%k%rl;w7Qn{}&{EWw=)?RbtbvM#sq|rLu*iJ7!W?tIQOxlxwCUOSk zd?;zN(E#Kla}7LoL!~^MN&igH=>1x5R*-`Z@0eeJ=oK`~?1{X^sV8Pj<8c{d@oXa)bb-{rFw9!l1EqwZpG0s`oH zM6rTQI!T}6;>G6xS(6M@0?1Sspza=_5pj!4OBb%?#-JYm|AYLQQSH-V;+oKSsYUNeH9}?`HZEj`XS3!TgF!Oy5MHXW zKS|6@Gbw{|aZ7kBu!geFkKbC46W|%q6qV5b1tTTWyTps*(!hN*< zf(xFz<+y1s<|0keIN2_Of;(jsdZsUxx zFd@qb%Z3Oj&I+1`(8@x&X9jN&57AIj2bE>|ZOJ^N%WZu0Js)Xh-p|uTGrGTEo|~ly z8fesYMwUd*FsGxacNIRnlbP21<)HBr8eBNmRYh6^;6;v*E}7$_yBmmXbc|9Y8x_Ie zmQe0eN}>9R<1#p}XEON$AEJhkd%F6uMA517dK^l7Ro+jG1|3pT@tfBkX+WUGKuzg| zw)!wn0)nyFJ;&aj9wGAKXE4S8e1#@8UoBtAM=Y!cHp(!pM^f7mBe)v_Lv1Ui#XClqHj4p){?ls2G|$uYiz)Q8lL5B=q!fjZY4OxiQ&#jS;_6 zB|%Ft+7PzCzHA$B7x+UUsLo}% zDg)d>xaTB&FyR0r@!(~UKW$#bzM82(;Ay6dJfSNxyLcGut~%M(QTyZ3rP5wMj<&dWPM-(!Pt@+D>^Dd7{UFNWc@gFmS}!lh zfb!XYxtD-35ibM`3Moy_ouNXiH>+WVNNMdT4|^nf*|#R~w39{k-mahv;}Y8#@Z3Lr zepcz36I47tWgT<=1d$9h;vut%d18m|k~E_a=dF*(2omy~5(kewGH28B5bt8xAxci4 zLCAO09ncf7b$kk2=JRhuilNej^&|c6A-mirqQZu@>aJX{w)?4cHbLU3ZXpInBCxWR{mgDCK;88mGLE=E>!ho1|2Pp|tA@)C8LTky!L`Se$fu=@Fd$ z5Gghdak8p{h-S=t4gP zrWHQmG@Zy7ST?;>MM14sI>@CQb@A2JC6nkb3SgfQq#fclfu51~<$Q#M)4zyh)71*V5mMMJS+XQXFh70dfPgJc?6ICtyD$arRiYz>6)J5p2{q;a5ib3o6@QXZV4{e-vj?0DdO& z;Pn#B1uQifiN^xe*NsLb(aGSHJ{xjxOQqfVd%xU0MYK0!asQN?x3XC5ho|jtWE!!3CfUtU%O56iv_;qlJsI zzp&u?)nZN52^R7Q+Z_IRZ3#t2>$1j1;dFF89ZN@0TXDW}Pel&(J>@PB505-xcH|^R z3Ih1Jnej(WY4s$%FQ7-SwR1&O`dWAcA)75INW-oJGnT_N7ODM$*5$XOORrK&P7{JL zl}qlUWQPBe$dbUzUu!L&{0G&MZz)Ch!e=s}u;V6Ee%7Z0|wA&2#*`!RY?Pk zIpNC}!Ycvz=A8~^Q;8&GVg=r2P$V7{B6b~h+RtyCxIt3Q+orv9u=?Q=7jG;FWp!X* z_9ZH2_H*ujw`~WWFr<8Q6JE}O$iQLW9T@5T*{abO(y~d+6t6KfH+*fUgRx5+pwo;_^Vz!z}7YwV3j zM4Cdf0s9lc@}YTOBQZxS0I5z_fE1B|1h#J=Yv@Gtd+c@SEm8T9OJ$im~@?HhWQRV|JqWyYZmm zyEg(iS%BxRO7ZJGnuU{+Ae|8+RM4&U6Es&NyMmBWQR+tFk#g2az$gI8t~6}z;ECNi z2;XY}ZTK}gugXJk=HC1^kSFcU@qu$YK^@3!c8RM>A;UL)c=sUOMT1bV7ad;U;esW{ zTNe?=r-w)WRL#!J7@dT#k1L`zF2q~4K6hdP`(ESM@#-);qz(67w0wkO|=B88=4u3X6 zl*QbOI_v@HCz;ei!jiD-!Lmf9DaTOWfGkDNsci{W37O;YSM#LE*nH&78fdbAL7*T* zJ|ank^HUw?dWKa~EC3if*nibHB9un5aBiJ?up4?75ZX9Q}KqkR#myWy%zNPISxeQGopiuqT z$Rx7GZRj3xe!(L%NA0x_(E*Z9|B?5gFi;rS0(=#LPDB197D#a=z>u?XBpX8%s$CrwXu%h)7_X;4_Y%hsvcTK0tTi|lLS%kVKqc1t#L1J*>Ckm(JojZ^$%+-1 zW}6x+DpH}#oWq~B{!nt`^Gn7s#Oh2r?r?G$g|!Ob;fF9OEQk}?MExCkglH3GRyq3{ zn|^=)fF42OC2liyco3cJXo6p)r#t-8!b+*=a>D5j?m{zL4-_eGXV0O~C23;Bk7C&e zH*ekytXBonKnV@}(EF(OU(+KnbudLC|3R__A4?R8W$2_2N#>|fY59V`-7z!{X0M|C zJ^UhHHr05Iv&ieHzjMW%e~%CUR)b=id9@6%jm|v#WQkZpdCrUkkbNI*^1Y#HJZ21OOby^@>>_+Dcd?o?1N96(yQk9EJ36=G zlfMACHiBZ$-#7;1`DB7!sbWa_20?SPpqa~886sC>$aA3%j&gneQGzq5^7N?Vk)^22 zOom@Aq_7#Ioq|4Uv?|d>tO(b~`a;sHIQp%`J(-Aj;*RluUfO3nrHR;D$hG*6=Pj{^ zTrNw`>X1ewfQfO4aoiXk5ODy)jX@(W28%BiEuqqE42~QI6}OsW9sY58LU?DmznMql z3=u$JOH+Po|4?@pQ-$qmuUm0g4kMf(Vqe5+-KUXk5Ny^9nbU=f7Lg1E4W%=9{I=}-$Gc_a|BXD}F@o}Nwzl|<0;s|vQ1tWCksAlVqwUx{wG z!N{V9(*Xb&KDb59seC^@TEAxHO1Y|`=2Dy%h7PiTYUl+Hh1{9L}mvEbdvdQ{bVIUF++(JDC^M52FQb|`Q9cL|*hGg8v(0Cbj&-Q4qO zWHFLNBd`JgJLz2z%mZ08gQ558`*Xh!RYG3}X<9PoCv3<>q2@*y zIRvw<^8Cy$_yOqB&nO%q3ebqj>{LRVgXXD~OE}6)WWlCFgwym<}nX&)rVFWk(9*WKqSxq9a5G(c z5;E6I^dqs3@#w7vRN5@If2f@%)lGa0k+3jH%wholPQZ-FS3@KFIg0(B?9Q+%I8p{D zx(t2)@NB`Nr57Q^fXNcdsOU5NDmebM0gwP<4M5u3Vu0%aHWV2|$zcCXy#A&fM9Q$w!nYs)onK z9Q*EOH)El*RorQ?F4?(e$KfY9yQ%yo%Py1#KIr`c^n^bf0gBpnlv01&vN(TVhhQlS z8mU&6&C@=}a8WCPr;H-PW|2~_Ei;>D8Im`k4X|eBj}trri4>Z*@PC`a5tkQ`fU4e(P7Sb=`Qh z4qiOc*Or!NGBW#B*4^1eX ziI&RcX{?kQV7ED`h;#nUPVKAbVOB&g1VuyWVcXp%6Z&SQ5W&DSRq?lzjLc1}usu{r z>+8g_z**XnIO9~lakgkX3UMhA7fqqTxd8UEb7hINS3EqB9z|E!Sku3wJk;EgOD`Ic zn1Eu~Oi>6Nl!#-4Rp62C#_TknIhmkVo8weJT#2IGy}zhpjsO|@}Uy)MnIFM_bp)k=gyNSPrh4hKqpuR zq9*wg6Byi-DBxk=mJU3OK$Z4xI5HSMZP?s_u`W^=t&^vRNyZo4{H;SRE|^)6ORENY zFfeo*>Keb;VstB+FaQJg)@kbHPbk>TsSWRWmfX7T^kXgmpook6`SOe$Pf#d1-ZyS& zBbCcQD>)t!xk2}S1FwF5Bi)FaiiW92)ewfmTkJg0I19ax#913hKn6TrOGT(K3*ioE zP00jE1r-F}hbe$J%CJ{8Qb!apqUjh%sUC74LSb)qtYl!I+O&|C^A0rhW=_v(znRHK z_P$-&Fdf03t78yyWNF9yT`}8_!&C5Q<3`q9gKmt{^bnd5-=pS2(WQ?UZgD&GRtkzz z4jQR%Qg^KBY$=g@lp0?Z{VQ=57aXM+Zx!72-Ks(Hbp|X1pebk4y(6N$H<(>yhB_;1 z@whG{6Mn4cri)!%jTRsktq3{r>7xP-agtAhS}?EcIrxT&oG)PV?eX;V1lZ;jISO#? z5cib2h!lWyqB-Qv~{_I!h-fq=2+1vilnr}gFHC8aRw2m=6;NGFH-#PXcSPPZXM9!S{D;n`{lgCSz2k@j2NiBEMN<#ijLha;mmEycm7;6>qcJO8GOi8<7 z+R=A!hyUAd1x2lN8OXvr_x2aCe|~waXm- zN7pB^5hwnC-Rg+rwTbXvC^uZWiEVmj=O~fE#ghWNMmhR?v7Yk@mmc0JcwIXAhlhtF zm<0C$CQBF?-)^_=Bkf!x`MFu{CWptD`*eCWKF}-6LzVg(;Zm!?vuilHP#W@3A;nSh z4|eY%Y;*(0lGI8!+;T5-bZnu*KcsPS@59r%42O~}lHGGuo?RcRODZ6mcd(x;d<_^? zP~w!ZY2}*}j|#tlUx3~;5dNU~w^TecF58Fcu!-R-y~P?rF`CNQ-*pWr2Edwuhy$f? z32C#vuN&4s%toRj=>RiE_sEGO!g=>-h2A&ztRr#wb)Tp6ap z5ppbyiN~Nv=G8y`a}NMwohfhcL;|T49aegu-CJnI3OcjPduNMom9%`M1Y$fTm+G-3 zDPaeVZVtDMDIL^vxz$qtYrV~oa;pOTDFP3sWYTs#fLLv?U|JFf+--Pp%JgAiLGfLx znHIcJ$$jeGeL(Wd0w37$uV|#Ao#k~Y zmwpf?dh9-@HFC=>J8a;Ad6)((ZPezxKgex^H0}75Tz_u6xWi9hXxB=N7@0u3y!Gjg z(mT7qqLWRN`Uqvqe74f|#9Ty~Swn%z5h^+7i^+bWH z^(Bwe64;RSenZoV=t7`X$VnwqqsaCg2~&gT6OBmCPeTY#L?fK0p(%$c0LwWh0_;_$2LBs zm4IsI5gWNb1Q&Y#K4}`F>QDtzmY}XAMyi#y5cgh&r(qHdxUktv7MvK;{AtM;x4QJE z)TJz08R+zliru?jGgU^yI1VVTY{eD{B3`OSZ@y_1*+0~ zVY+_q=eo?8Nud11=WUE)zn2o5>Y+MshRR3Wqty@V5yl@ttYx1ni6|+UR8e%!0a0O+?P6L%!Iw%7U9ynOwx08yj}?ijU5WRsJX; z4jIxe=uB{TxS-ATP@E6#RMKNb5Xcj2ssI;W;}M^}9?CscpxB533X$H!Q#(Coh(e(> z&ds?ie=4N--F?9lhBibZy(o1)uD9mjD=0r7DaDx`(1-Soo0eho*+CVEO1eZK^kY+;PXwAkQxiSrks+w-s$+tn zhB8$3>Cq*GazeCXky#Ot9dXw}Pn&ozLCSSlMatvyd(4#hll*y+Vnh_o-QT%gOwFtr z3yy!$4da8K%NpF~^5Bd;R0rHz5I?b2lMZe|Z7B*E3=z3QtANAR3Nw+BGT{~(Is_=u z>;9l3p$>&9xLurgF@2kf&MRih{89IDhhi|=h;dnSsxfM_@B{yF>;a=y;qDv~vrfI1 zQc^>%VlDRBjB?BK&fHj|G_ATxIhuIqus(z$YgfK}n7GKRcC-~$=?no@9DS+zq#~cZ zuzbY|S^ivl1iE7vwL;3 z6ebAky*ykh++xodxR+ESabHO36?`iJ5>CBO`AV@Bk?nmayP=!mVz`5h5Ztw(y6_O`4-Jq1*8R<55 z;J@k6MHjempU9;6YLR$_-Nr@*W0qn|N(+EInP1XKmlQ-iIz#RB^!Q%H_R79j z%R;S_^sW8Z6^)Encf5r#hSrNq%yLH8IDscnLrxav_M1wLs;GH>_SyOnXcM{2dl^*& zlt;v-KNsI_{*{bna*H_}6B_!0AhusE1^URa?`BIFz4!H--GV@J%k1;f+b!RQ3i=pq z4&Hdw$SF~0)gj-xlVRtYuJ`MLi_jmvk8W!Wo(>T_V>3lpgve}@>JZ_ihfp!_-_Vy7 zLjOX6w6KP4|8rF*wFnwj3d2q)42fjsmjrEfXl$tflSNF2h-h>0fpbSot%x-87nB^G zzrzJdzCY{waLpgkf$l8y(hGBjfAxshe^1OQ<*=~fUC6_?c@qZ|1a-64ij9soRF?2H zsAG}Gyns{zsa!DO)&H*;1j+=UGvn~tRLPUF3*-H^h&v?{aC2twWf^1?(j93|Db*PX zLv^2@$&1?xLa`#-qCUc^DWsS~(f{Vo1(dCT68-?GNa)@U5hW6VQON<@LM48B zKtWX)y@t)AlxMykY*5jU(;;IdRBO+?yeOnAi@&NNkY-F;eq!w4DCdM#!XNF=%d~$_ zh;W6!lH0aJ$^2d;J!Ko-WB~$k7y+pl6(o66b6%u%{;fPBxG~n!pibk10@Bhm1^FsZ zuMXAuas9KT3=y>Kc5^M;rlyd+ZGqa-)<5Y-S%~SRA(lB_u1)TlL%-UK;o{UA^HzPG zf$>^KDT}M|7vb`2*ZEZqpc1^s6@6Aff5WKV z;q~Q3S~)dgT5cQhMeBF;y19N>&m~a(H#wA!A78KuD6u;f?nPaVnm95?GmNP$?nZx| zD+_P382tLm9x7s}$eRyMibWs7bb;FFOo50sESUb(idK2F3@BOJv=rL}>?C&g(o=ramt#fyO)k zlK_2_O*l;PYUc3pdSUu-!zL4aJv2iXo&WbQqK_>4z^70N{lIkRH20D5_4v};nt$LN zPGBrVntcf=&aei4ME{uAqa**mqhC2Yb?DdY8?r>}b7!i_quU$pm?1DH1w$~>N+Pe^MefNuG)l>-1AlKuKLG3) zAo=sVtytjCc<%4d9)&YP4?b?~-;XoEXVk)~=itBJq4(pXNQ()>Ir5!>Z%od)&t_k4 z_4=F9`gU#L>vNl$cIM)*#428j556t6vS-pB&Jh;G?F8whJiB>~x1q3=Q$C^m{eD~Pl>9FADHghT}L@7LUb<|D)Q|M~1nZV#_V;05=$%1A7X zmyb15{dYBMpfKgn7zLAR4u6efW1QiBiFz;sn*V6Gq7M(tGZ~UA;VH~i5~@8paI7azlJLFI;>Bs3p*wos0ji@&lN&zc8y;zLB)6@aRH35GcR~@t3z- z=k9_&u_DY`@G@HbSXiuuqwvz|g*Qdgz#9UCsQpkz@6NFrKbNBvg z>LIBaLXHgP61X>Fw4EZmfj80g|7TF2@J-l;ak+1-YTA5o^D)YsPOZ*L8LD$^L5A|r z(7Sn`#~k{h5%HS%skQh4nzOU$4T1Jlj>cn{jTUM`yn?o_ZbaI%QW%|lI53tQf@z!8^SFuDfgf6vC~7jfQzkt7z@dyU`Vu2-GO<#pe$Te z|E<|g4H+WVPA3;R5;e)&#ufX^Lb#SJ5uuIs@rH_{n>T+6PS?iabEFn|C5L;R!7f$w zxj^}F?rrgm%y$ocXfppEex^zN?9B@{DgFAu3FQnsX6;;!ZHM0d{hs88j?9XRPGB^J{Rjz{R z-MR(Lu41gLZSO9~Ah1VhV{wACMGF<<9O-61aT3N$^EV@Gt>=V6Rg@AmbXC4JEKhD- z|LT>}SYNpzbdlhE`gga?3p*A0lpBVM)+^nv*i(2_4%;F?U)H!plt$a~VBqa4@@Zat z8hKixp3Tnj$Chc!4mvN^un7`(j<7CxG(BTj3_;P-c*};~xIaghzNCMn}A&uhu8GdvwY{wrv)|gH^k@zwQYWbz2o6B9h|2#TXld?j^Q;$PmNJ|JBZhOUb2z(%3ne))oMSVxSmSlbiZ&?iO>cce8 z(I6N|{JrPCdTAHrI2A={BfsEN9<*e^rpE3XZQ=y+gtc=pI^4gbA~Tv}{!%O3(<(x& zg{?||A92K;Y!I~AdpfLF+(c7}#$4&o3)3RGR;vI_y)d*;@REsvOr>?c zE%WvRtmhhbWFcgVziab-M+*oRvS*$fQjF0S=GtB4pZe$B4`P%fxz*2GPfb0htn54G zwS=}}1%Hm9O6+&>*(yb_==u%EPqy z_blY8>qyLr;8G4L=8+?S-ysuMl$dz2<{K7Ah}eY`FJ%OC>a^`0(KeMY5;R@as@d7di2RrduB1)qh<{?7H8oFhNrKasP`y; zy3)D#>5Yh7XG<>5s@;WGf9+T^L_0G5;x)ARF+V+VyiOTqDqhf7p>DEWz4bhv|JDVY za*v+zB^GQyK9;v*KT6DIb=@PaNs1RIHX+bVLmF{v5NgTrdl<9M;FbCJ5>8$%wvGF~ zi%VLCpr!UVYQE2fO|Gb?WZM>T8fB&44}a~5iJ{1N&Cud-*Zpnx8L>v&&}<@uK!SDu!f*VM*jDU!&xZ!UPjo<3 z@cOS9!=E^iZ;xoUduo4M`2PqjU!JhT9jMrHps-hR3oolQD(KiVuh4KgWMc4&8$P}; z(kM4PcMg4USjUkd#cKJ@L)~A>(*rW0T7VEivO~AmEuL~roY{}?%Yk6N_bz|v|S~zNldDqgHeC5cn=t-sNV@V zke&`yB+w_->=irjVfsfIzrKt`VEerj=!!77SdvNX8k*Wj^uXxf9Lq8bN60;Sa*w+6oGz&a4T*iR8sg~NA#F$!w77aZyYKJU z+09^!L2EawjdY}TLY62gzgt`_J9XalSLPJ6tZ!B(ZS;OM0;Obx~2H8jh^@hau55+V9BhI%Ub_Wh$k2ZEoXxUyRDF^B;g@ z&{btv{Q7m|RDVGJoE}V2AhX8$+7^94kGn9kCOGykK91D@ZEv%a5EmD(w@cD5V78Oc z-dDT0(c(iJTB-J2?PQPbg|nZl zR-nQBE7TDzs*vI^cePl3)F!?HARjv+wN%%CJG+&azf!=JHp>KYCbSY7bdSDN0lW{` zCE&oSF+itF2=@)bgQl!05;Ys&3;Q@I>6RO!U70s{9qzEs0=7342ZkQzPb)#-!dZNu ztjqYhPWJ2YJY?FiVMCRx8QOy%MqkY<7FU(#p}z$dEdbO3J+)<(uWsI~OZhn}V5?t+`>EfiZP?yFWXb1gt-X`)dmsPuIDy*0tB6RT}~K@U0=2JKM01*3kr7D1Y?spPR=-*ewXP?0n1rkpI9NUl}K)d z4jm-KS{mDU|p1&H{=?oXgyQf8f;0cgtprfwd5I={dAK9I*>Gik>~20`NlR z_YX>Ee05cKu_Fn1h-;V`E0a3jpWowVF<_8ZJ~3GQD`qu?|1r=f&#hbXZ!wF36nfPV zQz1oVFLo+n#bZu1-0|3&=zJ1P`uY$%u=GsNHzt@bph!mzel=H`p3&3u)WxtKtL75V zF7Jv3^h_3VM#MT0gJ%S9yp3d;Sm$G zIi0A?W3=#92M*G{5!f_5af_CnFGebvVf6^wQTZ=@FO?P^jT)HjsnoV+-{Co0?_D-U zG5|{ckH~=exIJ{bDDEyat%KfiC&~2Z1=vi#-OR+8Isc}uEl~U*1tl~rAsvV%ZHa0l zCU@XyQ78j@6{q=|<+qk#Um^t*gJ;pVevBLEr$znNz&32hUJ`wMoxQnm1}1MvKzHwv z(3?+c3s+;qiMrJ}_cl4Add0lHOWMmv9@YeKonX38W9CJ^q?^?`@h53aOuP6%z$14^ z;~|HMx{HxG_Iotq zr^fk~QEvUsb(M}SA~fhOg4$_ZVsh$)4f{eK*87k;5wXMJsOZ$&8E)D)-_mHl*sTJ` z>Coa!okC*kHgTN?KpZ`4R%TC6Y)J@#aP56Rp>f%6Y$JE?^Z6=iZ3|dobF<}!h;*Ro zsK%mTMDuE;%u$=<;Rfql!j9HoWC23|Tdr)G8j}kZlM}W&Or!1OZnC3E2)>e7p6q4B zR@>-aND0m%Z3{2m^3aE{O(+ksW%lgmG956`mc6 zvmo6uX~+qf;^$|PW{$yCPKi~0zv-yO-%o3TngsuGt^7vkT#UZot*V+^k&nV&X4l_; zKZ9ZHd|9M%5Uo6}3kt-37vC0x^N{ZG_e~ed!g%w>A$mXB%aOZJ^&^ni$jha-HQEP2 z(7Up%Dct3D$9yZURTiGoc`iZh-k(vleHDmNA4SZT-1BBIpYSdWj@#K($$|Hxhzv?mX{!w~8Amn6PlE&UVoYo<_L=cQ3m91~|q z@zhvAn0pQW1huKO=)?qQ1)QgY=*ihrVG^KDFgO;I^+IXXF^Z^ub_14iLry~-m7U>_ zal-GwD%;%E)Ua69XC;_b65L4L?y-PbMgGEfou)q`1b9B_*4d~@zHe9eN-WleGF^VgN5InJegTr^A3s#GUFt z>b1m4CWyasa>RtQXuLe+!OP1JCdY*5oXGl?HbLSIT2N)Gae2GQrNE}84KL=+Wf$@k zUIW5Oa^j7^B|bHtwn6+%oPw*ji|cMBU*=TPRi%VS_|kqp+n4hvKm%MIEQAcM0b;sS ztTaAu9Gqd0XwiGVeRIGGBr1dq2dMX*ek`kcLNqpVDRfZ^gV z!WOT7a-^so8esk#JZ4@PX@(`v2NNCh7Ri{i&%E`k1NQSK=<%w?oCk5wW3dKwrAE|D zzwGP6c{Du}N&|&dV)A))b{bJ4A0f|L8ie+MAm@$izlrPR=Q1RH49JY$Z?p=38nAr1 zubyj}zybMQmOeBj(8vq-`0Zv%uGNM`f@OZjxa`ltF{!Oqi*veGqe z5W=+2yLfhnQ~;pJ!hldhe?Fu})O>wmlKJY;g^*(NFZ>co>l>c#yon$-a1{F3?eBs# z)t9W~5TC8Tp!Dl2gJUoGE{ZiozUzHvzMbeCyuP|Dg*2a6Ze_$Wc?M!+29>_3Woqz_s56DVK03T;wk7Q;@$#LJ5&*AQ6EBU%G!lk z6LcS@6@TxCTZ<>3eHZ#*ed5jec?=nsz9-{`=wRQI8QHaEkJ+y|HU|xi$Espy%2Y+m z`Tv-hB;P5`UqEvket`YIVO^VBytXj$#~`iG)myhO*yMXfC6OmVpAU^vh8GYKI}0df zcfGQxV|m#8UmNKK@I7udt2@B8@8g6 z9@FZ*F;==rMte!33rrP6Okp^d6Rn^7(~U=wnaLt=RI6x|Q(6mOD)|ILnb4EP_L!Zn za@)@Da=FOP4Hsexnypvz`HnB^`Ve8P+}vXTf;Tli?&x&2~FGH@pT)%yYumbw0M$z!AsBb4TN&!xfx*do`hx z8F7R8ybu}tdHH4AzK-v9`ne0^qzR3-A_S0*!!wDk`^mLJ?vICa8U#V7LGR*%88ysx zCtDYBi8l_-Z>jfN6haQnI6$YtDc-{!s)1-GR@C~G!jfmemRDO=%mFq0pl&`7_})P& zFN|*exz^UEnxp`;FLbpe1t*J7tfp^QRM9ru2qPz8dLOP2D_e-1aXCT@2m);{JDK5$ z(e-IpMJ<_`73OI8!@k|bM0L7m4}97lpbu!#a~k1?^wg)PgDfNMcPs}@yZv(z44$?8gXaeM|6LA=rN~@bR@>$m3J|) zb1yF+lv_F0JLraD5hlw$wfd(IzpytiGUUr;otd`#Rv<BI=HSzaY_>YUa)(i=fPNPiDfKAsI^~jt){$Izxq3VEEIc(EE zhBkyvdcDE6kx@azA4e;?gH5j1MeS$Ll3tJL+xB-D3H|xy(%rpv=Y%f9ZOL11=}>0? zv{raH<>RIH8*t9bE|gJwdmGf?%IOJkG1u1_pw-8)9fWL#rZ$T^TT@nB{d{bD zlgdNlZTA-@ecrP#V$*G(P26Q!+d47nMWh^j%_8N9&9+1W@i}u?`2i@sXcN**GaD>h3xRG=Qz!8 z-edkn)=8X49_HS$N+%$w=5~nm<5_2TO599!Uc?GqP$+6=mz9B=(&V`xrCm5P)bZoz zhZhBN`|q*vZQScS0Mda{v;t8m(A36X1IsgTF6P*>s*LvP81G`&5xPUKuU6)$)4Ue+ z0vi!e&#up>u(MBB$rK!)jf5*w+WtA8&GJ?Ab6zgT_Ups5QzkyIi+mVpn|Usp7{dk3 zk1rexLI=CltKoYEpZjD?x_w;r^Rq?mpRHelD`{9PTbtyXf0A7NGtEqemqQ9e#x~PC zm$Jtgp28szv0qnQe>;hUl*UA)`9EY$Coj*3!nqlBm)}$-BM_k(GRWm07IRhGcA!w; z++0tRcQMR8@@Hy>Utv&>K-mXv^1?mv_PL;FTERSY`mBLLk=@awrQ3g7W>R6dOIAIZ z(F_Rr8%wgNCtBnW+^c9iAhxQne$U9yb5@H0##rff3K{|EiJP)Hx47R5w`=tp9(Wyf zss?%V*|T8@Bwh?`avcMDI=G_vmY`{po~~9wbMJvb;iTe{MdIWWc;QM;V z1f?cC2+V4QI<@>Sn3G4?d+ArOz40Bfsi?hqwLAVSe?{#KOt4(qSA+83Hh6z$q;5{cg|G(;7mDk%7%ao? z$-uJS#9Lb3xnyPOWBc<$76+=L9}5T6B#v0z!v%Qd04{6aXCXP%*YtS6DMqQXF}p+Q zWqNenqTUm@iROoQm_&W4NdRU&D#-P`KcDcSObB&+O?{g-AA1rV`a*(Et47{ti2erq zvFoc3r6r0w3_Ce{&96ZF>FJ1N%m?l@7fhUd`NRKB#Z(t(6$?CfnOaV6Ave$jeM>Bg zA0=`uo)%Wc>PcY}l@8T=k;PWjE_YgqAD~y#q7PFii)G>-xqvc$>qH3$adPm1Ouh=@ zBU;ONN-UHv7w;qzi5Dt3#G?(4z_VPw=Wc|S1to|9_b_Smmc2+#8KO_p{6WQag19!k zZ2WhQ_HdGdOcc4Q*W>z>V_;6Cm)E6nwhf{Oo84J@q2K6|Bz7!JLnokE|z|R!nuTEQ;JFSh}Y1R`#4nRcH6iSY)oVgyzoH z8S*iQMJ~y}2M%n=ds}wFT4*5T`CiiQg{x-Tm}*=p4=+BZ@L{6vLyTB3hDd*V^R}#$ zLV{MuP&XDHj9DhOUAgN;St)(}kyxgHTNbhp7-cB|b{IZZrKp64NM{k){d1r2Ig~6q zeyOLmmQL<49h#m+cDFYNfE*xX<+n}nx7$7GlPGXlUvr<4CWZ(`5@R}*Icf3Qoc2Er zf(;bH_n$cKl%ar+8J8@f!)LCSxen8qahoE$)CPbya+= zKhMIQqqLm&)6Eeh&7fLYA`AA*}{XI;&Z%vx5(Ty*wQBvCI7Lf*($zZSF%Z_1h(eN!RktmHCb%yb#a_~mcj7kaSqq~8tW zyzQxh^boY!Z-p!8=bD!1Uy3xXSwlKnlyUgwRcRZ**0@inipF{nurwlRsd?;r;5@QS z+6`wIwj#XF;Ndnd0;m@gr)-X++*k{r$PQ-Sbps*@Vf?GX=r%lMI^zQP@Q|e@aKQl> zj1Ip?M=HcxGb~{veo*s;;x*tZ9D0b}-1r!$M@mh1l@nV z3-$#wzwdM%8z@|K%X81BjqI4S!?z6MvC3L~IrT)RTpfH|okayR%$U+1L%$WjEB!g< z!RglFXiC8eqkh{0edPSC%5kc4!Ga}jd%J2Yc!cFkSv*O1YMYhhh+n-3$^7#zv376& zC%X}AbA9+D{p2SC=!GEyzF|_TiAV5!zY2Fr8rpm&*S|bH2BAZ?yvRYHm6bm~qp695 zGAdf_xc4bJ3>Uo~@07I2Z;aQ`#A$ixkQA88r3y8GO1-`wwA!1JMSGq4vv(n7FjT^P zVFF+N0Tu(ga%w~n2Z0Yf*v-tv=oRq4a$`hmzii_Iijv`!L)SINh@eA}@87?v_z>E# zSWQvFIC0UyDtOOJ?*?2y%(Gd3yMET0m;Lz>j`tZ>KhkqOjV5XL=VMxV!BPFvI>gos z1WEz3>b=BPo*>d;`wqrEMErC|#fgQBbK_%ODF3&mb}pe9S@;_}thZ>=iamQQSW;qe zVBZA=EZEY3$4LbWPD`A&P3=OVhPgwAW!aCy1*VOMiH!U)?)>e-rJ44JE}#)eJ$79N zO(jM#X_Fez+!8cWieTMLvB4Ch%V+Y{vZxkQCA1CzNps8AOny@QanV{7qm+nG5a)r= zAEpS9bR$~|n(rQc7^1Yk>bRz0lbj8Vaah9UflanK8^8a>c)~>U^2BfBOo>jgs8m5e zXQM%bv(B<&HD$mG1))uvFmyj^2@L^}46+umlZ>)N-V#9!jGsWsEfYOyu9W2qgNV5k>m7`SD zhIP;`fKNE!+uO2CXDrLaMfq01_c{b1=Xx{R`v6i}!J?`w7!@aTfB!gbH`;12v%Q&5R@;vPZhRrnwHkv{wq)Z!*M8X}*J>*cf4<*@e-P z?^@DIMDw|#=|xGem2z&D>3F{3jpC1s-72}0a{t5pn&`WH4B!igi*pR9-&!D;yvPxt zcx~6oGjq6;|4WGJq-CA&xHHTd3p_f~YLSySIdV#vGkZDOYHV7mPAOE*usn3{ShS)r zOFF&k`2$ntuaS2ql9!Cr0gooLW1_CGhDEZMUaXUH-iHYJ_KJYsM3jOB-~%aAIj~(0 zL(5d~6r>Wdie&#Ui$Dr`8$TTS1YUg+ZeeQ)l(5ztVn;0{^Y*rLtSBY%I3B^klVCw2 zW>C>@gXBjsZK5tD;*kM{kz9=m`Nvu+ayI7|$QKqb#MRz^lfhYO`8Ui$G{ z-ks8T4dZQ-VQVxXm_AUCA5k&bQ$qLWJ#?fd*I7wLrLuE!N^YzPKqF%pp-%=IwgzG9 ztqZAcnCq=rwMu??9IQQ}E2Il~I|$kUF`x`as`AK=n4lK~{A`mT;VOSo(D*ipcfUK; zlJ-MasQv)wt;{8qt*fv_oo@NAJtWo>mlWYShl_*Cab=NSo;;IN@crF+m8l{7^ZyP> zxkPJsE>M$|hcp2ZMqrEaoSP+D8%p+`{%aR{UC=GCa#+4YSV8MWcSmQ79St4a>Qwf; z1PXw@ODK9A0RKodlz!C8o9yV^%*_E=e*jEz2)Jn+`)cG*;Rdw;qQ#%y-q}p}CIQ0s zjH_4Q(=;LQa#QGxO`Ny>ZPYc~^}T{uM+26lRhQcQwZ)Z~DKKJM;I(;bNU>^o2F_62 z>Q){ek+LRgY87E_UdOtjTfo^wI}1S@Fn&2tbbj4vKt;i7pAH`}sJ`f`EB!8#T|#09 zs!^PpFv-qr!AIQL6m{xi@qG)YMZ|KB;=4d6_hM9qVz`y$r^xU6eM?uD#>Xe>MjrKn ze~#}qho$rKK!6aCJt(*1uz}WI`CztC@u2B!pA}U1so;9GA0@6)l9c9G6@4gvg#*Mg zCz3NR$8NrDH$mJe2)7t$cCn4=zsoh7l z(%8Q50HhKhc*TTeBc8U>#Z)*RiyDR^PYJcNr(n4CU7L_Gi zxOFAnNo9A7%Gx(E%w&l)*|KC0V_Lp95h@LhCEbu1LS`7-jBZ(qF}AU0xm?L$$i!eQ z-)HXY`&Zoa^OQ3#jUYJ0eh*fnA2uB?+o40+GH^$?!P`6a0#`5fg(c5KHGd3!O8GlY@t!i&* zq>E-=4K?gFK{zx}C*aI7Pp|a8KmTj?Old$?g+BigNPz>nGmO(bL+3Vp-fUASk_&*1 zr%1T(hm#_Em-tX`QlsJ+`qv93@@;#N)^z z|FPKK_x{U4rCF{fCZBos*)briDNzcvcrftomq7#!?uKDWW##4+9HeE8&Sk&R9{0T( z9w&())#lYoJVr%Cus}o+JI=O%_AV>Kd#yU?@O44cle1nO_026JcwFN4MP1l^4%oq4 z<$6z|kg;xf{pKd9;OT~*L>I!nHi!+ls1ut-U*pGapa=0{AO9;E2K^3KWipwa*$>HN zPDvIPhroOXT;|jKWV;`eEcmfW5(>rt=upGpp`{0>>?o@T6}Ch4I9AZXWu>v23!s7F zRAoaLlF@eiP#~jic`dAVAMB>HAt0I>CruXcTnJ{pbH)$O0%q_&#;Ni`IKQ&S61f0r z95TF1xKP*93^OcK{?B*iSTyiFdfrGi?R;DUKA1hXWoN2j9KdxP3WT}O28uv=5eEoA z0Iv+npoa0VOCp+~bJ@Km9#DGicFFPXwh3WYhg%I5zyu+t(2~B%{Sf%6`nMk%6W?07 zMND{1m~ZvqWIeEDR13W}5<6kPL+BjRFKQnF<#-NWVu z_?+k)IlEO!Nu+%<_Ipz@+3BfGR@nERUhGj^tB>@8C_(g6w|*|D%duc(Dk&Xi`qjmj zRIPOt`Qg!G#^<2sfz0YcF;gM>xfaxsS*M!+`YSKuQNGOXZ6)sgn-f49YlVHz#gvss$-N7nqv5wPniE^Z^k-SVYf`P-#26kU|U zKMh)@QX|8CJc4Jha(N1&6A?|x&}`F)+JgLZg{mMk9PLO*#b0lo@}jpva*WgFH<<*z zfhaIi7=IrS1kHzii-1krs;ItmE!nOVKedfgHG}6%A)-be@;FaUPg+mUd%~vFARMV!7o1i>K|u#d3%vaz(50I z+&hg@gQa)ZOPIv$GNni=5#djVf5GC`$M!dxfK!G7Vd^R>!sjZD5XDW|Xm0cVZV9>o zwh)+?iYi2gn?$QFM&(53%B^?485KVLctW^Y+%DC0u|kM_Un+KYNs2nh?vV|NX@Wc7 zioN*wi9TAVk@dn9)Ei3faO6Xae-lTtp&N}LpTs4T%6uMfr$K{eZS~a6M3QP8)@#4K zm$rxE-lN>U+pdt1DPF4}4E&(P$~r*4R@N{lNa1qgGOpV(4P9^u5ylEo$m6Zas`9#j z>stVs7)XLr4V)`(wcG&?O0{oi>Y*GOR{r>L&r7cln>{BnyWMh36XftIearJK<`AGH zLF=H*88OxXCn4<>BVwhRm{cy($;L;EOj=n>>>vj@B1k`GV= z#3<2gX2Mas0*|}--)i&C_wxNtBDH9df&5F}yjd>~WnR2w7mYL+HL+jXI{tUto?NXU zjc`n_Lfd-ldi#1;XX&HQPhOdr$sbV?KT$hyFnxwF^RB9PYZVXW3<4ekp5|Z;nkzQ+ zBGC8apJ${>8Ed*DxtR%}tWTem@ti-q9w@w4{pIhowRZ=5`pkEZEv^aOKFrTB^p+3) z4v#-Zq+Olwy&;vN8T=y|6=tIf+&CudJSw}EYxt2%f-SQsKj;SE}$U01iDjGZ@XAm8rT7q$D`S;pd+EA3=& zcJm2#SL%y|pGmrbQ48uIC|Xc-zL`C<-Hy+fl9g?!;`KO`Y@6i`P!l;l4(h!9MBiP- zh~npP>{b`QWyQ3$wKyseSHv9< zfAbYkwC{7hnT(mHmvvRle4C7ey(0KaYU(?U^R*)y;cNP)`E_;Fjm2v{53#SLq{PHL zlRd5#q^47g6l$?5S5dWxF@@*!3638Na6LH3sg=<9N7>Ig`^)e**e#nsZII42qse@q z!Um@2%iG)Q38R1k;sKC4DF6OIPiTOoTY`hrf0LE<)M2j*rFI@P(a^{q9dYXmrF5vN z*)*n-&CvAMxgB(Z!AKu%57Sx<6_mi{k1Yw~#Zoa{K+NtC7Vpw2Lz7aEW$z5aLuHweFrj&`9V9JI0S=Wy( z)&fSvZC!&UDggt+dY+z&Nc9dduSZk;x!cMk_qMPCK;yGgIH00p+Um8J{?<8uzYLdW zKs{SKV%6VkCbTjLe_B7o+&7+hFy{iTIz3q|3qRPdPLfEx zp{7~?Sey7e`DKT~{ELMG1OdynYWMepi2G5GqepYFN^oz!wcmz;gp!i4#dhnJYpb_( zSX!Pb#5z}4Ak6i_=q}som5C1C)cNwvz;T;rUfM}sx7v4~Lwz%#uu;Uf2V~4IDg(X8 z{5Uv7Y@)u{PS3@ex3cXmjdns>ddGS%gF#)#=#_Z8y^3g}HnJB&widH9_ho$#rU>lq zBLw5_k=4O3Q^`6y!e*3z2pK|ickj?sEECUdS7>}#q3>@UKTVg@)AQWim78gp@cla_ zU@bCrpq)z}x^a?DK<9IQJgfQe>N160Su@i=DI;T!&QViWdHp&T^08yeoF#q@!vZ<2 z3$8ic*42e$58|+95#pQ#(&sdK+E@&Ifyr->3ZSaqS5Xl*6fVzd>!$u`T6N8Tc9?y; z!mRmcfV#9lE*Wa{Tz%y92gJx-Xd6 zpKEsnAs<{vF;ku7W?LZ_@ZBw7@HE$`DpH3<6+`+) z*8>qmrgKKUGl9k0LnSOKjl>;mk8p`1;aduda!X3umg$TaLj?01m-48mv}m%gG@UJ@ zoe?4rwk9NDV!FKJjSF{vEJez`Kb>fommOoLK-;m^nZ{2!*5OmKTHj*LpG?ZPHIE>~ zC%h(G(D)ym6&8B`D|y(&iQd|8P>T@nNkBws(A914(_*O2shP>cq-AvxN+_H+1KyOj zA?Esx^Q*n@-|yM%oyO_UmP1-J!4bocekR4n_o5K%UAsjXYNRn0Vi?F)yI>K*@lFlC zbpR~ThI65|Tp+p!Odwi8z=a@+-e4v;u&^-T__zI(l+W>^b)P~Z{xVZMUOlMzC@YTu u4*j^6R_mzV2IRE-|80bqQ2JMxVNERaHCEq7zdS+ocg#$!P2QfldiQ_J?RvEU literal 70949 zcmeFZ^;=c#_CC4*o3a2wLX?n3Qepv$A|ar3BO)Lji*5@79G+Zih@e%A{HGI zOS-$xn7*ISxz2U|fOCHNdcAvZuXnFG=QGDM#y#$FkMYc)2P*f-&(NJgp-|)s@^{ow zsAHc{D3ZUYPQbtE&_6i{|0C{vSI1f1-rU*E#K{b$Y~t)-WAAKZ`S^;fnG?p+-cFGB z20t%9_m!v4&JGxHK0e$3`xm_SP8NKTPC8C-m(vdNx)>CS@eA@FBD-HMQYa!6O5x5e z4fn+PVK;a6siWo<30n@cC641i&mVho>U-pj%w3*hjVD1jA9SZ&KH2oj*fH(uPmO># z&#!O_nAsD(uOltCNPQsQu@q`5tJ-z@UUwxtJUO`>Vg|wg2;jka6ee>>}2EM?s%yv+u zMu`NRWSXC>=~K-q*s(Dyaks@h^-Ps)r5N7o%>iqdzrUEtFN@r-ab3WzPPJ<0YVp)4 z9fNCb`yYqjH#n^SeHg{9ixY62@4KOy_2Aaluv>~;D5I^q84A_drE?p(YeSewZFu^5 zR>iEx-`UPQ083A)A* zp-$aCrUP&Jow|u%)X>X~Bm?z6HPx;QIa94MaPyO7 zmp+JLrk}1({t%=1zPUJ@o0WCF%%)$Bl!mv>(RN|50$=Gk;k18q@lU~0;iJ#btp>~U z>4ctsxNKK>>*#Q=u=7T zKY#Ardpq~2kGdu1oElkSES7V<`7_B8k&)@Y)9&RO*0^%&7N>t{Y61h_=*iPn_t{F8z|J3OZ@+C&Gh#wDXA-0XUCwL5uSYMQ_xWxfZVgoQXk3#-0QCbRt|nQ|fY*{@%pirIUz zfmkW_)627{G1q*(vSJ%r<9ct8Z!Ikrv-Q~(AC`La69Tzj8R8BZ6udYdeDLQ4W7RCx z>!%Q`b zmyo`$N+;%&&YJhWjaDD+x&CVdZ@fgGAco0c5xiuLOAnel&%m&-xx_5-GnywC%x}H3 zIwkHj`TEbqM44GDb=~%#w`a)7d$w05AWBA^mlAsLBq;w!2r4XB#>QUq*_n!Qjd{kM zrBn1#@cuxJTOmH>Xs8M^P+^~9-WHomL~lCH)$bKZUO{XOU9v0Dmi z$&w!3sj?^0yMNPWM;jV;x0VX&gsmpG#m=8U-;GtGSr~0Fj^fnBfji*Pe7w9W;X<&r z_tA@AUXhwzlB=dM_Bhzvn9IEN;zYLNL~{qD7Hk0?aUQ@3#c&9Z*u{c(x;|(W>J%Fi zyM^w13l&KXiA34LHhsTnlh+}HL!}QZ7aNXzHS_g)JUaSIEP6^TRAJ+PHY*;Cg3}4P zEgC3Hhu44~K5c$SyZh%YpU~s4r-CotxGg&3ZW@w&O-xJ|F)h5cCcr{_ys*-7QtJC# zLy@}C2YXxEFHVpP+4S+-j?{|X>+}=Ow(!WPPj7SIUF(zE~!8UlM zNElH{G)SXRl0l5fa&N*;NbO8ss9VP=xyJm#dz(cENeuh$EdVe&RJUX(CuEG&c}c{a zrMSc|Q!(mW^D~Nz@a+sqi?QFqRPD&eyQE6;e<=b?{-y>p;vzZJHAyMXhj{Ap zey8-20p7?fAMwpHYrNIMK$$0Or)Hg}3$pKabKj!$z#Sms1Y=gVx83t~OXT3qG~jo` zhqWB>!qyq!eMl7ZwhXO!_8lA$p~g56JBL~gRTh=}UiDh4%WPrtlWgk0B%}BH_wO^5 zlz515jvxE1`|$esLHh<0ja(RyOu+hj+{E5KA3kV=L3!# ztVo%dn0RjXTWkQf0Z7{Jf+Gu?w_UOwC{?KQ+R|Das&X0i*{Uk*kn-8hQcaQKo$%UP z)YQ<3obAcYggjHdA*N1BNg2aJSbUdVHL>w&Z;u4ksE#DA<*dcwnz;e%!YGy`Ne{K9 zhNJp+s?VcCjx7w)S6IwW(--r)JUxH@&q&2H*iSs(*e`#7XKfDbtqyxz?0jThSf|w~ zx%N)Prtib%!l2TbHtD&BqeK1hi?p;J-`1W_At7IafD|JY9bFEyY`{%>zwPlramPP* z${BMZZaa*4BG^?s)(<>4=Vxk1j}AtU%-oHfoQj)6nFvge8FS= zFzk19fcUTT_VT#%+z5myMv{}0bJ$mGB=OttQcHEh#&C@rVS5E2EtNgl{kE`mug3eU zcQ2khm+Cb2bEbUIt_!f#`EY-SY{|N1E;7QChS%V49@cGXq+?}eqNS!gewfvZ03*~5$}QK;hQC{omz zqhYnPW5Q~rV0Y*yg%?m>G>Sn5@XnA|rQZPzp0Zh#O zU{BHL$ZC$36cr(X&5GzdWt06!pAYOAS*&*BRU|NebSD3U=S z%z@qW5fMtVW8C3yu;|DyL$_g81-cuLUnYA@$8m3s&5YF57{LMzD;;hDHR=LjC=_q9 z1nSW-Oqn2L`EjnGrei7*vR$rng2+Iz*;@=ZC#RxvywF1ko(%wlr|>rMBDV2^F@{xx zkW)6kUkklyPs6SA0Qpgs)6_+3>I^}Pj;D}E2TCm?cnzzcRM~%ie!Qo_&rbpO^7Ms7 z6T?tOw8jS+q8LK;biB3Xc9ITuaabekL8=W}4w5WfmIjz1)`FxPY977oeuw)5RhZ0Z zZrzXR=`0N5&hl=Jr4k^qK}mJXEt63 z1wE|u+(@iYKV%9D3UchY7?HlWSfh$0XZ#!q>KH%pY*A}q18~pUG2m4$Vk3}c2rGak2RUVs9)5Wof_rwM!N;UJFhIGw(DuNP%pWF!3zsm(sq4$N&?+2ByA-S6^>ip7Z~ zK6|bc0hjF@lC?iQ`b>Y|G5L~x7U+21+E6muYr3)-(EldWl2uH%Uk8_Vfsm2UhGv>s zYqZ>xC+X+ToimyI5z&(MFfHK5qehe|p(9DGfG1b&aJby2UtloQakiUdqFr=UXt8!p zB@N(24m>B=pvsAsRWXu(pv>CB8@k`G4U!Ik#7 z4raQo=-6Grc9*K99^yQ}Me$H@f{`hj-EI-Pp}&$9GS7&ct1twEj{b7ngmH(PiG<+G zqP$HlkTnwCi`pBt@>$kjeDtlkSv>TvoE+VcA3x$e7ZbZ940TU`^4*!DX|+DYDe;+A zjU-99(J?bKcVOh+U3x#h2Dt%;(44g)2rUcuf=nZJ)t45nur&rPaj^w9nV1SM-tgIVc3B!3_K*Nf_uOA;DcQe?`0YP3 z3l32C#}t7tT&689T|pc(eLp%ykbOVj2x$JlV${6{(#TA$l<&U#LSNCf*3kFWabB}w zoMliX%m75WjC5pq>^(nDnuv#(`J5}Y6-CTjL&axg06QC=4v=9vgTsnwM~Z*7OU>Llp@kww^tElRu+cSKZ8kjOqH0%&%5>LgiZf z4DmV_`}&;>jNA{mQJ+l6>Jmy@d}`^hF`54?2S#-iW8Y}YduMK(B!+1&zF-WLNpNF7 z4&6z?^gR-$AlUtl)y$EPD?-GQJ8tyx((ie)<2oyp1`$wzG373kUGf!n#d8a601# z-;O!Um~)FjpfQAws3)8E6^CUx%HZ$1c7*l>QT5IwBR(GEhfs$jtPYSeM=^?Xie6Pk zrFYctC?BDQkW4w%Gu{P|U(Nt%zMLye4gecaRrGG{{N>BJK)S5J#B}_R{Lj$vCN8w7 z?hz9Er5m~l5LxDXJ0(B=+v5|+9`giHFyw@tU2FLTH_ik0X)$xiqgVQ1W44Di?jTt! zUvElM#C2ZBf@D5~LBhOpk`MAi^dMAS5Srji7TLXR^4WNXGt}H!K)Pj5QZjZ!XsnNT zEzKl*Ek0cN^DT*xDDI-j*RWr_ShrEvR5V-37Al0_B{9eZ%f-uCDL9_4q0vphc!F;w^%DQr8t=U(~?4);13h_5?R- zZ``<{Et$-v%}dz$`t|F5bOyU?Fe#KrkdLzn$zCd58OmMnuiYzkUwJ(2f;a5IAWnR+ zJrQc>XJ@RI^?E4WP$mgc_F9g4h8?D2syM{z@R^uSo13 z0KPgvSu~4soWNbA1_ibQ1e0AMM;uXYUz6?Ork_=6e+2K~5LiQJM;uoD^Z zT*dH?WOOe0{AV0xE~GJS@=Izb4Mw3_(M-X7d3jnJoe9v~VfGeY1Z0vus!mWimI`-c z7bhKVBHm9}xOOk3GBKjKHH}3{*3qvgL-{gc18Al3M$AlijgH)%J5MTQvHx%vws5TQ zpV>SY%J7LLS=4++dGM0pSlJ0xe(S&Q#Y_2AvtV`%%w6-np#Dk3Yv<`WemiRod1)8w zV?j+k?AqU2DZ8OcvQ7yQt42HsN%zsyJztxf^;|V;!@FCrC`EJ6IMqVfcFcjxwRt#- zcp-!ojqlCZ&wQ9BXXd^L;I#3Dl<%hfDBuH#C=aR$p0h5i8g&4?hi?Es9_4=jE{|UQ zeyw9LPPaKmFIOvHqs&TE0SDki#l*y?U^QA_2Xx4*XHOfzAJ~P{$l_o{Au#_Xrx7T! zoY&e#=b+$-uGghi7#^K_K`A9)(TVs!5KJZ5Vovo?4`IMZP0)da-IpIBmF6%eJUo1T z*ll#COI6w>q|APFWU5xL%u1~A2wq;SpxrKtOS^m@?FFo1z273GN~m)bc$i()6!k)X z$-VF@`gN$VI+q>M8{!^0M#iG{Ba#rUNB0GMR- zHy;3_amjEax<5A_$W-1Y^S)rH7M%||nM`X8AHLjn5J>|@b)J@gf2AVi+KJGS?{~O! z56lv7atUGYDv38!r9sAe6WX7zFN&y4mql!TL86B$k-ewT*ch^%Ca`13_F0gNl*0Q- zZRY!mIz|k|91#_hR^SelKo22XX;#=7M)4ZzLG6fW8odRExljS&J$&C%^K`?#V_K?! zJ8pnfrWh`Dw2#R*tkFWy6kafiAPM{^2k1!%WMYsVtpO_Z>O9NNU%0UG^@8eC&~<>2 zR;>~`3xUsBf-I(}s2I-j>eVaD^}oM!z-IzNXMW&+T-eyH21tMyRriD(j@bOHIxTrDu6{c9C)MglUXT5^<0zUhyhER&(_}yWfTTtn6$+O zsQf-GEDRe@$td|0h+QK#pgX2!vAXpps9RHe`kx-%3J9(8+OkW7f{RuvxoMo=$YY8M zgo=J(;?FVOoyllgsp+T={i4UO&QVjlep_PRz=9gw3=t&gT>y-B>CILHZp&9V+qenT z6)4)&o@{Qs4GtED3d*SmpK(7Fr`-#k-CJtF`xB9LgCv4H2S8OzM<@0THBS!Yw^=CVx`Fj?G*L<$ ztn9_zbo_`&s}f7K>cGKEgt)h~AxYyA0stE{Q`Ew!4z(r3I`gZ*z+9XD;_9hr{dKs> zQ!v8}Z~pyIc4Kzc?zvXnT#FV+LLi?$JV`d5tQ-vjYZ0Hlbf z@n3-Jnpj1uP_!|GLZZ?ssJlKuV)U4=@_*zu)<|^s?%f$=ohO;RAGwJkZ=a!>QgHVz zH84zNP!e8(o}CHu*E52T2OS*?2&{~t!~Og3LYSlre*Jm?v^NKW$a6M3 zQv<}Fn$}~eW6VgN9=$AR{thGh8Q{$tihM>NDPrzM380uRpqp7kMC}q%{4_wW)Sv4w zvyNe<=hH9GLrOW&^~Ky$^MDM3vTo{?-`@l3Dew$c2t9;E0J%W?%W|~dNAdoBNF7x| zc0)H?<)~07cM_#jL@3{OezMjOPbfvQf_qR7nV=g!1+|k7?dcpsk_u$w=eWbt-DUz5# zy0HcXL#jrqiA_akP)%U=xLvnlU#Y~7X zrd>E*$TIwABu5(fG06A2-j5(CIL)D`-~XATnY+H;r8>9L!lVt=yD(Hxgd$KMIkgK6 zM6^y`$p;D+%!t+l?M)r}6I6_h1(5KwVSi`4GDCqaOgg228LU9r0W~$WyU9d?dblX`KIvKN9S&7>({COb2^xM(*| z33mDR?dL4m!S85^!azPT-~CF#SnIw|sqH-|)N^toYE+{=G+nYFC(RDmR3v+^D%7+R zg*7)mBY_5q0Bo-ch@xsB;H~L^aFC&rlvC|8C*CsRcjSXW{MHaARIl778$|z`p;H}6 z`mnca<~zC~P$xkziG!Q_KByLsV#z)DCT)5N*ZW}c-&}>YA1fAx z?MROTarD&GR77J3r6keBj}K9dkwO&3_#5(?f*KT?Js)n7ARWB~QTxrm7!a*=C<2?N z!ix=-z?biDxw~3iWMya1g{*?GN(7Ce3zQ8#sF~!s5PXyVs4-+oB&>M!%kLvvDufBt zCHa6jh}aGfH;!hcMENH^KFtgdmb`l7#zQ8*{USt71}744fygWX84%G+oc1sww1RS` z&F>s(LqkLH5G)#yq!5r8-s9CRW>M-iyA%MVG!5>Y{q*<8cxk_SNSP7iJB#k<+MNR| zp;zC&2X3Dl$mFX7j`4G4f(R9+`>!FlTnU2E3`i+GkUB~&yVw+<1deb9IoM-rXL$J9 zPku6pXH_63Wk>-55tg@H&U^}pwc0h!jKRbkK#{nhQrU%eL-9o;g~L5h7B)6TU|!)i1;i!yZ0l@(%cKb9;HtUwZknRG6P=Q!WD`=htnM%7Zw4s&} zas1rE`W!G)6+Pf%3dB(c&?!zKAq`dZMkF~EG3q%j`rlHufbn-}8~d;-a6*my@#Dux z=mml%%q1eC1v&s7Xh9flDSL-|p;^FOBrNoyC#(jVMf>v5|LE@FwQHV$y!w?6sZgNs zC;*7Yg3wX8yzIb$_S67JiZZzb{{m?q=Oe_XMhn#6YyUNF&+6=MF607fv4o0lpw6p8 z#D0W3uqhP@r0E3vUdZ4YRZeC#t!>4K;JbljcAy!w$%EiY1Q$OKG&oHf=qDP`VC_Z< zSy(&5osnLGUG0h-0xO}CtFHmNE!?tE{#U+|al;nDpKT!oh*6aaQ29_WNpUN18djHn z`Qn}n(K<#U=V#2X2c5Md0PcQgk&W&9&foUwx=3$r zqJ+hPXIW9?oTDS{NsU8Z?)h0}ZFAn8RfSii2{E@{@f!0P^hqY4FMx|i|HWSzNr1@- z`Ib;6C=ooo*PmjhyM9E(yvTU>CF|>*z1gjkK|#}VE{lnThzrPcN}(=b!x=wBC>*>gtg_Or-Gs$T0N1Mo07#$q3E)t5n?A zsW`4iak577`s{>{EJ%9H7hD3a_-_h>*y!;`=gHUWOAWZsFA9t)8Nx#t1WB?J+XGe` zP+V9_P4~(*fLdA3xN*Yn@jVnOxEB&@5=5AiY;?NWHuZF8P3ia7qm$4%4}CMNE{wr=@Fw>TlqtK(g3TZWY(%k#mS#b ziaOheV4=UNqKb%x+(Q4gZ(q};y=F)K+8w@VPyTd~IepsPzb9ScT|rew;u|W#m}oP$ zmp@ZR$v*zYPBNT69Yd1e{aMSrFhvaGAri-T-B2$_=i!?-PIY(W;!|1wr_x6CT{YY6 zUK}=;kJ>D@PZ4Wv=B>gc2pYekiFrd+0-iD7olU}NJVN&A@#DuD1&K?1%y%|f*=ssx z#T~ySuDES~@=)+O_{F?;s1g{UIQ0|DWOw&&+&Il=4pd{zImC%VgWf7hCn{DYqUVM^ zou+`yy)US0HgJtvEwj-rp?o+i!)b4X+0oLXzv&?J{{1l>dE=jKL>$kwJejp;Z!B?p z2~TzScx-BUmQ=o>Zr^PHP#Fq}4g*?n@6QC5K_We0AIqcPR>)D36GFdY#K5YgC!4)q zPtDcLeW9;qoIjz0hLgq6YayyrSy8|OW5_Y77}w)6tI=WoHZ-Q(R*-Lo<3XcvcaD)^ zj&9ff*4;|z(*MIX|NEd#(y7_@KQ?k*67lQbjC_5nD1I|zH05+ z_6fcciBq4(tjT1>Jp?BFt(S~CH>Q5ZsOCIu67I{<`CZ}K0EOR4s4!5^A3XlJ(`r4? zuc2QNFPJ}+ufc(Tl%vMFW?kjO~o=U8>~Tc~Li+HHO&I;-O}CD8O&G0Gs6m0js1g?xf&jZv{+ zgdp>+fzltf>CvKv8Wjc3P2_4XPE6xxdrp_3uJrvIi;*_HWInO(GMD$Pr^s~CD@4+x z&G@YPNljrZdCi<{xe{mNZ)Dt!`_iBgtiQ;=z&^A_|56Wi)*FePWfOpz^NroNdUiJ! z=hQXxVy)#h(@xX`n$ZwZJD9bEV3}+fq!QO!*t&`R8r~@e%BHc++@t{5T`r z0xfwCX5P#KblVe@c=Y69uq#swC9{bDKY%y$!k|TfCdad$=3ub|Lrv@(;jA2ORnCWB ze1w}YVA|2~#Rpsht4^^!wN)A=Y=TBajR}awzdu)sX){ErN0adCvmNZ&Z!&VRe6>kW z7SGDj*XGptoHHnpYzwS@umQ7XjXjYsqn<^j5`(F$*Al(@9bmyULp9kL&$wYE|u z2n)*cqWry(yDg_oKCztBnsaJg7%bV+F)^9W%gIpY3)I3JOpJJrd%;?c+-Ab71n2*J z!-ca>Pfh;FlMZPz+5BzQuV#f;vFdq4TmGMX>;J**5>EO^9z#%En~r4`dh8ex^;vETdVcA3`O~E$c0$q@f4uSD;qC0G z-Z3xXkd(fMx?&0p-rwJKGq2QPe5%o^H9AikL?c|VsF4vxUuBU-Y1W|9UDTCE;^$p) zg44LQNY+3uZN-%pU9WdIEVkUXoj=!BKj=sb)re@VXCItD-)2ld-FAZ{H;N0Jo}P!6 zt8(h?*L0bcuX6IpFgivJ?j25Rly7M5>n~uROlxIW9a+|rWi(7yqPA;6#r-!(k?23h zupe&%ft_H|lPHEu@lzypm@VA+8Pl*Ih(3%qAiLoK}2Zg?u?nNo~-y`Pr+>z!xHKj-tT3(W#< z_%|XgljYNZcU_rEe)}dOb-}^y0|(cx@pXQ(8r0&{#a+-O)&}5d9RBmCP4~N?MSKj& zNddo6PR+I}FnrMV=q)N==%k_(8F08?Aug3Ni_#m=15cdRJ154do7wg=(}`8*x8ckMP(bq_mBSYV&4W zcD1$=+gIK?L%L>=FXIX!vz#Ftm~QNQqbaWngC(UAaBKMWpk&7jUWrpvQlA}FNrK!c zEj$7{)!N=@H6Uc!ncOzI1vy~pqI;L}deL(v2p+|d(zKmehWAPBZ8$PNtOsuzu2wLt zf!V<1+;b?Wf3qvDr%&UaA2)v_>{IQ$?J&KlUHQqGkTiWhu-q1_hLzN19rK0V_I_p( z8$6~SO;?~Fv$H2+^&~(yNkVC#=0sx*65>Nwc{^+x54%*S6QWUBojcKLEg@>T zT0*g}{9rL-ZzKbzFLPy3B_-OtT|hQ>)K644 zukH040g~Jh25fV1yKTcW8AzUu_#|oj%~nNSEBDFoJxdqPKekK6kyYQ`^Mg z4Tqe}pZ6cl)-1K9>{xWbjjAw86{B{%f-oo`qE9r2RQdkSz+FygNgqV+OcydUtF=a( zKXvIu3;Eq$hVkOFr+_~7mtZ;6(`g0U%mTF|L<_r9Ux*3Ll@F%BJ_WCJr4lhOOI%4# zZ-FpLu4NZcEkU=2Wd{t$E$32aydhB5huuFF|R2 z!qs^txp@UU|XbhS2{Pi+>)g#g?$BC%@WvDM(cYKc* z_?DO&6(<#|nG<_UE0hr@jCZe>Lp^&7SoQqAcdd|Ly;#>QAq8vN0>1h2Zo7Ft^wAau ziiA+|K)L)MInGAzjN>CYruW{Yr*ow+oqx>Bt^${zvc=e^j~ITUtGzy?o~}ndwD!>>FAgm-*|$Hcx#YpPBp$?|v9ax61{$ zUCGrK&3?e#i9gxsx1uYKIu<+8(mu0)flVH|!i!P>Nfh~3z3Kg&L%E=qxW)kS2`@Io z5>jHIzp7XCg{(N^{`-z3sKqpM+gb%X<&(tYOte~~YiWqakQ6}Nh*g^IkO5;D3wCLg zS*ip~5_%uB!8li&+@N7MZqh@dZ*~ z{SFHZak+(xg$=yJp1Iu>h2W9ve~vw8I07P-5)^d9OHVmAtZL*u)Krv`kL-+n4mOet zDdo9Je6mrfXN7vgGf8ggq9b9xN5hFx!kCQ6*uS23PQ~kk_S38aYM%2q1lxe{?75J9 zV#@a*YNUiJSS8yYuafiN7TwL|pW~W$UiOo1RE)MYT5mgi;R4M=;>(wGiKR&2T?Jsp zo<}}2)pG(;(rnG%M;B-u+3_`g%s#To6?svp)JMcurcL}e``QXX{W@4g!Dv+Em_CS(dS-|TV@hNZQ zj;0|D5hGrmiH}Fi^LN-5_IKWO7HTNaN%qat6g_>v{!7+ImVC&mmFIuw(~F-dfPX52 zJk|vQ+B`2gDvT&lwt7Wwrj@V#P-mh!u0pWbyQ-fp_4e_#x(9OTGSsmXfhGnsCEh51 z(MtiP&e`kVXr_75+IuWTk8WjKYnL#4b!FHHlOKgw2YEqXOBnhU6_Sh4c_nY2hkz5V;&X7ikyM!lu zigS9TT;>U{XI}IgPoyY4>0V>jOex`_tnW2m0*AAY{QyzWUfWn zs#_l9JWUYPp@E9D8D>MJ4}U@H*=4D2%L-a9&_ni#W|9^Vz>#Q@pbFAWWHEBPUP}tb zK4!jSZp$C$Jc5GEzYCka(P*fred01_zIo#K*ikG<(IPrEy=3`p%He!~e` z;10GD>OP_T2-&nc$jl=s-hz^c&?TMyeUB-M1?iu`84k5O)PA{+PsS&_K{)fbU||7T zkWf-g%~QQv_3e!UrL;|eu34)mRuayTP;x^QuMx1n)7n+fT^8a`$hWv?G}Xa_-u_UP z=P)5xQp7P%jmz*&^32eJc)X8tH3~w z(1DOL=+gM?nM(>Dd_8U1$Irp}(}tqKG*DaV_?R5xMJ5TNN+c)b@dl>#pY=-ECNQ}g z?*k}BGry_E%J^|L4l{a8o+E5PuUW8li%+{?h>8!HLAIzu`R8V-w-{)-kNH=9{q*?T zdS{LE56MDLmy*!G#(o}U_fd9870P&)iBCD1yUd28Cy&EtH@km{6P=ohtJ_ipT0K~< z&?#lD;&yV(7jNj6w6^bK>A=8>K>Xm z@1Vy}?_Ud*A0MAd+1p#14h)7`2q?=qHEQ%*p&}|w7RpCwSay#nWXon3-B zJ#L{wNzh#0Yg4|kUQza8V*)6y^R-6Ne%`3Fzo6z7ZSSwq_8dQ+E%R)>Q@^~8tZugZ zJ)4Tq=pfND8rB)6?C6NINKxp?QP>)~)}EZSQpKvINOBVD1oQTAac6#M=3`@q#=bk) zHP6;)9^1TQs4*V1pRr8*i-YWSI~f|a?z;rr0T!1fUd?{5NiY)|Wa)q}d~iX0Med^oET_c#uwQj+j6iHD>=-42*^ z(~eFth34EWOm2Ygoe$mITsVY;sNXO#Q06kHrJQ*4A<~Ov;Q-woX>HYe?-XwwfJ^9) z)Z!vk6+@-0?5YKAVoS~5&UxGmk>_jRu3HPCeF_r2Mo#3`-0??OAy4OS6PRZFj^NZ( zwUg@06Xb28qL6j$-=Sjb4|lDDnWUwLO<|<32ZvSSG3`J7iG_oMLjmT#df<41pkyY@ zB|uNLRNVP*SU$9)j)fRhr32)cy%02yy#>P^1%xEDHRIm0Y_=*>Ns891Gb4pGr(B_N z?@z|9`*<@aM^h=DpLt?=7Kqhx(l$}aI?r=PM6Q(wn}foh>rXcp2DL?p99|%;QAv;0 z>sPPdMt}`P}A7FCHm4*mae^pF(cZ#OuH=)>!Hid?c(`CWRmsmS9WNVgWY>)!ZjKPSF z0@BAtbbZWSl>fX=Nwb08c9*J}T*D1QyY&fOzS>8dc;YeLHaMK95W}l5(V|plt>iYE zb0Plx z5=AQW02-z977wb5tM={Jrq?^U^fWvVTrl`}RcSNPTX364;4wnx?@GNY`nS=NLmP=8 zl4>L8S;D0b`wXm3H69@R2%C1VU6gLBRq1HU5BH2@CWVHU0}fTu8j#aojk-SGBLK4F z7|GRZSXHU_uJd7xp5NyaqI!!=ab2n~jH8ft&)8#)38f2-h$~t1BeshdbyA;;_3U+L zuXie04%J)7RGB#)?vLbOKm_PaZ;zR|!gk#~!jedy7wUZY>ipHOK(bR9wJIsv#x*gzRxQ9UDe>Bds!wF3++soEuC7B4z# zT$5iI7iqcY2UE zOe~;e{GSeJ=zVJR9_{~dYnQ-n%nQwEF)ok|Yc`0U`NI}9R=PigGXOacWoL(UApsn$ ztrB9AeR}5uh0Wi2NFi@?fg%v*t8h7*I92I5^e5cfu-o+cuc@+7E!OH^8|#EE+OC6* zGigfCx(>Oi&6i|`LlfUXNU69{cVh-RZt;cSnq7W3`L9;8rP+yK~plt$Nb=>iI?4h#hF5%uI<%+2jo)2{=ZR(kzjNMw%2ij@c4Kqh3WoeP2p>P8Wa zYUkFdQctduY+!s14e@8h3aUXt?>#r5)f!>msdAJU&4bm!w77713UHs()d3u?3oiWpx zEre^W-S4Y2&6nF5G+mcm(aEdXUH_FLJF6ZIa&Uu2n(l1Vj>_Fd2@V0=#`dUR!cxAm zXAs-cDI4T!^ELAs&~{YAv0@{@!^!+Q8dIxBQ? zBnyxakjH^>^RN;#0&X=<|lXEE7u3C%_Ft~$PGi6hPj5lOAzGTEv?8U8A9Z$!Ak)EOgomH6QN4?LaUQO ze%N{83K>OztTg2kvWV|6e3@?6n!Ys>arLS}Xec93PhOlO7iFU{vVylDKW%LO{*5cQ zEohOwogT;(4c!V0Gpg%j5cUwyG8d`Y&|8V6j%m(a$^|Vj#5i<+=5P;mgId@|3fKsz zCoL3E`m`$dbzwkuqU?H@mR@XDr_TfrKg*q?6-CX>ukSM1x#a1+`UGmZ^c25MUt1X! zFyQy-w0l_gWPU%?;kM~6LFnnDLsXJjS7JFCT-#Uzd0LAB%uz8i>$$(}2m{yY>?x7F zM(ds)GUdqS;gvUM@+;a-ETs6bv9eVsU!Y=Dj(cpkG?){GN6wI=o*TV7gR^f?m}rI` zYYijQjoVg3Is?@`gHc5NpdepSCzA#D!sx9+1zc2AK)A@m>9d^*JgB=YcV`Aphru|~ zO?tJ?WZZQ7bY5<$h)o!rkEWC8^=_ct7Vxb*<^T*M&L^+hMewprMwCRw`k%Kr@Zv7j zgbKv?+W`V*=_$SfUbu|mY<^yq*{*xDBZlH$y~(@&ZJ;fOrGC9L^MbNXO1t53)>Cro zLK2kbaON~6{+|VWDFUmww&R6owlb516mpD5B`LPAf^IdVSD}KGnEe**s%ALQwAT_H zC(>7^>WmoSq5d{my6Sp$dYeJlAuvXJ=qbZzIBi$=ZZ#sBLIe{+t)mGWvT&i{w|wf@Qo6S zVVg^CXkSSE&?)%-e!U7oTw;Z9Z;+yj!2(fYfa`fC?pULS>e+V^Wd&}-DEpvCu47g|;W zB`td{%r_wzh}!tme?+viEtob}GE$O98F@d16ROoy)c<3q3h3}FCteS}WO8^IHjtrg z{=Lj0l?TiG9bkaSs*^F>#|w$;w0nl3qE;;VhFs*A*{0g(4*r4Z_Q^om*-_)&3Ca=+ zJ1ce-dC^hsV0uec+f&d;knvZzFLar=H_wun^gfrL?@WYh+s3@hta}4ObWn%c%9kyB zI3e=$CW3-+rlAU<(#gJshK&rcyQpHXitdlE*7w(NuSg48ma3HoYIQwV74S0+$h8i_ zQC!f*QeqIVWZe5hS|a>oWn!d|^cg_kDO3Qn&suO*)7TrTf|k~3kQpDwOBud-x9;kK zTuQ9)`8lrC64%OC!>C{R%SOA{G6LUv+aI=Oe`ux)M?xu&_N=rsopXroau>B1si<E8N$i?6VFu&@c<-(S6)e9WU9xp)>V!dZkk; z;tbWQrzP^l=Z!vF3U8_7a;4NH+*GOwjDnK_WcrG-{-6`@L-%=ocMgaIt{yheYbzS& z$E^ms_sS5MIK@kTS<$*z9*zZg&V%bS*8cc`ye2sCvLHlo@W7~h(?+1o_!nR)N~X>7 z$ItYs{R{Og8X52Uk7hrgGz^8KMq(WlufCs#RjNW-FuC0vJfL45DPk8X?zZ{g57BPB+sn zQldcrbebw=Ob}M8-q2dxx_l)U0-LGAy+|W71Sb9qT5>erL(A33^T*I}1btE7w_{_yM?R(Ekl{M^SSf_1Xy_?SD8zvVTy-KLa{O4-l-(@Ic zrH>*NW6DF8hAabg5<~~pY4$8^Le&aG(Wr;}d>ep_n*BQB6;yEgC% zN+;7k=1rWWR1_U%$v3i9HC*O{{%+_^7sc6L<=J701G$B!0H|kiSq#VukFpK=$%?Fc zibGOvGM8CiYfrI1R;;bk1W#*fc5Q5qsKl%c%li$>HS|G;3{YaoX)h(BTI zj8WYkKZ*It9XxE>V#>V{3SgcJ`D=2OjMn&$A)imKwo7=V zazW~bFi?(N+`f>~q(h?XEhx+6MS6-3B^z_t0CMarQo~RB*X;8;Ft%vCz+D95D>}uKB`SnWp06M7sa^8&LsDiV)vEwS zP!br#by`#t`L)ZS0#`Nsgn0T1XpbrJ#ig7zsCAJ=LwhcWA!PVpzZ24KnryXT@LLqK+_dqsdhP~kFs{@(2FMGH zvKF*dyTwrRi5v<3+gf)xrVppgdy6KYfIx3KC;}G{05jwGEke3KrLK2M_pXGUojKTQ zKayOVEXou?Ugwkubkt-6bXuTRTdYeI_Y_9_KTbO(_^s2kz zO`xYN!wEwswuA9?`D&!(!kHQMht>U+2s%O!Ctf6~ejg_u9rj4XYqVh$E->2Xq}aDu zGRoE!1UfM1o-8>X*`18G<@o0@VW*)nm0*K)UC(mf8piFcLBNT^F0$ATJ!RV*tk7?H zOC2@c8M9c~lw6HG0u{H_a1>YbJ+mAbXGP(YOUMPxjkka8t*OprB&5p*=1qXOr4%h6 zd>N7ea>W(v+p5 zI+$2CldV}>sY)_0^qbzh>i~lh$MWA_!>S~uZ@bUAzokZc(Zcw?|9ON3V7^>vdC0eB z#o-#IprFm}mx;)#Zjf0nKY~))053C&2}Kxp`fG+L#2ZmVSkrqTdd~F~o8csu`qU|% zpuE1t%Ao)R-tzldyy?NNg7p5QMRBAgL@oO<`EhF&*f3lcxC33uWX~|4V>+kkX!sPN zou4LG#dsMgtJ)>%>4X2wl>A=0LCEoA{}B4FT6k3?zesO=b(jlWawbz%sbc7=a)LR7 z+f77biMc3F@2c@H6qnO4+eaGt4U3ms$3T5w9{IxNYUAxj31|8088*w6$8+wBL%8nj z>G0dgl4Qo{Zax4qBQ9e8u1XNS53>!#1LI9<2_m>rKm8U`YN3QOxA~{4hRBamOQ%UA z>UZQgA2f;|E;qqIDVQh^Ow=gubO)w6pgI#b%6KPsIoC|dYnIsm5e7a0cCgyY=XtP! z@2U6kLQaNL1j@ocFyFuW9ix&gsarAR^cFcu0UtU-jwrzFH69Knp;x^DDYrCpSfEGZ zGC!#R0l^{G9~~Zc9Ql@9&0Eya!rzCO=^p7LofhcOOt-z~)GEbtqfRM?a0$`E=QuK( zgD(@x3Dpkc&*4l>It=m)4^O~QJ+c;I_@qJw+QJIXS3Q8w5d7DD`x&+NeGO9f{0*{f zebJe{rTmE$UrzMOOSCXECidAYf6RQW*czv;yJl5!sRQ#k6)0Ztl_KOAm*nO)eC5h9 zKpVa|(F-5JK-%8O!5cU(sRiF-LHgVeXKWQ9T8JUu7iCg51v9jbZtSr)xt)8&{DEGY zx6B&pa56x@Qty*Y^)%f-^KC*)*cuvj;@;bz{x7!P0;;ODiyA)I7zipTDj+Q-2ny2J zG)i}fw1gniVS=EfG=g3ULApCcMWqyJq(nfZQ4plQxzTt0{}|tQ#yiG)@3@D3_I~#B zte9)AxlkKO=B-?AW^NMjT6HH{dqar!S3;NvjVXm_4SWGIy*U~_I1MVwSVoB!5~TKG z%1E@PtO57z3`HpYd;dG%u731br-U{{PB0KKhk=EYHgvOl)xx00&r?(d}ik7!{_ zlntBx{&Oe#C_@MV4|IR%qIo2I5K0T}P+8%U5%KtwM-&eN+Yt4+Ys3g5({9Utu(zR) zZU6)~N=n7J6E%=8NgD*Ia*b@|_bpM<5h=8J|5fBbnZu;REfs1R1k0Yq0uA{3FOjq_ z#I3C;aq4!6v{hC@c7jmHjE3s~ z4#WL?h#F8+eN3lDMjE$6!`;Z-!|>fnzVfa6j-#TBBA#AB9J{zrM+FQ(<(`A<#j3$a zAx4o<2P4pU$(5^C7SdoXdXCo9j<)F}w!TasMD6j|p)}R^gteUaee}ptzbRgFjk>7; z9S}eNpbatSmss%lwhbhyDvORwFf~A;js?QXBc<)R?&IND?Z59-9>vvM@t&HktegDx@DifcEuMF@RdMmQB98~4EMMOv=&C@ zUh?b^^I9$Y`KLAfP?BT*sy1GR*W7nTkCl9M7Y$_t5u9SH%v)U4w~o z>4S-~Q3I`Ng0UM&n~GYhn_Ca2C&!&XuY~$R(5nHyLnS`<_32CPPP>lKEm^)Iwu8$^ zQ_Mi?*Eel50Pv<$FYLm>BP|59h?3j%l+5{!Bpu$pV~2`bTO0(;Q~@@+{w@f3beKag z(VtX?YJmg~<7qHOXn1l0B91aP#ITzfjX02`NJP(CuFDb>dZGqgB97@b`>h@1KzrXM z2;$7jdJs=jHXr@iRVh*~B0;DxFOxnJ+dOyYS=R+4Bu`_|VKa3G^@CUvcO|s163wkL z%|tm)_W~+ZlB2M2Aqi+S%xuM0U%t3Ft6b^XmJOIguXH?RE87O{g|zBBi8F)g#&7(v zMJKx8V@X->p&W?DJpAv3^K}1>CKoUTSY#kdLrAHi1Btsf5Z#_c16GJ?k)07LbM4Ph z;()K6w0rv4GSnDcmP5~a(DEo@QGdYV`=v2W@GcQ7wj0 zkvX(gp1q?4&~oS+I%*QaN*C@ch$Z9L%u7(0d%pwyg})cYUBPc$2Z}c2ksiw_}N^v@h~k<>wdXTQ-s2 zRiM3Cd+@Vj%1RSznfWIgXmUGuWwBV)M;<3c{5)6YGon{ND#K&tz`QO3SMt8O}V+qJnF?<#3k>i=kwkv#uHaRE}V=yuA88gb>YwHz9Q4c+j3!!|IF6rcm=96aV?paomTYzE5Ysq>GjAIM_yx^d8s^GwAT_<{WFICWRy{FDB->)jvFBruf$TH>F{`jU3&7n(k5N%VgldyQ`G>kgn_Zk9x1Me3LR z?|I@L)->b#SF`jRxSd<$#G9Wu$zH$SHlv{*jFdPon)n*2DEdn=xLN7O$ins?>rhe3 z!ggwp7308qqF2Uoxq54&P;b`%exGaNwZBSoLW;^n3Tp?Ro9meVyI8}p_VE=(WO5 zq{svy)tdM37IRPu!+T3JMg~x#Mf(LH4Lzcjmg3yUL56hkr!J?e)c$++cPUU%jm7G2^+Vj4Wi8G_}vg^d3~ME0^Ch6)Fz$>+0V2uxMEOJ3dpzN z*+plmB>wkHDtH#qs}Biw;8~7T-R?$SWOYdm;MO~F?)rZ}YnLoKbwcPUM9OTjiU+WY z>GM-U5flgC4rPPF#ADZ`cX0i3(;7xb>!C!k!@nADu-xa4H z&rhTmwr2_now&0^Wms)ZQ2p{hh|tjSAXD#DS+4+);%*EQq=~ld#h}-l7S5OsP}1irf+Asxt+&_ggaK zQJio@GipL_`9uo&`qSEi8Uc!($Xot1zlpDb%W}dc$1%-D4-y>K90W)XMaLcF!CeLU z0oe~fu58N+;=y7!i5b&zslFR`0}Vm^Ynl z+GlRKnq05D%AXadF-^drI=25?UL1CA?hV|(kzpk9=pNlgk1edH4e(?8j@;)=>p$my zwu@vnbA>~qH%@y46&Vfx&=+B(Oz-)Q1>U)bY$87W z{@?EmA<8ZK4-7IN`ka8F_soyzdG1XY{$11L0&8rZ^uMe1k@9rEpT5iauKYTY`T1_; z*3|hH0?QV2h(3R06>o+KT-g^kB$LSw~fr$+<>BgYU zwq{uWvtXOHV+S)=Z9jw5pys|-Evoza?w`W#*Z*?cQHzafkq5@MAH7OPrcUWPB|h51 zG1d`b5KSmh;3L(Tuqz9{Xk0svb4O{oIjY7dF;F5W03{^=OguyDm!Y%+Nsvy|wFOJG zXG7YNpKUtIx?hI685x^nY`Zl68mn7x2khu}?3(kW!%}nkj&~X#qn1zC;7xIL)cLUf zV@Hm#vK9wW84m5lz0itj%1Rfxi;C%@)K&2BcBLOY$UuLL@L6wa7D4Nfip94g^9zF+ zkN)06^?l-)5&!sXz>Wnva|IQl6B(>}-|GzhUD}Z)=`TK_(Q8&&C*md|QHMjZy)>!24 z8XMkcEMJC!(-qEj5nW%I>76$jZ{Sx+^T5Bm^4qdc-vRsne?JOkXySf1s9yQ6_@^QI zwPea&JOAyv(|1Vg|E=XNIcnf-*+P9+p)*W;#2)?qFCX9dH}_Y!W&fE=beqagJiPuN zZ+{3zJV8aJJo#n5WzSJu{NuY|WqE{X6NTVN=B+REbdkqWT47y8#9;~?{C(#RlCcS@ zyN>a!+drN{AU*5Xs>bn9dv;rV{iTwAR&NEzuPxiDmvMC6q*dw6Pv-Y#XnqRd1hA)0 z686*uDSAxPheA1&?ccGK;=8gX91d)AkW=sR2+Ab8Q@Rm**TWf7)8F?&qT0)h3X$VD zd~{d-M9R7a^ESMCV3TH?lsEN}`xIec2YLG_c7y^e&m?L~z!g6M?7p|7?f8bYSZr+) zn5D*VHEY3`;8e>={`VcVu1><+cIIFmq_GZFDC)d_A7MN4p1J%_s>feTN|^>l(KGfKH> zjac*4CQVQC*{jfe80$D>3-ar~H$l?fm^R#y`0>(TQ|~zpyFb^SZVbvFF#dm+s(LI~ z1t87s$F_60%<#+11aY@CW7~4pd(-UeKHb|IG;~4Rf&f&qVKaR@Y64>=ZHa>{vv;&n z^xx|vMItQhZA81PM$@`q3}=93Gu+Hrhv<|vh0i~OM^fn;x}y*yTWpU&@d#7Z>|T`K zE;4A<+LS&TCDIEZCb#p*Xeu*H_mhRkFH8uHe!omO%TASbXqHqo{>#E*#dYk!t}i|Q zq&g);@8vxS55VaD_kz4t(QLVMaCQQIRSm+X{OhKsk1YZIab(v69;M$DvumL~JW zY&C#ICMLql5nquBO?dsfu8^52AwzHC^enexJ{7)u18Et!;L~WACIof$cD zV>YB)2(>~&&;s0E{G(|K+A9Rr@v?$WhO%kd3Yi}nsw3RnLsFfOUI`14(u{pNyM0$a zaZYle0lx|cnVutHlA)$}1AuTj1X&ki5#~r_Apw|~2MN?32tRA*nm*dT?`Y8Tkr;8e z0!SRi49q~Ybm;pGYzhm9pn9}Ot4LdMu6X_?m_vs7vCMUI5hp&8vKg8v&X88RfnR|f z7-}i2mqJy4{^&-^j2@65_x9@(Vo!4rzq6X|uNHQ#fGtdcnvXCS;(~ro2wlncY-T*6 z>e^3+sQ&7&s#znv1VJk{wRB73C0y;sWeANynPw2>uaajfi!F`krb2j?1!OWwb+id+ zSRpfe7m#h7UN}{B7Fh>2CLLLLpopt#^vODrw$eg$K!E)SB_il_KB?ZF8x%x2_x;n^ zkQ-3)L|$EWh$wnq?QVR6M7pKpMgtmU-Jv+rrnhtUn-LukN@hHZQ&03jVn(C0&{b!B zu)CkM10VS@Q-XbB&oq&m^7TyvttL^_V7Pi9<1^({xdx{uz&qU81Bl8 z-L~qP`aMGuovo!#wnTRUWWNZ#6m(dmL5oCeTH@y_1?Xq&qpAQ{Oso+v`^gl z`kFjlw|HIZTjI}mW4AjRDT-bgjT{OaTr`=-NRCl~tzHX{rsc{{_(7A79`2 zyCMc0g4SWCK_$1O=Lh2rB=7$4n~R1$CCX1kZmRAP!y2P2taFVsKTbT6lEw{Z3Vv_@ zllB^cyJ67QS29T@%Ulm}aJa!DFnN4s@*`#d{?rqnES-Y`l?F zr&69I3$?~HA3Aa}l9al24<`Y24*tG51&719mpxkNdeXZXjUO%VE3g6We9(}p7?S5O zqR7g|X6oDv-Jd7zRxK|EvRyOs>S3DtWt%giIn`uKCIsPUMDRSX_;lA8Z%lG0YP;YD z4G8r=76+GpC>INe@y>-*KxE4$AsnxN6e_JDAm7!weiMd`GxQ6LV3W@ZaGbK4uObST zi@uIy5Y$aGmOl&OwcBn0AY44IbtO@)$v}Sf?piMu4TPvsf0&o%L8Aa<5knH7JoWEt z2gS8TZoCtDJ2laJ)_aJ#xgtJO^V79{3iK`D{)4si%o$|}ihnq-!K8g7(c-p#*5X`$ za16=*ygdBs-VW?RLUNPqiIX4ncv?|UaeN~}NFVQ_6HyH*t~0WoFGT?=3c4Y`+H~5o z@fJa`NRBhy2bD*@WJbm4t8`3)$<4gK zn<2vr(i$FpM*xJGKffTewrWMUH05yInH<|8Qdk9rT#>fiWWtQ~lSBLKGojA+&r=*c zW%smB7~Kq?)3kC`k8Is_1WLHR74BJ2rs&Uv4cddvpM3GPU=J;$! zdZBFPnvH=%H5xVrm*#b>oWmf(n-WTdeC}s)movn_eCNI>}N%{#%D8dIc11-gt+fD;R=k-aRhMcqdf6hH&b7n zkhD#OlBAFvV&iSvs7|ac#XF7%h@xPbhka5j;UuV?d!ehWQzX2xv7h8k`U#-h0^)Rp zdX}8CC@^+kSiPEssd|Y#E zLN+XchG!h^wOADg>}S}i!gYwfU-e%NUY=jnf`O$CZV(fx@*UOeK#Wf zG_UBq0sBXOlMkA2n_`8ZJC3!C~dmkxWDK{+)QjW(_TMJcDo{k69r0tFg%65hBRM z^eU9_^_%kF_$OX|o@T69BAssuROlFURZjJIr?UO*Q1|BT(w{yNx#e^QwA*AuFnwY8 zu$-){{d}dY=#p#*opAb#e}t$rZ`taY8Z}c^Xd&_6FN4> z*DfQeISa|^)#aZ`9zfiQKZM*nCjKyo5kPcM_odL79k%J#hV1<-IN!iK6s8 zvhBrLg!x>ihAvS?MO$DfyAdH*(G$8}XuxEw;Unfr^?3a5Ax8GFq(GZ;bW-t@b=L{J zQKGKcJ%kHxD&x@sVXGkEr1=q|Fg#a9O%@(8(Zx!DXQ2HYDf$LcK}a#G)CSN|)6lTh z@I3}JD-JQoKae8RZ8XR;4<_WvWJ*x$DAzlNHz_5jC>TM(#-dBVV;2Srd|2MzSGDI1 zubk*oswzhc3R0G2q>khpqs_#PVZx3h#!x`NP#*ElXxt%4>TX_JAz8q$2-Oj*=#2g~ z#K&}Q^I9o3dO9CYZ`qbr#%=B0ni^Kj%1%0RijX}-$71nUVd$ay`T5N%pT|C^9{k8S zdT)Q4@#V|SPfyRc+=N}xXPZF?)tjkY8I{X*Bht4CX^x3ULJU8)~ zu80yyWbn)iK-UktV{i#BWAbPF6Q6jf6{M-=rxHe2EE5vXAuJGQLvMKLL$ixrwOCcD zHZU$$mUL?Us6%_bP-eAr{97g2Mx$4v`MGB+eNe?p8{vWDAVtko>-C5tG$f>%u4#J> zA6yc5;O0L2|5x2)l$KBG&o7m+j)fWJKziKJOXDr!5$M~sd*+z-H&<{5-EQdfu2lYm zNMO828e&He>gQWq9b>plSoILE)!+cS+<;GO+esU`2~o!r1m4xuRjBl%^RoyI(7nSP zGmHP(K7UXekuc!}B%t^t``^_lLt!sN5BjBPgEc;KYN;J6d-(%Nb#h3i>nrfk*qv_r zt}@!i%|u4|m*};Pq}w0yVlek?EAgk$F(~`7=!H@_TKAKoN9_7c z1glg<#lY)0%Jf9om~QPmbBeyWj_eshDnl2tl}wbo2oA@6BlBRADK@b?rywN1E z^XydF&j2Wy{s(vVo^L0irKz8Rx>A)Fpn^QpM~-P=Tm*w)y0!D7_mI)LN(8VA&^c_- zuGzA2x7d*yzC6sNJ898;4zX*f(Sb$>f)arc=SQoCK`X*gLLAZqlCy;Fp>-Oto+_{9 zh3CIUliR@cOt}2~yW3D8z=-k8O5J46JjPKj3m9FZ z4#_4TNyxF9BOrzWM?lm9N(rI--mOQhgF#2m`5&Kau??W32ue&`G||aMkJ!8)-EJly zItT+(cw?+hfsmrca2*yr0unF;zzS&YZ-Zj}xhcaPCq zkx`mZ?v_4?g#$~HhqYP(kA9T#w02p?`c9GN0nY(pNee@03j9pVfqJ>-r zXmo8V9tumAYu2QW_SQMboObJRV#%5a0%&r4nlUw(EE#WX+Fk)SO;n_ zaoS*Gn*4vehnM#LGl*2nVHc>Pp`K8AEl0||9kp9HY6xOo6kndM@$>i3Exm?&jz>d& z^U{<~?RM%Aq${#vImv8AKt{F_%NGxjD9O7 z)$OCEW`#e%peVxMy=-oLfJNPAU%5(ti1|_Bf&*1kiXk2q) zch+3OK$%~_8b%>zuK2qQQzy&^-#)?_ioo;;bQcZFkCmq3C8Vb|M!{cM*7S(yjCi2`;Z>cbB%ei*BH+}>%R8_c)n8y-w!r_y9>FCn2 zuL<#e`c!~DRbGcB&|}Vy&O^sCHz%;zz?d{UzOn8s;SJtNtJl2T2mkTOwsK{7*b-~L zT$gRE++9FGuro0>{1Fr)AVh8kb~)>vz+$mzkAepzX4nzao`gF+fAM0s9)8B#S}~T- zOy9cq8eOKoUbLXXhbP@}CH*ekjK93g-4gxxryGO(2lT0`iAcKlvdMoWf^|guoq90B z`1AO1o8t3bMW00Ui*rsmWkB_b$D~>g+x*DHiMJq_?_ph!`@9HMTp~#5bN~4WgD4qg zuroux87d;h-FAlH$nzL7HYF>_(GywHV=fmy&FlSY5>22NZ`gI3&NmXGWGAK$e zPv0R-0&?p*zMXRBkTPZ_;#;V}XEuak?Va0;9h8^m(HGh_^G;fz4764}ksfS9(9JDv z`R!dQU|1DmL*wLIVYUImfk493e>frm*jEZfbxUw9wG3ThQ6fandb9Ymna)YNE?f&e z5+`e3zBmeY@o(IkR2S)`tE1ZwyzV57sj(!k1(j%wv|<{yH&=UpVV8Ah&UvuxcqOM-z`w?!i(FJM29<)ok{>O79s z`kORu!f(#2nZGDbB;plf{utmtyfhHdh*6jHXkfxF;z9;>GXf{GUxkAHF|iepIOx9! zI$;)oo(5b9^&XpW!74w$5c`q!V0P*#?7hVD^w~K~$iT&JMxa{I?@(YXRPz#O|KNFl zWJSkXGl_11U1=J2x#>FTg<2@y@$Ec|wCywGbJLKZTOwu9j=D+gA1O+mLPcFYg)Wp#E5y3mB{xzq2qGC- zId&qDTNPq<0WL}CJbSDzju6W3J*;>-=Z0US&DMo7+1YI~Xy8P!K05@~t^{oEqmYmU zI?*)3aCz^82mJIdn3)*px`I&;kP^IusUlYo+*i-gO<|9BS4Km=V_bY}>@{PAailn7 zq9IcDcQ4nQTAjf477E_5qee>B(+U*KCX%+_IwpHEL@DTnnZmd&2;jWW349>J%@T(Y zBNe!0@Jd4x0Dz4lE>=%gd;;wnr<6<2&fE<5lRt&Q8tYIPMyEi_Jhp)vGXmXEV_RK; z8i-yXG=>zSUz?iS0b#oUN^UPOo4G~}j^~kFU}7TW z5Fj8zg4Kn=-598(2S@;l#Kd4Y&$SgN2t_xozr`FAG|U#Nxeh=_yE(#Ok3J)o*Cx;L z<(!}>l%aEK2JBv7@B=Z}5^}+5gl;u%3C@gaZ!+K^Nl-G-95-4;Hs%a@huxCWceV5S&hFU)ACqBBaO1Faknp7ak?>=%fuo&TAw-Ms(MG zpKg^y%kaE0sE+>kAKo;9aT6a~ft>)H6LoCE6rbeKbE((wEC7`cO(SdHZw;~is)Qkh zg?X84M!ao|m=eFaGS}QBDM!uaTF$+R($ui{Jz<&u_r*IVb@fj+ecq8dS+1d7@_2f? zFak(60tO*26Z-m`#m6Hl=XZcZ&^~x)t6ZNK?@-g!Tr;J&=9%wAyF~!qdYp+bOFiw% zmjirmF(lh=3?)Zh>aeAwf$0 zYE&t|96^!f%)NvVR^nm%mk9lNuu)6vaP@Z~=nVv3BH@wXFp^e_F0I1e5E|~MebhvG zY*&G8VQBJG|UgPJ=rBEc-q7}I$1Fs4m<1%|O=jReK?!T6RfLn<1j)d<=JWiPQEb}&<2y%ln-WmFog32&?6dbrBlAAG3B0@4 zSZa_jNkMc39a*4B>^U^+%>gG8BhJ*oTZE7GSehrM#X$Kp2ViUR`%rc+35i|;CYJK< zE>tQRq!@j`o`5i;_Ek;dZpp`(cfqNH-d@VG|6N=K$GV-ETnVE%!c8cOfBSZ|Azsn| z6m^X#ev=kV=?fT84kMeP^mqE#-h`>`>%)us_JWwK~4B6D-U3qg|`Nu8-6lKTJ z=JS;+^D#v30zXUetO3;$WNJbJA5;G>Bcvcqaa0(Ni~Y4B*_6{8M~g=iicYl;Dv6ui z*T5`ZbOY}*y1Acn8Wm6hLp1h2E#d2kmodG^zZ zXV^rt(m{=JCwZZnR}p8w^hFri%`aYb__x14$8n-1_EyNJ_AEXQTYU}#iQHnx)#XtG zC2<;ho8K?*5P%r+BjSL2WHxi^X&)3)MAuVh#FnCeFT48o`pfph2&7LP*~Y|Zl<%l^ zgdp=F(iFm#yG~bc%}41K^VBX7gIiEIK?=f-mnT<FlMh8PJ(?jPHiiCAFv!P- z$VTlCTyPcU;;-YYSCZSamp2d!o|A1j>86LV3km-KIxME|9h0$d%(MLT-#tP|9sxQR z;4S+~VrGF^Qyeicftb^Qt>#vKQ}h3ZR=umP&n7_k1?(;q0*A6J`y>R?wzE@T zW(m5*Wx9uh$mPWvp8ZN<{8@vV2P-m+A}E%Ln)PE_ojG#`?N5a%`04c+fxlQV0ia?? z0t#D7VLM3lp|RJtsDjyO)fO3nYQ@V#VyuwAUAg=sXffaLbnbpg#udL}8Vccxn7e8I zLd(fM2N>mQ``t|fM^1V5j=zK=`q-TRe(|LhU_z+S={KvC*uc^()Ud(z3UaG~`lt&_qVu+mSd}+w*$?I_`2mpc?fdT%j^Tb>P+T(p;I#gx-~i zNb@aPAcSS|`d}}5Z=1(EO${9v?B*GOA%Y_Y8jygw4EamtW49`zl&}1E^826P2D$N{;>05= z-@cB_t@^?t_Qk#7^A??PxFB{P^Y;nq1&CYfZf# zJ{K>STOVGt*%LzP8mynVO%{WNQkb?MJuhTRp}^O=(|)6 z-ecK`R1&>2W0`!{A{Pr4OK> zFkprP(S20GJF~e%%N8ov1ei1S#H2os{Q5@0p4C)kz3yv#-8<9f z4}^a7Tm1PhI8Sfwn@pro)3xI^#cv+YTXeNtJD516FM2cbbt`Wri>H{5pi0%sPz0la z#ME21uZpsUCLb4nHZC2!#mdCQ!J+zs5}M6@%kMG_3^`wX&`oe}L-nGe@hU zC7aMJl&8rb*0XW%v~1ysBPLlbd67#b1lnWJEDnA^PgPT=+vd)00-FN%w#J zX2j%opLPSE_o1P2N!`yjmMvv)yypEn_PFZ95d}s(W?rg(xd?vN7^I1oG_B8*cIVD1 zPyA4e~7JLRm{+}YZCvMvNz9Sqp*W3`-SV7%Ztxs_U69H;#QHfs-w{?Y~;QM z6f?zu^|;vKB>CfqBB_~;_h>7`L{sU=nzQnVec5NuAlcheCM*BwARNjAC1&aw=zE(4 z?a^dn3Q@rEhf+fmQn|_$M$J7BK4yr%! zusf!*MdHskq!Z^0SO*VNsAR2#>&WxJ%`u$P4}GVdx6N~fx-m{+^`KRI^hB%1KvGQo zi?o{)Pt~}l^WS(j#okhqJo%=*>4{vK(j`i}th?Mpj4GoBkHUMimbV9nvwQ+JnKhzzQCERFFlESlw7cRgNS zWLJ9i?Y-%aopYN~g7w$AQn12!Z}F7c>P zoG+#vu&q4pPc#1pJ0T%6aZC(+mb>@v6%R>NF3;`& zVo697#)`Rw#MqQPz?SB->zC>(upSF{W4WNR?M(!@>M4n#mxey@8E;Wd|FIHz?yIQ# z0nf$F!%af*r6IEOEc+-8lOXzOX?b8j_xDeHD%N#02gJM5Dk4>%2>Wa-aq^*JetPBn z)LZtD&ZDs3&z?2P)nsTH4;%UW`ugU=VK;-W(ikrp|9u9glplSM1VL=l?cBwS0=O9r zyNtgYkD+gTm;$>&?9$Qm8=G=8HORm55G_#H@Ry+}n(RP4b(W7_g_$67h`1`v~hF1C6jwqVE z#mKQen4O0PHoX@v1 zO`Q1k=egm>9Ob!WhPDCn5pKMdFr7$T;3(xLL@s z+jv*Le>W(FP((yt)`0%o_w<>XO#toCn8`8LmdmV3{~q14$XVge+#2!Uk-=Kl-6ffA-JQA9bM4db*|Tg7 znpa-EGOQw@o|vn7+qVb~b0ZYQ=&T)w{Kj5zQ&9ycaBJn<1wfjM*)eF{e}m-=(F^`K zV3*}IrO$gI@;Zoo&*0uknB49QeDhVJ(v2G@z^pKW%lXz269EJ>2(_9MJ!VM%+yRD> zFwHp{a9QcEMHC{8L(Ks54}n>rFcuif&6@SPz5a=n`o4#mZcdT>=b1BKOX?P1Njjhy zPw{iOy7eVTe5gQjlzvA(SDwu-3wPlShCLz+;{pzSxUWf#tRrHpMJbYKTI`x)4hh39 zCL3!LZZF+Vq1bat4UdDn`H0Fr%2Zo|t~O&H;VC+YQ-{y7s*Roub%lF!LBWbFRLW1r zl=T<(3&wHrlBPj91c>}nwXY_J8#C6bQF?o!nz9FNsnR*N$QV0{9oUhMu#1Tu_BkY( z$aRagBI)$Tg`Z7DD|=WCy9LwJcveSWZ4S+QBGJW1 zi4VxgU9ek!1rm7xoXJ#0*M~22`aAPkxm3 zrG{w*NwaXltzN4Qh>F(AHLLO3(Oz=O^Gh0AWXON#pP4DC9H_X&`1$5SR`(g2Y@%f| zWaUcp-ZK4-T!5u8`)&O*!*jFckLoU*?!TY+EoBlL>f)0qGxT@Gd;So+HyvX;9`L~v z1&~A(8@#nd$}!DP@FL6CL%+Vf7qNkQ4tRdA03@Vn=W~+SmEyjk#9IrKaAQ>2Mlq}9 z6PP9DeHG#`8)gVPZ{B@!3=-5ynEX!4v+aum=FZ)@3O($8wB{26;N04IN7a7&u6-ek z6m#JxCXVK;L814G|G*mRn8qKUo=z!IsxJ?50BDW$fA@D6?kEff)HA8M|FL6bD}#Jb z-cc$q8hQ%JRdY+7iJq8jtDYNsZ%kOm=_JY)vr7cmzY5^EtDkv`df&cpLUOWOw?s2} z9slon1AygZJeudvDW0ziu9FLe;Q36Wx1RKRRW#!0<=eo+9e{{|7$Xg;TWsSZW(3-u zI=pGimOm|17ZA}JGhDoQG5Np}I^W6OfuC05)d-R^yPM5Cnnf6J2_}W#GAXvpT{^Dx za;EJC6T*Vm-W@8fbk0usy!Y@m19_&Kr`%{N)_Qkd(9C8US{1gh6927x_3c9^?*gfs zb4yRe$RR0f`Vl4)rsz^~fGG3+_u41!@on6bA>zDRCVm~B*|r$My<{CIj$gxFW^wx; zH-2je!_YAgs?%}HmZON>2tZH6xZwo`$6^W_UaEABJ);jr73D8%v1Jxo_ za&p3XGDRlhPmu|jcI72R4!e&TCk zU%<@5V33gQ*AcC7+E%r~V|nIAA#Zx0Y-Rn*fEe8SE_s^QTK-@A<<#T2KiuRvB8TMp z>N{IEvSp)udJ;szMgULPO_t+%)sZQ-6)bF{1!hh3IEkU-`vo|6Jq2xhw8CI{%z0LV zsRFxC+OSxq+n+bO`2f@E_pXx*L;IZzR*dcN=NZfD}B88QzANS$%lbwqXLG%W;6ErLPnVvCYW{ zoTx3+ApUBl$;|MO(6z{g8xLE2y`H@0Hn5S%0+AyYJ1t>Jf@yWYBe~pn+s^_0=VxCV z=$2d!Q5AQME2RNc8SPCnC}hefW^Ts*4GGUK_nym95v>BZTkH7|kD z^DI;qzmJ{TE5m&&(c&)R<;xfWYzC@mtfW^QhLICt2}pRub7A^l2xEnb#0R{=M96iW zvy6~{XOV!HCiOpHk2|7Ma80omlr+DZfvN$!kA=2tY_=8TyCt?o@OJMF zleUM|J5kndAapX>kNOVdS;K)d(n(*K4F6RArXTM%+g`Z)uzAuhS7q~~I}cv9v`~oI z(wfTJJJrH*;P?jFF#ZRb%ooKDMfmd0G-TQf1b-=R@Zvv?02Hu}8X{}c`pDBrw1vG^ z#fVb3T>QT@0jD=?a*1egAp9QrUbd|3gBNhW!_CQ{f0WIb-##bN3#Onufg&_HLlxQMEF~Tg`_q`*Sn{A5bmo&Z7aKr$Y zf$pMuS@ZPt9dneyOTE%G;ZGlPYwhtyVF7XCK(^Zh=T}A7O~dkE937djlFB_Zu(moP zvhnn56((k*Im^&2?JN?q=#^qdMpF@^WW|pa;t+Q&J|$o|B{R?fJ z7rkZ6w6-}@lpl_^>dWw-UI}~I&+sP-05Q1t3Ze4SUqwMO_C0EWP=VRHFx8-&b@D=ULARg~g_oqp;zAx7p3mk~eqO~Bs z^EWHRKF_s1qpOT$$DU^V^37mTmPd(X)$PgFMo(91aY z;vfMlg3pKrw8cikV;!5-}dnjC)1V64`D_P2c5@wRO-bCs*pMjWR%Ju zAK$OKL15iT#o7tDpC=GDy76n0t z=(t(qVH`?xC+V+j0RL9aF&{&=+sogXEmc=og;ZgtbX2>=En8;z=0x;j`2!ivbnT&N zUm38H8jijcw3cr^@sicD@yVSgi95R`AO{3TNb&Ke>=MBYGZ!U+O1s5dFo@~bQDY1#_|J~B!?*IKqo zERcS*%-CFG>V3*_m-ew};m?XBNh)DN7rRK0fGX=b-9e%}~?XYF0` z>6PDXoxuk&K7-fukdWYm^yb8{k2#=Au$`v%!qAV`7rPSg)sVHOzF~cN@Z@c#^I!Jn zMvnB?N3qG|dwG5J*iL;LXfKk-m;3z|I01~9zuo!0jmM_a-sER|xv#IZG6DF*Ly~Xb zeg&w}zE7eqmCrVXUp0w1R=ry?QtcDQ3%O@0rUUN2^4!y-XyxXM%Qg9`K1H>aYb9(c z1-42R1zOtsIIjHQZB5yjZx!S9*?sYggS8Cmwn>6N581Mahy5(*?uSI*k4H=u(*8ZB zL6YrNggpfl^f?AUgD!Xn*#T@M9R@_x=~S|o1NXRFGa%h6Xwl5_ds&K!p6K2JU{i~N zF03aHj`G75x=9S)xHu^cS{g#Z^GIK|?b?+HEBtG`Gqm;KmgrFstslmF{(11?#nH*4 zK?+ZF9hIKVc~lrDnprk0n`+<`j^4F`B|qm6@Gj01`R(Sdsno2pkB_jh+>I4>P|m(` z9>_y2(4QX9rpNkD_TNyNF#N$>hWZng*J2s9&^+`N1BphYy>ZGgt+WG zrrTllyTpEI`);vmZ@K0{MAY(6M8YgSClRyJ0WOW^N3vK?Vjdf5cBH8ZW4nnQ4a}KD zw1@#{WOd7^88F1m?%r*mxyly5P|fTIL&yjUX2&MlGY!lz_hY=bJVqvzjYw@PmS^Q| z-?<}jqw-hT*$c8>trx!+F7E^l}O$CS3Z|U zhAyL7V{92RrxUilvG{jBk3Tnv8%G>}9zZCujK%z#R2Y}xm8i*YHE8+g-a<4s@Z}U` zR&OR4dDo3;x{FEM1oz?n@&4 zySd7U*_tP^p!UJd+fgx^`8s^oD&{d5g14zbtZ}2!}2Y?q#q4 zp7c(->CHY$5;WYRW-jHwa^lsq02jB0U_ zHRm`&_(s4io29_BTg3Po@`n+}B^`h41H0}kb~u4Bf?5*X6tQ-8Rt2nux=T!!??YH^ z9=_G@b)77m{lHZQezLdB0argu!v{iN(6IDtvL^;Db$z2JkGw@wr+G&fBR0bZ!_FL& z6EIJDzh{4q1(=|jiY++b_2jh`Fup9p1YJ>zk^xowBTs=$dBmg2({ zKL;dM@CXx%7wvWJk$LpuXrvge zzAJeEy+Thtc%B3S|acrgFK&o2kW zyK7|Xy=5-xW9^yAixNOGAC@C+=zVq#*S zBt9o8_?Q2NM&MY1o4@m&_|*2Yr;NPt6{>$CDm3pjlU++M_uFyY zxu@8*HK#2-7lb%&t9O)jU{vP#Q9F1vrSmNE*y`7%syF1I-*H*IVx_>OA<{^zyFjZg z-->qCY*uH|b<%mvk)7w5eqLHIGY=Ox_e@_@zhRy0oZ5<~^l&1=hJ6CRPI)T#M2s0W zAnBREUcW8nE^1BRdrF0fC=%38W4u9RLLcO){I2TlKc?%O?$H8lljY*g8$Vhe5U32= zPYL!Ckb}tvzVqi;_L^g5#s|UUPZ~RTvwZUIU8!_!Q-^@see7!^3<8!`sGNFz4~ilS z4%@UfCfeY5ex+=fy{B$Y0<9XG#Yn)2qG=fO*0R~{V#`^ykLKpu8*4KSe1e$=FhJ5g z?a!PwxeAL63YwRsytN+it^T-EQMSjZKJ^glh)>mDIqjM`0jD)T1MCjj(9G?8t9JX9 zKaN$4!jYHk?D)W3GQ-X$5(luy0EY|O-s50mimJl*t}w6*s&Ss=?;b-P_5piARm-zS z1|OF@j-T=rvk|@iYT0Enw!6mOA619=mr`W!;``>V*TY676NA8AxT5@hk|zs(@9K7;5TZApQzWG8Ue@xg_r>esLLy$X2v@G3mP7uT`$ zI0~iLW<AHy=#)l<52~CyD9>oYnl*kMHH?nh#INZKRF&f5vaGt|=bFDEU-$QLM;jQb z3U5J3M%1?tK-^aVBe};#f*<;WbMVBe_d(ATI$BCH1_LuiZ{527lG2amTgHgunW#la zcJ7@Q9^KB+Lpagix_vhtCImjaxO-v2Sm5BL*T-ZHi%-XiH7-?XZyW=~I6KfG=}N4* z{Dv`fqmP#KH3;>|gRpB3OEDf32V;2Ls*RiIeaz4={{YPA`l-VYj=kp&X-yasj>g&V zs2%kPkbV0mEosE=l<&jB1oaEyb&AeBGUeF4&FD4y(UvX;M+Yv}7E!0kt1!z%QUfn_ z9e#;`h){L3aw=jPokv4O4%+*wT9RcmxX;=DDq+@oR2nCG+WWF2u*TVE!m91kx z)JFafS6>2^CS@p1B$A?tlr%{RjnX`mMx>C^q=ST1O7p1RB#ngP zZBVJCSyVLruRG59e(V3Nb=G&*`Ffw>9`?QWwXc2c9{qiX=!q$Z!10?y{(` zTgE4gdWI>^RjaCPv^@%6819KS4iZp)&pw%nogOiE>#`wdP*`|FMj(HZMAyBC7_^)uxaH#4#USWWEn z>eZUQ9St)>H1>V2p0Ov-b5an|c8{fZk$Ham4ww&aBO ze>q@Lig~Q$tFr8<003aXC0wr0gO2+&8=qovyOm;Z5>oBMJg3>kX*6O?eqwhE;hk zo8F}_A1$WWRZc#-xk~BBxjrTqE;Oj5a%t|p929gIYNO=^Hm6Ub`f2sdUNPS{2k}9v zdbY~J?81|;R5ZM`X6XtgR5W{J(m#`A>yPHXmXj`MofbC}^+ zk~p4gTLbMBn&~e$ba9sD8K*yO5gb3A=sj{jI-_`mfg$FQ!Qh8oIcL+Wd8Op^S;`hV zW}az%Aba7+<1fW!&f*%HR4(nkNQ^9ztt^MjP2l6&=qgovsF!MmW*|i#d}*GN{C8Tb7K3$V{VN_)L4D%h2cul!PnS zMJRXY4i36#&fa>Mr1YrwT!s=F8{b+QyxdvEbyD)e$g&6(>%G>Y?ibI(?o=>*xV6dg z>-E7`l4fwXm^*xD?8>?M(~o5&YX64}cLyS8Gqq0=(Pp^GBlKlXS$w~mTbpP)GR-EzFydvy79e}`v-nvS+#@p0uIA=>zkD~%2JuwJYV6FoY`$Z~s$>m3_1B!INQJzZHWPY`&MM#yk#(t)kx9HyfGWgZT{>TTNnuAj*4JpGZ6XI?mbd|2Y z4Ghn#7*s{+>Z#FA2Rk^3ANl$k63#I)GaLKgQt@&HBUPkC?OKQw5~xW-6KgiZ8`GIA zuri9y!KvA*N@|c+^79W|n1wE>!K1?uB+FmNZO?Flc=WP)(QX#D;L4>-mb_}>;p99C z3UU>xT5ngoX6(^jkc}zlUPyd-O>ni>RgpbmhR7D^X#R*^35j5@gt4))3nsfo#gJCZ z#yG8g(IX z_dhrXKRzyfrVVl=D8;-=9s;P0>>U_wt$*XI(qHR?*#zm#AqxOTl#Iy~M`QRewT3Q7 zit54rCw<6r$Et1w$nXpGi}}z2QRaCf?$J|_?K|hmw2W^jYQE0^RzPj%14x!=?A`kv zn_1T7+Yy9yOLm%@ufbZyStu~@+e4$c>jks$mAQnHi3X*C&N4M>uAO$4AKW%l*4-kz%gB5kcZfTase;$klbs#x8uNwkY-} zJKk;Qu&M*(kOptH+IQ1+$0tPUq;uo_Ep(ga$G_xeX3CyJ@=NIT|MHaLKZ6OteGl*^sOQMDo_; z-*N8b?rBn3*)3+C~U`p9irCo@HcYG{VALT!^q&MSk}$jK6diCvQW? zxRm_7p{em6hhg{fGad~z1|Xtym0UA*6MZuN!MQpvLn*fE_s{5~DLUQvo)x<0q_Of2 zUDKNl*lS*(Rk6cR$+eX$xQL{8LH3YEt!7_ik}h)NFJ8PL9w%7b6JPH|aPsg(r=M$i zd^8-YBALk1fc;jD#FHW-Ivi?*{YH2%s4xu&kBD-ujx$n$WRZdEk|>yP2ViQP;cPSpj?Sa`@_ASjM?@5=b3gQP3R+a^-uOj^|BA3$A~L(#NLE}ER%^goeI^-B zfUOcw7f`%+17tjUOh=T%vzYAyh`ojaH>h0%P@ zOylm8+V{9FmVT<8H_xy6fMa){&p6<^zMrTflShCoq%ry5SnLuF+2pB`3 zJbz8NoYf6U*oI&m9{5LF^y$s=^Ecugf^0v=Q|EtGCmI6jb*91v*m);qIpv26R;a!g z77gvm+nKz`ggi5znY7+-@&0job%*cjPq~-f2XjO2BY$Df$<45Gqe32-gd!rLHItp& zg=(I9-_+CTv}Gxk3cYrXX$@)#M_3M$*IEAhcJTWr$zEH_- zsCb$v&EP$chc%`eJY5xSH4fL%NoxL1vsS+6&yDvqBOu_YxAn!bSg!@Iez)cW+dV`L z@Me)eUPscW=mbQlZM&q}O)cUb$*2F2kte=wTm`;1>tQ0!0Ap--tL&?97~Zu@)`ITq z(<`EyERx%gmkFJ1xkhzU`25{!$?_bT^&A{E@kpzCpfZPF$yGAis%m`}XPDw7IBXL& z;zBNNDxerD(yO^k5I?VY=F@ z(x!nY3gW5T9D>fi9}3mf(2y%bM7SAe2anWo3Vf;fYe=tNBbyrhqVw3tRPN;amkBjk zM54%b`R_@bH6{@%^9tV6YZ+2MM~Wg|jk~pxv8&5zM&5eoZRtg-WN8mxDPGBqP4>ys zpuoV^)z|NXxr%!{;u5smYYYk1!DrGY=HE{>8Lti1RXni0c|S=QnG0SKK!1!sLC+#4_7-HgSM%ORoD3nHI8EODUTsSjyi%Xv*I# zplYja7{vnj*&0cezkg&JAv8A8cwPRX^UQ~*j@5#9K8o%oT&K7|{UvTATb#X)`eO-m zW}m9zgt@K<+D*(HK_v^m--MHjFvN4SI^p0no_j+VEfbt;*EKz!Ke;>j?xA(S@=}dk zN~bBlSdvB+9EQizW5iFy%H;-vH5&U4`e($J0ZOFbCwGP@23%8op8gzfHvQ<%R^%3K z+E=-bUOT7e{PMY!>9XT7ii4P{deF{_J-W*F+^3OmJH!G8P$=?-%Ms7jg0h3vwrcBH zJy=ZG?ug2+yNF|Og26~`b4241!XoMPg|m3%nbHOF))589vw8ozV6Ki|{=MUjt5-Lt7v_PMWzhW5=lGBi%65di zG{hW(y&W}7g_DXnd@qh~gu+&Cv*SN7=OVrvHQ8cRR*w`n7tDRp${&<&&8dyfr0m^q z?%}_eyySVvzz8TEmEFuTXhBvhO6x9ygu59hnM2@)nwTwTI05AbSH8d!9%2)(oE`4R z`z=JOD8Zy(U9FTStYpmzi}#W1cI$2yN%p2C7+tM~Soza58^AoUHFk7#9O{8DQxxxv z(puUvszaHF!j389!V70?FN${Y@bK&f>Q&I6=oN$gOU`wr6I4K@GLxg|Xk!0NNdSgR zXDvQMO&GLMdo}M?(PwNz&&8$3RmD(b-?b!7|6$#F5fM74n#a>xPl(^4s)|k}wTh^% z))JbqA}dcs7@@<92%UCLR143`XSNJSPm(&-t!HBA!)#s zG7V{RMiY|?9Q2lXAW4Fgz=zy8Z8^+YJ-kKjBS&u5M|!qk36$girX_?F8k}~MuS?)5 zhFcjKM(^R5ij%~mKa!{nDyH7OAm^Dlu2kje|+UIZd<5}m9LB24(|*HqFlm7MvFHhEpJt* zdAlDTynea%%x@LUzi8JDt#zc@VJ}YX4M!hyV|5MzQOzwufwMBQ7$`S@vf8iDm)QA~ zTy1UJ;VJ#4EKTNWEkieiYGiP8Y?amq8e!qo?;k9SA%#T9B5RqmuU881aDUi1T;_ zH#Y^K+>N0b1YXrVA;OC1?>9etm!_T%*Zud@s4fytHCO~#wBS-iVFJcqt&5OFkZ}9G zJp3Nz2aXno#eDN#1y^#;i!EEl;HmXpKiZx0?oqT=;x=p41=RvASK0_-0wZ!{w}{tF zQb7iwRLCvq@K_m7^8W?%3nHZ4%?_M|C8ZC{YkwX+Vq@|^m zm`{M#<=Ufa8L;X_;71vWY47lxWU58Cl%jQ9y09?p1wCy2b2r36p&bsz*m!HhDKRSX z+}hum)DPCUZAWn|h(a6)bKPu&a@KV?_EN$^jiakjFkBAMla^!vApx))i{T`Em@EA9 zK}bV60U;G~|4fTL+kc*r&i2IE)d&240!cQz&8{x*f>(@ldx=D+A^LutN#;8!E zuTyReHQfD`EoT*g{1)01706b90z3E}?q@S$Y#-$p#+2ZI z{_?IdOA;hQ^xTe6I|#6yv&0k%u6!U2(~x<@7#&2TFv)$$h}^g$uArbWISbK?EWk29 zW|4>G=jT@{d<=pg>L!{8+%rr|Xb9Z6a6fZZou;sl#^r_RokCk|RseCc#-Z#D^2f6l zVOjH?cPy1%hxlj^72kL4s?eIOy&=v{OY3QjOvYsXl1Iiz1x7YUWF2A@v#U~kBaR9iPz*=VA-uAPq~w){NxpX=Ve_H47?n`f zJjH&W1DK;qG=ZZdL2|5BppJWylL%#BY?_z&Cq66^QG%kBn&}-$!%Tnp3^WbR%$BGx zyJh<^i*^jVOw{Y?bTd6<`*veY1`tI>TOE3Ca|jvW+6z^N__y-exePeoCM~Eu8V@?1 z7~ne>PZbflyPG-xd=-{d{Y^|s;JVC)1bX&Tc6@+vHX;C`!ilns0|-iMqNP>`1O(LB z&!1p^f;l0J`Ft*$tP7@zTJ%Td#!*2bSn*P>OX*jq!*_WhZ1e};pAHtQBW8BaMi@Z5qTN`Rc}6= zXXtn%VVG%Nc+wjdm%I?xE};jKSez7Oh`kXP5jnX%m|k^3VAXb4d$VjNA+jr_8L!nzKHxGTp>! zMmstt`6~Pxm-=|c8|bIR;qUKH18rg*G95tXI$Jn^Gp~Si8`_?6=pGYsLxD6rL}9gn zf}=mch%rQAiV3`GZ?-_fSL2w3&Ntt2{5TwmY`~XaTQY(%Y(4IvAQX9OA-H0`Ti1gpiiT4P|lRP9zT$%tXSVq z5*E5@b2l?HGd0k?%2zp8&kODsA%%jAYYzR;+0KPIv!L#J*bhjaodT}tA3OgW<2#NB z)bYzJ4${aDYFIU(Ttp_%z>w!xKFzDR!rzoGsG(V%Gc|l}@9FnX&*AH6f8VLAytCE0 zqs*NHA-oveo*GeL;1?^qAg^V1?EA(_(mx&69M3WUTF>R*P*9tSsN9Co9MXFGH% zs1k?%VSs0MW%c&O2&Jj1X^V-PoSfX`I1EbE&=kRMN169Mn7)^h=+VbdoP65_9AB!_ zpXm=Ksn!FI9(Z#vSUU+t7*|Nfz#jp}HEd~T9E0Qdg7ed37K9>&{n>0%ry>Cl=|0}Z zwk`k7J;qV^7;k%?Rhw6{g)F@F9g5)({W+L%H+Hmi&%z1Q6%I@c=8F;Ehoj?VD^>A4 zJ7>|@#&DU^kjgF^$2;A;D^{#f+IS9L09;?C+@K>TQB621XGcV;K{r2e=jK-ryi|eq zoRnLZB*6%2^gt5fzHy9Z*REX<{-E`TLqNJ%KI|c>NvtKBcK{PXXkY0MU``(N4TPzS z^*Hmld4Op4!PsaCv9q(|)8=XK+E#=WAR64}tnj%f0*ugjDpE0@GBgO_BAyyC%EG4y)Vd@_eHtnmtAR9G!_3)! zdL9bvM^JO}=e8(Xe2IRRZY zx!hNtb=+m|LIzf^T)8rihMpv0p)K?o&fKZS!~~28<=PlMI7fSIO&&weI1(1%zC;H& z%OS`HH$TwkErplXS~f_?<0vcy2bHhra1YYJ%@^#ja2#GmFE5>8+key1URbrwSCZRMc_oHO5~PyDQ|x zL37qdF+>#0soLnPghIH@?o$)w3K3$xzU;E|*_kU~gp6J+j;QIWb1Ak(tfLT@;He+jk;DTgH>Iyti8 zIuj82!SBj;~e z;v3E@lY+rMv(a}L=u%jub{|;&y8uzp>I*;CsQ9%M`{-nx_U*gY2U<&%(((F+*)Lt1 zLQkn;(8YkxJT+ZTY7Q_nt)sB(_Yw8R?{HaKoAvfNLD2Sn>U~8EoH|3*y@%`Fh&C*I8Z$-U9h7+5OapvwAwWE;Q|4=9Bcv2xV2a@y}rx8w>J6Ex|!~%F9YXHW%esvb*$lB ztWx)yL*=T102?@ME5$P4s%sQWD)6DV&n$ms)?HoUeD^n{`Jx^;dEX?s?HJ84!BNt> zI1=K(f@qGU8NTV;M}C%-^7tq)`vmIbusmy~R^NSwXx^>1HUs;eW?nTlGdfAZXiN^k9YLKHI7vmj zG4mWXS#^)jvY&2f<+>qyfJIV9Ul51}$$1ff2YvM{0`&ED|H9$b9eMxEN_83I!gq?Hy^iIN^slRx*{#J)-j*^ejfWAKK<@$~_6!$N zGta&q(*7bq5F`>iA%Z8PAu*7Alnk(Ugw+cG)fX8XhO@1AJv<0cEgfEV){|q<%$PWR zg@x;`ncB=rthG^ONKvSBfA9nVb_8+IK5+X}FSA`x)plu7lFI59gIvj>R@${|C#%Gq zwp?ziRo|U_bW?vWS_6`Bc*xSopm00+ey5D?s;(Ql@zlvtH#@Ew8-_(ISm=5c$oLu& zy0Dem1Q{Psgu`w1brwNup#-PX_N%0@W!xm1@#^Zz$48y)P@|cs;@EruPeX;(wtR1X z;HlxfJ)b~}PxO3U8bgMyXR#b+-0ob9dV67m-R|Iuhe@BfA}DXT)mH~zF5tP?yk!yd z#anrSU#;S`Bk!spD>aXbzriWAUd2;kG{cNt$?X$aFpC$TLy6V5W7Q#H7rQEl!!?0b z+n(=F&`Z7UOwH^3KYu2sT_NA7kT*9g4|b@o^2t=D=&OnDbgJ_T_GKp&TT7_iF36QE zz(39?n7gxX?-j?HtyL;V=t&Kd+KJ*ND>s%uvvjgM`nWvhzzRMaV?(1m_{`(kOyAx+ z+oKnF%Qi9`fF=~$X6rQo+!<$xkKAK`h(gE$pPCTUGDrJ31&-g7Ib!jWy827(jyz<$ zDKpxZLJGI$tFt8Y?65XPx&?h^)N{@@*xlQ^>%w!Xu2UYnT$!)mQWR(^QKBT7$ocFj zUQlHiFx#s^kwNh}Wn=}}DWZZ{!NYmUCPn$Ve)9nzvy=73sTHrYFzePRHI~X#$dfXp zfs8m8woJ%uhpXRN-2sC`6FF*HF&H=48?=vQ)53GG|R29~DTdnl(Dj|2*=vELI zo1JK|8~pI1yK0hh;}!&LSblu%DqiS`aQu};u+9+o*ErmXVgQI2Y(P=P0qLL=ITW#$ z6U_ZGvjrr`6$GvwvGY0Va}+l{j4qCdXcDN)(9_k~JIXLYWL&i=T&UA19l&OxyGs@YOcd@Rk+;ykdnPIQM0fX4i} zSNo>ty=J<}b`A!OatsbTJsS90k@~;4{nwO6?xL8C1_Y)nuyD-|;E)eeZLz zU%mBpv|g4dW&rfj`sXjEpRY>B`Y42(GzR#at_juhbab44gB)e4zahu*^(p~dHQtII zlXm}ch**@acM@LRizQGRoauY>Pcj0L(K_kYAgQ_?6_3`W?_5S^qZo>7XO!OtUQu3=~Bw*P&BrCLd#tN5OzcBdUOggaqoA zt9mf9M##L=09ae&P~mWfGsLK56gN2mlxO!;J18`SyH1j6NF@Sok%wFdytFFfB>K!@ zNuJ6h4($ee3}DTykav@ZU)9p-QK<;`>jrDu~Mbvwa1BcN2iZ{O_u1BWGm(Odwb4-mnjWOYXM-MbY%e{3NAZ)T^*i64WM>Us27 zN=fN4{wGE>jy&DOj;ao*-z-*FlGVD-U*p4Lj_q%kr0Jw+acwwMQ9xRj66-E{4+O`h zJCRoj^XU;!1BedtASn>33}%ajF2o3<3q@0(Aa0w8ziq}s8 z_~F3F9ZZPF$Tdx%mgf{5-HG6JzB5vUjRjkBYB^i*x=JdPOHZV){%v-vnb5EKcF&&i z0Wm>$q7jvY0>(>JH z3S9~om(h`8zppE7c9DZ;4*+Mnx|`)UPXJz>bUK?NkfI3}x&U1XXtUK%URYJOcH^Oc zG_s80_^WW_l2JmP{O)A+2D??4dyO9Ben&Id@;a7|^VoM&9g>|a7mv_|zH7G@IJG+n zR9`m#I~)lu5OoVqu@(de2h-yu+y3Cm{L!=RAoJRGmL?FL0(6eDM?bZQcCvV9^-*3q zK!*}^C%aBxR++M8Y{5QGzvQuv)&|pi{_wwT8g>rRE}uNp;X~?Vwbv6?apYhJ?g$)! z)t`U`h$X~7$;in?A>m0!Hf#iivohK37WPgz6T9ly`0`H$T-)qmsqI*6GR`cuSbxh= zbvRaD)**4x?%qF!!m^XXGRC=*HNLQr;R)*Cf$ffX`FyTyZ39W~ZqO^gH-)pBW8wW> z+MCkDtX{g0UHJ%A6W!Eq5DgePcOJ%wgHW z{A$^n9DkaUmAG5v4=05a%t<;)>3dq0_l$m$d$x9W{M5p4)@bP*0yIQkU}0nHgB4=d zNqCCru<=17d>?)w9yBlp4*>gznr^brsYI!_sHZp54_fPA(cph}Pq}Y;Kz#ZfwIIyo zzJE}>Qc>9zp*9p+)v1{FrDGuUsmMC)76r#O=}-5tBH2V$$NOkyW8df%x!NHtVJyd4 zGk^>*VaLEJFUCqC+X;uqM76M=9!5+fgG;~YF<=CNkcDo(QFl__3KlK!!v`9noPmLX zB&kcFC2%^0i&mWkz>ku(AgbR7RIs596HClLKTta5IHN))b|O;}87~ix+~nO|&AP+k zHD)*=YkbBp5AI9bdTvdq%tH*X+yl_P9C1Qs!@_7pfXN?+vy#wjL_My)6U{tq`Re*w z0w@a^4d{{db7Wfo)$MiPE^W3iWVt4=dDF_U8SIT3lajOFECiK!T0T5m2ZD;vX1JO6 ztATJ3)FoEYnJ8#`i#>fL=B5UkiTq z#hq!(-%K>X0Q8MhBA7Q23QE+<;g6Qqx>b4Rw9oDBbd~4#vq%cddTvn$eTv%Y2j~g@ z8zxHh;Gb7U9}mN#ZT4ll!XYU3&kqR8pYeZjX|024f9|1si*_9YhQ$9q!#bY^0exZZ zHZU=SuW#a2o{Vv(zI)VAMN~t`MG+EI+A*4>!a6gBK&cEFdQIhdg}}>I!yA9qBUp0r^$umOStjtcZJV#MfSSFoGPV-APAUlKWv4h(gO*QHNSWyO zwUt4;a&4Vvj%8G63V-CehOZ#kEZErzQ@6^`%ZO!q?+fK@D#~-FK1`}8a9*SrEZ%ED z%a$Q}X+cp0r=e=!$J6yq6h2<*7*XQvk*if431=?x&tDIDogCNPZ~iMLY-O_Z>Hb_4 z2G`!UV<8~~x%|)ft~n;%zis7tH(@-iiB(2nG-(Gib5@IoCwUYdEiFmv#(gs{AP-C3 zyWEEQpho_G;|lER#p}dFj`S#FIz9~UPLue#6Rwj;xb7ndCSuBbelMm4mzVZ|XsCAW$Qwf~&weFn!KVNWRJ zomrLag=bWLdhR5(Vrr6VZuH-fL_M&oMLE18h)caf_+r`MN|!wqV3~HQdl9dMTs7Y~ z53V~RC^@A^S6kigr*vnUQ2*tQs~e zV~bE>inbzf>f&W|Ib}s*5~rbWD&#=EYxU<|X0`Yr`QMtVIgIFG4nwEEPE&ony8#V| z8F^*?Z1%-<6Nz=xTWjrl^FF!B#?uE;&(NP6vc!GP<$p82k@H$P-PMZM8^khaTj|+% zhVwMofp)(b(UF}(7T|U9h;vxqR#$MFx-Ne-@_iL8l`bX6Ddcm6@n378EVkvH?Kld{ zUt-+)?F$$aJzf^r)o{kBwkHz5o?KZM1r+0_WXzxk<(JH0z%%w%Tkr8rXKJQ}Bh+9> zJVCDMqQLM}$TsN;%&W7cNv_dkfknnjl|l(Tw8{)tcMl-y=XQf_ zlaQozdGfz|Jz?cNK?Q5o63&r`0NeBzt|cs?=fcA-ChtDlWb)^=C<&aKK7u;Rk3*N| zFq9Lg;+?6lZy^cy-$Lw;z%fThw+1cf4QE0AGO9xf^~bCRyUO5min@PSqMO#D6rjBP z{XQNG3Z=1t07uM5u?&ymIPxdb_?r#oY?wyX|Wy)M_5QOukB$*U7@qpk3F z>GQ)fxM9`x7rUKm6ZI2xE>w&9bssyEdJ%T{p>9FqV+Z$o1%U>&C#S z&GrxUt^ZA{k>)jp(f%4sOuhz-B<&gn zK43cWRESJJ;rz>Q+xP86=`tl(g*-6P3s4uYV)_{IwwBw(V*6?nK zmRcbwm?yk~=KT{YZv=!(wBr$-e|g>8_Mt>6UcusjZ*{7Ysef+&t$5ypH+}%7iRa$L zlu^>x=K5p9kFUu`Nwh<*!&$y16TVN6Pg1%Z0F>}zze*YJ$dfwG;86U3ZYBZ~NOj1= zA_u&XzhqgUgg)kR+SKR0Xx5(_K{e(5lT5of=Qt3MVfdp`)i0a>zHp;1%)%%|$e^Nk z=ietXKqcqZt9+kedgNB51jDCeOYr>92 z>(ASX>hD*e)Bc%3PJXRJ(4=j5yDk;y?3H2aICfWsxHIHBwZ0`IZk6FU%(5yJ0v^A6 z$~sy$+D57{pj~zU?^_vt?DQ-0RZTZ)#>R=nm!6GKMU6Mkl@>E-AN;rIql`q;{En6? zf5FsC&hNv6w+7RrftfN(&uV!l>-sEl5}f0TtXpF-w`rxL8%}@G1K+;{#LBM~r4-C1 z2b(tvc@gN1T+gtg3?KXTn&QpwyicV~^6qYPomWPE$gzx1oKb(iAjA$5!Sz5mP+U-g zF}uJoOXE3t!Jhh@CDHrsHJiV4HI!}1e4?nYErlT(+&!^@ZpZTeq}{!*8-^{bE8aZ< z2KeV&PX?FGpYM>-XZqfcR9+dj!F}U~cqk^U;OT2qwYgrS`qv{m#mK_D?TK+qq5@Gb zjar-6adxjsmD@nnqhObTsQ(7oy|(5?rcI=?F~J$T8}Wk620wBM`L-4ekCs_{)ytIp z?{mk4M$3XzQ}gFCW%K)mX1d3Zf#_+B6zTgXN_htomvM>zZ~t!BNkZ&4T5^3|FdPa* zLlmj3)4>=;I69M>LQW?8q4h{Eim--8dDzMZyY|A5@b9o`+fvjS`P4cJpuelnK8X7M ze}{YgW~_XIcK??edb>}6ebva{K6XCsKD4<%x4p=soaTMy--%g>a{LXQs}-ClG0kvE zor>PvOFk&rpBpRRmEHK?=}2jx9KN*m9O7D^CTDE5JXV%~(b7xB9tqSW&!r#IbHqgd zOf*N{oz0aVW#+r`Ck}d@tXYb`jo6^iR675uVEEi6B#m~o+>eQ`~xktrj40FS-aF;rKCPs?X)(TG?q^svDqi&; zUaaJ3;aO>w_*q={6ED&Pu+ zB75Sgn%4ql%AWtXwch<65LdYH3WN&g63{@$A6HzicdQMp8fIE9S0nXjz$5EkWqp2{ z7f*eBEco%!;ZX4>u$RT@XY?V=Q&67;ZLb^kfBo7TTOO&4E`#w@bcnzmA*lMSs#&*^ zoL77HfRY6k>Hmi4X5hUHu;m*PhC{_R9j4Q^oq%W+g{#4?C8N@3>c#6@|NGM>VLuR? z8|)fYPM=i?cY`U*byE0T$&Lcl{>e?p?wTmIB**@>Kd$aGcKvhRRmsO>Fz1i)`NoO@ zvaV@^kC*p1?jHOABdp@|*P_wbb}XCdQ_O?u1Vfuk*8p3%Ra$n%dflMO;RGtwc)<~# zg4FNdwd~O^*gr?d__-^XyffCk+-2L3pNmF6lhka4puAl$8wj<3rt6eRky~8j<8hU7 zhA*#hRv3|;elB4W4M-O(HYyGCSQT!fBn7`v}}uWmOcx@YYOMlD$Tt`N}+-?+EfEv4ou z<+Y?Q59i%I(gw1qh{&0iVh`u&^(WkZs}Uv;f_eLrPL!-xpgQZ|h1m@4o--}!g5b!i z006Wvk=Y4A4_GC`8fE2pPO<&@b3%A(w;&u=VIS^1VNN<`ww;k8u6u6goPpHKevm=_ z*`t>p?>tlJ0@4I@<#bOV7H}Oe+fv;rc%1LlU^h3j$-@e4wJ4q8&%12eTHn10%dpapQ94!| z9TqZu5sdOk2;>tr2S5(A8}w6_q51cP!6j)R$UzHv`vd^j!=MeL%0ZWCC`M@R+4Bae zSX9`tmII@<`H&WCJR%4O48~-(a$%m?p_D&Qn9pWE)jjoh!2OF*^GPu%e9j+wG(XdM z24c#2_KrP4i}Uzxxq!lTW?^sHZ63W6L?Q)T4H+7sA?Np-(xOQ9I~o{s5Ye}or6xoTj>V(Wpe(7u9F0_v~! zKi3WA6hj)Gkp_8E(vG=fDXN_`y#1|SSVlmm*2#{IS$Uxt9w)5YbRe>PEoO_y1I)(S z-F1F)m<<<`GT#IYHw`L&>7k`^V+h^l^=VMf^%5E{q>2-77X-QfBtKVsuP+>M_7dGi zufa~qe|s0;F|o$WwSQ8kEYPCzCWRA098ooS=ePU(CUj!8?VPR#uGRG>pBzJOC-P|` z)JED2?k_1G4}vR`y{3qMg;x0b13G(WJG=m;C^H=Z_BY&5#2<(EJm(6P@5wz?ex#&kZgj@@Haj8CO zv%31{W?d6C=P;iwblTnqjfsxGqjdM$cPU$>#!&B%QM_XxqqqNO4w;BN=;k)6 zjkXyi(;-B{ZQhdGO#NuK&IvhYim2*Z5VLS#k}m`R>{t(IP)_GtZY_oKMd8}0AE8Nx z`yVxV&K^4Q_zXd$;thWg-6mq<-l+_ zZp2G8b4OOl5iSq50jL92L}HLE6EF>i2Aasc-Z-AcfFyRoQ!h80Hx*cG9vi!*eP49> zyLE28Jk?#~xpJg{`9s<>acNkCYo9-VZvCVW%=lm~+Xt{dX!Pq!umnv*$wrX7eXa#j zO@FSk2R0YNro-_4rk4j-rg27Qy3bUFH>E7M{dkgCrEWo}Y|?y&twHBVc8HyXgqQ>7 zrfG9&F*%r%O^U z*I?)JEkE5+CN})6d1xog(u>%wY=Sy-Px#Ooub{5>HUie%%iXsxV2Ty~%u}nxg1`y<7h!B{14v3-M^J_3+rcnoJn01PUhFx{q zJStR{m{zlB#t7B3uj?sGmiWt*`j_tn>EI@O7hefc2J3pcO)I3$gj$3+XpxAPDFd-` zvI;M8i`3Vm&{NEF2wXtvYLFSC(iwQlp&vlX;87&DgCu&AgN4oyI0KYLQY7$#i5Uje zn>y90#D0P1MpNM&3Th(XHFK+v8(Ub&Ita}kYu^3=o>FS0krNR8*+%fTUxVQ`&{3j< z14vXsAqHfvH(6HNrE`?Yy)%*>TvYMOGMEFRJenCbtoxdFz)KXpTPev99^0?M7u^o19miLcjMjYNFe zZM8CfyZ4#N&NDv;o1U)ro=*Pvqz`esA~0~L_-r%N4!2zJA(Rl-XunDl_MNGBaZ&ew zm=t7Dxn{?wnSY&>)Ae!vh2OBoWSvA51mF~r2>28~G}7HVU#yGB7n=D@|Md-hy2*qu zmM6Ko`DZ3~WtcYDp|;L>{e9MjuO0!%56>WesbdD^Cu&>9N_U~ zJvVr2{!wnjiPi!Y<+f!KCeJDo$pL^%)aS#~OPazi_O-EG*7fHF%h!~`Kdt$0UnXdf z5fru(&KW7-s`oqp=aZv;C8#cESEgynP|DMdF-MIQx~XV0AP0<+uirlts2L`g8WO-4 zY5eaAF8|zv1hs;DQ^DM$hjsls#_h06XCIpHLb=ALJU9D1NklW~`!Hen=auA=AY{kL z8c&7H-JyF3T-vl*BqQA`Dn17b!y`0_D4Ae`qR|d+l1s-mlw(d?{QI%9aaRRe9Gt4P z*461obQ&tUf|~(xBuEWHGkvQOz2!T;_;0eG&@)4eu%BN(AYi@6(X<#li_kc1tf(cy z^rpTaC7-S0`|3TE*LnAhzJhCABF;W?QSv?CbK9YIu3#>~t*(FDxG;IlJwLzc0de^p z+0v`4lcDcE)y>`Sk_VSR9~ELTV0|%g#=t$yNX;hPlZZ+7wQb4*UJ#9i$9}H zQt7yiJ_WMK+Q&N^SB1$s{S$k1-8?+|$Rnx7yqJqP2Uq*D3oL~f0!}Agezni*B-fwm zKHFCp5I~UTTlSmU8VOVdT{pK;v>+T=lzqe(iyZ`=%2KxyzAwL z@D#~qZPBahyDetjr)QmCMc4moP2SyRZy{Ne;(qv%z#C6*p^}r(h zNA8C_^7}d6lU|Ksq&ftz+*B<5H+aYZeM&S#L?oUXx9ze~_8NuO#C*yO2E*x+?ML%E zzUjWzuM*pTwT|~V_9vh<^A$9D>>t+eQmx}yRllC>q>brSOAtdow8SL)iFu?@YE#2 zXX2{S1IGp5jNm_Jqnj)JM8M>*#qja|$@9IRu`YMg{wa7A>!$rRQ91hytn2h@BukIy zpvt^N=ubLkUyAEop^=f}N4fqqxlSSl(9(O@^SZxwg8>OG2bEqv361Vq<-Z%TwLa_f zz(Xve{>e;Pv{2DMZ3uLdL#8HSH4eCDCPB7-OC`5Eq93L@sa%8xfXl?xXQk@zR|QfE ze7?U~Ag~yHU6cz}h!QTq20LPySYuqP?)mNVwYgf-du39kg(_FOTauK8 z)_OQBAqUWk3eBH4u4WNbUQ&POMRsFF&N)-|1B<_-SQ2s6*Yow;)2mfymU&M8@YRX> z1>}#l&WQ9TmR!%LCamAml?DS;J(dOL}ka!AI*3gtr(=oBEYP3cB27pK`KMJ1U4Z za!Mp1K-OC!&4l&nlR_c0(l&1Qh2Q7otMnE>Q#3nH;f-jj^a)4%j3X@AS)X!-L$$r( zZ;HgC7-N0tR`2}SlYE_6?|CxHV>IzQthC)1*NKQkmLx(2Ak=Zi+S~Hvke-gM zlqoE+D6PwZF$00x(a={-ulAd!MN6e5ze!))KR>N0@D=?1^HPhcv&x5@C$WcP)XHGj zI)NwbTi^2hk;GU>UdG_Fp6YtNwilO>E6WJ}vo^cCXFVnqdj~U6P(CB+JtGwu5A{9UcYL5_ zFD3ZGw^PyaB{TLdmR^%PD}!WDGPLD)&HXtnM9)#P7{9e__j`F;MQL_=o$~h(>~lX@ zO-ePl1l>em?4e^877f+^+yl{*92@<@Ufql9ATsSVlt;gR8?)%21exc7c2|d&9gFsC z2u4=*RhNGNy~Tv}#Bxpb!In6Q%SqlRqmKU>o5b%wTbgp8KJr;Mh5Q7N$eiQ(v(82DN!EJv3{ZI&r^9v$=(Q+C)VApk#>yLa z+O>;p9EWWikDgbVr#k38SXvkJ?^jaP+Vg4I)ojm>t$$aLjp=BmJ0dcG*$7EWJ<7Vx zR`y;x=MFcvLYGS;?Oj7g|IUW*mkLJo$$1&!rUD|mP7+&kGSnMp(tT8AiC)Ss<(*{)BEG3s+O35v z!Attt+Etk%ZIEZ*SM?`1B)XMHN={yFo85VP_T`s_ef_J2vc)88M9Amq|N8zSuk#M{ z3tM{Rtz+&O3Hy9G?s(|W5=Q|9GHFeZR|+Wgd8ff+$zs@XAyaHijXL?MGrOwIUdtSt zF3+I~MzqRFHCb(t@$X8FDu8J?5LaRB5POulXOmfn_q9~B&cs&Hb3pY(S;1JUJ0!fl z;Y!_p8=R6oY}sM22AVq}NRWguDG94_?^R0KkUjOo^V>3`KQl$cVc|r>mn@NGd5kP@ zaxmxU#QS58wNlnwBfr|9In&}Ah^@S}N%q19D7_lJQ7#2$HaBI_p)BvCM={15*POI3 ztPxE$Nb}!#^h89G>T-Ifojorzt-_~z{#c+Hux5XLd(od%Bvkav8m$BpeUEQi9yT>_ z?4W2k^rtYPorz!S20UjY)ILvA>%*IYaQuDe;_58(3I=^)w?TuJp7z2QFR!96#gru% zKmd)b=e8epE}pGslUG(qPThb6SN8EPx6T3{yFbRc(`{b)$5-09nabYUhU%=-+vOEX z=XlT$TwIj{J4QoxPsizoKr`Qf^Svh`gca#biqzw_WqRfP``(S{ba3`V;F;zVXt}!- z`(jlgTQHs-s*A-R`ktJ(Oc}*=$jMdnN^fz=-g|A!Wx+-NnzDV5X54uZw>H|D$pRr^ zIR-R_*m#UgVkqWGBR(+b4#WEoPn#a!8XO;N>B?!T%iGM#JUy@Sp>V5hhwWag&{M8BH1^$LVAxsao9QgBJnPu)gJ~ogYxfH7 zkUvvB8W!SzO%Rk21+Ndk4E0tN&q&YCX7j_hU?tDJAfZR|^6DkEdD%T{xC))fZEYaH9zS+q<-B#>`N3 zD{w9nDs!aWd&U2IZ~fuojX$KxxOMa6YwqnG`+Bd>$6X!m#EvozzMt^45#c8%`zb@c z>#@@LZZcpWFfbQQD*6ftc~H^}6)b~(Sub+)HRMLV9YtL}3LFeeKK-0Nu>HlmN4Qm@ zGIjz*5Ff#jCtX2wBY-2E3Q5r`d9j zsmQfJNXATvN9Ld>qZ5Z2pM( zD7dfql($_>@nF28ifM*Wnwdiimv!UF+_Z+W7Pi{>(qQ@>u3I+UyRw?ODy(2K^vV|P z`RGl|>onJwo?lEdWA;{B8O)UqZa=E&Vf_r)|?4HiCb>46wiPp*mbQ7H*%bAD@gq#l z?@El7p1bW4(0IEsNB6=Ow8}Jk@Bkx`uUFMU%&@3)DCtL_BlQHRjQr^nGmsf^D7iH& zqA6k&nYdJ>TONtj(}|m#8I!!&)OT}@=DBYMuDtbJ1*Y`WeYZagL(691aOyF35RvJb zPed>?0&7{WviLM80>JEum-4u{8)rqkoN83 z)ep(Uz5=~ZWeRF>nf4~#K0Dlk1eNN%KE&C7xAzt)CF3$~R25$7HM+}Pp?Gc^w{*OF z*(K(#Q1QD*NJEr^@niP!#MDIn6i}qY8B4aLZ?_NdjQ39tNL=~eOZHO+IbXa@ac0a; zSZ|oTZFcA4NT{MSlc}HJ{@X#xyK~NiiHYOXk^W%eM|p>86(()gp`wWFIBBk+%?eTUc|;7ybOJhxG||pa(;KA8Ze`}=%06$Au)`7kKL<08 z7c9E`Z(n8+2nHJeZ!|$IX;B3-cwTgS<;=`_BK7e*N}8&_In*&eB!e0%u0I*AR_o^Upi8r<*oq>`XsFKFWb?VxtPX zJk+pfItVLI=)83h%C!whRH<(og{p5idQn1L0Pt*QLqgLd{SzFM6tI1Mak>l{BEl^i z51n2|R=>8yAv%OfyMv)Dba!7QWkzrZ1G<b?pgCrC8 z%HB`?eQ_2qmrYOT+PtOAYz~_S;D{S&55B&f*G6YjSpF%eW z!d-WV@#nW)6McPirYF^Rcm3+GUowa0AD_)JHc{`%2y*Jyy}s<+2SuITWxiS&C-P5e zwQWDIpJLOiP7VVz*Po9iqz)CxDUa=ZyKbbiLZ{+vi!_qD`ghbdl!@aMDca__Nhikq z+o|Qki9cRnHqKMeFilwx%IFzLmjz0j7QaIMsRx8pzP^3HN+e0U93fhU%-$91NH!S8 zt%E7gOCYswUzCBARjzY?UAL-LZAE!Nrk7jy+)|#vV`f{!=Rl?q)Arn|6DcW!LO(da zMJUQ@ck6m^8x56oqQ13mZt?Bv8hfXYqd?YX#g9?;-dZn}6OlR(q2vT@{dXg>7?XIE zQFpYUWQtc>v^_(IA6*pW<)j=_!5fJHZMj%L&8hVu`iu4+qf`GIjAVn#8c3A6O>-`s=Cm+a{0J+aO_rA~B z*WSOY%c?Iz>l$@oW*Ma`In6<0R?7IeW>k2ZqRn2KvTH*dR6O1t?n0M>Q&y?-j&Ca} zDU74&hBb8G=i1cDgzm5Zaavi<+VlOB6N3Qt=$r)r!^UVmu*JQ{OIqrpbaUy{@Z9tD z(@^3Uts?(?)WGmMGDhm;332V*kOK_a8Z3ZKiwx=j^6V7&^XB)d$yC3+Rm(Ju(s$U|bUv8)qr)mjq8vyWYwE~By(=YKn zK=srXDgq}K$gEWbuRGiw(&@Yu)1?9Pjg-Y%R0B#2vX&n*R2LgkWK-f?BRM29OCe#1 zeFuZA)~fu@?paY|I0%{aC3S4W zo~TpJU4iPukEW~feG2uNln_W6=)~#N0Llgq+ONf!zzYrRH?Yj==wPahqLUz|4=%Z& zEoXwnqqH?>yh0*=BKN|7I`)!J_L4@zMf#R-!Gml}1nZB(z5Cx!LH>(fY-LhT9eu!S zx}W_RK6(4io301VMGgOqmBrd^9sfc|`Pb~S@$SK}RXyt)+z2$AhEtUrfO9eP%6*A< zg%a}D(1s;6E(FXAAkid&kTavD=^2Y-57!1f^J`FSX-|QFFUZ3EK`gKZt5**EQon=g zM@!Zy3&S23IMU$4)!b~$Xs9-!1@v#6zcxHC8Ay2?kTHq(IH!6JxTAHH&R8dg{Xh7w zgymjh&sS?10?(3?M;jZpUGDktuA8Kvc?_spK@h3|GGg_nW2C_1I>1|~ zcws<{10Wy^#tWW6FRE&0nb#nNm=1CaPV2nq zA}a*EsYF4dkwFmbRj;!EzaE+z7iQTg@#%{XPUxq~#Q?*UkXIzcYMv|Z_>moYe(6Eb zJGKk0rUMU-tcU!~9zZro!B+%aV>Rpq1+8ShkFf!qa4lA?73z-#A#|@!K$Co80JD$* zdRq3v2N9OZMpY>ECtQroGBMT0sB36YvC}{zFoauv!gf#@0={qZe~_au-iJg z86hw*&G^$U6AA@DgcLFfUe&?SKy-Nq!ZMPRvmHu5CIZ~4>z`_gCE_pXE3*HSO-wF9bmwToH&5esyg{U&mhh! zUfW)odSMxK6Fg~Gn44WE#7TP44!F>ILUJi+qAF{8wv~ZV@gTbKxc81Kr^YxB8b!>LeJUf;w^Ay|g7~KBKdj2&n z%mM_G^VE;YklL}SVA(mWtolBcIYnJUG|(NG`?(K_B9*~sc5m%^whmhh6^RJE8yF=F{fKYX~)m=bZ^Z4r@;hO z+Mv;FioVry^8No+;c8yhz-V2KVBxeVTmqT~hC%U*4bJ2=3hP8;*%GOyq{~ z!R4TNE-eox{J2LLutGBn&l@~}^T=s`5Z{ly!!zF6PS%YD?%3?EYZ_m2U7yL?!%n$X zAO*g_PWy20vuPP&3LP1^`v1gYC^8b??g0lK`LnJA1Sa)JcI^S>Ly!%j+QtCzpP)-0 zgSR)ZUO=Sx`ri8&#GDR*k+c9Xg2sP7$@y*EM6WuGfAsgekivzsDvPo&@1K6#d-en{ znS={_XZ^l|2UJ!6MQFJVaifH6ex7TMIE9R<@dp3Fhyw6lluf7M&cDP(bvl6#nuMi8 z;5vA6Ir_i|LD3UqVs7XOO{+H5^wg%NE4CrO907>?HO7HV#f+BLtd8p^h2 zSUKVF%CtW4`eWL3$P5J~P%(s_?Yo4{&v>Q3#1xBqRO4dsBVv5lwGagoagw))F*zd`}&HV@Y;7iC)4k3XOruc9{w8~2*&o4qyknnin_)_Ydu>AiODidPThLd?>Io3 zhZ@5NYaS=7p5wBpq7;fYF^)kND-!|qVW`?1OiK`WW?}Lj7Dq<4*FzbDm@X*iMy|_3 zjouse`TFLSvHSCS9~U5V3_hT(CR2V3<$oaU*Df&x`{TX?n#4&;5@$BGygpQ;bvEej>D4W){^5ZGw!FN zsB}OSKx(4%YYWxdiix~2M|f$f1KW(70+JH>#zMW$0Y{~?xXbdPQ|SB#$~iD@6eu#v z^mYF}F*Zo-5A{aPh*F16t0qm3#(O^T&hShdp~}@|F#mKy*G04LGVvp01=OptGUGwARP{NCQ5%2$qC+aS?bQWJxd~n!Qne3 z7=+49`$+%SFa@u;(&X$<7WX96gOgEAjBp0qDFg`bS>Q}+dG&_c3iWY>tD0)?FpGQ2|Iph(RUkxxar z(=yX%Dm~m^f!W_fv|fx9^@OUl*v6)SxdkAnW2?IFZvwUH*4Y zc0{G*hBqF%90I(`ePN`4OLp?dOGQvqB|RglykVqgrGRFtrbU`+#&7S!C&p;c%kv;pbbw!Q{~ zEE};GO)gAx9GbM* zX`wS8p%X#K;JxG>?!INPRHf9F#=amBaFWiET$a-zJbhyplv&3EWHHA3%sDZKAwyMB z$~+2r&uJ}N7a1IU&${kRiM!P#3kRm8Uu!gMUdk`p_oKzg!}oX#=znCw<6M8Ly^> z24I;9RJi4if2I9FL(7R6gdXC>tXzqAHo6(Vi`tvRh-Ky78HPf}-_)D_A>OR_fKHpm z9Wu7DFep%8A88lDwZ1j7IL|vBoZ!)I?<>+oLKY*w2>AcJAj%NBYKbJKtJqA+MDYqc z3@;AcleuCT#a2K>W3JBD2XT2Wo7T9lfIpw#lFmqBp4@{AFhp{pDh_K?HD@IdKKvM( zChiLf0vZ}F&iA%4eNbe!PFVvvbJ3GFxzFqM9@Y&jyRylNe=~CjQ%HWs96^LuKV52hx*F zCFc|rrdX_m3^i89%`#T8GPIl`9svpt_lsq2G5x9bC(DTQUPshO_d5me^A3C4zukBq z5e4C@6eK0tJokK&M2{)GqK=N`$|y3K^e;G4D2SJz@0y_#(JIr

measure=<function count_ops>,
-)[source] +)[source]

Reduce expression by combining powers with similar bases and exponents.

Explanation

If deep is True then powsimp() will also simplify arguments of diff --git a/dev/modules/algebras.html b/dev/modules/algebras.html index d0bb3da600b..b89ff384a49 100644 --- a/dev/modules/algebras.html +++ b/dev/modules/algebras.html @@ -824,7 +824,7 @@

Introductionnorm=None,

-)[source] +)[source]

Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in \(q = a + bi + cj + dk\).

@@ -879,7 +879,7 @@

Introduction
-add(other)[source]
+add(other)[source]

Adds quaternions.

Parameters:
@@ -921,7 +921,7 @@

Introduction
-angle()[source]
+angle()[source]

Returns the angle of the quaternion measured in the real-axis plane.

Explanation

Given a quaternion \(q = a + bi + cj + dk\) where \(a\), \(b\), \(c\) and \(d\) @@ -941,7 +941,7 @@

Introduction
-arc_coplanar(other)[source]
+arc_coplanar(other)[source]

Returns True if the transformation arcs represented by the input quaternions happen in the same plane.

Parameters:
@@ -977,7 +977,7 @@

Introduction
-axis()[source]
+axis()[source]

Returns \(\mathbf{Ax}(q)\), the axis of the quaternion \(q\).

Explanation

Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{Ax}(q)\) i.e., the versor of the vector part of that quaternion @@ -998,7 +998,7 @@

Introduction
-exp()[source]
+exp()[source]

Returns the exponential of \(q\), given by \(e^q\).

Returns:
@@ -1022,7 +1022,7 @@

Introduction
-classmethod from_Matrix(elements)[source]
+classmethod from_Matrix(elements)[source]

Returns quaternion from elements of a column vector`. If vector_only is True, returns only imaginary part as a Matrix of length 3.

@@ -1058,7 +1058,7 @@

Introduction
-classmethod from_axis_angle(vector, angle)[source]
+classmethod from_axis_angle(vector, angle)[source]

Returns a rotation quaternion given the axis and the angle of rotation.

Parameters:
@@ -1090,7 +1090,7 @@

Introduction
-classmethod from_euler(angles, seq)[source]
+classmethod from_euler(angles, seq)[source]

Returns quaternion equivalent to rotation represented by the Euler angles, in the sequence defined by seq.

@@ -1138,7 +1138,7 @@

Introduction
-classmethod from_rotation_matrix(M)[source]
+classmethod from_rotation_matrix(M)[source]

Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1).

@@ -1170,7 +1170,7 @@

Introduction
-index_vector()[source]
+index_vector()[source]

Returns the index vector of the quaternion.

Returns:
@@ -1195,7 +1195,7 @@

Introduction
-integrate(*args)[source]
+integrate(*args)[source]

Computes integration of quaternion.

Returns:
@@ -1226,13 +1226,13 @@

Introduction
-inverse()[source]
+inverse()[source]

Returns the inverse of the quaternion.

-is_pure()[source]
+is_pure()[source]

Returns true if the quaternion is pure, false if the quaternion is not pure or returns none if it is unknown.

Explanation

@@ -1253,7 +1253,7 @@

Introduction
-is_zero_quaternion()[source]
+is_zero_quaternion()[source]

Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion and None if the value is unknown.

Explanation

@@ -1279,7 +1279,7 @@

Introduction
-log()[source]
+log()[source]

Returns the logarithm of the quaternion, given by \(\log q\).

Examples

>>> from sympy import Quaternion
@@ -1295,7 +1295,7 @@ 

Introduction
-mensor()[source]
+mensor()[source]

Returns the natural logarithm of the norm(magnitude) of the quaternion.

Examples

>>> from sympy.algebras.quaternion import Quaternion
@@ -1314,7 +1314,7 @@ 

Introduction
-mul(other)[source]
+mul(other)[source]

Multiplies quaternions.

Parameters:
@@ -1356,19 +1356,19 @@

Introduction
-norm()[source]
+norm()[source]

Returns the norm of the quaternion.

-normalize()[source]
+normalize()[source]

Returns the normalized form of the quaternion.

-orthogonal(other)[source]
+orthogonal(other)[source]

Returns the orthogonality of two quaternions.

Parameters:
@@ -1400,7 +1400,7 @@

Introduction
-parallel(other)[source]
+parallel(other)[source]

Returns True if the two pure quaternions seen as 3D vectors are parallel.

Parameters:
@@ -1432,7 +1432,7 @@

Introduction
-pow(p)[source]
+pow(p)[source]

Finds the pth power of the quaternion.

Parameters:
@@ -1460,7 +1460,7 @@

Introduction
-pow_cos_sin(p)[source]
+pow_cos_sin(p)[source]

Computes the pth power in the cos-sin form.

Parameters:
@@ -1585,7 +1585,7 @@

Introduction
-static rotate_point(pin, r)[source]
+static rotate_point(pin, r)[source]

Returns the coordinates of the point pin (a 3 tuple) after rotation.

Parameters:
@@ -1624,7 +1624,7 @@

Introduction
-scalar_part()[source]
+scalar_part()[source]

Returns scalar part(\(\mathbf{S}(q)\)) of the quaternion q.

Explanation

Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{S}(q) = a\).

@@ -1639,7 +1639,7 @@

Introduction
-set_norm(norm)[source]
+set_norm(norm)[source]

Sets norm of an already instantiated quaternion.

Parameters:
@@ -1674,7 +1674,7 @@

Introduction
-to_Matrix(vector_only=False)[source]
+to_Matrix(vector_only=False)[source]

Returns elements of quaternion as a column vector. By default, a Matrix of length 4 is returned, with the real part as the first element. @@ -1722,7 +1722,7 @@

Introduction
-to_axis_angle()[source]
+to_axis_angle()[source]

Returns the axis and angle of rotation of a quaternion.

Returns:
@@ -1754,7 +1754,7 @@

Introductionavoid_square_root=False,

-)[source] +)[source]

Returns Euler angles representing same rotation as the quaternion, in the sequence given by seq. This implements the method described in [R3].

@@ -1829,7 +1829,7 @@

Introductionhomogeneous=True,

-)[source] +)[source]

Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed.

@@ -1872,7 +1872,7 @@

Introduction
-classmethod vector_coplanar(q1, q2, q3)[source]
+classmethod vector_coplanar(q1, q2, q3)[source]

Returns True if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are coplanar.

@@ -1924,7 +1924,7 @@

Introduction
-vector_part()[source]
+vector_part()[source]

Returns \(\mathbf{V}(q)\), the vector part of the quaternion \(q\).

Explanation

Given a quaternion \(q = a + bi + cj + dk\), returns \(\mathbf{V}(q) = bi + cj + dk\).

diff --git a/dev/modules/assumptions/ask.html b/dev/modules/assumptions/ask.html index 379e0872f9e..10f6cb27a33 100644 --- a/dev/modules/assumptions/ask.html +++ b/dev/modules/assumptions/ask.html @@ -806,14 +806,14 @@
Documentation Version

Module for querying SymPy objects about assumptions.

-class sympy.assumptions.ask.AssumptionKeys[source]
+class sympy.assumptions.ask.AssumptionKeys[source]

This class contains all the supported keys by ask. It should be accessed via the instance sympy.Q.

-sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]
+sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]

Function to evaluate the proposition with assumptions.

Parameters:
@@ -903,7 +903,7 @@
Documentation Version
-sympy.assumptions.ask.register_handler(key, handler)[source]
+sympy.assumptions.ask.register_handler(key, handler)[source]

Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler.

@@ -913,7 +913,7 @@
Documentation Version
-sympy.assumptions.ask.remove_handler(key, handler)[source]
+sympy.assumptions.ask.remove_handler(key, handler)[source]

Removes a handler from the ask system.

Deprecated since version 1.8.: Use multipledispatch handler instead. See Predicate.

diff --git a/dev/modules/assumptions/assume.html b/dev/modules/assumptions/assume.html index 25fa140d8d1..d4a8bb5f846 100644 --- a/dev/modules/assumptions/assume.html +++ b/dev/modules/assumptions/assume.html @@ -806,7 +806,7 @@
Documentation Version

A module which implements predicates and assumption context.

-class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]
+class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]

The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

@@ -861,7 +861,7 @@
Documentation Version
-class sympy.assumptions.assume.AssumptionsContext[source]
+class sympy.assumptions.assume.AssumptionsContext[source]

Set containing default assumptions which are applied to the ask() function.

Explanation

@@ -906,7 +906,7 @@
Documentation Version
-add(*assumptions)[source]
+add(*assumptions)[source]

Add assumptions.

@@ -914,7 +914,7 @@
Documentation Version
-class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]
+class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]

Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

Explanation

@@ -986,7 +986,7 @@
Documentation Version
-eval(args, assumptions=True)[source]
+eval(args, assumptions=True)[source]

Evaluate self(*args) under the given assumptions.

This uses only direct resolution methods, not logical inference.

@@ -998,13 +998,13 @@
Documentation Version
-classmethod register(*types, **kwargs)[source]
+classmethod register(*types, **kwargs)[source]

Register the signature to the handler.

-classmethod register_many(*types, **kwargs)[source]
+classmethod register_many(*types, **kwargs)[source]

Register multiple signatures to same handler.

@@ -1012,7 +1012,7 @@
Documentation Version
-class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)[source]
+class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)[source]

Predicate without handler.

Explanation

This predicate is generated by using Predicate directly for @@ -1031,7 +1031,7 @@

Documentation Version
-sympy.assumptions.assume.assuming(*assumptions)[source]
+sympy.assumptions.assume.assuming(*assumptions)[source]

Context manager for assumptions.

Examples

>>> from sympy import assuming, Q, ask
diff --git a/dev/modules/assumptions/index.html b/dev/modules/assumptions/index.html
index de7a0338fbf..a3498c5bac4 100644
--- a/dev/modules/assumptions/index.html
+++ b/dev/modules/assumptions/index.html
@@ -808,7 +808,7 @@ 
Documentation Version

Predicate

-class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]
+class sympy.assumptions.assume.Predicate(*args, **kwargs)[source]

Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

Explanation

@@ -880,7 +880,7 @@

Predicate
-eval(args, assumptions=True)[source]
+eval(args, assumptions=True)[source]

Evaluate self(*args) under the given assumptions.

This uses only direct resolution methods, not logical inference.

@@ -892,13 +892,13 @@

Predicate
-classmethod register(*types, **kwargs)[source]
+classmethod register(*types, **kwargs)[source]

Register the signature to the handler.

-classmethod register_many(*types, **kwargs)[source]
+classmethod register_many(*types, **kwargs)[source]

Register multiple signatures to same handler.

@@ -906,7 +906,7 @@

Predicate
-class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]
+class sympy.assumptions.assume.AppliedPredicate(predicate, *args)[source]

The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

@@ -966,7 +966,7 @@

Querying is ask():

-sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]
+sympy.assumptions.ask.ask(proposition, assumptions=True, context={})[source]

Function to evaluate the proposition with assumptions.

Parameters:
diff --git a/dev/modules/assumptions/predicates.html b/dev/modules/assumptions/predicates.html index 308c6780b1d..5c0d59e791e 100644 --- a/dev/modules/assumptions/predicates.html +++ b/dev/modules/assumptions/predicates.html @@ -807,7 +807,7 @@
Documentation Version

Common

-class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]

Generic predicate.

Explanation

ask(Q.is_true(x)) is true iff x is true. This only makes @@ -852,7 +852,7 @@

Common
-class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]

Commutative predicate.

Explanation

ask(Q.commutative(x)) is true iff x commutes with any other @@ -872,7 +872,7 @@

CommonCalculus

-class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]

Finite number predicate.

Explanation

Q.finite(x) is true if x is a number but neither an infinity @@ -916,7 +916,7 @@

Calculus
-class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)[source]

Infinite number predicate.

Q.infinite(x) is true iff the absolute value of x is infinity.

@@ -935,7 +935,7 @@

Calculus

Matrix

-class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]

Symmetric matrix predicate.

Explanation

Q.symmetric(x) is true iff x is a square matrix and is equal to @@ -972,7 +972,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]

Invertible matrix predicate.

Explanation

Q.invertible(x) is true iff x is an invertible matrix. @@ -1009,7 +1009,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]

Orthogonal matrix predicate.

Explanation

Q.orthogonal(x) is true iff x is an orthogonal matrix. @@ -1051,7 +1051,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]

Unitary matrix predicate.

Explanation

Q.unitary(x) is true iff x is a unitary matrix. @@ -1090,7 +1090,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]

Positive definite matrix predicate.

Explanation

If \(M\) is a \(n \times n\) symmetric real matrix, it is said @@ -1129,7 +1129,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]

Upper triangular matrix predicate.

Explanation

A matrix \(M\) is called upper triangular matrix if \(M_{ij}=0\) @@ -1161,7 +1161,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]

Lower triangular matrix predicate.

Explanation

A matrix \(M\) is called lower triangular matrix if \(M_{ij}=0\) @@ -1193,7 +1193,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]

Diagonal matrix predicate.

Explanation

Q.diagonal(x) is true iff x is a diagonal matrix. A diagonal @@ -1228,7 +1228,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]

Fullrank matrix predicate.

Explanation

Q.fullrank(x) is true iff x is a full rank matrix. @@ -1258,7 +1258,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]

Square matrix predicate.

Explanation

Q.square(x) is true iff x is a square matrix. A square matrix @@ -1296,7 +1296,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]

Integer elements matrix predicate.

Explanation

Q.integer_elements(x) is true iff all the elements of x @@ -1320,7 +1320,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]

Real elements matrix predicate.

Explanation

Q.real_elements(x) is true iff all the elements of x @@ -1344,7 +1344,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]

Complex elements matrix predicate.

Explanation

Q.complex_elements(x) is true iff all the elements of x @@ -1370,7 +1370,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]

Singular matrix predicate.

A matrix is singular iff the value of its determinant is 0.

Examples

@@ -1401,7 +1401,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]

Normal matrix predicate.

A matrix is normal if it commutes with its conjugate transpose.

Examples

@@ -1430,7 +1430,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]

Triangular matrix predicate.

Explanation

Q.triangular(X) is true if X is one that is either lower @@ -1463,7 +1463,7 @@

Matrix
-class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]

Unit triangular matrix predicate.

Explanation

A unit triangular matrix is a triangular matrix with 1s @@ -1490,7 +1490,7 @@

MatrixNumber Theory

-class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]

Even number predicate.

Explanation

ask(Q.even(x)) is true iff x belongs to the set of even @@ -1519,7 +1519,7 @@

Number Theory
-class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]

Odd number predicate.

Explanation

ask(Q.odd(x)) is true iff x belongs to the set of odd numbers.

@@ -1547,7 +1547,7 @@

Number Theory
-class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]

Prime number predicate.

Explanation

ask(Q.prime(x)) is true iff x is a natural number greater @@ -1579,7 +1579,7 @@

Number Theory
-class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]

Composite number predicate.

Explanation

ask(Q.composite(x)) is true iff x is a positive integer and has @@ -1611,7 +1611,7 @@

Number Theory

-class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]

Positive real number predicate.

Explanation

Q.positive(x) is true iff x is real and \(x > 0\), that is if x @@ -1659,7 +1659,7 @@

Order
-class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]

Negative number predicate.

Explanation

Q.negative(x) is true iff x is a real number and \(x < 0\), that is, @@ -1707,7 +1707,7 @@

Order
-class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]

Zero number predicate.

Explanation

ask(Q.zero(x)) is true iff the value of x is zero.

@@ -1738,7 +1738,7 @@

Order
-class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]

Nonzero real number predicate.

Explanation

ask(Q.nonzero(x)) is true iff x is real and x is not zero. Note in @@ -1785,7 +1785,7 @@

Order
-class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]

Nonpositive real number predicate.

Explanation

ask(Q.nonpositive(x)) is true iff x belongs to the set of @@ -1829,7 +1829,7 @@

Order
-class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]

Nonnegative real number predicate.

Explanation

ask(Q.nonnegative(x)) is true iff x belongs to the set of @@ -1874,7 +1874,7 @@

Order

Sets

-class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]

Integer predicate.

Explanation

Q.integer(x) is true iff x belongs to the set of integer @@ -1907,7 +1907,7 @@

Sets
-class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]

Rational number predicate.

Explanation

Q.rational(x) is true iff x belongs to the set of @@ -1942,7 +1942,7 @@

Sets
-class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]

Irrational number predicate.

Explanation

Q.irrational(x) is true iff x is any real number that @@ -1979,7 +1979,7 @@

Sets
-class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]

Real number predicate.

Explanation

Q.real(x) is true iff x is a real number, i.e., it is in the @@ -2050,7 +2050,7 @@

Sets
-class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]

Extended real predicate.

Explanation

Q.extended_real(x) is true iff x is a real number or @@ -2081,7 +2081,7 @@

Sets
-class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]

Hermitian predicate.

Explanation

ask(Q.hermitian(x)) is true iff x belongs to the set of @@ -2106,7 +2106,7 @@

Sets
-class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]

Complex number predicate.

Explanation

Q.complex(x) is true iff x belongs to the set of complex @@ -2142,7 +2142,7 @@

Sets
-class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]

Imaginary number predicate.

Explanation

Q.imaginary(x) is true iff x can be written as a real @@ -2179,7 +2179,7 @@

Sets
-class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]

Antihermitian predicate.

Explanation

Q.antihermitian(x) is true iff x belongs to the field of @@ -2206,7 +2206,7 @@

Sets
-class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]

Algebraic number predicate.

Explanation

Q.algebraic(x) is true iff x belongs to the set of @@ -2246,7 +2246,7 @@

Sets
-class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]
+class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]

Transcedental number predicate.

Explanation

Q.transcendental(x) is true iff x belongs to the set of diff --git a/dev/modules/assumptions/refine.html b/dev/modules/assumptions/refine.html index 3d12b83edbb..e1bdaf366e9 100644 --- a/dev/modules/assumptions/refine.html +++ b/dev/modules/assumptions/refine.html @@ -805,7 +805,7 @@

Documentation Version

Refine

-sympy.assumptions.refine.refine(expr, assumptions=True)[source]
+sympy.assumptions.refine.refine(expr, assumptions=True)[source]

Simplify an expression using assumptions.

Explanation

Unlike simplify() which performs structural simplification @@ -843,7 +843,7 @@

Documentation Version
-sympy.assumptions.refine.refine_Pow(expr, assumptions)[source]
+sympy.assumptions.refine.refine_Pow(expr, assumptions)[source]

Handler for instances of Pow.

Examples

>>> from sympy import Q
@@ -871,7 +871,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_abs(expr, assumptions)[source]
+sympy.assumptions.refine.refine_abs(expr, assumptions)[source]

Handler for the absolute value.

Examples

>>> from sympy import Q, Abs
@@ -888,7 +888,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_arg(expr, assumptions)[source]
+sympy.assumptions.refine.refine_arg(expr, assumptions)[source]

Handler for complex argument

Explanation

>>> from sympy.assumptions.refine import refine_arg
@@ -904,7 +904,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_atan2(expr, assumptions)[source]
+sympy.assumptions.refine.refine_atan2(expr, assumptions)[source]

Handler for the atan2 function.

Examples

>>> from sympy import Q, atan2
@@ -930,7 +930,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_im(expr, assumptions)[source]
+sympy.assumptions.refine.refine_im(expr, assumptions)[source]

Handler for imaginary part.

Explanation

>>> from sympy.assumptions.refine import refine_im
@@ -946,7 +946,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_matrixelement(expr, assumptions)[source]
+sympy.assumptions.refine.refine_matrixelement(expr, assumptions)[source]

Handler for symmetric part.

Examples

>>> from sympy.assumptions.refine import refine_matrixelement
@@ -962,7 +962,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_re(expr, assumptions)[source]
+sympy.assumptions.refine.refine_re(expr, assumptions)[source]

Handler for real part.

Examples

>>> from sympy.assumptions.refine import refine_re
@@ -978,7 +978,7 @@ 
Documentation Version
-sympy.assumptions.refine.refine_sign(expr, assumptions)[source]
+sympy.assumptions.refine.refine_sign(expr, assumptions)[source]

Handler for sign.

Examples

>>> from sympy.assumptions.refine import refine_sign
diff --git a/dev/modules/calculus/index.html b/dev/modules/calculus/index.html
index e55ad70db00..05809b07753 100644
--- a/dev/modules/calculus/index.html
+++ b/dev/modules/calculus/index.html
@@ -808,7 +808,7 @@ 
Documentation Version
Euler-Lagrange Equations for given Lagrangian.

-sympy.calculus.euler.euler_equations(L, funcs=(), vars=())[source]
+sympy.calculus.euler.euler_equations(L, funcs=(), vars=())[source]

Find the Euler-Lagrange equations [R31] for a given Lagrangian.

Parameters:
@@ -894,7 +894,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is decreasing in the given interval.

Parameters:
@@ -952,7 +952,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is increasing in the given interval.

Parameters:
@@ -1006,7 +1006,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is monotonic in the given interval.

Parameters:
@@ -1068,7 +1068,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is strictly decreasing in the given interval.

Parameters:
@@ -1122,7 +1122,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Return whether the function is strictly increasing in the given interval.

Parameters:
@@ -1177,7 +1177,7 @@
Documentation Version
symbol=None,
-)[source] +)[source]

Helper function for functions checking function monotonicity.

Parameters:
@@ -1216,7 +1216,7 @@
Documentation Version
-sympy.calculus.singularities.singularities(expression, symbol, domain=None)[source]
+sympy.calculus.singularities.singularities(expression, symbol, domain=None)[source]

Find singularities of a given function.

Parameters:
@@ -1303,7 +1303,7 @@
Documentation Version
-sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)[source]
+sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)[source]

Calculates the finite difference approximation of the derivative of requested order at x0 from points provided in x_list and y_list.

@@ -1383,7 +1383,7 @@
Documentation Version
evaluate=False,
-)[source] +)[source]

Differentiate expr and replace Derivatives with finite differences.

Parameters:
@@ -1435,7 +1435,7 @@
Documentation Version
-sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)[source]
+sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)[source]

Calculates the finite difference weights for an arbitrarily spaced one-dimensional grid (x_list) for derivatives at x0 of order 0, 1, …, up to order using a recursive formula. Order of accuracy @@ -1573,7 +1573,7 @@

Documentation Version
-sympy.calculus.util.continuous_domain(f, symbol, domain)[source]
+sympy.calculus.util.continuous_domain(f, symbol, domain)[source]

Returns the domain on which the function expression f is continuous.

This function is limited by the ability to determine the various singularities and discontinuities of the given function. @@ -1626,7 +1626,7 @@

Documentation Version
-sympy.calculus.util.function_range(f, symbol, domain)[source]
+sympy.calculus.util.function_range(f, symbol, domain)[source]

Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits.

@@ -1683,7 +1683,7 @@
Documentation Version
-sympy.calculus.util.is_convex(f, *syms, domain=Reals)[source]
+sympy.calculus.util.is_convex(f, *syms, domain=Reals)[source]

Determines the convexity of the function passed in the argument.

Parameters:
@@ -1760,7 +1760,7 @@
Documentation Version
-sympy.calculus.util.lcim(numbers)[source]
+sympy.calculus.util.lcim(numbers)[source]

Returns the least common integral multiple of a list of numbers.

The numbers can be rational or irrational or a mixture of both. \(None\) is returned for incommensurable numbers.

@@ -1792,7 +1792,7 @@
Documentation Version
-sympy.calculus.util.maximum(f, symbol, domain=Reals)[source]
+sympy.calculus.util.maximum(f, symbol, domain=Reals)[source]

Returns the maximum value of a function in the given domain.

Parameters:
@@ -1839,7 +1839,7 @@
Documentation Version
-sympy.calculus.util.minimum(f, symbol, domain=Reals)[source]
+sympy.calculus.util.minimum(f, symbol, domain=Reals)[source]

Returns the minimum value of a function in the given domain.

Parameters:
@@ -1886,7 +1886,7 @@
Documentation Version
-sympy.calculus.util.not_empty_in(finset_intersection, *syms)[source]
+sympy.calculus.util.not_empty_in(finset_intersection, *syms)[source]

Finds the domain of the functions in finset_intersection in which the finite_set is not-empty.

@@ -1933,7 +1933,7 @@
Documentation Version
-sympy.calculus.util.periodicity(f, symbol, check=False)[source]
+sympy.calculus.util.periodicity(f, symbol, check=False)[source]

Tests the given function for periodicity in the given symbol.

Parameters:
@@ -1993,7 +1993,7 @@
Documentation Version
-sympy.calculus.util.stationary_points(f, symbol, domain=Reals)[source]
+sympy.calculus.util.stationary_points(f, symbol, domain=Reals)[source]

Returns the stationary points of a function (where derivative of the function is 0) in the given domain.

diff --git a/dev/modules/categories.html b/dev/modules/categories.html index 1776c5d292d..52be211b12c 100644 --- a/dev/modules/categories.html +++ b/dev/modules/categories.html @@ -829,7 +829,7 @@

Introduction
-class sympy.categories.Object(name, **assumptions)[source]
+class sympy.categories.Object(name, **assumptions)[source]

The base class for any kind of object in an abstract category.

Explanation

While technically any instance of Basic will do, this @@ -839,7 +839,7 @@

Introduction
-class sympy.categories.Morphism(domain, codomain)[source]
+class sympy.categories.Morphism(domain, codomain)[source]

The base class for any morphism in an abstract category.

Explanation

In abstract categories, a morphism is an arrow between two @@ -872,7 +872,7 @@

Introduction
-compose(other)[source]
+compose(other)[source]

Composes self with the supplied morphism.

The order of elements in the composition is the usual order, i.e., to construct \(g\circ f\) use g.compose(f).

@@ -913,7 +913,7 @@

Introduction
-class sympy.categories.NamedMorphism(domain, codomain, name)[source]
+class sympy.categories.NamedMorphism(domain, codomain, name)[source]

Represents a morphism which has a name.

Explanation

Names are used to distinguish between morphisms which have the @@ -953,7 +953,7 @@

Introduction
-class sympy.categories.CompositeMorphism(*components)[source]
+class sympy.categories.CompositeMorphism(*components)[source]

Represents a morphism which is a composition of other morphisms.

Explanation

Two composite morphisms are equal if the morphisms they were @@ -1035,7 +1035,7 @@

Introduction
-flatten(new_name)[source]
+flatten(new_name)[source]

Forgets the composite structure of this morphism.

Explanation

If new_name is not empty, returns a NamedMorphism @@ -1060,7 +1060,7 @@

Introduction
-class sympy.categories.IdentityMorphism(domain)[source]
+class sympy.categories.IdentityMorphism(domain)[source]

Represents an identity morphism.

Explanation

An identity morphism is a morphism with equal domain and codomain, @@ -1094,7 +1094,7 @@

Introductioncommutative_diagrams=EmptySet,

-)[source] +)[source]

An (abstract) category.

Explanation

A category [JoyOfCats] is a quadruple \(\mbox{K} = (O, \hom, id, @@ -1191,7 +1191,7 @@

Introduction
-class sympy.categories.Diagram(*args)[source]
+class sympy.categories.Diagram(*args)[source]

Represents a diagram in a certain category.

Explanation

Informally, a diagram is a collection of objects of a category and @@ -1265,7 +1265,7 @@

Introduction
-hom(A, B)[source]
+hom(A, B)[source]

Returns a 2-tuple of sets of morphisms between objects A and B: one set of morphisms listed as premises, and the other set of morphisms listed as conclusions.

@@ -1290,7 +1290,7 @@

Introduction
-is_subdiagram(diagram)[source]
+is_subdiagram(diagram)[source]

Checks whether diagram is a subdiagram of self. Diagram \(D'\) is a subdiagram of \(D\) if all premises (conclusions) of \(D'\) are contained in the premises @@ -1355,7 +1355,7 @@

Introduction
-subdiagram_from_objects(objects)[source]
+subdiagram_from_objects(objects)[source]

If objects is a subset of the objects of self, returns a diagram which has as premises all those premises of self which have a domains and codomains in objects, likewise @@ -1385,7 +1385,7 @@

Introduction
-class sympy.categories.diagram_drawing.DiagramGrid(diagram, groups=None, **hints)[source]
+class sympy.categories.diagram_drawing.DiagramGrid(diagram, groups=None, **hints)[source]

Constructs and holds the fitting of the diagram into a grid.

Explanation

The mission of this class is to analyse the structure of the @@ -1588,7 +1588,7 @@

Introductionlabel,

-)[source] +)[source]

Stores the information necessary for producing an Xy-pic description of an arrow.

The principal goal of this class is to abstract away the string @@ -1683,7 +1683,7 @@

Introduction
-class sympy.categories.diagram_drawing.XypicDiagramDrawer[source]
+class sympy.categories.diagram_drawing.XypicDiagramDrawer[source]

Given a Diagram and the corresponding DiagramGrid, produces the Xy-pic representation of the diagram.

@@ -1805,7 +1805,7 @@

Introductiondiagram_format='',

-)[source] +)[source]

Returns the Xy-pic representation of diagram laid out in grid.

Consider the following simple triangle diagram.

@@ -1868,7 +1868,7 @@

Introduction**hints,

-)[source] +)[source]

Provides a shortcut combining DiagramGrid and XypicDiagramDrawer. Returns an Xy-pic presentation of diagram. The argument masked is a list of morphisms which @@ -1915,7 +1915,7 @@

Introduction**hints,

-)[source] +)[source]

Combines the functionality of xypic_draw_diagram and sympy.printing.preview. The arguments masked, diagram_format, groups, and hints are passed to diff --git a/dev/modules/codegen.html b/dev/modules/codegen.html index a8e7c0e33f0..3e9c3fb03a9 100644 --- a/dev/modules/codegen.html +++ b/dev/modules/codegen.html @@ -1344,7 +1344,7 @@

Autowrap
opportunistic=True,

-)[source] +)[source]

Specialization of ReplaceOptim for functions evaluating “f(x) - 1”.

Parameters:
@@ -1383,7 +1383,7 @@

Autowrap

-replace_in_Add(e)[source]
+replace_in_Add(e)[source]

passed as second argument to Basic.replace(…)

@@ -1391,7 +1391,7 @@

Autowrap
-class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[source]
+class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[source]

Abstract base class for rewriting optimization.

Subclasses should implement __call__ taking an expression as argument.

@@ -1405,7 +1405,7 @@

Autowrap
-class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[source]
+class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[source]

Rewriting optimization calling replace on expressions.

Parameters:
@@ -1446,7 +1446,7 @@

Autowrap
base_req=<function <lambda>>,

-)[source] +)[source]

Creates an instance of ReplaceOptim for expanding Pow.

Parameters:
@@ -1483,7 +1483,7 @@

Autowrap
-sympy.codegen.rewriting.optimize(expr, optimizations)[source]
+sympy.codegen.rewriting.optimize(expr, optimizations)[source]

Apply optimizations to an expression.

Parameters:
@@ -1524,7 +1524,7 @@

Autowrap

-class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[source]
+class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[source]

Represents an operation to solve a linear matrix equation.

Parameters:
@@ -1572,7 +1572,7 @@

Autowrap
**kwargs,

-)[source] +)[source]

Approximates functions by expanding them as a series.

Parameters:
@@ -1619,7 +1619,7 @@

Autowrap
-class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[source]
+class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[source]

Approximates sum by neglecting small terms.

Parameters:
@@ -1781,7 +1781,7 @@

Using the nodes
-class sympy.codegen.ast.Assignment(lhs, rhs)[source]
+class sympy.codegen.ast.Assignment(lhs, rhs)[source]

Represents variable assignment for code generation.

Parameters:
@@ -1821,7 +1821,7 @@

Using the nodes
-class sympy.codegen.ast.AssignmentBase(lhs, rhs)[source]
+class sympy.codegen.ast.AssignmentBase(lhs, rhs)[source]

Abstract base class for Assignment and AugmentedAssignment.

Attributes:

@@ -1832,7 +1832,7 @@

Using the nodes
-class sympy.codegen.ast.Attribute(possibly parametrized)[source]
+class sympy.codegen.ast.Attribute(possibly parametrized)[source]

For use with sympy.codegen.ast.Node (which takes instances of Attribute as attrs).

@@ -1859,7 +1859,7 @@

Using the nodes
-class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[source]
+class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[source]

Base class for augmented assignments.

Attributes:

@@ -1871,7 +1871,7 @@

Using the nodes
-class sympy.codegen.ast.BreakToken(*args, **kwargs)[source]
+class sympy.codegen.ast.BreakToken(*args, **kwargs)[source]

Represents ‘break’ in C/Python (‘exit’ in Fortran).

Use the premade instance break_ or instantiate manually.

Examples

@@ -1887,7 +1887,7 @@

Using the nodes
-class sympy.codegen.ast.CodeBlock(*args)[source]
+class sympy.codegen.ast.CodeBlock(*args)[source]

Represents a block of code.

Explanation

For now only assignments are supported. This restriction will be lifted in @@ -1932,7 +1932,7 @@

Using the nodesorder='canonical',

-)[source] +)[source]

Return a new code block with common subexpressions eliminated.

Explanation

See the docstring of sympy.simplify.cse_main.cse() for more @@ -1962,7 +1962,7 @@

Using the nodes
-classmethod topological_sort(assignments)[source]
+classmethod topological_sort(assignments)[source]

Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used.

Examples

@@ -1994,19 +1994,19 @@

Using the nodes
-class sympy.codegen.ast.Comment(*args, **kwargs)[source]
+class sympy.codegen.ast.Comment(*args, **kwargs)[source]

Represents a comment.

-class sympy.codegen.ast.ComplexType(*args, **kwargs)[source]
+class sympy.codegen.ast.ComplexType(*args, **kwargs)[source]

Represents a complex floating point number.

-class sympy.codegen.ast.ContinueToken(*args, **kwargs)[source]
+class sympy.codegen.ast.ContinueToken(*args, **kwargs)[source]

Represents ‘continue’ in C/Python (‘cycle’ in Fortran)

Use the premade instance continue_ or instantiate manually.

Examples

@@ -2022,7 +2022,7 @@

Using the nodes
-class sympy.codegen.ast.Declaration(*args, **kwargs)[source]
+class sympy.codegen.ast.Declaration(*args, **kwargs)[source]

Represents a variable declaration

Parameters:
@@ -2047,7 +2047,7 @@

Using the nodes
-class sympy.codegen.ast.Element(*args, **kwargs)[source]
+class sympy.codegen.ast.Element(*args, **kwargs)[source]

Element in (a possibly N-dimensional) array.

Examples

>>> from sympy.codegen.ast import Element
@@ -2067,11 +2067,11 @@ 

Using the nodes
-class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[source]
+class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[source]

Represents a floating point number type.

-cast_nocheck[source]
+cast_nocheck[source]

alias of Float

@@ -2079,7 +2079,7 @@

Using the nodes
-class sympy.codegen.ast.FloatType(*args, **kwargs)[source]
+class sympy.codegen.ast.FloatType(*args, **kwargs)[source]

Represents a floating point type with fixed bit width.

Base 2 & one sign bit is assumed.

@@ -2126,7 +2126,7 @@

Using the nodes
-cast_nocheck(value)[source]
+cast_nocheck(value)[source]

Casts without checking if out of bounds or subnormal.

@@ -2183,7 +2183,7 @@

Using the nodes
-class sympy.codegen.ast.For(*args, **kwargs)[source]
+class sympy.codegen.ast.For(*args, **kwargs)[source]

Represents a ‘for-loop’ in the code.

@@ -2235,7 +2235,7 @@

Using the nodes
-class sympy.codegen.ast.FunctionCall(*args, **kwargs)[source]
+class sympy.codegen.ast.FunctionCall(*args, **kwargs)[source]

Represents a call to a function in the code.

Parameters:
@@ -2255,7 +2255,7 @@

Using the nodes
-class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[source]
+class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[source]

Represents a function definition in the code.

Parameters:
@@ -2286,7 +2286,7 @@

Using the nodes
-class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[source]
+class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[source]

Represents a function prototype

Allows the user to generate forward declaration in e.g. C/C++.

@@ -2310,13 +2310,13 @@

Using the nodes
-class sympy.codegen.ast.IntBaseType(*args, **kwargs)[source]
+class sympy.codegen.ast.IntBaseType(*args, **kwargs)[source]

Integer base type, contains no size information.

-class sympy.codegen.ast.Node(*args, **kwargs)[source]
+class sympy.codegen.ast.Node(*args, **kwargs)[source]

Subclass of Token, carrying the attribute ‘attrs’ (Tuple)

Examples

>>> from sympy.codegen.ast import Node, value_const, pointer_const
@@ -2335,7 +2335,7 @@ 

Using the nodes
-attr_params(looking_for)[source]
+attr_params(looking_for)[source]

Returns the parameters of the Attribute with name looking_for in self.attrs

@@ -2343,7 +2343,7 @@

Using the nodes
-class sympy.codegen.ast.NoneToken(*args, **kwargs)[source]
+class sympy.codegen.ast.NoneToken(*args, **kwargs)[source]

The AST equivalence of Python’s NoneType

The corresponding instance of Python’s None is none.

Examples

@@ -2357,7 +2357,7 @@

Using the nodes
-class sympy.codegen.ast.Pointer(*args, **kwargs)[source]
+class sympy.codegen.ast.Pointer(*args, **kwargs)[source]

Represents a pointer. See Variable.

Examples

Can create instances of Element:

@@ -2373,7 +2373,7 @@

Using the nodes
-class sympy.codegen.ast.Print(*args, **kwargs)[source]
+class sympy.codegen.ast.Print(*args, **kwargs)[source]

Represents print command in the code.

Parameters:
@@ -2392,19 +2392,19 @@

Using the nodes
-class sympy.codegen.ast.QuotedString(*args, **kwargs)[source]
+class sympy.codegen.ast.QuotedString(*args, **kwargs)[source]

Represents a string which should be printed with quotes.

-class sympy.codegen.ast.Raise(*args, **kwargs)[source]
+class sympy.codegen.ast.Raise(*args, **kwargs)[source]

Prints as ‘raise …’ in Python, ‘throw …’ in C++

-class sympy.codegen.ast.Return(*args, **kwargs)[source]
+class sympy.codegen.ast.Return(*args, **kwargs)[source]

Represents a return command in the code.

Parameters:
@@ -2424,14 +2424,14 @@

Using the nodes
-class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[source]
+class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[source]

Represents ‘std::runtime_error’ in C++ and ‘RuntimeError’ in Python.

Note that the latter is uncommon, and you might want to use e.g. ValueError.

-class sympy.codegen.ast.Scope(*args, **kwargs)[source]
+class sympy.codegen.ast.Scope(*args, **kwargs)[source]

Represents a scope in the code.

Parameters:
@@ -2445,13 +2445,13 @@

Using the nodes
-class sympy.codegen.ast.SignedIntType(*args, **kwargs)[source]
+class sympy.codegen.ast.SignedIntType(*args, **kwargs)[source]

Represents a signed integer type.

-class sympy.codegen.ast.Stream(*args, **kwargs)[source]
+class sympy.codegen.ast.Stream(*args, **kwargs)[source]

Represents a stream.

There are two predefined Stream instances stdout & stderr.

@@ -2473,7 +2473,7 @@

Using the nodes
-class sympy.codegen.ast.String(*args, **kwargs)[source]
+class sympy.codegen.ast.String(*args, **kwargs)[source]

SymPy object representing a string.

Atomic object which is not an expression (as opposed to Symbol).

@@ -2498,7 +2498,7 @@

Using the nodes
-class sympy.codegen.ast.Token(*args, **kwargs)[source]
+class sympy.codegen.ast.Token(*args, **kwargs)[source]

Base class for the AST types.

Explanation

Defining fields are set in _fields. Attributes (defined in _fields) @@ -2512,7 +2512,7 @@

Using the nodesnot_in_args are not passed to Basic.

-kwargs(exclude=(), apply=None)[source]
+kwargs(exclude=(), apply=None)[source]

Get instance’s attributes as dict of keyword arguments.

Parameters:
@@ -2532,7 +2532,7 @@

Using the nodes
-class sympy.codegen.ast.Type(*args, **kwargs)[source]
+class sympy.codegen.ast.Type(*args, **kwargs)[source]

Represents a type.

Parameters:
@@ -2596,7 +2596,7 @@

Using the nodesprecision_targets=None,

-)[source] +)[source]

Casts a value to the data type of the instance.

Parameters:
@@ -2650,7 +2650,7 @@

Using the nodes
-classmethod from_expr(expr)[source]
+classmethod from_expr(expr)[source]

Deduces type from an expression or a Symbol.

Parameters:
@@ -2682,13 +2682,13 @@

Using the nodes
-class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[source]
+class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[source]

Represents an unsigned integer type.

-class sympy.codegen.ast.Variable(*args, **kwargs)[source]
+class sympy.codegen.ast.Variable(*args, **kwargs)[source]

Represents a variable.

Parameters:
@@ -2740,7 +2740,7 @@

Using the nodes
-as_Declaration(**kwargs)[source]
+as_Declaration(**kwargs)[source]

Convenience method for creating a Declaration instance.

Explanation

If the variable of the Declaration need to wrap a modified @@ -2775,7 +2775,7 @@

Using the nodescast_check=True,

-)[source] +)[source]

Alt. constructor with type deduction from Type.from_expr.

Deduces type primarily from symbol, secondarily from value.

@@ -2813,7 +2813,7 @@

Using the nodes
-class sympy.codegen.ast.While(*args, **kwargs)[source]
+class sympy.codegen.ast.While(*args, **kwargs)[source]

Represents a ‘for-loop’ in the code.

Expressions are of the form:
@@ -2846,7 +2846,7 @@

Using the nodes
-sympy.codegen.ast.aug_assign(lhs, op, rhs)[source]
+sympy.codegen.ast.aug_assign(lhs, op, rhs)[source]

Create ‘lhs op= rhs’.

Parameters:
@@ -2893,7 +2893,7 @@

Using the nodes
-class sympy.codegen.cfunctions.Cbrt(*args)[source]
+class sympy.codegen.cfunctions.Cbrt(*args)[source]

Represents the cube root function.

Explanation

The reason why one would use Cbrt(x) over cbrt(x) @@ -2914,7 +2914,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -2922,7 +2922,7 @@

Using the nodes
-class sympy.codegen.cfunctions.Sqrt(*args)[source]
+class sympy.codegen.cfunctions.Sqrt(*args)[source]

Represents the square root function.

Explanation

The reason why one would use Sqrt(x) over sqrt(x) @@ -2943,7 +2943,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -2951,7 +2951,7 @@

Using the nodes
-class sympy.codegen.cfunctions.exp2(arg)[source]
+class sympy.codegen.cfunctions.exp2(arg)[source]

Represents the exponential function with base two.

Explanation

The benefit of using exp2(x) over 2**x @@ -2972,7 +2972,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -2980,7 +2980,7 @@

Using the nodes
-class sympy.codegen.cfunctions.expm1(arg)[source]
+class sympy.codegen.cfunctions.expm1(arg)[source]

Represents the exponential function minus one.

Explanation

The benefit of using expm1(x) over exp(x) - 1 @@ -3004,7 +3004,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3012,7 +3012,7 @@

Using the nodes
-class sympy.codegen.cfunctions.fma(*args)[source]
+class sympy.codegen.cfunctions.fma(*args)[source]

Represents “fused multiply add”.

Explanation

The benefit of using fma(x, y, z) over x*y + z @@ -3027,7 +3027,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3035,7 +3035,7 @@

Using the nodes
-class sympy.codegen.cfunctions.hypot(*args)[source]
+class sympy.codegen.cfunctions.hypot(*args)[source]

Represents the hypotenuse function.

Explanation

The hypotenuse function is provided by e.g. the math library @@ -3054,7 +3054,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3062,7 +3062,7 @@

Using the nodes
-class sympy.codegen.cfunctions.log10(arg)[source]
+class sympy.codegen.cfunctions.log10(arg)[source]

Represents the logarithm function with base ten.

Examples

>>> from sympy.abc import x
@@ -3079,7 +3079,7 @@ 

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3087,7 +3087,7 @@

Using the nodes
-class sympy.codegen.cfunctions.log1p(arg)[source]
+class sympy.codegen.cfunctions.log1p(arg)[source]

Represents the natural logarithm of a number plus one.

Explanation

The benefit of using log1p(x) over log(x + 1) @@ -3112,7 +3112,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3120,7 +3120,7 @@

Using the nodes
-class sympy.codegen.cfunctions.log2(arg)[source]
+class sympy.codegen.cfunctions.log2(arg)[source]

Represents the logarithm function with base two.

Explanation

The benefit of using log2(x) over log(x)/log(2) @@ -3141,7 +3141,7 @@

Using the nodes
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of this function.

@@ -3153,13 +3153,13 @@

Using the nodes
-class sympy.codegen.cnodes.CommaOperator(*args)[source]
+class sympy.codegen.cnodes.CommaOperator(*args)[source]

Represents the comma operator in C

-class sympy.codegen.cnodes.Label(*args, **kwargs)[source]
+class sympy.codegen.cnodes.Label(*args, **kwargs)[source]

Label for use with e.g. goto statement.

Examples

>>> from sympy import ccode, Symbol
@@ -3175,7 +3175,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PostDecrement(*args)[source]
+class sympy.codegen.cnodes.PostDecrement(*args)[source]

Represents the post-decrement operator

Examples

>>> from sympy.abc import x
@@ -3189,7 +3189,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PostIncrement(*args)[source]
+class sympy.codegen.cnodes.PostIncrement(*args)[source]

Represents the post-increment operator

Examples

>>> from sympy.abc import x
@@ -3203,7 +3203,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PreDecrement(*args)[source]
+class sympy.codegen.cnodes.PreDecrement(*args)[source]

Represents the pre-decrement operator

Examples

>>> from sympy.abc import x
@@ -3217,7 +3217,7 @@ 

Using the nodes
-class sympy.codegen.cnodes.PreIncrement(*args)[source]
+class sympy.codegen.cnodes.PreIncrement(*args)[source]

Represents the pre-increment operator

Examples

>>> from sympy.abc import x
@@ -3231,19 +3231,19 @@ 

Using the nodes
-sympy.codegen.cnodes.alignof(arg)[source]
+sympy.codegen.cnodes.alignof(arg)[source]

Generate of FunctionCall instance for calling ‘alignof’

-class sympy.codegen.cnodes.goto(*args, **kwargs)[source]
+class sympy.codegen.cnodes.goto(*args, **kwargs)[source]

Represents goto in C

-sympy.codegen.cnodes.sizeof(arg)[source]
+sympy.codegen.cnodes.sizeof(arg)[source]

Generate of FunctionCall instance for calling ‘sizeof’

Examples

>>> from sympy.codegen.ast import real
@@ -3257,13 +3257,13 @@ 

Using the nodes
-class sympy.codegen.cnodes.struct(*args, **kwargs)[source]
+class sympy.codegen.cnodes.struct(*args, **kwargs)[source]

Represents a struct in C

-class sympy.codegen.cnodes.union(*args, **kwargs)[source]
+class sympy.codegen.cnodes.union(*args, **kwargs)[source]

Represents a union in C

@@ -3273,7 +3273,7 @@

Using the nodes
-class sympy.codegen.cxxnodes.using(*args, **kwargs)[source]
+class sympy.codegen.cxxnodes.using(*args, **kwargs)[source]

Represents a ‘using’ statement in C++

@@ -3285,7 +3285,7 @@

Using the nodes
-class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[source]
+class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[source]

Represents an array constructor.

Examples

>>> from sympy import fcode
@@ -3301,7 +3301,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Do(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Do(*args, **kwargs)[source]

Represents a Do loop in in Fortran.

Examples

>>> from sympy import fcode, symbols
@@ -3328,7 +3328,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Extent(*args)[source]
+class sympy.codegen.fnodes.Extent(*args)[source]

Represents a dimension extent.

Examples

>>> from sympy.codegen.fnodes import Extent
@@ -3348,7 +3348,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[source]
+class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[source]

AST node explicitly mapped to a fortran “return”.

Explanation

Because a return statement in fortran is different from C, and @@ -3367,7 +3367,7 @@

Using the nodes
-class sympy.codegen.fnodes.GoTo(*args, **kwargs)[source]
+class sympy.codegen.fnodes.GoTo(*args, **kwargs)[source]

Represents a goto statement in Fortran

Examples

>>> from sympy.codegen.fnodes import GoTo
@@ -3381,7 +3381,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[source]
+class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[source]

Represents an implied do loop in Fortran.

Examples

>>> from sympy import Symbol, fcode
@@ -3397,7 +3397,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Module(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Module(*args, **kwargs)[source]

Represents a module in Fortran.

Examples

>>> from sympy.codegen.fnodes import Module
@@ -3416,7 +3416,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Program(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Program(*args, **kwargs)[source]

Represents a ‘program’ block in Fortran.

Examples

>>> from sympy.codegen.ast import Print
@@ -3433,7 +3433,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[source]
+class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[source]

Represents a subroutine in Fortran.

Examples

>>> from sympy import fcode, symbols
@@ -3453,7 +3453,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[source]
+class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[source]

Represents a call to a subroutine in Fortran.

Examples

>>> from sympy.codegen.fnodes import SubroutineCall
@@ -3466,7 +3466,7 @@ 

Using the nodes
-sympy.codegen.fnodes.allocated(array)[source]
+sympy.codegen.fnodes.allocated(array)[source]

Creates an AST node for a function call to Fortran’s “allocated(…)”

Examples

>>> from sympy import fcode
@@ -3492,7 +3492,7 @@ 

Using the nodestype=None,

-)[source] +)[source]

Convenience function for creating a Variable instance for a Fortran array.

Parameters:
@@ -3528,7 +3528,7 @@

Using the nodes
-sympy.codegen.fnodes.bind_C(name=None)[source]
+sympy.codegen.fnodes.bind_C(name=None)[source]

Creates an Attribute bind_C with a name.

Parameters:
@@ -3556,13 +3556,13 @@

Using the nodes
-class sympy.codegen.fnodes.cmplx(*args)[source]
+class sympy.codegen.fnodes.cmplx(*args)[source]

Fortran complex conversion function.

-sympy.codegen.fnodes.dimension(*args)[source]
+sympy.codegen.fnodes.dimension(*args)[source]

Creates a ‘dimension’ Attribute with (up to 7) extents.

Examples

>>> from sympy import fcode
@@ -3578,25 +3578,25 @@ 

Using the nodes
-class sympy.codegen.fnodes.dsign(*args)[source]
+class sympy.codegen.fnodes.dsign(*args)[source]

Fortran sign intrinsic for double precision arguments.

-class sympy.codegen.fnodes.isign(*args)[source]
+class sympy.codegen.fnodes.isign(*args)[source]

Fortran sign intrinsic for integer arguments.

-class sympy.codegen.fnodes.kind(*args)[source]
+class sympy.codegen.fnodes.kind(*args)[source]

Fortran kind function.

-sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[source]
+sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[source]

Creates an AST node for a function call to Fortran’s “lbound(…)”

Parameters:
@@ -3617,25 +3617,25 @@

Using the nodes
-class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[source]
+class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[source]

Fortran double precision real literal

-class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[source]
+class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[source]

Fortran single precision real literal

-class sympy.codegen.fnodes.merge(*args)[source]
+class sympy.codegen.fnodes.merge(*args)[source]

Fortran merge function

-sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[source]
+sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[source]

Creates an AST node for a function call to Fortran’s “reshape(…)”

Parameters:
@@ -3647,7 +3647,7 @@

Using the nodes
-sympy.codegen.fnodes.shape(source, kind=None)[source]
+sympy.codegen.fnodes.shape(source, kind=None)[source]

Creates an AST node for a function call to Fortran’s “shape(…)”

Parameters:
@@ -3667,7 +3667,7 @@

Using the nodes
-sympy.codegen.fnodes.size(array, dim=None, kind=None)[source]
+sympy.codegen.fnodes.size(array, dim=None, kind=None)[source]

Creates an AST node for a function call to Fortran’s “size(…)”

Examples

>>> from sympy import fcode, Symbol
@@ -3688,7 +3688,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.use(*args, **kwargs)[source]
+class sympy.codegen.fnodes.use(*args, **kwargs)[source]

Represents a use statement in Fortran.

Examples

>>> from sympy.codegen.fnodes import use
@@ -3705,7 +3705,7 @@ 

Using the nodes
-class sympy.codegen.fnodes.use_rename(*args, **kwargs)[source]
+class sympy.codegen.fnodes.use_rename(*args, **kwargs)[source]

Represents a renaming in a use statement in Fortran.

Examples

>>> from sympy.codegen.fnodes import use_rename, use
@@ -3743,7 +3743,7 @@ 

Using the nodesbounds=None,

-)[source] +)[source]

Generates an AST for Newton-Raphson method (a root-finding algorithm).

Parameters:
@@ -3833,7 +3833,7 @@

Using the nodes**kwargs,

-)[source] +)[source]

Generates an AST for a function implementing the Newton-Raphson method.

Parameters:
@@ -3887,7 +3887,7 @@

Using the nodes

Python utilities (sympy.codegen.pyutils)

-sympy.codegen.pyutils.render_as_module(content, standard='python3')[source]
+sympy.codegen.pyutils.render_as_module(content, standard='python3')[source]

Renders Python code as a module (with the required imports).

Parameters:
@@ -3913,7 +3913,7 @@

Using the nodessettings=None,

-)[source] +)[source]

Renders a C source file (with required #include statements)

@@ -3931,7 +3931,7 @@

Using the nodesprinter_settings=None,

-)[source] +)[source]

Creates a Module instance and renders it as a string.

This generates Fortran source code for a module with the correct use statements.

diff --git a/dev/modules/combinatorics/galois.html b/dev/modules/combinatorics/galois.html index 66c1be3185f..7b40c94fd06 100644 --- a/dev/modules/combinatorics/galois.html +++ b/dev/modules/combinatorics/galois.html @@ -839,7 +839,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S6.

@@ -858,7 +858,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S5.

@@ -877,7 +877,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S4.

@@ -896,7 +896,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S3.

@@ -915,7 +915,7 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S2.

@@ -934,20 +934,20 @@

Referencesboundary=None,

-)[source] +)[source]

Names for the transitive subgroups of S1.

-sympy.combinatorics.galois.four_group()[source]
+sympy.combinatorics.galois.four_group()[source]

Return a representation of the Klein four-group as a transitive subgroup of S4.

-sympy.combinatorics.galois.M20()[source]
+sympy.combinatorics.galois.M20()[source]

Return a representation of the metacyclic group M20, a transitive subgroup of S5 that is one of the possible Galois groups for polys of degree 5.

Notes

@@ -956,7 +956,7 @@

References
-sympy.combinatorics.galois.S3_in_S6()[source]
+sympy.combinatorics.galois.S3_in_S6()[source]

Return a representation of S3 as a transitive subgroup of S6.

Notes

The representation is found by viewing the group as the symmetries of a @@ -965,7 +965,7 @@

References
-sympy.combinatorics.galois.A4_in_S6()[source]
+sympy.combinatorics.galois.A4_in_S6()[source]

Return a representation of A4 as a transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -973,7 +973,7 @@

References
-sympy.combinatorics.galois.S4m()[source]
+sympy.combinatorics.galois.S4m()[source]

Return a representation of the S4- transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -981,7 +981,7 @@

References
-sympy.combinatorics.galois.S4p()[source]
+sympy.combinatorics.galois.S4p()[source]

Return a representation of the S4+ transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -989,7 +989,7 @@

References
-sympy.combinatorics.galois.A4xC2()[source]
+sympy.combinatorics.galois.A4xC2()[source]

Return a representation of the (A4 x C2) transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -997,7 +997,7 @@

References
-sympy.combinatorics.galois.S4xC2()[source]
+sympy.combinatorics.galois.S4xC2()[source]

Return a representation of the (S4 x C2) transitive subgroup of S6.

Notes

This was computed using find_transitive_subgroups_of_S6().

@@ -1005,7 +1005,7 @@

References
-sympy.combinatorics.galois.G18()[source]
+sympy.combinatorics.galois.G18()[source]

Return a representation of the group G18, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2.

Notes

@@ -1014,7 +1014,7 @@

References
-sympy.combinatorics.galois.G36m()[source]
+sympy.combinatorics.galois.G36m()[source]

Return a representation of the group G36-, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2^2.

Notes

@@ -1023,7 +1023,7 @@

References
-sympy.combinatorics.galois.G36p()[source]
+sympy.combinatorics.galois.G36p()[source]

Return a representation of the group G36+, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C4.

Notes

@@ -1032,7 +1032,7 @@

References
-sympy.combinatorics.galois.G72()[source]
+sympy.combinatorics.galois.G72()[source]

Return a representation of the group G72, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with D4.

Notes

@@ -1041,7 +1041,7 @@

References
-sympy.combinatorics.galois.PSL2F5()[source]
+sympy.combinatorics.galois.PSL2F5()[source]

Return a representation of the group \(PSL_2(\mathbb{F}_5)\), as a transitive subgroup of S6, isomorphic to \(A_5\).

Notes

@@ -1050,7 +1050,7 @@

References
-sympy.combinatorics.galois.PGL2F5()[source]
+sympy.combinatorics.galois.PGL2F5()[source]

Return a representation of the group \(PGL_2(\mathbb{F}_5)\), as a transitive subgroup of S6, isomorphic to \(S_5\).

Notes

@@ -1066,7 +1066,7 @@

Referencesprint_report=False,

-)[source] +)[source]

Search for certain transitive subgroups of \(S_6\).

The symmetric group \(S_6\) has 16 different transitive subgroups, up to conjugacy. Some are more easily constructed than others. For example, the diff --git a/dev/modules/combinatorics/graycode.html b/dev/modules/combinatorics/graycode.html index 5e8092bb16e..9f0d27ec0e7 100644 --- a/dev/modules/combinatorics/graycode.html +++ b/dev/modules/combinatorics/graycode.html @@ -805,7 +805,7 @@

Documentation Version

Gray Code

-class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)[source]
+class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)[source]

A Gray code is essentially a Hamiltonian walk on a n-dimensional cube with edge length of one. The vertices of the cube are represented by vectors @@ -859,7 +859,7 @@

Documentation Version
-generate_gray(**hints)[source]
+generate_gray(**hints)[source]

Generates the sequence of bit vectors of a Gray Code.

Examples

>>> from sympy.combinatorics import GrayCode
@@ -901,7 +901,7 @@ 
Documentation Version
-next(delta=1)[source]
+next(delta=1)[source]

Returns the Gray code a distance delta (default = 1) from the current value in canonical order.

Examples

@@ -964,7 +964,7 @@
Documentation Version
-skip()[source]
+skip()[source]

Skips the bit generation.

Examples

>>> from sympy.combinatorics import GrayCode
@@ -991,7 +991,7 @@ 
Documentation Version
-classmethod unrank(n, rank)[source]
+classmethod unrank(n, rank)[source]

Unranks an n-bit sized Gray code of rank k. This method exists so that a derivative GrayCode class can define its own code of a given rank.

@@ -1015,7 +1015,7 @@
Documentation Version
-graycode.random_bitstring()[source]
+graycode.random_bitstring()[source]

Generates a random bitlist of length n.

Examples

>>> from sympy.combinatorics.graycode import random_bitstring
@@ -1027,7 +1027,7 @@ 
Documentation Version
-graycode.gray_to_bin()[source]
+graycode.gray_to_bin()[source]

Convert from Gray coding to binary coding.

We assume big endian encoding.

Examples

@@ -1044,7 +1044,7 @@
Documentation Version
-graycode.bin_to_gray()[source]
+graycode.bin_to_gray()[source]

Convert from binary coding to gray coding.

We assume big endian encoding.

Examples

@@ -1061,7 +1061,7 @@
Documentation Version
-graycode.get_subset_from_bitstring(bitstring)[source]
+graycode.get_subset_from_bitstring(bitstring)[source]

Gets the subset defined by the bitstring.

Examples

>>> from sympy.combinatorics.graycode import get_subset_from_bitstring
@@ -1079,7 +1079,7 @@ 
Documentation Version
-graycode.graycode_subsets()[source]
+graycode.graycode_subsets()[source]

Generates the subsets as enumerated by a Gray code.

Examples

>>> from sympy.combinatorics.graycode import graycode_subsets
diff --git a/dev/modules/combinatorics/group_constructs.html b/dev/modules/combinatorics/group_constructs.html
index aa25c8bf0cd..787c4484110 100644
--- a/dev/modules/combinatorics/group_constructs.html
+++ b/dev/modules/combinatorics/group_constructs.html
@@ -805,7 +805,7 @@ 
Documentation Version

Group constructors

-sympy.combinatorics.group_constructs.DirectProduct(*groups)[source]
+sympy.combinatorics.group_constructs.DirectProduct(*groups)[source]

Returns the direct product of several groups as a permutation group.

Explanation

This is implemented much like the __mul__ procedure for taking the direct diff --git a/dev/modules/combinatorics/group_numbers.html b/dev/modules/combinatorics/group_numbers.html index f19e3ca7419..2c689ada601 100644 --- a/dev/modules/combinatorics/group_numbers.html +++ b/dev/modules/combinatorics/group_numbers.html @@ -805,7 +805,7 @@

Documentation Version

Number of groups

-sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool[source]
+sympy.combinatorics.group_numbers.is_nilpotent_number(n) bool[source]

Check whether \(n\) is a nilpotent number. A number \(n\) is said to be nilpotent if and only if every finite group of order \(n\) is nilpotent. For more information see [R48].

@@ -835,7 +835,7 @@
Documentation Version
-sympy.combinatorics.group_numbers.is_abelian_number(n) bool[source]
+sympy.combinatorics.group_numbers.is_abelian_number(n) bool[source]

Check whether \(n\) is an abelian number. A number \(n\) is said to be abelian if and only if every finite group of order \(n\) is abelian. For more information see [R50].

@@ -867,7 +867,7 @@
Documentation Version
-sympy.combinatorics.group_numbers.is_cyclic_number(n) bool[source]
+sympy.combinatorics.group_numbers.is_cyclic_number(n) bool[source]

Check whether \(n\) is a cyclic number. A number \(n\) is said to be cyclic if and only if every finite group of order \(n\) is cyclic. For more information see [R52].

@@ -899,7 +899,7 @@
Documentation Version
-sympy.combinatorics.group_numbers.groups_count(n)[source]
+sympy.combinatorics.group_numbers.groups_count(n)[source]

Number of groups of order \(n\). In [R54], gnu(n) is given, so we follow this notation here as well.

diff --git a/dev/modules/combinatorics/named_groups.html b/dev/modules/combinatorics/named_groups.html index 867b827fc76..2f64db9c912 100644 --- a/dev/modules/combinatorics/named_groups.html +++ b/dev/modules/combinatorics/named_groups.html @@ -805,7 +805,7 @@
Documentation Version

Named Groups

-sympy.combinatorics.named_groups.SymmetricGroup(n)[source]
+sympy.combinatorics.named_groups.SymmetricGroup(n)[source]

Generates the symmetric group on n elements as a permutation group.

Explanation

The generators taken are the n-cycle @@ -842,7 +842,7 @@

Documentation Version
-sympy.combinatorics.named_groups.CyclicGroup(n)[source]
+sympy.combinatorics.named_groups.CyclicGroup(n)[source]

Generates the cyclic group of order n as a permutation group.

Explanation

The generator taken is the n-cycle (0 1 2 ... n-1) @@ -868,7 +868,7 @@

Documentation Version
-sympy.combinatorics.named_groups.DihedralGroup(n)[source]
+sympy.combinatorics.named_groups.DihedralGroup(n)[source]

Generates the dihedral group \(D_n\) as a permutation group.

Explanation

The dihedral group \(D_n\) is the group of symmetries of the regular @@ -906,7 +906,7 @@

Documentation Version
-sympy.combinatorics.named_groups.AlternatingGroup(n)[source]
+sympy.combinatorics.named_groups.AlternatingGroup(n)[source]

Generates the alternating group on n elements as a permutation group.

Explanation

For n > 2, the generators taken are (0 1 2), (0 1 2 ... n-1) for @@ -941,7 +941,7 @@

Documentation Version
-sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)[source]
+sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)[source]

Returns the direct product of cyclic groups with the given orders.

Explanation

According to the structure theorem for finite abelian groups ([1]), diff --git a/dev/modules/combinatorics/partitions.html b/dev/modules/combinatorics/partitions.html index 648405cc50a..b089373671d 100644 --- a/dev/modules/combinatorics/partitions.html +++ b/dev/modules/combinatorics/partitions.html @@ -805,7 +805,7 @@

Documentation Version

Partitions

-class sympy.combinatorics.partitions.Partition(*partition)[source]
+class sympy.combinatorics.partitions.Partition(*partition)[source]

This class represents an abstract partition.

A partition is a set of disjoint sets whose union equals a given set.

@@ -838,7 +838,7 @@
Documentation Version
-classmethod from_rgs(rgs, elements)[source]
+classmethod from_rgs(rgs, elements)[source]

Creates a set partition from a restricted growth string.

Explanation

The indices given in rgs are assumed to be the index @@ -886,7 +886,7 @@

Documentation Version
-sort_key(order=None)[source]
+sort_key(order=None)[source]

Return a canonical key that can be used for sorting.

Ordering is based on the size and sorted elements of the partition and ties are broken with the rank.

@@ -909,7 +909,7 @@
Documentation Version
-class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)[source]
+class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)[source]

This class represents an integer partition.

Explanation

In number theory and combinatorics, a partition of a positive integer, @@ -933,7 +933,7 @@

Documentation Version
-as_dict()[source]
+as_dict()[source]

Return the partition as a dictionary whose keys are the partition integers and the values are the multiplicity of that integer.

@@ -947,7 +947,7 @@
Documentation Version
-as_ferrers(char='#')[source]
+as_ferrers(char='#')[source]

Prints the ferrer diagram of a partition.

Examples

>>> from sympy.combinatorics.partitions import IntegerPartition
@@ -974,7 +974,7 @@ 
Documentation Version
-next_lex()[source]
+next_lex()[source]

Return the next partition of the integer, n, in lexical order, wrapping around to [n] if the partition is [1, …, 1].

Examples

@@ -990,7 +990,7 @@
Documentation Version
-prev_lex()[source]
+prev_lex()[source]

Return the previous partition of the integer, n, in lexical order, wrapping around to [1, …, 1] if the partition is [n].

Examples

@@ -1008,7 +1008,7 @@
Documentation Version
-sympy.combinatorics.partitions.random_integer_partition(n, seed=None)[source]
+sympy.combinatorics.partitions.random_integer_partition(n, seed=None)[source]

Generates a random integer partition summing to n as a list of reverse-sorted integers.

Examples

@@ -1029,7 +1029,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_generalized(m)[source]
+sympy.combinatorics.partitions.RGS_generalized(m)[source]

Computes the m + 1 generalized unrestricted growth strings and returns them as rows in matrix.

Examples

@@ -1049,7 +1049,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_enum(m)[source]
+sympy.combinatorics.partitions.RGS_enum(m)[source]

RGS_enum computes the total number of restricted growth strings possible for a superset of size m.

Examples

@@ -1078,7 +1078,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_unrank(rank, m)[source]
+sympy.combinatorics.partitions.RGS_unrank(rank, m)[source]

Gives the unranked restricted growth string for a given superset size.

Examples

@@ -1093,7 +1093,7 @@
Documentation Version
-sympy.combinatorics.partitions.RGS_rank(rgs)[source]
+sympy.combinatorics.partitions.RGS_rank(rgs)[source]

Computes the rank of a restricted growth string.

Examples

>>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
diff --git a/dev/modules/combinatorics/perm_groups.html b/dev/modules/combinatorics/perm_groups.html
index edee7827110..97d81e38335 100644
--- a/dev/modules/combinatorics/perm_groups.html
+++ b/dev/modules/combinatorics/perm_groups.html
@@ -805,7 +805,7 @@ 
Documentation Version

Permutation Groups

-class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)[source]
+class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)[source]

The class defining a Permutation group.

Explanation

PermutationGroup([p1, p2, ..., pn]) returns the permutation group @@ -925,7 +925,7 @@

Documentation Version
-__contains__(i)[source]
+__contains__(i)[source]

Return True if i is contained in PermutationGroup.

Examples

>>> from sympy.combinatorics import Permutation, PermutationGroup
@@ -938,7 +938,7 @@ 
Documentation Version
-__mul__(other)[source]
+__mul__(other)[source]

Return the direct product of two permutation groups as a permutation group.

Explanation

@@ -971,7 +971,7 @@
Documentation Version
**kwargs,
-)[source] +)[source]

The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless dups keyword is False.

@@ -984,14 +984,14 @@
Documentation Version
-_coset_representative(g, H)[source]
+_coset_representative(g, H)[source]

Return the representative of Hg from the transversal that would be computed by self.coset_transversal(H).

-classmethod _distinct_primes_lemma(primes)[source]
+classmethod _distinct_primes_lemma(primes)[source]

Subroutine to test if there is only one cyclic group for the order.

@@ -1005,7 +1005,7 @@
Documentation Version
perms=None,
-)[source] +)[source]

A test using monte-carlo algorithm.

Parameters:
@@ -1037,13 +1037,13 @@
Documentation Version
only_alt=False,
-)[source] +)[source]

A naive test using the group order.

-_p_elements_group(p)[source]
+_p_elements_group(p)[source]

For an abelian p-group, return the subgroup consisting of all elements of order p (and the identity)

@@ -1058,7 +1058,7 @@
Documentation Version
_random_prec_n=None,
-)[source] +)[source]

Initialize random generators for the product replacement algorithm.

Explanation

The implementation uses a modification of the original product @@ -1093,7 +1093,7 @@

Documentation Version
-_sylow_alt_sym(p)[source]
+_sylow_alt_sym(p)[source]

Return a p-Sylow subgroup of a symmetric or an alternating group.

Explanation

@@ -1140,7 +1140,7 @@
Documentation Version
not_rep,
-)[source] +)[source]

Merges two classes in a union-find data structure.

Explanation

Used in the implementation of Atkinson’s algorithm as suggested in [1], @@ -1171,7 +1171,7 @@

Documentation Version
-_union_find_rep(num, parents)[source]
+_union_find_rep(num, parents)[source]

Find representative of a class in a union-find data structure.

Explanation

Used in the implementation of Atkinson’s algorithm as suggested in [1], @@ -1201,7 +1201,7 @@

Documentation Version
-_verify(K, phi, z, alpha)[source]
+_verify(K, phi, z, alpha)[source]

Return a list of relators rels in generators gens`_h` that are mapped to ``H.generators by phi so that given a finite presentation <gens_k | rels_k> of K on a subset of gens_h @@ -1242,7 +1242,7 @@

Documentation Version
-abelian_invariants()[source]
+abelian_invariants()[source]

Returns the abelian invariants for the given group. Let G be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of @@ -1315,7 +1315,7 @@

Documentation Version
strong_gens_distr=None,
-)[source] +)[source]

Swap two consecutive base points in base and strong generating set.

Parameters:
@@ -1474,7 +1474,7 @@
Documentation Version
-center()[source]
+center()[source]

Return the center of a permutation group.

Explanation

The center for a group \(G\) is defined as @@ -1501,7 +1501,7 @@

Documentation Version
-centralizer(other)[source]
+centralizer(other)[source]

Return the centralizer of a group/set/element.

Parameters:
@@ -1546,7 +1546,7 @@
Documentation Version
-commutator(G, H)[source]
+commutator(G, H)[source]

Return the commutator of two subgroups.

Explanation

For a permutation group K and subgroups G, H, the @@ -1575,7 +1575,7 @@

Documentation Version
-composition_series()[source]
+composition_series()[source]

Return the composition series for a group as a list of permutation groups.

Explanation

@@ -1622,7 +1622,7 @@
Documentation Version
-conjugacy_class(x)[source]
+conjugacy_class(x)[source]

Return the conjugacy class of an element in the group.

Explanation

The conjugacy class of an element g in a group G is the set of @@ -1659,7 +1659,7 @@

Documentation Version
-conjugacy_classes()[source]
+conjugacy_classes()[source]

Return the conjugacy classes of the group.

Explanation

As described in the documentation for the .conjugacy_class() function, @@ -1676,7 +1676,7 @@

Documentation Version
-contains(g, strict=True)[source]
+contains(g, strict=True)[source]

Test if permutation g belong to self, G.

Explanation

If g is an element of G it can be written as a product @@ -1732,7 +1732,7 @@

Documentation Version
factor_index=False,
-)[source] +)[source]

Return G’s (self’s) coset factorization of g

Explanation

If g is an element of G then it can be written as the product @@ -1787,7 +1787,7 @@

Documentation Version
-coset_rank(g)[source]
+coset_rank(g)[source]

rank using Schreier-Sims representation.

Explanation

The coset rank of g is the ordering number in which @@ -1815,21 +1815,21 @@

Documentation Version
-coset_table(H)[source]
+coset_table(H)[source]

Return the standardised (right) coset table of self in H as a list of lists.

-coset_transversal(H)[source]
+coset_transversal(H)[source]

Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7

-coset_unrank(rank, af=False)[source]
+coset_unrank(rank, af=False)[source]

unrank using Schreier-Sims representation

coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None.

@@ -1865,7 +1865,7 @@
Documentation Version
-derived_series()[source]
+derived_series()[source]

Return the derived series for the group.

Returns:
@@ -1902,7 +1902,7 @@
Documentation Version
-derived_subgroup()[source]
+derived_subgroup()[source]

Compute the derived subgroup.

Explanation

The derived subgroup, or commutator subgroup is the subgroup generated @@ -1940,7 +1940,7 @@

Documentation Version
-equals(other)[source]
+equals(other)[source]

Return True if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup.

Examples

@@ -1965,7 +1965,7 @@
Documentation Version
af=False,
-)[source] +)[source]

Return iterator to generate the elements of the group.

Explanation

Iteration is done with one of these methods:

@@ -2010,7 +2010,7 @@
Documentation Version
-generate_dimino(af=False)[source]
+generate_dimino(af=False)[source]

Yield group elements using Dimino’s algorithm.

If af == True it yields the array form of the permutations.

Examples

@@ -2035,7 +2035,7 @@
Documentation Version
-generate_schreier_sims(af=False)[source]
+generate_schreier_sims(af=False)[source]

Yield group elements using the Schreier-Sims representation in coset_rank order

If af = True it yields the array form of the permutations

@@ -2060,7 +2060,7 @@
Documentation Version
original=False,
-)[source] +)[source]

Return a list of strong generators \([s1, \dots, sn]\) s.t \(g = sn \times \dots \times s1\). If original=True, make the list contain only the original group generators

@@ -2089,7 +2089,7 @@
Documentation Version
-index(H)[source]
+index(H)[source]

Returns the index of a permutation group.

Examples

>>> from sympy.combinatorics import Permutation, PermutationGroup
@@ -2131,7 +2131,7 @@ 
Documentation Version
_random_prec=None,
-)[source] +)[source]

Monte Carlo test for the symmetric/alternating group for degrees >= 8.

Explanation

@@ -2284,7 +2284,7 @@
Documentation Version
-is_elementary(p)[source]
+is_elementary(p)[source]

Return True if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order \(p\), where \(p\) is a prime.

@@ -2333,7 +2333,7 @@
Documentation Version
-is_normal(gr, strict=True)[source]
+is_normal(gr, strict=True)[source]

Test if G=self is a normal subgroup of gr.

Explanation

G is normal in gr if @@ -2387,7 +2387,7 @@

Documentation Version
-is_primitive(randomized=True)[source]
+is_primitive(randomized=True)[source]

Test if a group is primitive.

Explanation

A permutation group G acting on a set S is called primitive if @@ -2439,7 +2439,7 @@

Documentation Version
-is_subgroup(G, strict=True)[source]
+is_subgroup(G, strict=True)[source]

Return True if all elements of self belong to G.

If strict is False then if self’s degree is smaller than G’s, the elements will be resized to have the same degree.

@@ -2515,7 +2515,7 @@
Documentation Version
-is_transitive(strict=True)[source]
+is_transitive(strict=True)[source]

Test if the group is transitive.

Explanation

A group is transitive if it has a single orbit.

@@ -2559,7 +2559,7 @@
Documentation Version
-lower_central_series()[source]
+lower_central_series()[source]

Return the lower central series for the group.

The lower central series for a group \(G\) is the series \(G = G_0 > G_1 > G_2 > \ldots\) where @@ -2588,7 +2588,7 @@

Documentation Version
-make_perm(n, seed=None)[source]
+make_perm(n, seed=None)[source]

Multiply n randomly selected permutations from pgroup together, starting with the identity permutation. If n is a list of integers, those @@ -2642,7 +2642,7 @@

Documentation Version
-minimal_block(points)[source]
+minimal_block(points)[source]

For a transitive group, finds the block system generated by points.

Explanation

@@ -2684,7 +2684,7 @@
Documentation Version
-minimal_blocks(randomized=True)[source]
+minimal_blocks(randomized=True)[source]

For a transitive group, return the list of all minimal block systems. If a group is intransitive, return \(False\).

Examples

@@ -2705,7 +2705,7 @@
Documentation Version
-normal_closure(other, k=10)[source]
+normal_closure(other, k=10)[source]

Return the normal closure of a subgroup/set of permutations.

Parameters:
@@ -2752,7 +2752,7 @@
Documentation Version
-orbit(alpha, action='tuples')[source]
+orbit(alpha, action='tuples')[source]

Compute the orbit of alpha \(\{g(\alpha) | g \in G\}\) as a set.

Explanation

The time complexity of the algorithm used here is \(O(|Orb|*r)\) where @@ -2791,7 +2791,7 @@

Documentation Version
schreier_vector=None,
-)[source] +)[source]

Return a group element which sends alpha to beta.

Explanation

If beta is not in the orbit of alpha, the function returns @@ -2819,7 +2819,7 @@

Documentation Version
pairs=False,
-)[source] +)[source]

Computes a transversal for the orbit of alpha as a set.

Explanation

For a permutation group \(G\), a transversal for the orbit @@ -2843,7 +2843,7 @@

Documentation Version
-orbits(rep=False)[source]
+orbits(rep=False)[source]

Return the orbits of self, ordered according to lowest element in each orbit.

Examples

@@ -2859,7 +2859,7 @@
Documentation Version
-order()[source]
+order()[source]

Return the order of the group: the number of permutations that can be generated from elements of the group.

The number of permutations comprising the group is given by @@ -2903,7 +2903,7 @@

Documentation Version
incremental=True,
-)[source] +)[source]

Return the pointwise stabilizer for a set of points.

Explanation

For a permutation group \(G\) and a set of points @@ -2933,7 +2933,7 @@

Documentation Version
-polycyclic_group()[source]
+polycyclic_group()[source]

Return the PolycyclicGroup instance with below parameters:

Explanation

    @@ -2950,14 +2950,14 @@
    Documentation Version
    -presentation(eliminate_gens=True)[source]
    +presentation(eliminate_gens=True)[source]

    Return an \(FpGroup\) presentation of the group.

    The algorithm is described in [1], Chapter 6.1.

    -random(af=False)[source]
    +random(af=False)[source]

    Return a random group element

    @@ -2971,7 +2971,7 @@
    Documentation Version
    _random_prec=None,
-)[source] +)[source]

Return a random group element using product replacement.

Explanation

For the details of the product replacement algorithm, see @@ -2994,7 +2994,7 @@

Documentation Version
_random_prec=None,
-)[source] +)[source]

Random element from the stabilizer of alpha.

The schreier vector for alpha is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81

@@ -3006,7 +3006,7 @@
Documentation Version
-schreier_sims()[source]
+schreier_sims()[source]

Schreier-Sims algorithm.

Explanation

It computes the generators of the chain of stabilizers @@ -3039,7 +3039,7 @@

Documentation Version
slp_dict=False,
-)[source] +)[source]

Extend a sequence of points and generating set to a base and strong generating set.

@@ -3110,7 +3110,7 @@
Documentation Version
_random_prec=None,
-)[source] +)[source]

Randomized Schreier-Sims algorithm.

Parameters:
@@ -3180,7 +3180,7 @@
Documentation Version
-schreier_vector(alpha)[source]
+schreier_vector(alpha)[source]

Computes the schreier vector for alpha.

Explanation

The Schreier vector efficiently stores information @@ -3209,7 +3209,7 @@

Documentation Version
-stabilizer(alpha)[source]
+stabilizer(alpha)[source]

Return the stabilizer subgroup of alpha.

Explanation

The stabilizer of \(\alpha\) is the group \(G_\alpha = @@ -3259,7 +3259,7 @@

Documentation Version
-strong_presentation()[source]
+strong_presentation()[source]

Return a strong finite presentation of group. The generators of the returned group are in the same order as the strong generators of group.

@@ -3281,7 +3281,7 @@
Documentation Version
-subgroup(gens)[source]
+subgroup(gens)[source]

Return the subgroup generated by \(gens\) which is a list of elements of the group

@@ -3298,7 +3298,7 @@
Documentation Version
init_subgroup=None,
-)[source] +)[source]

Find the subgroup of all elements satisfying the property prop.

Parameters:
@@ -3377,7 +3377,7 @@
Documentation Version
-sylow_subgroup(p)[source]
+sylow_subgroup(p)[source]

Return a p-Sylow subgroup of the group.

The algorithm is described in [1], Chapter 4, Section 7

Examples

diff --git a/dev/modules/combinatorics/permutations.html b/dev/modules/combinatorics/permutations.html index fbde7cb43c4..c2041d57cce 100644 --- a/dev/modules/combinatorics/permutations.html +++ b/dev/modules/combinatorics/permutations.html @@ -805,7 +805,7 @@
Documentation Version

Permutations

-class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)[source]
+class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)[source]

A permutation, alternatively known as an ‘arrangement number’ or ‘ordering’ is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by @@ -1209,7 +1209,7 @@

Documentation Version
-apply(i)[source]
+apply(i)[source]

Apply the permutation to an expression.

Parameters:
@@ -1263,7 +1263,7 @@
Documentation Version
-ascents()[source]
+ascents()[source]

Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1]

Examples

@@ -1281,7 +1281,7 @@
Documentation Version
-atoms()[source]
+atoms()[source]

Returns all the elements of a permutation

Examples

>>> from sympy.combinatorics import Permutation
@@ -1312,7 +1312,7 @@ 
Documentation Version
-commutator(x)[source]
+commutator(x)[source]

Return the commutator of self and x: ~x*~self*x*self

If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf.

@@ -1351,7 +1351,7 @@
Documentation Version
-commutes_with(other)[source]
+commutes_with(other)[source]

Checks if the elements are commuting.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1424,7 +1424,7 @@ 
Documentation Version
-descents()[source]
+descents()[source]

Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1]

Examples

@@ -1442,7 +1442,7 @@
Documentation Version
-classmethod from_inversion_vector(inversion)[source]
+classmethod from_inversion_vector(inversion)[source]

Calculates the permutation from the inversion vector.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1456,7 +1456,7 @@ 
Documentation Version
-classmethod from_sequence(i, key=None)[source]
+classmethod from_sequence(i, key=None)[source]

Return the permutation needed to obtain i from the sorted elements of i. If custom sorting is desired, a key can be given.

Examples

@@ -1487,7 +1487,7 @@
Documentation Version
-get_adjacency_distance(other)[source]
+get_adjacency_distance(other)[source]

Computes the adjacency distance between two permutations.

Explanation

This metric counts the number of times a pair i,j of jobs is @@ -1514,7 +1514,7 @@

Documentation Version
-get_adjacency_matrix()[source]
+get_adjacency_matrix()[source]

Computes the adjacency matrix of a permutation.

Explanation

If job i is adjacent to job j in a permutation p @@ -1548,7 +1548,7 @@

Documentation Version
-get_positional_distance(other)[source]
+get_positional_distance(other)[source]

Computes the positional distance between two permutations.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1569,7 +1569,7 @@ 
Documentation Version
-get_precedence_distance(other)[source]
+get_precedence_distance(other)[source]

Computes the precedence distance between two permutations.

Explanation

Suppose p and p’ represent n jobs. The precedence metric @@ -1593,7 +1593,7 @@

Documentation Version
-get_precedence_matrix()[source]
+get_precedence_matrix()[source]

Gets the precedence matrix. This is used for computing the distance between two permutations.

Examples

@@ -1621,7 +1621,7 @@
Documentation Version
-index()[source]
+index()[source]

Returns the index of a permutation.

The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1].

@@ -1636,7 +1636,7 @@
Documentation Version
-inversion_vector()[source]
+inversion_vector()[source]

Return the inversion vector of the permutation.

The inversion vector consists of elements whose value indicates the number of elements in the permutation @@ -1675,7 +1675,7 @@

Documentation Version
-inversions()[source]
+inversions()[source]

Computes the number of inversions of a permutation.

Explanation

An inversion is where i > j but p[i] < p[j].

@@ -1810,7 +1810,7 @@
Documentation Version
-classmethod josephus(m, n, s=1)[source]
+classmethod josephus(m, n, s=1)[source]

Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they @@ -1855,7 +1855,7 @@

Documentation Version
-length()[source]
+length()[source]

Returns the number of integers moved by a permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1873,7 +1873,7 @@ 
Documentation Version
-list(size=None)[source]
+list(size=None)[source]

Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting @@ -1899,7 +1899,7 @@

Documentation Version
-max() int[source]
+max() int[source]

The maximum element moved by the permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1916,7 +1916,7 @@ 
Documentation Version
-min() int[source]
+min() int[source]

The minimum element moved by the permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -1933,13 +1933,13 @@ 
Documentation Version
-mul_inv(other)[source]
+mul_inv(other)[source]

other*~self, self and other have _array_form

-next_lex()[source]
+next_lex()[source]

Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. @@ -1961,7 +1961,7 @@

Documentation Version
-next_nonlex()[source]
+next_nonlex()[source]

Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None.

Examples

@@ -1984,7 +1984,7 @@
Documentation Version
-next_trotterjohnson()[source]
+next_trotterjohnson()[source]

Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such @@ -2011,7 +2011,7 @@

Documentation Version
-order()[source]
+order()[source]

Computes the order of a permutation.

When the permutation is raised to the power of its order it equals the identity permutation.

@@ -2034,7 +2034,7 @@
Documentation Version
-parity()[source]
+parity()[source]

Computes the parity of a permutation.

Explanation

The parity of a permutation reflects the parity of the @@ -2058,7 +2058,7 @@

Documentation Version
-classmethod random(n)[source]
+classmethod random(n)[source]

Generates a random permutation of length n.

Uses the underlying Python pseudo-random number generator.

Examples

@@ -2071,7 +2071,7 @@
Documentation Version
-rank()[source]
+rank()[source]

Returns the lexicographic rank of the permutation.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2091,7 +2091,7 @@ 
Documentation Version
-rank_nonlex(inv_perm=None)[source]
+rank_nonlex(inv_perm=None)[source]

This is a linear time ranking algorithm that does not enforce lexicographic order [3].

Examples

@@ -2109,7 +2109,7 @@
Documentation Version
-rank_trotterjohnson()[source]
+rank_trotterjohnson()[source]

Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4.

Examples

@@ -2130,7 +2130,7 @@
Documentation Version
-resize(n)[source]
+resize(n)[source]

Resize the permutation to the new size n.

Parameters:
@@ -2177,7 +2177,7 @@
Documentation Version
-static rmul(*args)[source]
+static rmul(*args)[source]

Return product of Permutations [a, b, c, …] as the Permutation whose ith value is a(b(c(i))).

a, b, c, … can be Permutation objects or tuples.

@@ -2213,14 +2213,14 @@
Documentation Version
-classmethod rmul_with_af(*args)[source]
+classmethod rmul_with_af(*args)[source]

same as rmul, but the elements of args are Permutation objects which have _array_form

-runs()[source]
+runs()[source]

Returns the runs of a permutation.

An ascending sequence in a permutation is called a run [5].

Examples

@@ -2237,7 +2237,7 @@
Documentation Version
-signature()[source]
+signature()[source]

Gives the signature of the permutation needed to place the elements of the permutation in canonical order.

The signature is calculated as (-1)^<number of inversions>

@@ -2279,7 +2279,7 @@
Documentation Version
-support()[source]
+support()[source]

Return the elements in permutation, P, for which P[i] != i.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2294,7 +2294,7 @@ 
Documentation Version
-transpositions()[source]
+transpositions()[source]

Return the permutation decomposed into a list of transpositions.

Explanation

It is always possible to express a permutation as the product of @@ -2322,7 +2322,7 @@

Documentation Version
-classmethod unrank_lex(size, rank)[source]
+classmethod unrank_lex(size, rank)[source]

Lexicographic permutation unranking.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2343,7 +2343,7 @@ 
Documentation Version
-classmethod unrank_nonlex(n, r)[source]
+classmethod unrank_nonlex(n, r)[source]

This is a linear time unranking algorithm that does not respect lexicographic order [3].

Examples

@@ -2364,7 +2364,7 @@
Documentation Version
-classmethod unrank_trotterjohnson(size, rank)[source]
+classmethod unrank_trotterjohnson(size, rank)[source]

Trotter Johnson permutation unranking. See [4] section 2.4.

Examples

>>> from sympy.combinatorics import Permutation
@@ -2384,7 +2384,7 @@ 
Documentation Version
-class sympy.combinatorics.permutations.Cycle(*args)[source]
+class sympy.combinatorics.permutations.Cycle(*args)[source]

Wrapper around dict which provides the functionality of a disjoint cycle.

Explanation

A cycle shows the rule to use to move subsets of elements to obtain @@ -2455,7 +2455,7 @@

Documentation Version
-list(size=None)[source]
+list(size=None)[source]

Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size.

Truncation of trailing unmoved items will occur when size @@ -2482,7 +2482,7 @@

Documentation Version
-sympy.combinatorics.permutations._af_parity(pi)[source]
+sympy.combinatorics.permutations._af_parity(pi)[source]

Computes the parity of a permutation in array form.

Explanation

The parity of a permutation reflects the parity of the @@ -2506,7 +2506,7 @@

Documentation Version

Generators

-generators.symmetric()[source]
+generators.symmetric()[source]

Generates the symmetric group of order n, Sn.

Examples

>>> from sympy.combinatorics.generators import symmetric
@@ -2518,7 +2518,7 @@ 
Documentation Version
-generators.cyclic()[source]
+generators.cyclic()[source]

Generates the cyclic group of order n, Cn.

Examples

>>> from sympy.combinatorics.generators import cyclic
@@ -2535,7 +2535,7 @@ 
Documentation Version
-generators.alternating()[source]
+generators.alternating()[source]

Generates the alternating group of order n, An.

Examples

>>> from sympy.combinatorics.generators import alternating
@@ -2547,7 +2547,7 @@ 
Documentation Version
-generators.dihedral()[source]
+generators.dihedral()[source]

Generates the dihedral group of order 2n, Dn.

The result is given as a subgroup of Sn, except for the special cases n=1 (the group S2) and n=2 (the Klein 4-group) where that’s not possible diff --git a/dev/modules/combinatorics/polyhedron.html b/dev/modules/combinatorics/polyhedron.html index 3971b341d32..0aaff7680a8 100644 --- a/dev/modules/combinatorics/polyhedron.html +++ b/dev/modules/combinatorics/polyhedron.html @@ -805,7 +805,7 @@

Documentation Version

Polyhedron

-class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())[source]
+class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())[source]

Represents the polyhedral symmetry group (PSG).

Explanation

The PSG is one of the symmetry groups of the Platonic solids. @@ -905,7 +905,7 @@

Documentation Version
-reset()[source]
+reset()[source]

Return corners to their original positions.

Examples

>>> from sympy.combinatorics.polyhedron import tetrahedron as T
@@ -924,7 +924,7 @@ 
Documentation Version
-rotate(perm)[source]
+rotate(perm)[source]

Apply a permutation to the polyhedron in place. The permutation may be given as a Permutation instance or an integer indicating which permutation from pgroup of the Polyhedron should be diff --git a/dev/modules/combinatorics/prufer.html b/dev/modules/combinatorics/prufer.html index 2d52a4466f5..9f7c51b5667 100644 --- a/dev/modules/combinatorics/prufer.html +++ b/dev/modules/combinatorics/prufer.html @@ -805,7 +805,7 @@

Documentation Version

Prufer Sequences

-class sympy.combinatorics.prufer.Prufer(*args, **kw_args)[source]
+class sympy.combinatorics.prufer.Prufer(*args, **kw_args)[source]

The Prufer correspondence is an algorithm that describes the bijection between labeled trees and the Prufer code. A Prufer code of a labeled tree is unique up to isomorphism and has @@ -821,7 +821,7 @@

Documentation Version
-static edges(*runs)[source]
+static edges(*runs)[source]

Return a list of edges and the number of nodes from the given runs that connect nodes in an integer-labelled tree.

All node numbers will be shifted so that the minimum node is 0. It is @@ -844,7 +844,7 @@

Documentation Version
-next(delta=1)[source]
+next(delta=1)[source]

Generates the Prufer sequence that is delta beyond the current one.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -878,7 +878,7 @@ 
Documentation Version
-prev(delta=1)[source]
+prev(delta=1)[source]

Generates the Prufer sequence that is -delta before the current one.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -900,7 +900,7 @@ 
Documentation Version
-prufer_rank()[source]
+prufer_rank()[source]

Computes the rank of a Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -975,7 +975,7 @@ 
Documentation Version
-static to_prufer(tree, n)[source]
+static to_prufer(tree, n)[source]

Return the Prufer sequence for a tree given as a list of edges where n is the number of nodes in the tree.

Examples

@@ -998,7 +998,7 @@
Documentation Version
-static to_tree(prufer)[source]
+static to_tree(prufer)[source]

Return the tree (as a list of edges) of the given Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
@@ -1045,7 +1045,7 @@ 
Documentation Version
-classmethod unrank(rank, n)[source]
+classmethod unrank(rank, n)[source]

Finds the unranked Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
diff --git a/dev/modules/combinatorics/subsets.html b/dev/modules/combinatorics/subsets.html
index 5eab954856d..13c4805dea3 100644
--- a/dev/modules/combinatorics/subsets.html
+++ b/dev/modules/combinatorics/subsets.html
@@ -805,7 +805,7 @@ 
Documentation Version

Subsets

-class sympy.combinatorics.subsets.Subset(subset, superset)[source]
+class sympy.combinatorics.subsets.Subset(subset, superset)[source]

Represents a basic subset object.

Explanation

We generate subsets using essentially two techniques, @@ -824,7 +824,7 @@

Documentation Version
-classmethod bitlist_from_subset(subset, superset)[source]
+classmethod bitlist_from_subset(subset, superset)[source]

Gets the bitlist corresponding to a subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -857,7 +857,7 @@ 
Documentation Version
-iterate_binary(k)[source]
+iterate_binary(k)[source]

This is a helper function. It iterates over the binary subsets by k steps. This variable can be both positive or negative.

@@ -879,7 +879,7 @@
Documentation Version
-iterate_graycode(k)[source]
+iterate_graycode(k)[source]

Helper function used for prev_gray and next_gray. It performs k step overs to get the respective Gray codes.

Examples

@@ -899,7 +899,7 @@
Documentation Version
-next_binary()[source]
+next_binary()[source]

Generates the next binary ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -919,7 +919,7 @@ 
Documentation Version
-next_gray()[source]
+next_gray()[source]

Generates the next Gray code ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -936,7 +936,7 @@ 
Documentation Version
-next_lexicographic()[source]
+next_lexicographic()[source]

Generates the next lexicographically ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -956,7 +956,7 @@ 
Documentation Version
-prev_binary()[source]
+prev_binary()[source]

Generates the previous binary ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -976,7 +976,7 @@ 
Documentation Version
-prev_gray()[source]
+prev_gray()[source]

Generates the previous Gray code ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -993,7 +993,7 @@ 
Documentation Version
-prev_lexicographic()[source]
+prev_lexicographic()[source]

Generates the previous lexicographically ordered subset.

Examples

>>> from sympy.combinatorics import Subset
@@ -1103,7 +1103,7 @@ 
Documentation Version
-classmethod subset_from_bitlist(super_set, bitlist)[source]
+classmethod subset_from_bitlist(super_set, bitlist)[source]

Gets the subset defined by the bitlist.

Examples

>>> from sympy.combinatorics import Subset
@@ -1119,7 +1119,7 @@ 
Documentation Version
-classmethod subset_indices(subset, superset)[source]
+classmethod subset_indices(subset, superset)[source]

Return indices of subset in superset in a list; the list is empty if all elements of subset are not in superset.

Examples

@@ -1171,7 +1171,7 @@
Documentation Version
-classmethod unrank_binary(rank, superset)[source]
+classmethod unrank_binary(rank, superset)[source]

Gets the binary ordered subset of the specified rank.

Examples

>>> from sympy.combinatorics import Subset
@@ -1187,7 +1187,7 @@ 
Documentation Version
-classmethod unrank_gray(rank, superset)[source]
+classmethod unrank_gray(rank, superset)[source]

Gets the Gray code ordered subset of the specified rank.

Examples

>>> from sympy.combinatorics import Subset
@@ -1207,7 +1207,7 @@ 
Documentation Version
-subsets.ksubsets(k)[source]
+subsets.ksubsets(k)[source]

Finds the subsets of size k in lexicographic order.

This uses the itertools generator.

Examples

diff --git a/dev/modules/combinatorics/tensor_can.html b/dev/modules/combinatorics/tensor_can.html index 6d1fc64660e..df2ab41355d 100644 --- a/dev/modules/combinatorics/tensor_can.html +++ b/dev/modules/combinatorics/tensor_can.html @@ -805,7 +805,7 @@
Documentation Version

Tensor Canonicalization

-sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)[source]
+sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)[source]

canonicalize tensor formed by tensors

Parameters:
@@ -924,7 +924,7 @@
Documentation Version
g,
-)[source] +)[source]

Butler-Portugal algorithm for tensor canonicalization with dummy indices.

Parameters:
@@ -1116,7 +1116,7 @@
Documentation Version
-sympy.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)[source]
+sympy.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)[source]

Return base, gens of the minimal BSGS for (anti)symmetric tensor

Parameters:
@@ -1148,7 +1148,7 @@
Documentation Version
signed=True,
-)[source] +)[source]

Direct product of two BSGS.

Parameters:
diff --git a/dev/modules/combinatorics/testutil.html b/dev/modules/combinatorics/testutil.html index 8bec313f8da..bbc41449ab5 100644 --- a/dev/modules/combinatorics/testutil.html +++ b/dev/modules/combinatorics/testutil.html @@ -805,7 +805,7 @@
Documentation Version

Test Utilities

-sympy.combinatorics.testutil._cmp_perm_lists(first, second)[source]
+sympy.combinatorics.testutil._cmp_perm_lists(first, second)[source]

Compare two lists of permutations as sets.

Explanation

This is used for testing purposes. Since the array form of a @@ -827,12 +827,12 @@

Documentation Version
-sympy.combinatorics.testutil._naive_list_centralizer(self, other, af=False)[source]
+sympy.combinatorics.testutil._naive_list_centralizer(self, other, af=False)[source]
-sympy.combinatorics.testutil._verify_bsgs(group, base, gens)[source]
+sympy.combinatorics.testutil._verify_bsgs(group, base, gens)[source]

Verify the correctness of a base and strong generating set.

Explanation

This is a naive implementation using the definition of a base and a strong @@ -856,7 +856,7 @@

Documentation Version
-sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)[source]
+sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)[source]

Verify the centralizer of a group/set/element inside another group.

This is used for testing .centralizer() from sympy.combinatorics.perm_groups

@@ -881,7 +881,7 @@
Documentation Version
-sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)[source]
+sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)[source]
diff --git a/dev/modules/combinatorics/util.html b/dev/modules/combinatorics/util.html index afe5511de7e..c87a1329edb 100644 --- a/dev/modules/combinatorics/util.html +++ b/dev/modules/combinatorics/util.html @@ -805,7 +805,7 @@
Documentation Version

Utilities

-sympy.combinatorics.util._base_ordering(base, degree)[source]
+sympy.combinatorics.util._base_ordering(base, degree)[source]

Order \(\{0, 1, \dots, n-1\}\) so that base points come first and in order.

Parameters:
@@ -846,7 +846,7 @@
Documentation Version
-sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]
+sympy.combinatorics.util._check_cycles_alt_sym(perm)[source]

Checks for cycles of prime length p with n/2 < p < n-2.

Explanation

Here \(n\) is the degree of the permutation. This is a helper function for @@ -870,7 +870,7 @@

Documentation Version
-sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]
+sympy.combinatorics.util._distribute_gens_by_base(base, gens)[source]

Distribute the group elements gens by membership in basic stabilizers.

Parameters:
@@ -924,7 +924,7 @@
Documentation Version
strong_gens_distr=None,
-)[source] +)[source]

Calculate BSGS-related structures from those present.

Parameters:
@@ -974,7 +974,7 @@
Documentation Version
slp=False,
-)[source] +)[source]

Compute basic orbits and transversals from a base and strong generating set.

Parameters:
@@ -1025,7 +1025,7 @@
Documentation Version
strong_gens_distr=None,
-)[source] +)[source]

Remove redundant generators from a strong generating set.

Parameters:
@@ -1066,7 +1066,7 @@
Documentation Version
-sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]
+sympy.combinatorics.util._strip(g, base, orbits, transversals)[source]

Attempt to decompose a permutation using a (possibly partial) BSGS structure.

@@ -1126,7 +1126,7 @@
Documentation Version
-sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]
+sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)[source]

Retrieve strong generating set from generators of basic stabilizers.

This is just the union of the generators of the first and second basic stabilizers.

diff --git a/dev/modules/concrete.html b/dev/modules/concrete.html index 94a6a251ffa..5e6a4965dc6 100644 --- a/dev/modules/concrete.html +++ b/dev/modules/concrete.html @@ -883,7 +883,7 @@

Hypergeometric termsConcrete Class Reference

-class sympy.concrete.summations.Sum(function, *symbols, **assumptions)[source]
+class sympy.concrete.summations.Sum(function, *symbols, **assumptions)[source]

Represents unevaluated summation.

Explanation

Sum represents a finite or infinite series, with the first argument @@ -1018,7 +1018,7 @@

Concrete Class Referenceeval_integral=True,

-)[source] +)[source]

Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail.

@@ -1061,7 +1061,7 @@

Concrete Class Reference
-eval_zeta_function(f, limits)[source]
+eval_zeta_function(f, limits)[source]

Check whether the function matches with the zeta function.

If it matches, then return a \(Piecewise\) expression because zeta function does not converge unless \(s > 1\) and \(q > 0\)

@@ -1069,7 +1069,7 @@

Concrete Class Reference
-is_absolutely_convergent()[source]
+is_absolutely_convergent()[source]

Checks for the absolute convergence of an infinite series.

Same as checking convergence of absolute value of sequence_term of an infinite series.

@@ -1097,7 +1097,7 @@

Concrete Class Reference
-is_convergent()[source]
+is_convergent()[source]

Checks for the convergence of a Sum.

Explanation

We divide the study of convergence of infinite sums and products in @@ -1162,7 +1162,7 @@

Concrete Class Reference
-reverse_order(*indices)[source]
+reverse_order(*indices)[source]

Reverse the order of a limit in a Sum.

Explanation

reverse_order(self, *indices) reverses some limits in the expression @@ -1225,7 +1225,7 @@

Concrete Class Reference
-class sympy.concrete.products.Product(function, *symbols, **assumptions)[source]
+class sympy.concrete.products.Product(function, *symbols, **assumptions)[source]

Represents unevaluated products.

Explanation

Product represents a finite or infinite product, with the first @@ -1393,7 +1393,7 @@

Concrete Class Reference
-is_convergent()[source]
+is_convergent()[source]

See docs of Sum.is_convergent() for explanation of convergence in SymPy.

Explanation

@@ -1438,7 +1438,7 @@

Concrete Class Reference
-reverse_order(*indices)[source]
+reverse_order(*indices)[source]

Reverse the order of a limit in a Product.

Explanation

reverse_order(expr, *indices) reverses some limits in the expression @@ -1513,7 +1513,7 @@

Concrete Class Reference**assumptions,

-)[source] +)[source]

Superclass for Product and Sum.

See also

@@ -1529,7 +1529,7 @@

Concrete Class Referencenewvar=None,

-)[source] +)[source]

Change index of a Sum or Product.

Perform a linear transformation \(x \mapsto a x + b\) on the index variable \(x\). For \(a\) the only values allowed are \(\pm 1\). A new variable to be used @@ -1657,7 +1657,7 @@

Concrete Class Reference
-index(x)[source]
+index(x)[source]

Return the index of a dummy variable in the list of limits.

Explanation

index(expr, x) returns the index of the dummy variable x in the @@ -1684,7 +1684,7 @@

Concrete Class Reference
-reorder(*arg)[source]
+reorder(*arg)[source]

Reorder limits in a expression containing a Sum or a Product.

Explanation

expr.reorder(*arg) reorders the limits in the expression expr @@ -1729,7 +1729,7 @@

Concrete Class Reference
-reorder_limit(x, y)[source]
+reorder_limit(x, y)[source]

Interchange two limit tuples of a Sum or Product expression.

Explanation

expr.reorder_limit(x, y) interchanges two limit tuples. The @@ -1764,7 +1764,7 @@

Concrete Class Reference

-sympy.concrete.summations.summation(f, *symbols, **kwargs)[source]
+sympy.concrete.summations.summation(f, *symbols, **kwargs)[source]

Compute the summation of f with respect to symbols.

Explanation

The notation for symbols is similar to the notation used in Integral. @@ -1811,7 +1811,7 @@

Concrete Functions Reference
-sympy.concrete.products.product(*args, **kwargs)[source]
+sympy.concrete.products.product(*args, **kwargs)[source]

Compute the product.

Explanation

The notation for symbols is similar to the notation used in Sum or @@ -1845,7 +1845,7 @@

Concrete Functions Reference
-sympy.concrete.gosper.gosper_normal(f, g, n, polys=True)[source]
+sympy.concrete.gosper.gosper_normal(f, g, n, polys=True)[source]

Compute the Gosper’s normal form of f and g.

Explanation

Given relatively prime univariate polynomials f and g, @@ -1880,7 +1880,7 @@

Concrete Functions Reference
-sympy.concrete.gosper.gosper_term(f, n)[source]
+sympy.concrete.gosper.gosper_term(f, n)[source]

Compute Gosper’s hypergeometric term for f.

Explanation

Suppose f is a hypergeometric term such that:

@@ -1904,7 +1904,7 @@

Concrete Functions Reference
-sympy.concrete.gosper.gosper_sum(f, k)[source]
+sympy.concrete.gosper.gosper_sum(f, k)[source]

Gosper’s hypergeometric summation algorithm.

Explanation

Given a hypergeometric term f such that:

diff --git a/dev/modules/core.html b/dev/modules/core.html index af307439882..76998361726 100644 --- a/dev/modules/core.html +++ b/dev/modules/core.html @@ -815,7 +815,7 @@
Documentation Version
strict: bool = False,

-) Integer[source] +) Integer[source]
sympy.core.sympify.sympify( @@ -1341,7 +1341,7 @@

References

cache

-sympy.core.cache.__cacheit(maxsize)[source]
+sympy.core.cache.__cacheit(maxsize)[source]

caching decorator.

important: the result of cached function must be immutable

Examples

@@ -1375,7 +1375,7 @@

References
-class sympy.core.basic.Basic(*args)[source]
+class sympy.core.basic.Basic(*args)[source]

Base class for all SymPy objects.

Notes And Conventions

    @@ -1466,7 +1466,7 @@

    Referencesclear=True,

-)[source] +)[source]

A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression.

@@ -1477,7 +1477,7 @@

References
-as_dummy() Self[source]
+as_dummy() Self[source]

Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default @@ -1533,7 +1533,7 @@

References
-atoms() set[Basic][source]
+atoms() set[Basic][source]
atoms( @@ -1629,13 +1629,13 @@

References
-classmethod class_key() tuple[int, int, str][source]
+classmethod class_key() tuple[int, int, str][source]

Nice order of classes.

-compare(other)[source]
+compare(other)[source]

Return -1, 0, 1 if the object is less than, equal, or greater than other in a canonical sense. Non-Basic are always greater than Basic. @@ -1663,19 +1663,19 @@

References
-count(query)[source]
+count(query)[source]

Count the number of matching subexpressions.

-count_ops(visual=False)[source]
+count_ops(visual=False)[source]

Wrapper for count_ops that returns the operation count.

-doit(**hints)[source]
+doit(**hints)[source]

Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ @@ -1700,7 +1700,7 @@

References
-dummy_eq(other, symbol=None)[source]
+dummy_eq(other, symbol=None)[source]

Compare two expressions and handle dummy symbols.

Examples

>>> from sympy import Dummy
@@ -1726,7 +1726,7 @@ 

References
-find(query, group=False)[source]
+find(query, group=False)[source]

Find all subexpressions matching a query.

@@ -1777,7 +1777,7 @@

References
-classmethod fromiter(args, **assumptions)[source]
+classmethod fromiter(args, **assumptions)[source]

Create a new object from an iterable.

This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first.

@@ -1814,7 +1814,7 @@

References
-has(*patterns)[source]
+has(*patterns)[source]

Test whether any subexpression matches any of the patterns.

Examples

>>> from sympy import sin
@@ -1859,7 +1859,7 @@ 

References
-has_free(*patterns)[source]
+has_free(*patterns)[source]

Return True if self has object(s) x as a free expression else False.

Examples

@@ -1887,7 +1887,7 @@

References
-has_xfree(s: set[Basic])[source]
+has_xfree(s: set[Basic])[source]

Return True if self has any of the patterns in s as a free argument, else False. This is like \(Basic.has_free\) but this will only report exact argument matches.

@@ -1938,7 +1938,7 @@

References
-is_same(b, approx=None)[source]
+is_same(b, approx=None)[source]

Return True if a and b are structurally the same, else False. If \(approx\) is supplied, it will be used to test whether two numbers are the same or not. By default, only numbers of the @@ -1992,7 +1992,7 @@

References
-match(pattern, old=False)[source]
+match(pattern, old=False)[source]

Pattern matching.

Wild symbols match all.

Return None when expression (self) does not match with pattern. @@ -2056,7 +2056,7 @@

References
-matches(expr, repl_dict=None, old=False)[source]
+matches(expr, repl_dict=None, old=False)[source]

Helper method for match() that looks for a match between Wild symbols in self and expressions in expr.

Examples

@@ -2073,7 +2073,7 @@

References
-rcall(*args)[source]
+rcall(*args)[source]

Apply on the argument recursively through the expression tree.

This method is used to simulate a common abuse of notation for operators. For instance, in SymPy the following will not work:

@@ -2089,7 +2089,7 @@

References
-refine(assumption=True)[source]
+refine(assumption=True)[source]

See the refine function in sympy.assumptions

@@ -2105,7 +2105,7 @@

Referencesexact=None,

-) Basic[source] +) Basic[source]

Replace matching subexpressions of self with value.

If map = True then also return the mapping {old: new} where old was a sub-expression found with query and new is the replacement @@ -2259,7 +2259,7 @@

References
-rewrite(*args, deep=True, **hints)[source]
+rewrite(*args, deep=True, **hints)[source]

Rewrite self using a defined rule.

Rewriting transforms an expression to another, which is mathematically equivalent but structurally different. For example you can rewrite @@ -2339,13 +2339,13 @@

References**kwargs,

-) Basic[source] +) Basic[source]

See the simplify function in sympy.simplify

-sort_key(order=None)[source]
+sort_key(order=None)[source]

Return a sort key.

Examples

>>> from sympy import S, I
@@ -2373,7 +2373,7 @@ 

References**kwargs: Any,

-) Basic[source] +) Basic[source]
subs( @@ -2520,7 +2520,7 @@

References
-xreplace(rule)[source]
+xreplace(rule)[source]

Replace occurrences of objects within the expression.

Parameters:
@@ -2586,7 +2586,7 @@

References
-class sympy.core.basic.Atom(*args)[source]
+class sympy.core.basic.Atom(*args)[source]

A parent class for atomic things. An atom is an expression with no subexpressions.

Examples

Symbol, Number, Rational, Integer, … @@ -2598,7 +2598,7 @@

References

singleton

-class sympy.core.singleton.SingletonRegistry[source]
+class sympy.core.singleton.SingletonRegistry[source]

The registry for the singleton classes (accessible as S).

Explanation

This class serves as two separate things.

@@ -2666,7 +2666,7 @@

References
-class sympy.core.singleton.Singleton(*args, **kwargs)[source]
+class sympy.core.singleton.Singleton(*args, **kwargs)[source]

Metaclass for singleton classes.

Explanation

A singleton class has only one instance which is returned every time the @@ -2696,7 +2696,7 @@

References

expr

-class sympy.core.expr.Expr(*args)[source]
+class sympy.core.expr.Expr(*args)[source]

Base class for algebraic expressions.

Explanation

Everything that requires arithmetic operations to be defined @@ -2713,13 +2713,13 @@

References
-apart(x=None, **args)[source]
+apart(x=None, **args)[source]

See the apart function in sympy.polys

-args_cnc(cset=False, warn=True, split_1=True)[source]
+args_cnc(cset=False, warn=True, split_1=True)[source]

Return [commutative factors, non-commutative factors] of self.

Explanation

self is treated as a Mul and the ordering of the factors is maintained. @@ -2761,7 +2761,7 @@

Referencesrational=False,

-) tuple['Number', Expr][source] +) tuple['Number', Expr][source]

Efficiently extract the coefficient of a summation.

@@ -2773,7 +2773,7 @@

Referencesrational: bool = False,

-) tuple['Number', Expr][source] +) tuple['Number', Expr][source]

Efficiently extract the coefficient of a product.

@@ -2785,7 +2785,7 @@

References*deps,

-) tuple[Expr, tuple[Expr, ...]][source] +) tuple[Expr, tuple[Expr, ...]][source]

Return the tuple (c, args) where self is written as an Add, a.

c should be a Rational added to any terms of the Add that are independent of deps.

@@ -2823,7 +2823,7 @@

Referencesx,

-) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

c*x**e -> c,e where x can be any symbolic expression.

@@ -2836,7 +2836,7 @@

References**kwargs,

-) tuple[Expr, tuple[Expr, ...]][source] +) tuple[Expr, tuple[Expr, ...]][source]

Return the tuple (c, args) where self is written as a Mul, m.

c should be a Rational multiplied by any factors of the Mul that are independent of deps.

@@ -2874,7 +2874,7 @@

Referencesexpr: Expr,

-) Expr | None[source] +) Expr | None[source]

Extracts symbolic coefficient at the given expression. In other words, this functions separates ‘self’ into the product of ‘expr’ and ‘expr’-free coefficient. If such separation @@ -2946,7 +2946,7 @@

References
-as_coefficients_dict(*syms)[source]
+as_coefficients_dict(*syms)[source]

Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0.

@@ -2979,7 +2979,7 @@

Referencesclear=True,

-)[source] +)[source]

This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and Mul(*foo.as_content_primitive()) == foo. @@ -3037,7 +3037,7 @@

References
-as_expr(*gens)[source]
+as_expr(*gens)[source]

Convert a polynomial to a SymPy expression.

Examples

>>> from sympy import sin
@@ -3064,7 +3064,7 @@ 

References**hint,

-) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.:

@@ -3195,7 +3195,7 @@

References
-as_leading_term(*symbols, logx=None, cdir=0)[source]
+as_leading_term(*symbols, logx=None, cdir=0)[source]

Returns the leading (nonzero) term of the series expansion of self.

The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value.

@@ -3211,7 +3211,7 @@

References
-as_numer_denom() tuple[Expr, Expr][source]
+as_numer_denom() tuple[Expr, Expr][source]

Return the numerator and the denominator of an expression.

expression -> a/b -> a, b

This is just a stub that should be defined by @@ -3227,13 +3227,13 @@

References
-as_ordered_factors(order=None)[source]
+as_ordered_factors(order=None)[source]

Return list of ordered factors (if Mul) else [self].

-as_ordered_terms(order=None, data=False)[source]
+as_ordered_terms(order=None, data=False)[source]

Transform an expression to an ordered list of terms.

Examples

>>> from sympy import sin, cos
@@ -3248,7 +3248,7 @@ 

References
-as_poly(*gens, **args)[source]
+as_poly(*gens, **args)[source]

Converts self to a polynomial or returns None.

Explanation

>>> from sympy import sin
@@ -3271,7 +3271,7 @@ 

References
-as_powers_dict()[source]
+as_powers_dict()[source]

Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should @@ -3298,7 +3298,7 @@

References**hints,

-) tuple[Expr, Expr][source] +) tuple[Expr, Expr][source]

Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method cannot be confused with re() and im() functions, @@ -3327,13 +3327,13 @@

References
-as_terms()[source]
+as_terms()[source]

Transform an expression to a list of terms.

-aseries(x=None, n=6, bound=0, hir=False)[source]
+aseries(x=None, n=6, bound=0, hir=False)[source]

Asymptotic Series expansion of self. This is equivalent to self.series(x, oo, n).

@@ -3439,7 +3439,7 @@

References
-cancel(*gens, **args)[source]
+cancel(*gens, **args)[source]

See the cancel function in sympy.polys

@@ -3454,7 +3454,7 @@

References_first=True,

-)[source] +)[source]

Returns the coefficient from the term(s) containing x**n. If n is zero then all terms independent of x will be returned.

Explanation

@@ -3582,19 +3582,19 @@

Referencesdistribute_order_term=True,

-)[source] +)[source]

See the collect function in sympy.simplify

-combsimp()[source]
+combsimp()[source]

See the combsimp function in sympy.simplify

-compute_leading_term(x, logx=None)[source]
+compute_leading_term(x, logx=None)[source]

Deprecated function to compute the leading term of a series.

as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first.

@@ -3602,13 +3602,13 @@

References
-conjugate()[source]
+conjugate()[source]

Returns the complex conjugate of ‘self’.

-could_extract_minus_sign() bool[source]
+could_extract_minus_sign() bool[source]

Return True if self has -1 as a leading factor or has more literal negative signs than positive signs in a sum, otherwise False.

@@ -3638,7 +3638,7 @@

References
-equals(other, failing_expression=False)[source]
+equals(other, failing_expression=False)[source]

Return True if self == other, False if it does not, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None.

@@ -3668,7 +3668,7 @@

References**hints,

-)[source] +)[source]

Expand an expression using hints.

See the docstring of the expand() function in sympy.core.function for more information.

@@ -3699,7 +3699,7 @@

References
-extract_additively(c)[source]
+extract_additively(c)[source]

Return self - c if it’s possible to subtract c from self and make all matching coefficients move towards zero, else return None.

Examples

@@ -3722,7 +3722,7 @@

References
-extract_branch_factor(allow_half=False)[source]
+extract_branch_factor(allow_half=False)[source]

Try to write self as exp_polar(2*pi*I*n)*z in a nice way. Return (z, n).

>>> from sympy import exp_polar, I, pi
@@ -3762,7 +3762,7 @@ 

Referencesc: Expr,

-) Expr | None[source] +) Expr | None[source]

Return None if it’s not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self.

@@ -3795,13 +3795,13 @@

References
-factor(*gens, **args)[source]
+factor(*gens, **args)[source]

See the factor() function in sympy.polys.polytools

-fourier_series(limits=None)[source]
+fourier_series(limits=None)[source]

Compute fourier sine/cosine series of self.

See the docstring of the fourier_series() in sympy.series.fourier for more information.

@@ -3821,7 +3821,7 @@

Referencesfull=False,

-)[source] +)[source]

Compute formal power power series of self.

See the docstring of the fps() function in sympy.series.formal for more information.

@@ -3829,19 +3829,19 @@

References
-gammasimp()[source]
+gammasimp()[source]

See the gammasimp function in sympy.simplify

-getO() Expr | None[source]
+getO() Expr | None[source]

Returns the additive O(..) symbol if there is one, else None.

-getn()[source]
+getn()[source]

Returns the order of the expression.

Explanation

The order is determined either from the O(…) term. If there @@ -3858,13 +3858,13 @@

References
-integrate(*args, **kwargs)[source]
+integrate(*args, **kwargs)[source]

See the integrate function in sympy.integrals

-invert(g, *gens, **args)[source]
+invert(g, *gens, **args)[source]

Return the multiplicative inverse of self mod g where self (and g) may be symbolic expressions).

@@ -3875,7 +3875,7 @@

References
-is_algebraic_expr(*syms)[source]
+is_algebraic_expr(*syms)[source]

This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded @@ -3918,7 +3918,7 @@

References
-is_constant(*wrt, **flags)[source]
+is_constant(*wrt, **flags)[source]

Return True if self is constant, False if not, or None if the constancy could not be determined conclusively.

Explanation

@@ -3987,7 +3987,7 @@

References
-is_meromorphic(x, a)[source]
+is_meromorphic(x, a)[source]

This tests whether an expression is meromorphic as a function of the given symbol x at the point a.

This method is intended as a quick test that will return @@ -4096,7 +4096,7 @@

References
-is_polynomial(*syms)[source]
+is_polynomial(*syms)[source]

Return True if self is a polynomial in syms and False otherwise.

This checks if self is an exact polynomial in syms. This function returns False for expressions that are “polynomials” with symbolic @@ -4160,7 +4160,7 @@

References
-is_rational_function(*syms)[source]
+is_rational_function(*syms)[source]

Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of @@ -4212,7 +4212,7 @@

References
-leadterm(x, logx=None, cdir=0)[source]
+leadterm(x, logx=None, cdir=0)[source]

Returns the leading term a*x**b as a tuple (a, b).

Examples

>>> from sympy.abc import x
@@ -4226,7 +4226,7 @@ 

References
-limit(x, xlim, dir='+')[source]
+limit(x, xlim, dir='+')[source]

Compute limit x->xlim.

@@ -4242,7 +4242,7 @@

Referencescdir=0,

-)[source] +)[source]

Wrapper for series yielding an iterator of the terms of the series.

Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms @@ -4260,7 +4260,7 @@

References
-normal()[source]
+normal()[source]

Return the expression as a fraction.

expression -> a/b

@@ -4285,7 +4285,7 @@

Referencescdir=0,

-)[source] +)[source]

Wrapper to _eval_nseries if assumptions allow, else to series.

If x is given, x0 is 0, dir=’+’, and self has x, then _eval_nseries is called. This calculates “n” terms in the innermost expressions and @@ -4347,19 +4347,19 @@

Referencesfull=False,

-)[source] +)[source]

See the nsimplify function in sympy.simplify

-powsimp(*args, **kwargs)[source]
+powsimp(*args, **kwargs)[source]

See the powsimp function in sympy.simplify

-primitive() tuple[Number, Expr][source]
+primitive() tuple[Number, Expr][source]

Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive @@ -4380,25 +4380,25 @@

References
-radsimp(**kwargs)[source]
+radsimp(**kwargs)[source]

See the radsimp function in sympy.simplify

-ratsimp()[source]
+ratsimp()[source]

See the ratsimp function in sympy.simplify

-removeO() Expr[source]
+removeO() Expr[source]

Removes the additive O(..) symbol if there is one

-round(n=None)[source]
+round(n=None)[source]

Return x rounded to the given decimal place.

If a complex number would results, apply round to the real and imaginary components of the number.

@@ -4432,7 +4432,7 @@

References
-separate(deep=False, force=False)[source]
+separate(deep=False, force=False)[source]

See the separate function in sympy.simplify

@@ -4449,7 +4449,7 @@

Referencescdir=0,

-)[source] +)[source]

Series expansion of “self” around x = x0 yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None.

@@ -4562,7 +4562,7 @@

References
-taylor_term(n, x, *previous_terms)[source]
+taylor_term(n, x, *previous_terms)[source]

General method for the taylor term.

This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.

@@ -4570,13 +4570,13 @@

References
-together(*args, **kwargs)[source]
+together(*args, **kwargs)[source]

See the together function in sympy.polys

-trigsimp(**args)[source]
+trigsimp(**args)[source]

See the trigsimp function in sympy.simplify

@@ -4584,7 +4584,7 @@

References
-class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)[source]
+class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)[source]

Expression that is not evaluated unless released.

Examples

>>> from sympy import UnevaluatedExpr
@@ -4599,7 +4599,7 @@ 

References
-class sympy.core.expr.AtomicExpr(*args)[source]
+class sympy.core.expr.AtomicExpr(*args)[source]

A parent class for object which are both atoms and Exprs.

For example: Symbol, Number, Rational, Integer, … But not: Add, Mul, Pow, …

@@ -4610,7 +4610,7 @@

References

symbol

-class sympy.core.symbol.Symbol(name, **assumptions)[source]
+class sympy.core.symbol.Symbol(name, **assumptions)[source]

Symbol class is used to create symbolic variables.

Parameters:
@@ -4666,7 +4666,7 @@

References**assumptions,

-)[source] +)[source]

A Wild symbol matches anything, or anything without whatever is explicitly excluded.

@@ -4757,7 +4757,7 @@

References
-class sympy.core.symbol.Dummy(name=None, dummy_index=None, **assumptions)[source]
+class sympy.core.symbol.Dummy(name=None, dummy_index=None, **assumptions)[source]

Dummy symbols are each unique, even if they have the same name:

Examples

>>> from sympy import Dummy
@@ -4785,7 +4785,7 @@ 

References**args,

-) Any[source] +) Any[source]

Transform strings into instances of Symbol class.

symbols() function returns a sequence of symbols with names taken from names argument, which can be a comma or whitespace delimited @@ -4902,7 +4902,7 @@

References
-sympy.core.symbol.var(names, **args)[source]
+sympy.core.symbol.var(names, **args)[source]

Create symbols and inject them into the global namespace.

Explanation

This calls symbols() with the same arguments and puts the results @@ -4941,7 +4941,7 @@

References

intfunc

-sympy.core.intfunc.num_digits(n, base=10)[source]
+sympy.core.intfunc.num_digits(n, base=10)[source]

Return the number of digits needed to express n in give base.

Parameters:
@@ -4973,7 +4973,7 @@

References
-sympy.core.intfunc.trailing(n)[source]
+sympy.core.intfunc.trailing(n)[source]

Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n.

@@ -4993,7 +4993,7 @@

References
-sympy.core.intfunc.ilcm(*args)[source]
+sympy.core.intfunc.ilcm(*args)[source]

Computes integer least common multiple.

Examples

>>> from sympy import ilcm
@@ -5035,7 +5035,7 @@ 

References
-sympy.core.intfunc.igcd_lehmer(a, b)[source]
+sympy.core.intfunc.igcd_lehmer(a, b)[source]

Computes greatest common divisor of two integers.

Explanation

Euclid’s algorithm for the computation of the greatest @@ -5078,7 +5078,7 @@

References
-sympy.core.intfunc.igcdex(a, b)[source]
+sympy.core.intfunc.igcdex(a, b)[source]

Returns x, y, g such that g = x*a + y*b = gcd(a, b).

Examples

>>> from sympy.core.intfunc import igcdex
@@ -5099,7 +5099,7 @@ 

References
-sympy.core.intfunc.isqrt(n)[source]
+sympy.core.intfunc.isqrt(n)[source]

Return the largest integer less than or equal to \(\sqrt{n}\).

Parameters:
@@ -5143,7 +5143,7 @@

References
-sympy.core.intfunc.integer_nthroot(y, n)[source]
+sympy.core.intfunc.integer_nthroot(y, n)[source]

Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y).

@@ -5170,7 +5170,7 @@

References
-sympy.core.intfunc.integer_log(n, b)[source]
+sympy.core.intfunc.integer_log(n, b)[source]

Returns (e, bool) where e is the largest nonnegative integer such that \(|n| \geq |b^e|\) and bool is True if \(n = b^e\).

Examples

@@ -5210,7 +5210,7 @@

References
-sympy.core.intfunc.mod_inverse(a, m)[source]
+sympy.core.intfunc.mod_inverse(a, m)[source]

Return the number \(c\) such that, \(a \times c = 1 \pmod{m}\) where \(c\) has the same sign as \(m\). If no such value exists, a ValueError is raised.

@@ -5259,7 +5259,7 @@

References

numbers

-class sympy.core.numbers.Number(*obj)[source]
+class sympy.core.numbers.Number(*obj)[source]

Represents atomic numbers in SymPy.

Explanation

Floating point numbers are represented by the Float class. @@ -5282,31 +5282,31 @@

References
-as_coeff_Add(rational=False)[source]
+as_coeff_Add(rational=False)[source]

Efficiently extract the coefficient of a summation.

-as_coeff_Mul(rational=False)[source]
+as_coeff_Mul(rational=False)[source]

Efficiently extract the coefficient of a product.

-cofactors(other)[source]
+cofactors(other)[source]

Compute GCD and cofactors of \(self\) and \(other\).

-gcd(other)[source]
+gcd(other)[source]

Compute GCD of \(self\) and \(other\).

-lcm(other)[source]
+lcm(other)[source]

Compute LCM of \(self\) and \(other\).

@@ -5314,7 +5314,7 @@

References
-class sympy.core.numbers.Float(num, dps=None, precision=None)[source]
+class sympy.core.numbers.Float(num, dps=None, precision=None)[source]

Represent a floating-point number of arbitrary precision.

Examples

>>> from sympy import Float
@@ -5478,7 +5478,7 @@ 

References
-class sympy.core.numbers.Rational(p, q=None, gcd=None)[source]
+class sympy.core.numbers.Rational(p, q=None, gcd=None)[source]

Represents rational numbers (p/q) of any size.

Examples

>>> from sympy import Rational, nsimplify, S, pi
@@ -5568,13 +5568,13 @@ 

References
-as_coeff_Add(rational=False)[source]
+as_coeff_Add(rational=False)[source]

Efficiently extract the coefficient of a summation.

-as_coeff_Mul(rational=False)[source]
+as_coeff_Mul(rational=False)[source]

Efficiently extract the coefficient of a product.

@@ -5587,7 +5587,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

@@ -5612,7 +5612,7 @@

Referencesvisual=False,

-)[source] +)[source]

A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used.

@@ -5626,7 +5626,7 @@

Referencesmax_denominator=1000000,

-)[source] +)[source]

Closest Rational to self with denominator at most max_denominator.

Examples

>>> from sympy import Rational
@@ -5642,7 +5642,7 @@ 

References
-class sympy.core.numbers.Integer(i)[source]
+class sympy.core.numbers.Integer(i)[source]

Represents integer numbers of any size.

Examples

>>> from sympy import Integer
@@ -5679,7 +5679,7 @@ 

References**args,

-)[source] +)[source]

Class for representing algebraic numbers in SymPy.

Symbolically, an instance of this class represents an element \(\alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}\). That is, the @@ -5704,7 +5704,7 @@

References**args,

-)[source] +)[source]

Construct a new algebraic number \(\alpha\) belonging to a number field \(k = \mathbb{Q}(\theta)\).

There are four instance attributes to be determined:

@@ -5881,25 +5881,25 @@

References
-as_expr(x=None)[source]
+as_expr(x=None)[source]

Create a Basic expression from self.

-as_poly(x=None)[source]
+as_poly(x=None)[source]

Create a Poly instance from self.

-coeffs()[source]
+coeffs()[source]

Returns all SymPy coefficients of an algebraic number.

-field_element(coeffs)[source]
+field_element(coeffs)[source]

Form another element of the same number field.

Parameters:
@@ -5950,7 +5950,7 @@

References
-minpoly_of_element()[source]
+minpoly_of_element()[source]

Compute the minimal polynomial for this algebraic number.

Explanation

Recall that we represent an element \(\alpha \in \mathbb{Q}(\theta)\). @@ -5961,13 +5961,13 @@

References
-native_coeffs()[source]
+native_coeffs()[source]

Returns all native coefficients of an algebraic number.

-primitive_element()[source]
+primitive_element()[source]

Get the primitive element \(\theta\) for the number field \(\mathbb{Q}(\theta)\) to which this algebraic number \(\alpha\) belongs.

@@ -5979,7 +5979,7 @@

References
-to_algebraic_integer()[source]
+to_algebraic_integer()[source]

Convert self to an algebraic integer.

@@ -5991,7 +5991,7 @@

Referencesradicals=True,

-)[source] +)[source]

Convert self to an AlgebraicNumber instance that is equal to its own primitive element.

@@ -6056,7 +6056,7 @@

Referencesminpoly=None,

-)[source] +)[source]

Convert to an Expr that is not an AlgebraicNumber, specifically, either a ComplexRootOf, or, optionally and where possible, an @@ -6082,10 +6082,10 @@

References
-class sympy.core.numbers.NumberSymbol[source]
+class sympy.core.numbers.NumberSymbol[source]
-approximation(number_cls)[source]
+approximation(number_cls)[source]

Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None.

@@ -6095,13 +6095,13 @@

References
-sympy.core.numbers.RealNumber[source]
+sympy.core.numbers.RealNumber[source]

alias of Float

-sympy.core.numbers.seterr(divide=False)[source]
+sympy.core.numbers.seterr(divide=False)[source]

Should SymPy raise an exception on 0/0 or return a nan?

divide == True …. raise an exception divide == False … return nan

@@ -6109,7 +6109,7 @@

References
-class sympy.core.numbers.Zero[source]
+class sympy.core.numbers.Zero[source]

The number zero.

Zero is a singleton, and can be accessed by S.Zero

Examples

@@ -6131,7 +6131,7 @@

References
-class sympy.core.numbers.One[source]
+class sympy.core.numbers.One[source]

The number one.

One is a singleton, and can be accessed by S.One.

Examples

@@ -6151,7 +6151,7 @@

References
-class sympy.core.numbers.NegativeOne[source]
+class sympy.core.numbers.NegativeOne[source]

The number negative one.

NegativeOne is a singleton, and can be accessed by S.NegativeOne.

Examples

@@ -6175,7 +6175,7 @@

References
-class sympy.core.numbers.Half[source]
+class sympy.core.numbers.Half[source]

The rational number 1/2.

Half is a singleton, and can be accessed by S.Half.

Examples

@@ -6195,7 +6195,7 @@

References
-class sympy.core.numbers.NaN[source]
+class sympy.core.numbers.NaN[source]

Not a Number.

Explanation

This serves as a place holder for numeric values that are indeterminate. @@ -6238,7 +6238,7 @@

References
-class sympy.core.numbers.Infinity[source]
+class sympy.core.numbers.Infinity[source]

Positive infinite quantity.

Explanation

In real analysis the symbol \(\infty\) denotes an unbounded @@ -6276,7 +6276,7 @@

References
-class sympy.core.numbers.NegativeInfinity[source]
+class sympy.core.numbers.NegativeInfinity[source]

Negative infinite quantity.

NegativeInfinity is a singleton, and can be accessed by S.NegativeInfinity.

@@ -6288,7 +6288,7 @@

References
-class sympy.core.numbers.ComplexInfinity[source]
+class sympy.core.numbers.ComplexInfinity[source]

Complex infinity.

Explanation

In complex analysis the symbol \(\tilde\infty\), called “complex @@ -6316,7 +6316,7 @@

References
-class sympy.core.numbers.Exp1[source]
+class sympy.core.numbers.Exp1[source]

The \(e\) constant.

Explanation

The transcendental number \(e = 2.718281828\ldots\) is the base of the @@ -6343,7 +6343,7 @@

References
-class sympy.core.numbers.ImaginaryUnit[source]
+class sympy.core.numbers.ImaginaryUnit[source]

The imaginary unit, \(i = \sqrt{-1}\).

I is a singleton, and can be accessed by S.I, or can be imported as I.

@@ -6368,7 +6368,7 @@

References
-class sympy.core.numbers.Pi[source]
+class sympy.core.numbers.Pi[source]

The \(\pi\) constant.

Explanation

The transcendental number \(\pi = 3.141592654\ldots\) represents the ratio @@ -6403,7 +6403,7 @@

References
-class sympy.core.numbers.EulerGamma[source]
+class sympy.core.numbers.EulerGamma[source]

The Euler-Mascheroni constant.

Explanation

\(\gamma = 0.5772157\ldots\) (also called Euler’s constant) is a mathematical @@ -6436,7 +6436,7 @@

References
-class sympy.core.numbers.Catalan[source]
+class sympy.core.numbers.Catalan[source]

Catalan’s constant.

Explanation

\(G = 0.91596559\ldots\) is given by the infinite series

@@ -6465,7 +6465,7 @@

References
-class sympy.core.numbers.GoldenRatio[source]
+class sympy.core.numbers.GoldenRatio[source]

The golden ratio, \(\phi\).

Explanation

\(\phi = \frac{1 + \sqrt{5}}{2}\) is an algebraic number. Two quantities @@ -6493,7 +6493,7 @@

References
-class sympy.core.numbers.TribonacciConstant[source]
+class sympy.core.numbers.TribonacciConstant[source]

The tribonacci constant.

Explanation

The tribonacci numbers are like the Fibonacci numbers, but instead @@ -6528,7 +6528,7 @@

References
-sympy.core.numbers.mod_inverse(a, m)[source]
+sympy.core.numbers.mod_inverse(a, m)[source]

Return the number \(c\) such that, \(a \times c = 1 \pmod{m}\) where \(c\) has the same sign as \(m\). If no such value exists, a ValueError is raised.

@@ -6574,7 +6574,7 @@

References
-sympy.core.numbers.equal_valued(x, y)[source]
+sympy.core.numbers.equal_valued(x, y)[source]

Compare expressions treating plain floats as rationals.

Examples

>>> from sympy import S, symbols, Rational, Float
@@ -6639,7 +6639,7 @@ 

Referencesevaluate=None,

-)[source] +)[source]

Defines the expression x**y as “x raised to a power y”

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -6777,7 +6777,7 @@

References
-as_base_exp()[source]
+as_base_exp()[source]

Return base and exp of self.

Explanation

If base a Rational less than 1, then return 1/Rational, -exp. @@ -6805,7 +6805,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

@@ -6856,7 +6856,7 @@

References

mul

-class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)[source]
+class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)[source]

Expression representing multiplication operation for algebraic field.

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -6928,7 +6928,7 @@

References
-as_coeff_Mul(rational=False)[source]
+as_coeff_Mul(rational=False)[source]

Efficiently extract the coefficient of a product.

@@ -6941,7 +6941,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

@@ -6955,7 +6955,7 @@

References
-as_ordered_factors(order=None)[source]
+as_ordered_factors(order=None)[source]

Transform an expression into an ordered list of factors.

Examples

>>> from sympy import sin, cos
@@ -6970,7 +6970,7 @@ 

References
-as_two_terms()[source]
+as_two_terms()[source]

Return head and tail of self.

This is the most efficient way to get the head and tail of an expression.

@@ -6992,7 +6992,7 @@

References
-classmethod flatten(seq)[source]
+classmethod flatten(seq)[source]

Return commutative, noncommutative and order arguments by combining related terms.

Notes

@@ -7075,7 +7075,7 @@

References
-sympy.core.mul.prod(a, start=1)[source]
+sympy.core.mul.prod(a, start=1)[source]
Return product of elements of a. Start with int 1 so if only

ints are included then an int result is returned.

@@ -7104,7 +7104,7 @@

References

add

-class sympy.core.add.Add(*args, evaluate=None, _sympify=True)[source]
+class sympy.core.add.Add(*args, evaluate=None, _sympify=True)[source]

Expression representing addition operation for algebraic group.

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr in core @@ -7197,13 +7197,13 @@

Referencesdeps=None,

-) tuple[Number, Expr][source] +) tuple[Number, Expr][source]

Efficiently extract the coefficient of a summation.

-as_coeff_add(*deps)[source]
+as_coeff_add(*deps)[source]

Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms.

Examples

@@ -7225,7 +7225,7 @@

Referencesclear=True,

-)[source] +)[source]

Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the @@ -7246,7 +7246,7 @@

References
-as_numer_denom() tuple[Expr, Expr][source]
+as_numer_denom() tuple[Expr, Expr][source]

Decomposes an expression to its numerator part and its denominator part.

Examples

@@ -7265,7 +7265,7 @@

References
-as_real_imag(deep=True, **hints)[source]
+as_real_imag(deep=True, **hints)[source]

Return a tuple representing a complex number.

Examples

>>> from sympy import I
@@ -7281,7 +7281,7 @@ 

References
-as_two_terms()[source]
+as_two_terms()[source]

Return head and tail of self.

This is the most efficient way to get the head and tail of an expression.

@@ -7302,7 +7302,7 @@

References
-extract_leading_order(symbols, point=None)[source]
+extract_leading_order(symbols, point=None)[source]

Returns the leading term and its order.

Examples

>>> from sympy.abc import x
@@ -7324,7 +7324,7 @@ 

Referencesseq: list[Expr],

-) tuple[list[Expr], list[Expr], None][source] +) tuple[list[Expr], list[Expr], None][source]

Takes the sequence “seq” of nested Adds and returns a flatten list.

Returns: (commutative_part, noncommutative_part, order_symbols)

Applies associativity, all terms are commutable with respect to @@ -7338,7 +7338,7 @@

References
-primitive()[source]
+primitive()[source]

Return (R, self/R) where R` is the Rational GCD of self`.

R is collected only from the leading coefficient of each term.

Examples

@@ -7378,7 +7378,7 @@

References

mod

-class sympy.core.mod.Mod(p, q)[source]
+class sympy.core.mod.Mod(p, q)[source]

Represents a modulo operation on symbolic expressions.

Parameters:
@@ -7422,7 +7422,7 @@

References

relational

-class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)[source]
+class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)[source]

Base class for all relation types.

Parameters:
@@ -7550,7 +7550,7 @@

References
-equals(other, failing_expression=False)[source]
+equals(other, failing_expression=False)[source]

Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value @@ -7663,49 +7663,49 @@

References
-sympy.core.relational.Rel[source]
+sympy.core.relational.Rel[source]

alias of Relational

-sympy.core.relational.Eq[source]
+sympy.core.relational.Eq[source]

alias of Equality

-sympy.core.relational.Ne[source]
+sympy.core.relational.Ne[source]

alias of Unequality

-sympy.core.relational.Lt[source]
+sympy.core.relational.Lt[source]

alias of StrictLessThan

-sympy.core.relational.Le[source]
+sympy.core.relational.Le[source]

alias of LessThan

-sympy.core.relational.Gt[source]
+sympy.core.relational.Gt[source]

alias of StrictGreaterThan

-sympy.core.relational.Ge[source]
+sympy.core.relational.Ge[source]

alias of GreaterThan

-class sympy.core.relational.Equality(lhs, rhs, **options)[source]
+class sympy.core.relational.Equality(lhs, rhs, **options)[source]

An equal relation between two objects.

Explanation

Represents that two objects are equal. If they can be easily shown @@ -7764,7 +7764,7 @@

References
-as_poly(*gens, **kwargs)[source]
+as_poly(*gens, **kwargs)[source]

Returns lhs-rhs as a Poly

Examples

>>> from sympy import Eq
@@ -7777,7 +7777,7 @@ 

References
-integrate(*args, **kwargs)[source]
+integrate(*args, **kwargs)[source]

See the integrate function in sympy.integrals

@@ -7785,7 +7785,7 @@

References
-class sympy.core.relational.GreaterThan(lhs, rhs, **options)[source]
+class sympy.core.relational.GreaterThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8039,7 +8039,7 @@

References
-class sympy.core.relational.LessThan(lhs, rhs, **options)[source]
+class sympy.core.relational.LessThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8293,7 +8293,7 @@

References
-class sympy.core.relational.Unequality(lhs, rhs, **options)[source]
+class sympy.core.relational.Unequality(lhs, rhs, **options)[source]

An unequal relation between two objects.

Explanation

Represents that two objects are not equal. If they can be shown to be @@ -8321,7 +8321,7 @@

References
-class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)[source]
+class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8575,7 +8575,7 @@

References
-class sympy.core.relational.StrictLessThan(lhs, rhs, **options)[source]
+class sympy.core.relational.StrictLessThan(lhs, rhs, **options)[source]

Class representations of inequalities.

Explanation

The *Than classes represent inequal relationships, where the left-hand @@ -8832,7 +8832,7 @@

References

multidimensional

-class sympy.core.multidimensional.vectorize(*mdargs)[source]
+class sympy.core.multidimensional.vectorize(*mdargs)[source]

Generalizes a function taking scalars to accept multidimensional arguments.

Examples

>>> from sympy import vectorize, diff, sin, symbols, Function
@@ -8865,7 +8865,7 @@ 

References

function

-class sympy.core.function.Lambda(signature, expr)[source]
+class sympy.core.function.Lambda(signature, expr)[source]

Lambda(x, expr) represents a lambda function similar to Python’s ‘lambda x: expr’. A function of several variables is written as Lambda((x, y, …), expr).

@@ -8932,7 +8932,7 @@

References
-class sympy.core.function.WildFunction(*args)[source]
+class sympy.core.function.WildFunction(*args)[source]

A WildFunction function matches any function (with its arguments).

Examples

>>> from sympy import WildFunction, Function, cos
@@ -8979,7 +8979,7 @@ 

References
-class sympy.core.function.Derivative(expr, *variables, **kwargs)[source]
+class sympy.core.function.Derivative(expr, *variables, **kwargs)[source]

Carries out differentiation of the given expression with respect to symbols.

Examples

>>> from sympy import Derivative, Function, symbols, Subs
@@ -9183,7 +9183,7 @@ 

References
-classmethod _sort_variable_count(vc)[source]
+classmethod _sort_variable_count(vc)[source]

Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation:

@@ -9242,7 +9242,7 @@

Referenceswrt=None,

-)[source] +)[source]

Expresses a Derivative instance as a finite difference.

Parameters:
@@ -9328,7 +9328,7 @@

References
-doit_numerically(z0)[source]
+doit_numerically(z0)[source]

Evaluate the derivative at z numerically.

When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method.

@@ -9338,7 +9338,7 @@

References
-sympy.core.function.diff(f, *symbols, **kwargs)[source]
+sympy.core.function.diff(f, *symbols, **kwargs)[source]

Differentiate f with respect to symbols.

Explanation

This is just a wrapper to unify .diff() and the Derivative class; its @@ -9404,7 +9404,7 @@

References
-class sympy.core.function.FunctionClass(*args, **kwargs)[source]
+class sympy.core.function.FunctionClass(*args, **kwargs)[source]

Base class for function classes. FunctionClass is a subclass of type.

Use Function(‘<function name>’ [ , signature ]) to create undefined function classes.

@@ -9447,7 +9447,7 @@

References
-class sympy.core.function.Function(*args)[source]
+class sympy.core.function.Function(*args)[source]

Base class for applied mathematical functions.

It also serves as a constructor for undefined function classes.

See the Writing Custom Functions guide for details on how to subclass @@ -9495,13 +9495,13 @@

References
-fdiff(argindex=1)[source]
+fdiff(argindex=1)[source]

Returns the first derivative of the function.

-classmethod is_singular(a)[source]
+classmethod is_singular(a)[source]

Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

@@ -9538,7 +9538,7 @@

References
-class sympy.core.function.Subs(expr, variables, point, **assumptions)[source]
+class sympy.core.function.Subs(expr, variables, point, **assumptions)[source]

Represents unevaluated substitutions of an expression.

Subs(expr, x, x0) represents the expression resulting from substituting x with x0 in expr.

@@ -9660,7 +9660,7 @@

References**hints,

-)[source] +)[source]

Expand an expression using methods given as hints.

Explanation

Hints evaluated unless explicitly set to False are: basic, log, @@ -9943,12 +9943,12 @@

References
-class sympy.core.function.PoleError[source]
+class sympy.core.function.PoleError[source]

-sympy.core.function.count_ops(expr, visual=False)[source]
+sympy.core.function.count_ops(expr, visual=False)[source]

Return a representation (integer or expression) of the operations in expr.

Parameters:
@@ -10023,7 +10023,7 @@

References
-sympy.core.function.expand_mul(expr, deep=True)[source]
+sympy.core.function.expand_mul(expr, deep=True)[source]

Wrapper around expand that only uses the mul hint. See the expand docstring for more information.

Examples

@@ -10046,7 +10046,7 @@

Referencesfactor=False,

-)[source] +)[source]

Wrapper around expand that only uses the log hint. See the expand docstring for more information.

Examples

@@ -10060,7 +10060,7 @@

References
-sympy.core.function.expand_func(expr, deep=True)[source]
+sympy.core.function.expand_func(expr, deep=True)[source]

Wrapper around expand that only uses the func hint. See the expand docstring for more information.

Examples

@@ -10074,7 +10074,7 @@

References
-sympy.core.function.expand_trig(expr, deep=True)[source]
+sympy.core.function.expand_trig(expr, deep=True)[source]

Wrapper around expand that only uses the trig hint. See the expand docstring for more information.

Examples

@@ -10088,7 +10088,7 @@

References
-sympy.core.function.expand_complex(expr, deep=True)[source]
+sympy.core.function.expand_complex(expr, deep=True)[source]

Wrapper around expand that only uses the complex hint. See the expand docstring for more information.

Examples

@@ -10108,7 +10108,7 @@

References
-sympy.core.function.expand_multinomial(expr, deep=True)[source]
+sympy.core.function.expand_multinomial(expr, deep=True)[source]

Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information.

Examples

@@ -10122,7 +10122,7 @@

References
-sympy.core.function.expand_power_exp(expr, deep=True)[source]
+sympy.core.function.expand_power_exp(expr, deep=True)[source]

Wrapper around expand that only uses the power_exp hint.

See the expand docstring for more information.

Examples

@@ -10145,7 +10145,7 @@

References
-sympy.core.function.expand_power_base(expr, deep=True, force=False)[source]
+sympy.core.function.expand_power_base(expr, deep=True, force=False)[source]

Wrapper around expand that only uses the power_base hint.

A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other @@ -10230,7 +10230,7 @@

References
-sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)[source]
+sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)[source]

Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True) and those in undefined functions. When processing dictionaries, do not modify the keys @@ -10256,7 +10256,7 @@

References

evalf

-class sympy.core.evalf.EvalfMixin[source]
+class sympy.core.evalf.EvalfMixin[source]

Mixin class adding evalf capability.

@@ -10272,7 +10272,7 @@

Referencesverbose=False,

-)[source] +)[source]

Evaluate the given formula to an accuracy of n digits.

Parameters:
@@ -10355,7 +10355,7 @@

Referencesverbose=False,

-)[source] +)[source]

Evaluate the given formula to an accuracy of n digits.

Parameters:
@@ -10428,12 +10428,12 @@

References
-class sympy.core.evalf.PrecisionExhausted[source]
+class sympy.core.evalf.PrecisionExhausted[source]

-sympy.core.evalf.N(x, n=15, **options)[source]
+sympy.core.evalf.N(x, n=15, **options)[source]

Calls x.evalf(n, **options).

Explanations

Both .n() and N() are equivalent to .evalf(); use the one that you like better. @@ -10454,7 +10454,7 @@

References

containers

-class sympy.core.containers.Tuple(*args, **kwargs)[source]
+class sympy.core.containers.Tuple(*args, **kwargs)[source]

Wrapper around the builtin tuple object.

Parameters:
@@ -10481,7 +10481,7 @@

References
-index(value, start=None, stop=None)[source]
+index(value, start=None, stop=None)[source]

Searches and returns the first index of the value.

@@ -10509,7 +10509,7 @@

References
-tuple_count(value) int[source]
+tuple_count(value) int[source]

Return number of occurrences of value.

@@ -10517,7 +10517,7 @@

References
-class sympy.core.containers.TupleKind(*args)[source]
+class sympy.core.containers.TupleKind(*args)[source]

TupleKind is a subclass of Kind, which is used to define Kind of Tuple.

Parameters of TupleKind will be kinds of all the arguments in Tuples, for example

@@ -10546,7 +10546,7 @@

References
-class sympy.core.containers.Dict(*args)[source]
+class sympy.core.containers.Dict(*args)[source]

Wrapper around the builtin dict object.

Explanation

The Dict is a subclass of Basic, so that it works well in the @@ -10579,25 +10579,25 @@

References
-get(key, default=None)[source]
+get(key, default=None)[source]

Returns the value for key if the key is in the dictionary.

-items()[source]
+items()[source]

Returns a set-like object providing a view on dict’s items.

-keys()[source]
+keys()[source]

Returns the list of the dict’s keys.

-values()[source]
+values()[source]

Returns the list of the dict’s values.

@@ -10617,7 +10617,7 @@

Referencesfraction=True,

-)[source] +)[source]

Compute the GCD of terms and put them together.

Parameters:
@@ -10694,7 +10694,7 @@

Referencessign=True,

-) Expr[source] +) Expr[source]

Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed.

@@ -10763,7 +10763,7 @@

References

kind

-class sympy.core.kind.Kind(*args)[source]
+class sympy.core.kind.Kind(*args)[source]

Base class for kinds.

Kind of the object represents the mathematical classification that the entity falls into. It is expected that functions and classes @@ -10807,7 +10807,7 @@

References

-sympy.core.sorting.default_sort_key(item, order=None)[source]
+sympy.core.sorting.default_sort_key(item, order=None)[source]

Return a key that can be used for sorting.

The key has the structure:

(class_key, (len(args), args), exponent.sort_key(), coefficient)

@@ -10913,7 +10913,7 @@

Sorting
-sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)[source]
+sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)[source]

Return an iterator of the seq where keys are used to break ties in a conservative fashion: if, after applying a key, there are no ties then no other keys will be computed.

@@ -11024,7 +11024,7 @@

Examplestolerance=None,

-)[source] +)[source]

Return a random complex number.

To reduce chance of hitting branch cuts or anything, we guarantee b <= Im z <= d, a <= Re z <= c

@@ -11047,7 +11047,7 @@

Examplesd=1,

-)[source] +)[source]

Test numerically that f and g agree when evaluated in the argument z.

If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits @@ -11077,7 +11077,7 @@

Examplesd=1,

-)[source] +)[source]

Test numerically that the symbolically computed derivative of f with respect to z is correct.

This routine does not test whether there are Floats present with @@ -11095,7 +11095,7 @@

Examples
-sympy.core.random._randrange(seed=None)[source]
+sympy.core.random._randrange(seed=None)[source]

Return a randrange generator.

seed can be

    @@ -11121,7 +11121,7 @@

    Examples
    -sympy.core.random._randint(seed=None)[source]
    +sympy.core.random._randint(seed=None)[source]

    Return a randint generator.

    seed can be

      @@ -11150,7 +11150,7 @@

      Examples

      Traversal

      -sympy.core.traversal.bottom_up(rv, F, atoms=False, nonbasic=False)[source]
      +sympy.core.traversal.bottom_up(rv, F, atoms=False, nonbasic=False)[source]

      Apply F to all expressions in an expression tree from the bottom up. If atoms is True, apply F even if there are no args; if nonbasic is True, try to apply F to non-Basic objects.

      @@ -11158,7 +11158,7 @@

      Examples
      -sympy.core.traversal.postorder_traversal(node, keys=None)[source]
      +sympy.core.traversal.postorder_traversal(node, keys=None)[source]

      Do a postorder traversal of a tree.

      This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of @@ -11203,7 +11203,7 @@

      Examples
      -sympy.core.traversal.preorder_traversal(node, keys=None)[source]
      +sympy.core.traversal.preorder_traversal(node, keys=None)[source]

      Do a pre-order traversal of a tree.

      This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the @@ -11251,7 +11251,7 @@

      Examples
      -sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})[source]
      +sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})[source]

      Use func to transform expr at the given level.

      Examples

      >>> from sympy import use, expand
      @@ -11271,7 +11271,7 @@ 

      Examples
      -sympy.core.traversal.walk(e, *target)[source]
      +sympy.core.traversal.walk(e, *target)[source]

      Iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed.

      diff --git a/dev/modules/crypto.html b/dev/modules/crypto.html index ff83494a522..83d28b071de 100644 --- a/dev/modules/crypto.html +++ b/dev/modules/crypto.html @@ -838,7 +838,7 @@

      Cryptography
      -sympy.crypto.crypto.AZ(s=None)[source]
      +sympy.crypto.crypto.AZ(s=None)[source]

      Return the letters of s in uppercase. In case more than one string is passed, each of them will be processed and a list of upper case strings will be returned.

      @@ -858,7 +858,7 @@

      Cryptography
      -sympy.crypto.crypto.padded_key(key, symbols)[source]
      +sympy.crypto.crypto.padded_key(key, symbols)[source]

      Return a string of the distinct characters of symbols with those of key appearing first. A ValueError is raised if a) there are duplicate characters in symbols or @@ -877,7 +877,7 @@

      Cryptography
      -sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)[source]
      +sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)[source]

      Joins characters of phrase and if symbols is given, raises an error if any character in phrase is not in symbols.

      @@ -911,7 +911,7 @@

      Cryptography
      -sympy.crypto.crypto.cycle_list(k, n)[source]
      +sympy.crypto.crypto.cycle_list(k, n)[source]

      Returns the elements of the list range(n) shifted to the left by k (so the list starts with k (mod n)).

      Examples

      @@ -924,7 +924,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)[source]

      Performs shift cipher encryption on plaintext msg, and returns the ciphertext.

      @@ -1003,7 +1003,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)[source]

      Return the text by shifting the characters of msg to the left by the amount given by key.

      Examples

      @@ -1027,7 +1027,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_rot13(msg, symbols=None)[source]
      +sympy.crypto.crypto.encipher_rot13(msg, symbols=None)[source]

      Performs the ROT13 encryption on a given plaintext msg.

      Explanation

      ROT13 is a substitution cipher which substitutes each letter @@ -1050,7 +1050,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_rot13(msg, symbols=None)[source]
      +sympy.crypto.crypto.decipher_rot13(msg, symbols=None)[source]

      Performs the ROT13 decryption on a given plaintext msg.

      Explanation

      decipher_rot13 is equivalent to encipher_rot13 as both @@ -1084,7 +1084,7 @@

      Cryptography_inverse=False,

      -)[source] +)[source]

      Performs the affine cipher encryption on plaintext msg, and returns the ciphertext.

      @@ -1154,7 +1154,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_affine(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_affine(msg, key, symbols=None)[source]

      Return the deciphered text that was made from the mapping, \(x \rightarrow ax+b\) (mod \(N\)), where N is the number of characters in the alphabet. Deciphering is done by @@ -1178,7 +1178,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_atbash(msg, symbols=None)[source]
      +sympy.crypto.crypto.encipher_atbash(msg, symbols=None)[source]

      Enciphers a given msg into its Atbash ciphertext and returns it.

      Explanation

      Atbash is a substitution cipher originally used to encrypt the Hebrew @@ -1194,7 +1194,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_atbash(msg, symbols=None)[source]
      +sympy.crypto.crypto.decipher_atbash(msg, symbols=None)[source]

      Deciphers a given msg using Atbash cipher and returns it.

      Explanation

      decipher_atbash is functionally equivalent to encipher_atbash. @@ -1228,7 +1228,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_substitution(msg, old, new=None)[source]
      +sympy.crypto.crypto.encipher_substitution(msg, old, new=None)[source]

      Returns the ciphertext obtained by replacing each character that appears in old with the corresponding character in new. If old is a mapping, then new is ignored and the replacements @@ -1283,7 +1283,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)[source]

      Performs the Vigenere cipher encryption on plaintext msg, and returns the ciphertext.

      Examples

      @@ -1440,7 +1440,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)[source]

      Decode using the Vigenere cipher.

      Examples

      >>> from sympy.crypto.crypto import decipher_vigenere
      @@ -1454,7 +1454,7 @@ 

      Cryptography
      -sympy.crypto.crypto.encipher_hill(msg, key, symbols=None, pad='Q')[source]
      +sympy.crypto.crypto.encipher_hill(msg, key, symbols=None, pad='Q')[source]

      Return the Hill cipher encryption of msg.

      Parameters:
      @@ -1539,7 +1539,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)[source]

      Deciphering is the same as enciphering but using the inverse of the key matrix.

      Examples

      @@ -1590,7 +1590,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)[source]

      Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

      This is the version of the Bifid cipher that uses an \(n \times n\) @@ -1635,7 +1635,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)[source]
      +sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)[source]

      Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.

      This is the version of the Bifid cipher that uses the \(n \times n\) @@ -1714,7 +1714,7 @@

      Cryptography
      -sympy.crypto.crypto.bifid5_square(key=None)[source]
      +sympy.crypto.crypto.bifid5_square(key=None)[source]

      5x5 Polybius square.

      Produce the Polybius square for the \(5 \times 5\) Bifid cipher.

      Examples

      @@ -1732,7 +1732,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_bifid5(msg, key)[source]
      +sympy.crypto.crypto.encipher_bifid5(msg, key)[source]

      Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

      @@ -1835,7 +1835,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_bifid5(msg, key)[source]
      +sympy.crypto.crypto.decipher_bifid5(msg, key)[source]

      Return the Bifid cipher decryption of msg.

      Parameters:
      @@ -1877,7 +1877,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_bifid6(msg, key)[source]
      +sympy.crypto.crypto.encipher_bifid6(msg, key)[source]

      Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.

      This is the version of the Bifid cipher that uses the \(6 \times 6\) @@ -1910,7 +1910,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_bifid6(msg, key)[source]
      +sympy.crypto.crypto.decipher_bifid6(msg, key)[source]

      Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.

      This is the version of the Bifid cipher that uses the \(6 \times 6\) @@ -1949,7 +1949,7 @@

      Cryptography
      -sympy.crypto.crypto.bifid6_square(key=None)[source]
      +sympy.crypto.crypto.bifid6_square(key=None)[source]

      6x6 Polybius square.

      Produces the Polybius square for the \(6 \times 6\) Bifid cipher. Assumes alphabet of symbols is “A”, …, “Z”, “0”, …, “9”.

      @@ -1970,7 +1970,7 @@

      Cryptography
      -sympy.crypto.crypto.rsa_public_key(*args, **kwargs)[source]
      +sympy.crypto.crypto.rsa_public_key(*args, **kwargs)[source]

      Return the RSA public key pair, \((n, e)\)

      Parameters:
      @@ -2136,7 +2136,7 @@

      Cryptography
      -sympy.crypto.crypto.rsa_private_key(*args, **kwargs)[source]
      +sympy.crypto.crypto.rsa_private_key(*args, **kwargs)[source]

      Return the RSA private key pair, \((n, d)\)

      Parameters:
      @@ -2262,7 +2262,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_rsa(i, key, factors=None)[source]
      +sympy.crypto.crypto.encipher_rsa(i, key, factors=None)[source]

      Encrypt the plaintext with RSA.

      Parameters:
      @@ -2327,7 +2327,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_rsa(i, key, factors=None)[source]
      +sympy.crypto.crypto.decipher_rsa(i, key, factors=None)[source]

      Decrypt the ciphertext with RSA.

      Parameters:
      @@ -2422,7 +2422,7 @@

      Cryptography
      -sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)[source]
      +sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)[source]

      Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation.

      Explanation

      @@ -2450,7 +2450,7 @@

      Cryptography
      -sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)[source]
      +sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)[source]

      Compute \(M = a b - 1\), \(e = A M + a\), \(d = B M + b\), \(n = (e d - 1) / M\). The private key is \(d\), which Bob keeps secret.

      @@ -2465,7 +2465,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_kid_rsa(msg, key)[source]
      +sympy.crypto.crypto.encipher_kid_rsa(msg, key)[source]

      Here msg is the plaintext and key is the public key.

      Examples

      >>> from sympy.crypto.crypto import (
      @@ -2481,7 +2481,7 @@ 

      Cryptography
      -sympy.crypto.crypto.decipher_kid_rsa(msg, key)[source]
      +sympy.crypto.crypto.decipher_kid_rsa(msg, key)[source]

      Here msg is the plaintext and key is the private key.

      Examples

      >>> from sympy.crypto.crypto import (
      @@ -2501,7 +2501,7 @@ 

      Cryptography
      -sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)[source]
      +sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)[source]

      Encodes a plaintext into popular Morse Code with letters separated by sep and words by a double sep.

      Examples

      @@ -2522,7 +2522,7 @@

      Cryptography
      -sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)[source]
      +sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)[source]

      Decodes a Morse Code with letters separated by sep (default is ‘|’) and words by \(word_sep\) (default is ‘||) into plaintext.

      @@ -2544,7 +2544,7 @@

      Cryptography
      -sympy.crypto.crypto.lfsr_sequence(key, fill, n)[source]
      +sympy.crypto.crypto.lfsr_sequence(key, fill, n)[source]

      This function creates an LFSR sequence.

      Parameters:
      @@ -2633,7 +2633,7 @@

      Cryptography
      -sympy.crypto.crypto.lfsr_autocorrelation(L, P, k)[source]
      +sympy.crypto.crypto.lfsr_autocorrelation(L, P, k)[source]

      This function computes the LFSR autocorrelation function.

      Parameters:
      @@ -2676,7 +2676,7 @@

      Cryptography
      -sympy.crypto.crypto.lfsr_connection_polynomial(s)[source]
      +sympy.crypto.crypto.lfsr_connection_polynomial(s)[source]

      This function computes the LFSR connection polynomial.

      Parameters:
      @@ -2736,7 +2736,7 @@

      Cryptography
      -sympy.crypto.crypto.elgamal_public_key(key)[source]
      +sympy.crypto.crypto.elgamal_public_key(key)[source]

      Return three number tuple as public key.

      Parameters:
      @@ -2763,7 +2763,7 @@

      Cryptography
      -sympy.crypto.crypto.elgamal_private_key(digit=10, seed=None)[source]
      +sympy.crypto.crypto.elgamal_private_key(digit=10, seed=None)[source]

      Return three number tuple as private key.

      Parameters:
      @@ -2805,7 +2805,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_elgamal(i, key, seed=None)[source]
      +sympy.crypto.crypto.encipher_elgamal(i, key, seed=None)[source]

      Encrypt message with public key.

      Parameters:
      @@ -2851,7 +2851,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_elgamal(msg, key)[source]
      +sympy.crypto.crypto.decipher_elgamal(msg, key)[source]

      Decrypt message with private key.

      \(msg = (c_{1}, c_{2})\)

      \(key = (p, r, d)\)

      @@ -2879,7 +2879,7 @@

      Cryptography
      -sympy.crypto.crypto.dh_public_key(key)[source]
      +sympy.crypto.crypto.dh_public_key(key)[source]

      Return three number tuple as public key.

      This is the tuple that Alice sends to Bob.

      @@ -2911,7 +2911,7 @@

      Cryptography
      -sympy.crypto.crypto.dh_private_key(digit=10, seed=None)[source]
      +sympy.crypto.crypto.dh_private_key(digit=10, seed=None)[source]

      Return three integer tuple as private key.

      Parameters:
      @@ -2967,7 +2967,7 @@

      Cryptography
      -sympy.crypto.crypto.dh_shared_key(key, b)[source]
      +sympy.crypto.crypto.dh_shared_key(key, b)[source]

      Return an integer that is the shared key.

      This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys.

      @@ -3004,7 +3004,7 @@

      Cryptography
      -sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)[source]
      +sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)[source]

      Compute public keys for p and q. Note that in Goldwasser-Micali Encryption, public keys are randomly selected.

      @@ -3028,7 +3028,7 @@

      Cryptography
      -sympy.crypto.crypto.gm_private_key(p, q, a=None)[source]
      +sympy.crypto.crypto.gm_private_key(p, q, a=None)[source]

      Check if p and q can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows.

      @@ -3088,7 +3088,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_gm(i, key, seed=None)[source]
      +sympy.crypto.crypto.encipher_gm(i, key, seed=None)[source]

      Encrypt integer ‘i’ using public_key ‘key’ Note that gm uses random encryption.

      @@ -3113,7 +3113,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_gm(message, key)[source]
      +sympy.crypto.crypto.decipher_gm(message, key)[source]

      Decrypt message ‘message’ using public_key ‘key’.

      Parameters:
      @@ -3137,7 +3137,7 @@

      Cryptography
      -sympy.crypto.crypto.encipher_railfence(message, rails)[source]
      +sympy.crypto.crypto.encipher_railfence(message, rails)[source]

      Performs Railfence Encryption on plaintext and returns ciphertext

      Parameters:
      @@ -3166,7 +3166,7 @@

      Cryptography
      -sympy.crypto.crypto.decipher_railfence(ciphertext, rails)[source]
      +sympy.crypto.crypto.decipher_railfence(ciphertext, rails)[source]

      Decrypt the message using the given rails

      Parameters:
      diff --git a/dev/modules/diffgeom.html b/dev/modules/diffgeom.html index b0e6649c190..4936e432dde 100644 --- a/dev/modules/diffgeom.html +++ b/dev/modules/diffgeom.html @@ -810,7 +810,7 @@

      Introduction

      -class sympy.diffgeom.Manifold(name, dim, **kwargs)[source]
      +class sympy.diffgeom.Manifold(name, dim, **kwargs)[source]

      A mathematical manifold.

      Parameters:
      @@ -849,7 +849,7 @@

      Base Class Reference
      -class sympy.diffgeom.Patch(name, manifold, **kwargs)[source]
      +class sympy.diffgeom.Patch(name, manifold, **kwargs)[source]

      A patch on a manifold.

      Parameters:
      @@ -903,7 +903,7 @@

      Base Class Reference**kwargs,

      -)[source] +)[source]

      A coordinate system defined on the patch.

      Parameters:
      @@ -1012,7 +1012,7 @@

      Base Class Reference
      -base_oneform(coord_index)[source]
      +base_oneform(coord_index)[source]

      Return a basis 1-form field. The basis one-form field for this coordinate system. It is also an operator on vector fields.

      @@ -1020,27 +1020,27 @@

      Base Class Reference
      -base_oneforms()[source]
      +base_oneforms()[source]

      Returns a list of all base oneforms. For more details see the base_oneform method of this class.

      -base_scalar(coord_index)[source]
      +base_scalar(coord_index)[source]

      Return BaseScalarField that takes a point and returns one of the coordinates.

      -base_scalars()[source]
      +base_scalars()[source]

      Returns a list of all coordinate functions. For more details see the base_scalar method of this class.

      -base_vector(coord_index)[source]
      +base_vector(coord_index)[source]

      Return a basis vector field. The basis vector field for this coordinate system. It is also an operator on scalar fields.

      @@ -1048,20 +1048,20 @@

      Base Class Reference
      -base_vectors()[source]
      +base_vectors()[source]

      Returns a list of all base vectors. For more details see the base_vector method of this class.

      -coord_function(coord_index)[source]
      +coord_function(coord_index)[source]

      Return BaseScalarField that takes a point and returns one of the coordinates.

      -coord_functions()[source]
      +coord_functions()[source]

      Returns a list of all coordinate functions. For more details see the base_scalar method of this class.

      @@ -1075,13 +1075,13 @@

      Base Class Referencecoords,

      -)[source] +)[source]

      Transform coords to coord system to_sys.

      -jacobian(sys, coordinates=None)[source]
      +jacobian(sys, coordinates=None)[source]

      Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

      @@ -1116,7 +1116,7 @@

      Base Class Referencecoordinates=None,

      -)[source] +)[source]

      Return the jacobian determinant of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

      @@ -1141,7 +1141,7 @@

      Base Class Reference
      -jacobian_matrix(sys, coordinates=None)[source]
      +jacobian_matrix(sys, coordinates=None)[source]

      Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of self are used.

      @@ -1169,19 +1169,19 @@

      Base Class Reference
      -point(coords)[source]
      +point(coords)[source]

      Create a Point with coordinates given in this coord system.

      -point_to_coords(point)[source]
      +point_to_coords(point)[source]

      Calculate the coordinates of a point in this coord system.

      -transform(sys, coordinates=None)[source]
      +transform(sys, coordinates=None)[source]

      Return the result of coordinate transformation from self to sys. If coordinates are not given, coordinate symbols of self are used.

      @@ -1209,7 +1209,7 @@

      Base Class Reference
      -transformation(sys)[source]
      +transformation(sys)[source]

      Return coordinate transformation function from self to sys.

      Parameters:
      @@ -1233,7 +1233,7 @@

      Base Class Reference
      -class sympy.diffgeom.CoordinateSymbol(coord_sys, index, **assumptions)[source]
      +class sympy.diffgeom.CoordinateSymbol(coord_sys, index, **assumptions)[source]

      A symbol which denotes an abstract value of i-th coordinate of the coordinate system with given context.

      @@ -1286,7 +1286,7 @@

      Base Class Reference
      -class sympy.diffgeom.Point(coord_sys, coords, **kwargs)[source]
      +class sympy.diffgeom.Point(coord_sys, coords, **kwargs)[source]

      Point defined in a coordinate system.

      Parameters:
      @@ -1332,7 +1332,7 @@

      Base Class Reference
      -coords(sys=None)[source]
      +coords(sys=None)[source]

      Coordinates of the point in given coordinate system. If coordinate system is not passed, it returns the coordinates in the coordinate system in which the poin was defined.

      @@ -1342,7 +1342,7 @@

      Base Class Reference
      -class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)[source]
      +class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)[source]

      Base scalar field over a manifold for a given coordinate system.

      Parameters:
      @@ -1392,7 +1392,7 @@

      Base Class Reference
      -class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)[source]
      +class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)[source]

      Base vector field over a manifold for a given coordinate system.

      Parameters:
      @@ -1448,7 +1448,7 @@

      Base Class Reference
      -class sympy.diffgeom.Commutator(v1, v2)[source]
      +class sympy.diffgeom.Commutator(v1, v2)[source]

      Commutator of two vector fields.

      Explanation

      The commutator of two vector fields \(v_1\) and \(v_2\) is defined as the @@ -1482,7 +1482,7 @@

      Base Class Reference
      -class sympy.diffgeom.Differential(form_field)[source]
      +class sympy.diffgeom.Differential(form_field)[source]

      Return the differential (exterior derivative) of a form field.

      Explanation

      The differential of a form (i.e. the exterior derivative) has a complicated @@ -1524,7 +1524,7 @@

      Base Class Reference
      -class sympy.diffgeom.TensorProduct(*args)[source]
      +class sympy.diffgeom.TensorProduct(*args)[source]

      Tensor product of forms.

      Explanation

      The tensor product permits the creation of multilinear functionals (i.e. @@ -1578,7 +1578,7 @@

      Base Class Reference
      -class sympy.diffgeom.WedgeProduct(*args)[source]
      +class sympy.diffgeom.WedgeProduct(*args)[source]

      Wedge product of forms.

      Explanation

      In the context of integration only completely antisymmetric forms make @@ -1613,7 +1613,7 @@

      Base Class Reference
      -class sympy.diffgeom.LieDerivative(v_field, expr)[source]
      +class sympy.diffgeom.LieDerivative(v_field, expr)[source]

      Lie derivative with respect to a vector field.

      Explanation

      The transport operator that defines the Lie derivative is the pushforward of @@ -1665,7 +1665,7 @@

      Base Class Referencechristoffel,

      -)[source] +)[source]

      Covariant derivative operator with respect to a base vector.

      Examples

      >>> from sympy.diffgeom.rn import R2_r
      @@ -1693,7 +1693,7 @@ 

      Base Class Reference
      -class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)[source]
      +class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)[source]

      Covariant derivative operator.

      Examples

      >>> from sympy.diffgeom.rn import R2_r
      @@ -1730,7 +1730,7 @@ 

      Base Class Referencecoeffs=False,

      -)[source] +)[source]

      Return the series expansion for an integral curve of the field.

      Parameters:
      @@ -1839,7 +1839,7 @@

      Base Class Referencecoord_sys=None,

      -)[source] +)[source]

      Return the differential equation for an integral curve of the field.

      Parameters:
      @@ -1911,7 +1911,7 @@

      Base Class Reference
      -sympy.diffgeom.vectors_in_basis(expr, to_sys)[source]
      +sympy.diffgeom.vectors_in_basis(expr, to_sys)[source]

      Transform all base vectors in base vectors of a specified coord basis. While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system.

      @@ -1930,7 +1930,7 @@

      Base Class Reference
      -sympy.diffgeom.twoform_to_matrix(expr)[source]
      +sympy.diffgeom.twoform_to_matrix(expr)[source]

      Return the matrix representing the twoform.

      For the twoform \(w\) return the matrix \(M\) such that \(M[i,j]=w(e_i, e_j)\), where \(e_i\) is the i-th base vector field for the coordinate system in @@ -1959,7 +1959,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Christoffel_1st(expr)[source]
      +sympy.diffgeom.metric_to_Christoffel_1st(expr)[source]

      Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric.

      @@ -1979,7 +1979,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Christoffel_2nd(expr)[source]
      +sympy.diffgeom.metric_to_Christoffel_2nd(expr)[source]

      Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric.

      @@ -1999,7 +1999,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Riemann_components(expr)[source]
      +sympy.diffgeom.metric_to_Riemann_components(expr)[source]

      Return the components of the Riemann tensor expressed in a given basis.

      Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is @@ -2027,7 +2027,7 @@

      Base Class Reference
      -sympy.diffgeom.metric_to_Ricci_components(expr)[source]
      +sympy.diffgeom.metric_to_Ricci_components(expr)[source]

      Return the components of the Ricci tensor expressed in a given basis.

      Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is diff --git a/dev/modules/discrete.html b/dev/modules/discrete.html index 082239c5e30..692ea9bc144 100644 --- a/dev/modules/discrete.html +++ b/dev/modules/discrete.html @@ -824,7 +824,7 @@

      Discrete

      Fast Fourier Transform

      -sympy.discrete.transforms.fft(seq, dps=None)[source]
      +sympy.discrete.transforms.fft(seq, dps=None)[source]

      Performs the Discrete Fourier Transform (DFT) in the complex domain.

      The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires the number of sample points to be a power of 2.

      @@ -879,7 +879,7 @@

      Fast Fourier Transform
      -sympy.discrete.transforms.ifft(seq, dps=None)[source]
      +sympy.discrete.transforms.ifft(seq, dps=None)[source]

      Performs the Discrete Fourier Transform (DFT) in the complex domain.

      The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires the number of sample points to be a power of 2.

      @@ -937,7 +937,7 @@

      Fast Fourier TransformNumber Theoretic Transform

      -sympy.discrete.transforms.ntt(seq, prime)[source]
      +sympy.discrete.transforms.ntt(seq, prime)[source]

      Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \(Z/pZ\) for prime \(p\) instead of complex numbers \(C\).

      @@ -987,7 +987,7 @@

      Number Theoretic Transform
      -sympy.discrete.transforms.intt(seq, prime)[source]
      +sympy.discrete.transforms.intt(seq, prime)[source]

      Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \(Z/pZ\) for prime \(p\) instead of complex numbers \(C\).

      @@ -1040,7 +1040,7 @@

      Number Theoretic Transform

      -sympy.discrete.transforms.fwht(seq)[source]
      +sympy.discrete.transforms.fwht(seq)[source]

      Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

      The sequence is automatically padded to the right with zeros, as the @@ -1082,7 +1082,7 @@

      Fast Walsh Hadamard Transform
      -sympy.discrete.transforms.ifwht(seq)[source]
      +sympy.discrete.transforms.ifwht(seq)[source]

      Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

      The sequence is automatically padded to the right with zeros, as the @@ -1127,7 +1127,7 @@

      Fast Walsh Hadamard Transform

      -sympy.discrete.transforms.mobius_transform(seq, subset=True)[source]
      +sympy.discrete.transforms.mobius_transform(seq, subset=True)[source]

      Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks.

      The indices of each argument, considered as bit strings, correspond @@ -1195,7 +1195,7 @@

      Möbius Transform
      -sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)[source]
      +sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)[source]

      Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks.

      The indices of each argument, considered as bit strings, correspond @@ -1286,7 +1286,7 @@

      Convolutionsubset=None,

      -)[source] +)[source]

      Performs convolution by determining the type of desired convolution using hints.

      Exactly one of dps, prime, dyadic, subset arguments @@ -1360,7 +1360,7 @@

      Convolution

      -sympy.discrete.convolutions.convolution_fft(a, b, dps=None)[source]
      +sympy.discrete.convolutions.convolution_fft(a, b, dps=None)[source]

      Performs linear convolution using Fast Fourier Transform.

      Parameters:
      @@ -1405,7 +1405,7 @@

      Convolution using Fast Fourier Transform

      -sympy.discrete.convolutions.convolution_ntt(a, b, prime)[source]
      +sympy.discrete.convolutions.convolution_ntt(a, b, prime)[source]

      Performs linear convolution using Number Theoretic Transform.

      Parameters:
      @@ -1448,7 +1448,7 @@

      Convolution using Number Theoretic Transform

      -sympy.discrete.convolutions.convolution_fwht(a, b)[source]
      +sympy.discrete.convolutions.convolution_fwht(a, b)[source]

      Performs dyadic (bitwise-XOR) convolution using Fast Walsh Hadamard Transform.

      The convolution is automatically padded to the right with zeros, as the @@ -1499,7 +1499,7 @@

      Convolution using Fast Walsh Hadamard Transform

      -sympy.discrete.convolutions.convolution_subset(a, b)[source]
      +sympy.discrete.convolutions.convolution_subset(a, b)[source]

      Performs Subset Convolution of given sequences.

      The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

      @@ -1546,7 +1546,7 @@

      Subset Convolution

      -sympy.discrete.convolutions.covering_product(a, b)[source]
      +sympy.discrete.convolutions.covering_product(a, b)[source]

      Returns the covering product of given sequences.

      The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

      @@ -1595,7 +1595,7 @@

      Covering Product

      -sympy.discrete.convolutions.intersecting_product(a, b)[source]
      +sympy.discrete.convolutions.intersecting_product(a, b)[source]

      Returns the intersecting product of given sequences.

      The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

      diff --git a/dev/modules/functions/combinatorial.html b/dev/modules/functions/combinatorial.html index b83fb31b599..1a8691cf10b 100644 --- a/dev/modules/functions/combinatorial.html +++ b/dev/modules/functions/combinatorial.html @@ -806,7 +806,7 @@
      Documentation Version

      This module implements various combinatorial functions.

      -class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)[source]
      +class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)[source]

      Bell numbers / Bell polynomials

      The Bell numbers satisfy \(B_0 = 1\) and

      @@ -880,7 +880,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)[source]
      +class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)[source]

      Bernoulli numbers / Bernoulli polynomials / Bernoulli function

      The Bernoulli numbers are a sequence of rational numbers defined by \(B_0 = 1\) and the recursive relation (\(n > 0\)):

      @@ -998,7 +998,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.binomial(n, k)[source]
      +class sympy.functions.combinatorial.factorials.binomial(n, k)[source]

      Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation:

      @@ -1107,7 +1107,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.catalan(n)[source]
      +class sympy.functions.combinatorial.numbers.catalan(n)[source]

      Catalan numbers

      The \(n^{th}\) catalan number is given by:

      @@ -1202,7 +1202,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.euler(n, x=None)[source]
      +class sympy.functions.combinatorial.numbers.euler(n, x=None)[source]

      Euler numbers / Euler polynomials / Euler function

      The Euler numbers are given by:

      @@ -1299,7 +1299,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.factorial(n)[source]
      +class sympy.functions.combinatorial.factorials.factorial(n)[source]

      Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity.

      @@ -1351,7 +1351,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.subfactorial(arg)[source]
      +class sympy.functions.combinatorial.factorials.subfactorial(arg)[source]

      The subfactorial counts the derangements of \(n\) items and is defined for non-negative integers as:

      @@ -1399,7 +1399,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.factorial2(arg)[source]
      +class sympy.functions.combinatorial.factorials.factorial2(arg)[source]

      The double factorial \(n!!\), not to be confused with \((n!)!\)

      The double factorial is defined for nonnegative integers and for odd negative integers as:

      @@ -1440,7 +1440,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)[source]
      +class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)[source]

      Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by

      @@ -1510,7 +1510,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)[source]
      +class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)[source]

      Fibonacci numbers / Fibonacci polynomials

      The Fibonacci numbers are the integer sequence defined by the initial terms \(F_0 = 0\), \(F_1 = 1\) and the two-term recurrence @@ -1557,7 +1557,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)[source]
      +class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)[source]

      Tribonacci numbers / Tribonacci polynomials

      The Tribonacci numbers are the integer sequence defined by the initial terms \(T_0 = 0\), \(T_1 = 1\), \(T_2 = 1\) and the three-term @@ -1602,7 +1602,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.harmonic(n, m=None)[source]
      +class sympy.functions.combinatorial.numbers.harmonic(n, m=None)[source]

      Harmonic numbers

      The nth harmonic number is given by \(\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\).

      @@ -1753,7 +1753,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.lucas(n)[source]
      +class sympy.functions.combinatorial.numbers.lucas(n)[source]

      Lucas numbers

      Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the @@ -1789,7 +1789,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.genocchi(n, x=None)[source]
      +class sympy.functions.combinatorial.numbers.genocchi(n, x=None)[source]

      Genocchi numbers / Genocchi polynomials / Genocchi function

      The Genocchi numbers are a sequence of integers \(G_n\) that satisfy the relation:

      @@ -1848,7 +1848,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.andre(n)[source]
      +class sympy.functions.combinatorial.numbers.andre(n)[source]

      Andre numbers / Andre function

      The Andre number \(\mathcal{A}_n\) is Luschny’s name for half the number of alternating permutations on \(n\) elements, where a permutation is alternating @@ -1917,7 +1917,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.partition(n)[source]
      +class sympy.functions.combinatorial.numbers.partition(n)[source]

      Partition numbers

      The Partition numbers are a sequence of integers \(p_n\) that represent the number of distinct ways of representing \(n\) as a sum of natural numbers @@ -1954,7 +1954,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.divisor_sigma(n, k=1)[source]
      +class sympy.functions.combinatorial.numbers.divisor_sigma(n, k=1)[source]

      Calculate the divisor function \(\sigma_k(n)\) for positive integer n

      divisor_sigma(n, k) is equal to sum([x**k for x in divisors(n)])

      If n’s prime factorization is:

      @@ -1995,7 +1995,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.udivisor_sigma(n, k=1)[source]
      +class sympy.functions.combinatorial.numbers.udivisor_sigma(n, k=1)[source]

      Calculate the unitary divisor function \(\sigma_k^*(n)\) for positive integer n

      udivisor_sigma(n, k) is equal to sum([x**k for x in udivisors(n)])

      If n’s prime factorization is:

      @@ -2046,7 +2046,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.legendre_symbol(a, p)[source]
      +class sympy.functions.combinatorial.numbers.legendre_symbol(a, p)[source]

      Returns the Legendre symbol \((a / p)\).

      For an integer a and an odd prime p, the Legendre symbol is defined as

      @@ -2074,7 +2074,7 @@
      Documentation Version
      -class sympy.functions.combinatorial.numbers.jacobi_symbol(m, n)[source]
      +class sympy.functions.combinatorial.numbers.jacobi_symbol(m, n)[source]

      Returns the Jacobi symbol \((m / n)\).

      For any integer m and any positive odd integer n the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the @@ -2123,7 +2123,7 @@

      Documentation Version
      -class sympy.functions.combinatorial.numbers.kronecker_symbol(a, n)[source]
      +class sympy.functions.combinatorial.numbers.kronecker_symbol(a, n)[source]

      Returns the Kronecker symbol \((a / n)\).

      Examples

      >>> from sympy.functions.combinatorial.numbers import kronecker_symbol
      @@ -2148,7 +2148,7 @@ 
      Documentation Version
      -class sympy.functions.combinatorial.numbers.mobius(n)[source]
      +class sympy.functions.combinatorial.numbers.mobius(n)[source]

      Mobius function maps natural number to {-1, 0, 1}

      It is defined as follows:
        @@ -2203,7 +2203,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.primenu(n)[source]
        +class sympy.functions.combinatorial.numbers.primenu(n)[source]

        Calculate the number of distinct prime factors for a positive integer n.

        If n’s prime factorization is:

        @@ -2242,7 +2242,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.primeomega(n)[source]
        +class sympy.functions.combinatorial.numbers.primeomega(n)[source]

        Calculate the number of prime factors counting multiplicities for a positive integer n.

        If n’s prime factorization is:

        @@ -2282,7 +2282,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.totient(n)[source]
        +class sympy.functions.combinatorial.numbers.totient(n)[source]

        Calculate the Euler totient function phi(n)

        totient(n) or \(\phi(n)\) is the number of positive integers \(\leq\) n that are relatively prime to n.

        @@ -2319,7 +2319,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.reduced_totient(n)[source]
        +class sympy.functions.combinatorial.numbers.reduced_totient(n)[source]

        Calculate the Carmichael reduced totient function lambda(n)

        reduced_totient(n) or \(\lambda(n)\) is the smallest m > 0 such that \(k^m \equiv 1 \mod n\) for all k relatively prime to n.

        @@ -2356,7 +2356,7 @@
        Documentation Version
        -class sympy.functions.combinatorial.numbers.primepi(n)[source]
        +class sympy.functions.combinatorial.numbers.primepi(n)[source]

        Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n.

        Examples

        @@ -2399,12 +2399,12 @@
        Documentation Version
        -class sympy.functions.combinatorial.factorials.MultiFactorial(*args)[source]
        +class sympy.functions.combinatorial.factorials.MultiFactorial(*args)[source]
        -class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)[source]
        +class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)[source]

        Rising factorial (also called Pochhammer symbol [R268]) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by:

        @@ -2471,7 +2471,7 @@
        Documentation Version
        -sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)[source]
        +sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)[source]

        Return Stirling number \(S(n, k)\) of the first or second (default) kind.

        The sum of all Stirling numbers of the second kind for \(k = 1\) through \(n\) is bell(n). The recurrence relationship for these numbers @@ -2579,7 +2579,7 @@

        Enumeration
        -sympy.functions.combinatorial.numbers.nC(n, k=None, replacement=False)[source]
        +sympy.functions.combinatorial.numbers.nC(n, k=None, replacement=False)[source]

        Return the number of combinations of n items taken k at a time.

        Possible values for n:

        @@ -2645,7 +2645,7 @@

        Enumeration
        -sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)[source]
        +sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)[source]

        Return the number of permutations of n items taken k at a time.

        Possible values for n:

        @@ -2703,7 +2703,7 @@

        Enumeration
        -sympy.functions.combinatorial.numbers.nT(n, k=None)[source]
        +sympy.functions.combinatorial.numbers.nT(n, k=None)[source]

        Return the number of k-sized partitions of n items.

        Possible values for n:

        diff --git a/dev/modules/functions/elementary.html b/dev/modules/functions/elementary.html index f220f84598d..fe8fee8fd16 100644 --- a/dev/modules/functions/elementary.html +++ b/dev/modules/functions/elementary.html @@ -809,7 +809,7 @@
        Documentation Version

        Complex Functions

        -class sympy.functions.elementary.complexes.re(arg)[source]
        +class sympy.functions.elementary.complexes.re(arg)[source]

        Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result @@ -850,7 +850,7 @@

        Complex Functions
        -as_real_imag(deep=True, **hints)[source]
        +as_real_imag(deep=True, **hints)[source]

        Returns the real number with a zero imaginary part.

        @@ -858,7 +858,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.im(arg)[source]
        +class sympy.functions.elementary.complexes.im(arg)[source]

        Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then @@ -899,7 +899,7 @@

        Complex Functions
        -as_real_imag(deep=True, **hints)[source]
        +as_real_imag(deep=True, **hints)[source]

        Return the imaginary part with a zero real part.

        @@ -907,7 +907,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.sign(arg)[source]
        +class sympy.functions.elementary.complexes.sign(arg)[source]

        Returns the complex sign of an expression:

        Parameters:
        @@ -965,7 +965,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.Abs(arg)[source]
        +class sympy.functions.elementary.complexes.Abs(arg)[source]

        Return the absolute value of the argument.

        Parameters:
        @@ -1018,7 +1018,7 @@

        Complex Functions
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Get the first derivative of the argument to Abs().

        @@ -1026,7 +1026,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.arg(arg)[source]
        +class sympy.functions.elementary.complexes.arg(arg)[source]

        Returns the argument (in radians) of a complex number. The argument is evaluated in consistent convention with atan2 where the branch-cut is taken along the negative real axis and arg(z) is in the interval @@ -1075,7 +1075,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.conjugate(arg)[source]
        +class sympy.functions.elementary.complexes.conjugate(arg)[source]

        Returns the complex conjugate [R276] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part.

        @@ -1123,7 +1123,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.polar_lift(arg)[source]
        +class sympy.functions.elementary.complexes.polar_lift(arg)[source]

        Lift argument to the Riemann surface of the logarithm, using the standard branch.

        @@ -1162,7 +1162,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.periodic_argument(ar, period)[source]
        +class sympy.functions.elementary.complexes.periodic_argument(ar, period)[source]

        Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period \(P\), always return a value in \((-P/2, P/2]\), by using \(\exp(PI) = 1\).

        @@ -1208,7 +1208,7 @@

        Complex Functions
        -class sympy.functions.elementary.complexes.principal_branch(x, period)[source]
        +class sympy.functions.elementary.complexes.principal_branch(x, period)[source]

        Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm.

        @@ -1256,7 +1256,7 @@

        Trigonometric

        Trigonometric Functions

        -class sympy.functions.elementary.trigonometric.sin(arg)[source]
        +class sympy.functions.elementary.trigonometric.sin(arg)[source]

        The sine function.

        Returns the sine of x (measured in radians).

        Explanation

        @@ -1308,7 +1308,7 @@

        Trigonometric
        -class sympy.functions.elementary.trigonometric.cos(arg)[source]
        +class sympy.functions.elementary.trigonometric.cos(arg)[source]

        The cosine function.

        Returns the cosine of x (measured in radians).

        Explanation

        @@ -1353,7 +1353,7 @@

        Trigonometric
        -class sympy.functions.elementary.trigonometric.tan(arg)[source]
        +class sympy.functions.elementary.trigonometric.tan(arg)[source]

        The tangent function.

        Returns the tangent of x (measured in radians).

        Explanation

        @@ -1390,7 +1390,7 @@

        Trigonometric
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1398,7 +1398,7 @@

        Trigonometric
        -class sympy.functions.elementary.trigonometric.cot(arg)[source]
        +class sympy.functions.elementary.trigonometric.cot(arg)[source]

        The cotangent function.

        Returns the cotangent of x (measured in radians).

        Explanation

        @@ -1435,7 +1435,7 @@

        Trigonometric
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1443,7 +1443,7 @@

        Trigonometric
        -class sympy.functions.elementary.trigonometric.sec(arg)[source]
        +class sympy.functions.elementary.trigonometric.sec(arg)[source]

        The secant function.

        Returns the secant of x (measured in radians).

        Explanation

        @@ -1480,7 +1480,7 @@

        Trigonometric
        -class sympy.functions.elementary.trigonometric.csc(arg)[source]
        +class sympy.functions.elementary.trigonometric.csc(arg)[source]

        The cosecant function.

        Returns the cosecant of x (measured in radians).

        Explanation

        @@ -1517,7 +1517,7 @@

        Trigonometric
        -class sympy.functions.elementary.trigonometric.sinc(arg)[source]
        +class sympy.functions.elementary.trigonometric.sinc(arg)[source]

        Represents an unnormalized sinc function:

        @@ -1582,7 +1582,7 @@

        Trigonometric

        -class sympy.functions.elementary.trigonometric.asin(arg)[source]
        +class sympy.functions.elementary.trigonometric.asin(arg)[source]

        The inverse sine function.

        Returns the arcsine of x in radians.

        Explanation

        @@ -1623,7 +1623,7 @@

        Trigonometric Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1631,7 +1631,7 @@

        Trigonometric Inverses
        -class sympy.functions.elementary.trigonometric.acos(arg)[source]
        +class sympy.functions.elementary.trigonometric.acos(arg)[source]

        The inverse cosine function.

        Explanation

        Returns the arc cosine of x (measured in radians).

        @@ -1672,7 +1672,7 @@

        Trigonometric Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1680,7 +1680,7 @@

        Trigonometric Inverses
        -class sympy.functions.elementary.trigonometric.atan(arg)[source]
        +class sympy.functions.elementary.trigonometric.atan(arg)[source]

        The inverse tangent function.

        Returns the arc tangent of x (measured in radians).

        Explanation

        @@ -1718,7 +1718,7 @@

        Trigonometric Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1726,7 +1726,7 @@

        Trigonometric Inverses
        -class sympy.functions.elementary.trigonometric.acot(arg)[source]
        +class sympy.functions.elementary.trigonometric.acot(arg)[source]

        The inverse cotangent function.

        Returns the arc cotangent of x (measured in radians).

        Explanation

        @@ -1764,7 +1764,7 @@

        Trigonometric Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1772,7 +1772,7 @@

        Trigonometric Inverses
        -class sympy.functions.elementary.trigonometric.asec(arg)[source]
        +class sympy.functions.elementary.trigonometric.asec(arg)[source]

        The inverse secant function.

        Returns the arc secant of x (measured in radians).

        Explanation

        @@ -1833,7 +1833,7 @@

        Trigonometric Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1841,7 +1841,7 @@

        Trigonometric Inverses
        -class sympy.functions.elementary.trigonometric.acsc(arg)[source]
        +class sympy.functions.elementary.trigonometric.acsc(arg)[source]

        The inverse cosecant function.

        Returns the arc cosecant of x (measured in radians).

        Explanation

        @@ -1883,7 +1883,7 @@

        Trigonometric Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -1891,7 +1891,7 @@

        Trigonometric Inverses
        -class sympy.functions.elementary.trigonometric.atan2(y, x)[source]
        +class sympy.functions.elementary.trigonometric.atan2(y, x)[source]

        The function atan2(y, x) computes \(\operatorname{atan}(y/x)\) taking two arguments \(y\) and \(x\). Signs of both \(y\) and \(x\) are considered to determine the appropriate quadrant of \(\operatorname{atan}(y/x)\). @@ -2002,7 +2002,7 @@

        Hyperbolic

        -class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)[source]
        +class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)[source]

        Base class for hyperbolic functions.

        See also

        @@ -2012,7 +2012,7 @@

        Hyperbolic Functions
        -class sympy.functions.elementary.hyperbolic.sinh(arg)[source]
        +class sympy.functions.elementary.hyperbolic.sinh(arg)[source]

        sinh(x) is the hyperbolic sine of x.

        The hyperbolic sine function is \(\frac{e^x - e^{-x}}{2}\).

        Examples

        @@ -2028,25 +2028,25 @@

        Hyperbolic Functions
        -as_real_imag(deep=True, **hints)[source]
        +as_real_imag(deep=True, **hints)[source]

        Returns this function as a complex coordinate.

        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of this function.

        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        -static taylor_term(n, x, *previous_terms)[source]
        +static taylor_term(n, x, *previous_terms)[source]

        Returns the next term in the Taylor series expansion.

        @@ -2054,7 +2054,7 @@

        Hyperbolic Functions
        -class sympy.functions.elementary.hyperbolic.cosh(arg)[source]
        +class sympy.functions.elementary.hyperbolic.cosh(arg)[source]

        cosh(x) is the hyperbolic cosine of x.

        The hyperbolic cosine function is \(\frac{e^x + e^{-x}}{2}\).

        Examples

        @@ -2072,7 +2072,7 @@

        Hyperbolic Functions
        -class sympy.functions.elementary.hyperbolic.tanh(arg)[source]
        +class sympy.functions.elementary.hyperbolic.tanh(arg)[source]

        tanh(x) is the hyperbolic tangent of x.

        The hyperbolic tangent function is \(\frac{\sinh(x)}{\cosh(x)}\).

        Examples

        @@ -2088,7 +2088,7 @@

        Hyperbolic Functions
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2096,7 +2096,7 @@

        Hyperbolic Functions
        -class sympy.functions.elementary.hyperbolic.coth(arg)[source]
        +class sympy.functions.elementary.hyperbolic.coth(arg)[source]

        coth(x) is the hyperbolic cotangent of x.

        The hyperbolic cotangent function is \(\frac{\cosh(x)}{\sinh(x)}\).

        Examples

        @@ -2112,7 +2112,7 @@

        Hyperbolic Functions
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2120,7 +2120,7 @@

        Hyperbolic Functions
        -class sympy.functions.elementary.hyperbolic.sech(arg)[source]
        +class sympy.functions.elementary.hyperbolic.sech(arg)[source]

        sech(x) is the hyperbolic secant of x.

        The hyperbolic secant function is \(\frac{2}{e^x + e^{-x}}\)

        Examples

        @@ -2138,7 +2138,7 @@

        Hyperbolic Functions
        -class sympy.functions.elementary.hyperbolic.csch(arg)[source]
        +class sympy.functions.elementary.hyperbolic.csch(arg)[source]

        csch(x) is the hyperbolic cosecant of x.

        The hyperbolic cosecant function is \(\frac{2}{e^x - e^{-x}}\)

        Examples

        @@ -2154,13 +2154,13 @@

        Hyperbolic Functions
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of this function

        -static taylor_term(n, x, *previous_terms)[source]
        +static taylor_term(n, x, *previous_terms)[source]

        Returns the next term in the Taylor series expansion

        @@ -2171,7 +2171,7 @@

        Hyperbolic FunctionsHyperbolic Inverses

        -class sympy.functions.elementary.hyperbolic.asinh(arg)[source]
        +class sympy.functions.elementary.hyperbolic.asinh(arg)[source]

        asinh(x) is the inverse hyperbolic sine of x.

        The inverse hyperbolic sine function.

        Examples

        @@ -2189,7 +2189,7 @@

        Hyperbolic Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2197,7 +2197,7 @@

        Hyperbolic Inverses
        -class sympy.functions.elementary.hyperbolic.acosh(arg)[source]
        +class sympy.functions.elementary.hyperbolic.acosh(arg)[source]

        acosh(x) is the inverse hyperbolic cosine of x.

        The inverse hyperbolic cosine function.

        Examples

        @@ -2215,7 +2215,7 @@

        Hyperbolic Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2223,7 +2223,7 @@

        Hyperbolic Inverses
        -class sympy.functions.elementary.hyperbolic.atanh(arg)[source]
        +class sympy.functions.elementary.hyperbolic.atanh(arg)[source]

        atanh(x) is the inverse hyperbolic tangent of x.

        The inverse hyperbolic tangent function.

        Examples

        @@ -2239,7 +2239,7 @@

        Hyperbolic Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2247,7 +2247,7 @@

        Hyperbolic Inverses
        -class sympy.functions.elementary.hyperbolic.acoth(arg)[source]
        +class sympy.functions.elementary.hyperbolic.acoth(arg)[source]

        acoth(x) is the inverse hyperbolic cotangent of x.

        The inverse hyperbolic cotangent function.

        Examples

        @@ -2263,7 +2263,7 @@

        Hyperbolic Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2271,7 +2271,7 @@

        Hyperbolic Inverses
        -class sympy.functions.elementary.hyperbolic.asech(arg)[source]
        +class sympy.functions.elementary.hyperbolic.asech(arg)[source]

        asech(x) is the inverse hyperbolic secant of x.

        The inverse hyperbolic secant function.

        Examples

        @@ -2312,7 +2312,7 @@

        Hyperbolic Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2320,7 +2320,7 @@

        Hyperbolic Inverses
        -class sympy.functions.elementary.hyperbolic.acsch(arg)[source]
        +class sympy.functions.elementary.hyperbolic.acsch(arg)[source]

        acsch(x) is the inverse hyperbolic cosecant of x.

        The inverse hyperbolic cosecant function.

        Examples

        @@ -2361,7 +2361,7 @@

        Hyperbolic Inverses
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2373,7 +2373,7 @@

        Hyperbolic Inverses

        -class sympy.functions.elementary.integers.ceiling(arg)[source]
        +class sympy.functions.elementary.integers.ceiling(arg)[source]

        Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the @@ -2413,7 +2413,7 @@

        Integer Functions
        -class sympy.functions.elementary.integers.floor(arg)[source]
        +class sympy.functions.elementary.integers.floor(arg)[source]

        Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the @@ -2453,13 +2453,13 @@

        Integer Functions
        -class sympy.functions.elementary.integers.RoundFunction(arg)[source]
        +class sympy.functions.elementary.integers.RoundFunction(arg)[source]

        Abstract base class for rounding functions.

        -class sympy.functions.elementary.integers.frac(arg)[source]
        +class sympy.functions.elementary.integers.frac(arg)[source]

        Represents the fractional part of x

        For real numbers it is defined [R328] as

        @@ -2516,7 +2516,7 @@

        Integer Functions

        -class sympy.functions.elementary.exponential.exp(arg)[source]
        +class sympy.functions.elementary.exponential.exp(arg)[source]

        The exponential function, \(e^x\).

        Parameters:
        @@ -2540,7 +2540,7 @@

        Exponential
        -as_real_imag(deep=True, **hints)[source]
        +as_real_imag(deep=True, **hints)[source]

        Returns this function as a 2-tuple representing a complex number.

        Examples

        >>> from sympy import exp, I
        @@ -2569,13 +2569,13 @@ 

        Exponential
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of this function.

        -static taylor_term(n, x, *previous_terms)[source]
        +static taylor_term(n, x, *previous_terms)[source]

        Calculates the next term in the Taylor series expansion.

        @@ -2583,7 +2583,7 @@

        Exponential
        -class sympy.functions.elementary.exponential.LambertW(x, k=None)[source]
        +class sympy.functions.elementary.exponential.LambertW(x, k=None)[source]

        The Lambert W function \(W(z)\) is defined as the inverse function of \(w \exp(w)\) [R330].

        Explanation

        @@ -2616,7 +2616,7 @@

        Exponential
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Return the first derivative of this function.

        @@ -2624,7 +2624,7 @@

        Exponential
        -class sympy.functions.elementary.exponential.log(arg, base=None)[source]
        +class sympy.functions.elementary.exponential.log(arg, base=None)[source]

        The natural logarithm function \(\ln(x)\) or \(\log(x)\).

        Explanation

        Logarithms are taken with the natural base, \(e\). To get @@ -2650,7 +2650,7 @@

        Exponential
        -as_real_imag(deep=True, **hints)[source]
        +as_real_imag(deep=True, **hints)[source]

        Returns this function as a complex coordinate.

        Examples

        >>> from sympy import I, log
        @@ -2669,19 +2669,19 @@ 

        Exponential
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of the function.

        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns \(e^x\), the inverse function of \(\log(x)\).

        -static taylor_term(n, x, *previous_terms)[source]
        +static taylor_term(n, x, *previous_terms)[source]

        Returns the next term in the Taylor series expansion of \(\log(1+x)\).

        @@ -2689,7 +2689,7 @@

        Exponential
        -class sympy.functions.elementary.exponential.exp_polar(*args)[source]
        +class sympy.functions.elementary.exponential.exp_polar(*args)[source]

        Represent a polar number (see g-function Sphinx documentation).

        Explanation

        exp_polar represents the function @@ -2723,7 +2723,7 @@

        Exponential

        -class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)[source]
        +class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)[source]

        Represents an expression, condition pair.

        @@ -2741,7 +2741,7 @@

        Piecewise
        -class sympy.functions.elementary.piecewise.Piecewise(*_args)[source]
        +class sympy.functions.elementary.piecewise.Piecewise(*_args)[source]

        Represents a piecewise function.

        Usage:

        @@ -2803,7 +2803,7 @@

        Piecewise
        -_eval_integral(x, _first=True, **kwargs)[source]
        +_eval_integral(x, _first=True, **kwargs)[source]

        Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including @@ -2828,7 +2828,7 @@

        Piecewise
        -as_expr_set_pairs(domain=None)[source]
        +as_expr_set_pairs(domain=None)[source]

        Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. @@ -2855,13 +2855,13 @@

        Piecewise
        -doit(**hints)[source]
        +doit(**hints)[source]

        Evaluate this piecewise function.

        -classmethod eval(*_args)[source]
        +classmethod eval(*_args)[source]

        Either return a modified version of the args or, if no modifications were made, return None.

        Modifications that are made here:

        @@ -2889,7 +2889,7 @@

        Piecewise
        -piecewise_integrate(x, **kwargs)[source]
        +piecewise_integrate(x, **kwargs)[source]

        Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the integrate() function or method.

        @@ -2936,7 +2936,7 @@

        Piecewisedeep=True,

        -)[source] +)[source]

        Rewrite Piecewise with mutually exclusive conditions.

        Parameters:
        @@ -2997,7 +2997,7 @@

        Piecewise
        -sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)[source]
        +sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)[source]

        Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified.

        @@ -3024,7 +3024,7 @@

        Piecewise

        -class sympy.functions.elementary.miscellaneous.IdentityFunction[source]
        +class sympy.functions.elementary.miscellaneous.IdentityFunction[source]

        The identity function

        Examples

        >>> from sympy import Id, Symbol
        @@ -3037,7 +3037,7 @@ 

        Miscellaneous
        -class sympy.functions.elementary.miscellaneous.Min(*args)[source]
        +class sympy.functions.elementary.miscellaneous.Min(*args)[source]

        Return, if possible, the minimum value of the list. It is named Min and not min to avoid conflicts with the built-in function min.

        @@ -3071,7 +3071,7 @@

        Miscellaneous
        -class sympy.functions.elementary.miscellaneous.Max(*args)[source]
        +class sympy.functions.elementary.miscellaneous.Max(*args)[source]

        Return, if possible, the maximum value of the list.

        When number of arguments is equal one, then return this argument.

        @@ -3157,7 +3157,7 @@

        Miscellaneous
        -sympy.functions.elementary.miscellaneous.root(arg, n, k=0, evaluate=None)[source]
        +sympy.functions.elementary.miscellaneous.root(arg, n, k=0, evaluate=None)[source]

        Returns the k-th n-th root of arg.

        Parameters:
        @@ -3273,7 +3273,7 @@

        Miscellaneous
        -sympy.functions.elementary.miscellaneous.sqrt(arg, evaluate=None)[source]
        +sympy.functions.elementary.miscellaneous.sqrt(arg, evaluate=None)[source]

        Returns the principal square root.

        Parameters:
        @@ -3368,7 +3368,7 @@

        Miscellaneous
        -sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)[source]
        +sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)[source]

        Returns the principal cube root.

        Parameters:
        @@ -3431,7 +3431,7 @@

        Miscellaneous
        -sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)[source]
        +sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)[source]

        Return the real n’th-root of arg if possible.

        Parameters:
        diff --git a/dev/modules/functions/index.html b/dev/modules/functions/index.html index 2c43aaab508..43aa9cc6ca9 100644 --- a/dev/modules/functions/index.html +++ b/dev/modules/functions/index.html @@ -807,7 +807,7 @@
        Documentation Version
        sympy.core.function.Function.

        -class sympy.core.function.Function(*args)[source]
        +class sympy.core.function.Function(*args)[source]

        Base class for applied mathematical functions.

        It also serves as a constructor for undefined function classes.

        See the Writing Custom Functions guide for details on how to subclass @@ -855,13 +855,13 @@

        Documentation Version
        to create a custom function.

        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of the function.

        -classmethod is_singular(a)[source]
        +classmethod is_singular(a)[source]

        Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

        diff --git a/dev/modules/functions/special.html b/dev/modules/functions/special.html index 58bbdec29c8..eda33c3554c 100644 --- a/dev/modules/functions/special.html +++ b/dev/modules/functions/special.html @@ -807,7 +807,7 @@
        Documentation Version

        Dirac Delta and Related Discontinuous Functions

        -class sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]
        +class sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]

        The DiracDelta function and its derivatives.

        Explanation

        DiracDelta is not an ordinary function. It can be rigorously defined either @@ -884,7 +884,7 @@

        Dirac Delta and Related Discontinuous Functions
        -classmethod eval(arg, k=0)[source]
        +classmethod eval(arg, k=0)[source]

        Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object.

        @@ -947,7 +947,7 @@

        Dirac Delta and Related Discontinuous Functions
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of a DiracDelta Function.

        Parameters:
        @@ -989,7 +989,7 @@

        Dirac Delta and Related Discontinuous Functions
        -is_simple(x)[source]
        +is_simple(x)[source]

        Tells whether the argument(args[0]) of DiracDelta is a linear expression in x.

        @@ -1026,7 +1026,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.delta_functions.Heaviside(arg, H0=1 / 2)[source]
        +class sympy.functions.special.delta_functions.Heaviside(arg, H0=1 / 2)[source]

        Heaviside step function.

        Explanation

        The Heaviside step function has the following properties:

        @@ -1079,7 +1079,7 @@

        Dirac Delta and Related Discontinuous Functions
        -classmethod eval(arg, H0=1 / 2)[source]
        +classmethod eval(arg, H0=1 / 2)[source]

        Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object.

        @@ -1135,7 +1135,7 @@

        Dirac Delta and Related Discontinuous Functions
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of a Heaviside Function.

        Parameters:
        @@ -1174,7 +1174,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]
        +class sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]

        Singularity functions are a class of discontinuous functions.

        Explanation

        Singularity functions take a variable, an offset, and an exponent as @@ -1247,7 +1247,7 @@

        Dirac Delta and Related Discontinuous Functionsexponent,

        -)[source] +)[source]

        Returns a simplified form or a value of Singularity Function depending on the argument passed by the object.

        Explanation

        @@ -1285,7 +1285,7 @@

        Dirac Delta and Related Discontinuous Functions
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Returns the first derivative of a DiracDelta Function.

        Explanation

        The difference between diff() and fdiff() is: diff() is the @@ -1303,7 +1303,7 @@

        Dirac Delta and Related Discontinuous Functions

        Gamma, Beta and Related Functions

        -class sympy.functions.special.gamma_functions.gamma(arg)[source]
        +class sympy.functions.special.gamma_functions.gamma(arg)[source]

        The gamma function

        @@ -1396,7 +1396,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.loggamma(z)[source]
        +class sympy.functions.special.gamma_functions.loggamma(z)[source]

        The loggamma function implements the logarithm of the gamma function (i.e., \(\log\Gamma(x)\)).

        Examples

        @@ -1524,7 +1524,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.polygamma(n, z)[source]
        +class sympy.functions.special.gamma_functions.polygamma(n, z)[source]

        The function polygamma(n, z) returns log(gamma(z)).diff(n + 1).

        Explanation

        It is a meromorphic function on \(\mathbb{C}\) and defined as the \((n+1)\)-th @@ -1653,7 +1653,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.digamma(z)[source]
        +class sympy.functions.special.gamma_functions.digamma(z)[source]

        The digamma function is the first derivative of the loggamma function

        @@ -1717,7 +1717,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.trigamma(z)[source]
        +class sympy.functions.special.gamma_functions.trigamma(z)[source]

        The trigamma function is the second derivative of the loggamma function

        @@ -1780,7 +1780,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.uppergamma(a, z)[source]
        +class sympy.functions.special.gamma_functions.uppergamma(a, z)[source]

        The upper incomplete gamma function.

        Explanation

        It can be defined as the meromorphic continuation of

        @@ -1866,7 +1866,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.lowergamma(a, x)[source]
        +class sympy.functions.special.gamma_functions.lowergamma(a, x)[source]

        The lower incomplete gamma function.

        Explanation

        It can be defined as the meromorphic continuation of

        @@ -1939,7 +1939,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.gamma_functions.multigamma(x, p)[source]
        +class sympy.functions.special.gamma_functions.multigamma(x, p)[source]

        The multivariate gamma function is a generalization of the gamma function

        @@ -1999,7 +1999,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.beta_functions.beta(x, y=None)[source]
        +class sympy.functions.special.beta_functions.beta(x, y=None)[source]

        The beta integral is called the Eulerian integral of the first kind by Legendre:

        @@ -2107,7 +2107,7 @@

        Dirac Delta and Related Discontinuous Functions

        Error Functions and Fresnel Integrals

        -class sympy.functions.special.error_functions.erf(arg)[source]
        +class sympy.functions.special.error_functions.erf(arg)[source]

        The Gauss error function.

        Explanation

        This function is defined as:

        @@ -2198,7 +2198,7 @@

        Dirac Delta and Related Discontinuous Functions
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2206,7 +2206,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.erfc(arg)[source]
        +class sympy.functions.special.error_functions.erfc(arg)[source]

        Complementary Error Function.

        Explanation

        The function is defined as:

        @@ -2297,7 +2297,7 @@

        Dirac Delta and Related Discontinuous Functions
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2305,7 +2305,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.erfi(z)[source]
        +class sympy.functions.special.error_functions.erfi(z)[source]

        Imaginary error function.

        Explanation

        The function erfi is defined as:

        @@ -2393,7 +2393,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.erf2(x, y)[source]
        +class sympy.functions.special.error_functions.erf2(x, y)[source]

        Two-argument error function.

        Explanation

        This function is defined as:

        @@ -2468,7 +2468,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.erfinv(z)[source]
        +class sympy.functions.special.error_functions.erfinv(z)[source]

        Inverse Error Function. The erfinv function is defined as:

        @@ -2528,7 +2528,7 @@

        Dirac Delta and Related Discontinuous Functions
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2536,7 +2536,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.erfcinv(z)[source]
        +class sympy.functions.special.error_functions.erfcinv(z)[source]

        Inverse Complementary Error Function. The erfcinv function is defined as:

        @@ -2590,7 +2590,7 @@

        Dirac Delta and Related Discontinuous Functions
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Returns the inverse of this function.

        @@ -2598,7 +2598,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.erf2inv(x, y)[source]
        +class sympy.functions.special.error_functions.erf2inv(x, y)[source]

        Two-argument Inverse error function. The erf2inv function is defined as:

        @@ -2658,13 +2658,13 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.FresnelIntegral(z)[source]
        +class sympy.functions.special.error_functions.FresnelIntegral(z)[source]

        Base class for the Fresnel integrals.

        -class sympy.functions.special.error_functions.fresnels(z)[source]
        +class sympy.functions.special.error_functions.fresnels(z)[source]

        Fresnel integral S.

        Explanation

        This function is defined by

        @@ -2764,7 +2764,7 @@

        Dirac Delta and Related Discontinuous Functions
        -class sympy.functions.special.error_functions.fresnelc(z)[source]
        +class sympy.functions.special.error_functions.fresnelc(z)[source]

        Fresnel integral C.

        Explanation

        This function is defined by

        @@ -2867,7 +2867,7 @@

        Dirac Delta and Related Discontinuous Functions

        -class sympy.functions.special.error_functions.Ei(z)[source]
        +class sympy.functions.special.error_functions.Ei(z)[source]

        The classical exponential integral.

        Explanation

        For use in SymPy, this function is defined as

        @@ -2968,7 +2968,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.expint(nu, z)[source]
        +class sympy.functions.special.error_functions.expint(nu, z)[source]

        Generalized exponential integral.

        Explanation

        This function is defined as

        @@ -3084,7 +3084,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -sympy.functions.special.error_functions.E1(z)[source]
        +sympy.functions.special.error_functions.E1(z)[source]

        Classical case of the generalized exponential integral.

        Explanation

        This is equivalent to expint(1, z).

        @@ -3123,7 +3123,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.li(z)[source]
        +class sympy.functions.special.error_functions.li(z)[source]

        The classical logarithmic integral.

        Explanation

        For use in SymPy, this function is defined as

        @@ -3240,7 +3240,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.Li(z)[source]
        +class sympy.functions.special.error_functions.Li(z)[source]

        The offset logarithmic integral.

        Explanation

        For use in SymPy, this function is defined as

        @@ -3320,7 +3320,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.Si(z)[source]
        +class sympy.functions.special.error_functions.Si(z)[source]

        Sine integral.

        Explanation

        This function is defined by

        @@ -3400,7 +3400,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.Ci(z)[source]
        +class sympy.functions.special.error_functions.Ci(z)[source]

        Cosine integral.

        Explanation

        This function is defined for positive \(x\) by

        @@ -3487,7 +3487,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.Shi(z)[source]
        +class sympy.functions.special.error_functions.Shi(z)[source]

        Sinh integral.

        Explanation

        This function is defined by

        @@ -3559,7 +3559,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.error_functions.Chi(z)[source]
        +class sympy.functions.special.error_functions.Chi(z)[source]

        Cosh integral.

        Explanation

        This function is defined for positive \(x\) by

        @@ -3645,7 +3645,7 @@

        Exponential, Logarithmic and Trigonometric Integrals

        Bessel Type Functions

        -class sympy.functions.special.bessel.BesselBase(nu, z)[source]
        +class sympy.functions.special.bessel.BesselBase(nu, z)[source]

        Abstract base class for Bessel-type functions.

        This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives @@ -3670,7 +3670,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.besselj(nu, z)[source]
        +class sympy.functions.special.bessel.besselj(nu, z)[source]

        Bessel function of the first kind.

        Explanation

        The Bessel \(J\) function of order \(\nu\) is defined to be the function @@ -3745,7 +3745,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.bessely(nu, z)[source]
        +class sympy.functions.special.bessel.bessely(nu, z)[source]

        Bessel function of the second kind.

        Explanation

        The Bessel \(Y\) function of order \(\nu\) is defined as

        @@ -3782,7 +3782,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.besseli(nu, z)[source]
        +class sympy.functions.special.bessel.besseli(nu, z)[source]

        Modified Bessel function of the first kind.

        Explanation

        The Bessel \(I\) function is a solution to the modified Bessel equation

        @@ -3819,7 +3819,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.besselk(nu, z)[source]
        +class sympy.functions.special.bessel.besselk(nu, z)[source]

        Modified Bessel function of the second kind.

        Explanation

        The Bessel \(K\) function of order \(\nu\) is defined as

        @@ -3853,7 +3853,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.hankel1(nu, z)[source]
        +class sympy.functions.special.bessel.hankel1(nu, z)[source]

        Hankel function of the first kind.

        Explanation

        This function is defined as

        @@ -3886,7 +3886,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.hankel2(nu, z)[source]
        +class sympy.functions.special.bessel.hankel2(nu, z)[source]

        Hankel function of the second kind.

        Explanation

        This function is defined as

        @@ -3920,7 +3920,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.jn(nu, z)[source]
        +class sympy.functions.special.bessel.jn(nu, z)[source]

        Spherical Bessel function of the first kind.

        Explanation

        This function is a solution to the spherical Bessel equation

        @@ -3976,7 +3976,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.yn(nu, z)[source]
        +class sympy.functions.special.bessel.yn(nu, z)[source]

        Spherical Bessel function of the second kind.

        Explanation

        This function is another solution to the spherical Bessel equation, and @@ -4022,7 +4022,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]
        +sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]

        Zeros of the spherical Bessel function of the first kind.

        Parameters:
        @@ -4065,7 +4065,7 @@

        Exponential, Logarithmic and Trigonometric Integrals
        -class sympy.functions.special.bessel.marcumq(m, a, b)[source]
        +class sympy.functions.special.bessel.marcumq(m, a, b)[source]

        The Marcum Q-function.

        Explanation

        The Marcum Q-function is defined by the meromorphic continuation of

        @@ -4119,14 +4119,14 @@

        Exponential, Logarithmic and Trigonometric IntegralsAiry Functions

        -class sympy.functions.special.bessel.AiryBase(*args)[source]
        +class sympy.functions.special.bessel.AiryBase(*args)[source]

        Abstract base class for Airy functions.

        This class is meant to reduce code duplication.

        -class sympy.functions.special.bessel.airyai(arg)[source]
        +class sympy.functions.special.bessel.airyai(arg)[source]

        The Airy function \(\operatorname{Ai}\) of the first kind.

        Explanation

        The Airy function \(\operatorname{Ai}(z)\) is defined to be the function @@ -4227,7 +4227,7 @@

        Airy Functions
        -class sympy.functions.special.bessel.airybi(arg)[source]
        +class sympy.functions.special.bessel.airybi(arg)[source]

        The Airy function \(\operatorname{Bi}\) of the second kind.

        Explanation

        The Airy function \(\operatorname{Bi}(z)\) is defined to be the function @@ -4330,7 +4330,7 @@

        Airy Functions
        -class sympy.functions.special.bessel.airyaiprime(arg)[source]
        +class sympy.functions.special.bessel.airyaiprime(arg)[source]

        The derivative \(\operatorname{Ai}^\prime\) of the Airy function of the first kind.

        Explanation

        @@ -4424,7 +4424,7 @@

        Airy Functions
        -class sympy.functions.special.bessel.airybiprime(arg)[source]
        +class sympy.functions.special.bessel.airybiprime(arg)[source]

        The derivative \(\operatorname{Bi}^\prime\) of the Airy function of the first kind.

        Explanation

        @@ -4603,7 +4603,7 @@

        B-Splines
        -sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]
        +sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]

        Return the len(knots)-d-1 B-splines at x of degree d with knots.

        @@ -4649,7 +4649,7 @@

        B-Splines
        -sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[source]
        +sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[source]

        Return spline of degree d, passing through the given X and Y values.

        @@ -4697,7 +4697,7 @@

        B-Splines

        Riemann Zeta and Related Functions

        -class sympy.functions.special.zeta_functions.zeta(s, a=None)[source]
        +class sympy.functions.special.zeta_functions.zeta(s, a=None)[source]

        Hurwitz zeta function (or Riemann zeta function).

        Explanation

        For \(\operatorname{Re}(a) > 0\) and \(\operatorname{Re}(s) > 1\), this @@ -4809,7 +4809,7 @@

        B-Splines
        -class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[source]
        +class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[source]

        Dirichlet eta function.

        Explanation

        For \(\operatorname{Re}(s) > 0\) and \(0 < x \le 1\), this function is defined as

        @@ -4858,7 +4858,7 @@

        B-Splines
        -class sympy.functions.special.zeta_functions.polylog(s, z)[source]
        +class sympy.functions.special.zeta_functions.polylog(s, z)[source]

        Polylogarithm function.

        Explanation

        For \(|z| < 1\) and \(s \in \mathbb{C}\), the polylogarithm is @@ -4925,7 +4925,7 @@

        B-Splines
        -class sympy.functions.special.zeta_functions.lerchphi(*args)[source]
        +class sympy.functions.special.zeta_functions.lerchphi(*args)[source]

        Lerch transcendent (Lerch phi function).

        Explanation

        For \(\operatorname{Re}(a) > 0\), \(|z| < 1\) and \(s \in \mathbb{C}\), the @@ -5034,7 +5034,7 @@

        B-Splines
        -class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]
        +class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]

        Represents Stieltjes constants, \(\gamma_{k}\) that occur in Laurent Series expansion of the Riemann zeta function.

        Examples

        @@ -5075,7 +5075,7 @@

        B-Splines

        -class sympy.functions.special.hyper.hyper(ap, bq, z)[source]
        +class sympy.functions.special.hyper.hyper(ap, bq, z)[source]

        The generalized hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest @@ -5239,7 +5239,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.hyper.meijerg(*args)[source]
        +class sympy.functions.special.hyper.meijerg(*args)[source]

        The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions.

        @@ -5410,7 +5410,7 @@

        Hypergeometric Functions
        -get_period()[source]
        +get_period()[source]

        Return a number \(P\) such that \(G(x*exp(I*P)) == G(x)\).

        Examples

        >>> from sympy import meijerg, pi, S
        @@ -5431,7 +5431,7 @@ 

        Hypergeometric Functions
        -integrand(s)[source]
        +integrand(s)[source]

        Get the defining integrand D(s).

        @@ -5452,7 +5452,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[source]
        +class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[source]

        This is the Appell hypergeometric function of two variables as:

        @@ -5495,7 +5495,7 @@

        Hypergeometric Functions

        Elliptic integrals

        -class sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]
        +class sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]

        The complete elliptic integral of the first kind, defined by

        @@ -5540,7 +5540,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]
        +class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]

        The Legendre incomplete elliptic integral of the first kind, defined by

        @@ -5583,7 +5583,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]
        +class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]

        Called with two arguments \(z\) and \(m\), evaluates the incomplete elliptic integral of the second kind, defined by

        @@ -5637,7 +5637,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]
        +class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]

        Called with three arguments \(n\), \(z\) and \(m\), evaluates the Legendre incomplete elliptic integral of the third kind, defined by

        @@ -5692,14 +5692,14 @@

        Hypergeometric Functions

        Mathieu Functions

        -class sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]
        +class sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]

        Abstract base class for Mathieu functions.

        This class is meant to reduce code duplication.

        -class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]
        +class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]

        The Mathieu Sine function \(S(a,q,z)\).

        Explanation

        This function is one solution of the Mathieu differential equation:

        @@ -5759,7 +5759,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]
        +class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]

        The Mathieu Cosine function \(C(a,q,z)\).

        Explanation

        This function is one solution of the Mathieu differential equation:

        @@ -5819,7 +5819,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]
        +class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]

        The derivative \(S^{\prime}(a,q,z)\) of the Mathieu Sine function.

        Explanation

        This function is one solution of the Mathieu differential equation:

        @@ -5879,7 +5879,7 @@

        Hypergeometric Functions
        -class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]
        +class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]

        The derivative \(C^{\prime}(a,q,z)\) of the Mathieu Cosine function.

        Explanation

        This function is one solution of the Mathieu differential equation:

        @@ -5947,7 +5947,7 @@

        Hypergeometric Functions

        -class sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]
        +class sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]

        Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\).

        Explanation

        jacobi(n, alpha, beta, x) gives the \(n\)th Jacobi polynomial @@ -6029,7 +6029,7 @@

        Jacobi Polynomials
        -sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]
        +sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]

        Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\).

        Parameters:
        @@ -6088,7 +6088,7 @@

        Jacobi Polynomials

        -class sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]
        +class sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]

        Gegenbauer polynomial \(C_n^{\left(\alpha\right)}(x)\).

        Explanation

        gegenbauer(n, alpha, x) gives the \(n\)th Gegenbauer polynomial @@ -6154,7 +6154,7 @@

        Gegenbauer PolynomialsChebyshev Polynomials

        -class sympy.functions.special.polynomials.chebyshevt(n, x)[source]
        +class sympy.functions.special.polynomials.chebyshevt(n, x)[source]

        Chebyshev polynomial of the first kind, \(T_n(x)\).

        Explanation

        chebyshevt(n, x) gives the \(n\)th Chebyshev polynomial (of the first @@ -6221,7 +6221,7 @@

        Chebyshev Polynomials
        -class sympy.functions.special.polynomials.chebyshevu(n, x)[source]
        +class sympy.functions.special.polynomials.chebyshevu(n, x)[source]

        Chebyshev polynomial of the second kind, \(U_n(x)\).

        Explanation

        chebyshevu(n, x) gives the \(n\)th Chebyshev polynomial of the second @@ -6288,7 +6288,7 @@

        Chebyshev Polynomials
        -class sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]
        +class sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]

        chebyshev_root(n, k) returns the \(k\)th root (indexed from zero) of the \(n\)th Chebyshev polynomial of the first kind; that is, if \(0 \le k < n\), chebyshevt(n, chebyshevt_root(n, k)) == 0.

        @@ -6308,7 +6308,7 @@

        Chebyshev Polynomials
        -class sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]
        +class sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]

        chebyshevu_root(n, k) returns the \(k\)th root (indexed from zero) of the \(n\)th Chebyshev polynomial of the second kind; that is, if \(0 \le k < n\), chebyshevu(n, chebyshevu_root(n, k)) == 0.

        @@ -6331,7 +6331,7 @@

        Chebyshev PolynomialsLegendre Polynomials

        -class sympy.functions.special.polynomials.legendre(n, x)[source]
        +class sympy.functions.special.polynomials.legendre(n, x)[source]

        legendre(n, x) gives the \(n\)th Legendre polynomial of \(x\), \(P_n(x)\)

        Explanation

        The Legendre polynomials are orthogonal on \([-1, 1]\) with respect to @@ -6379,7 +6379,7 @@

        Legendre Polynomials
        -class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]
        +class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]

        assoc_legendre(n, m, x) gives \(P_n^m(x)\), where \(n\) and \(m\) are the degree and order or an expression which is related to the nth order Legendre polynomial, \(P_n(x)\) in the following manner:

        @@ -6437,7 +6437,7 @@

        Legendre PolynomialsHermite Polynomials

        -class sympy.functions.special.polynomials.hermite(n, x)[source]
        +class sympy.functions.special.polynomials.hermite(n, x)[source]

        hermite(n, x) gives the \(n\)th Hermite polynomial in \(x\), \(H_n(x)\).

        Explanation

        The Hermite polynomials are orthogonal on \((-\infty, \infty)\) @@ -6482,7 +6482,7 @@

        Hermite Polynomials
        -class sympy.functions.special.polynomials.hermite_prob(n, x)[source]
        +class sympy.functions.special.polynomials.hermite_prob(n, x)[source]

        hermite_prob(n, x) gives the \(n\)th probabilist’s Hermite polynomial in \(x\), \(He_n(x)\).

        Explanation

        @@ -6534,7 +6534,7 @@

        Hermite Polynomials

        -class sympy.functions.special.polynomials.laguerre(n, x)[source]
        +class sympy.functions.special.polynomials.laguerre(n, x)[source]

        Returns the \(n\)th Laguerre polynomial in \(x\), \(L_n(x)\).

        Parameters:
        @@ -6592,7 +6592,7 @@

        Laguerre Polynomials
        -class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]
        +class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]

        Returns the \(n\)th generalized Laguerre polynomial in \(x\), \(L_n(x)\).

        Parameters:
        @@ -6672,7 +6672,7 @@

        Laguerre PolynomialsSpherical Harmonics

        -class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]
        +class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]

        Spherical harmonics defined as

        @@ -6815,7 +6815,7 @@

        Spherical Harmonics
        -sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]
        +sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]

        Conjugate spherical harmonics defined as

        @@ -6863,7 +6863,7 @@

        Spherical Harmonics
        -class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]
        +class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]

        Real spherical harmonics defined as

        @@ -6929,7 +6929,7 @@

        Spherical Harmonics

        -sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]
        +sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]

        Represent the Levi-Civita symbol.

        This is a compatibility wrapper to LeviCivita().

        @@ -6940,13 +6940,13 @@

        Tensor Functions
        -sympy.functions.special.tensor_functions.eval_levicivita(*args)[source]
        +sympy.functions.special.tensor_functions.eval_levicivita(*args)[source]

        Evaluate Levi-Civita symbol.

        -class sympy.functions.special.tensor_functions.LeviCivita(*args)[source]
        +class sympy.functions.special.tensor_functions.LeviCivita(*args)[source]

        Represent the Levi-Civita symbol.

        Explanation

        For even permutations of indices it returns 1, for odd permutations -1, and @@ -6975,7 +6975,7 @@

        Tensor Functions
        -class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[source]
        +class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[source]

        The discrete, or Kronecker, delta function.

        Parameters:
        @@ -7026,7 +7026,7 @@

        Tensor Functions
        -classmethod eval(i, j, delta_range=None)[source]
        +classmethod eval(i, j, delta_range=None)[source]

        Evaluates the discrete delta function.

        Examples

        >>> from sympy import KroneckerDelta
        diff --git a/dev/modules/geometry/curves.html b/dev/modules/geometry/curves.html
        index 6de61704fbe..cf0ec867b0f 100644
        --- a/dev/modules/geometry/curves.html
        +++ b/dev/modules/geometry/curves.html
        @@ -805,7 +805,7 @@ 
        Documentation Version

        Curves

        -class sympy.geometry.curve.Curve(function, limits)[source]
        +class sympy.geometry.curve.Curve(function, limits)[source]

        A curve in space.

        A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value.

        @@ -887,7 +887,7 @@
        Documentation Version
        -arbitrary_point(parameter='t')[source]
        +arbitrary_point(parameter='t')[source]

        A parameterized point on the curve.

        Parameters:
        @@ -1048,7 +1048,7 @@
        Documentation Version
        -plot_interval(parameter='t')[source]
        +plot_interval(parameter='t')[source]

        The plot interval for the default geometric plot of the curve.

        Parameters:
        @@ -1088,7 +1088,7 @@
        Documentation Version
        -rotate(angle=0, pt=None)[source]
        +rotate(angle=0, pt=None)[source]

        This function is used to rotate a curve along given point pt at given angle(in radian).

        Parameters:
        @@ -1121,7 +1121,7 @@
        Documentation Version
        -scale(x=1, y=1, pt=None)[source]
        +scale(x=1, y=1, pt=None)[source]

        Override GeometryEntity.scale since Curve is not made up of Points.

        Returns:
        @@ -1142,7 +1142,7 @@
        Documentation Version
        -translate(x=0, y=0)[source]
        +translate(x=0, y=0)[source]

        Translate the Curve by (x, y).

        Returns:
        diff --git a/dev/modules/geometry/ellipses.html b/dev/modules/geometry/ellipses.html index 89ccd9f2af8..db8292c7bff 100644 --- a/dev/modules/geometry/ellipses.html +++ b/dev/modules/geometry/ellipses.html @@ -815,7 +815,7 @@
        Documentation Version
        **kwargs,
        -)[source] +)[source]

        An elliptical GeometryEntity.

        Parameters:
        @@ -931,7 +931,7 @@
        Documentation Version
        -arbitrary_point(parameter='t')[source]
        +arbitrary_point(parameter='t')[source]

        A parameterized point on the ellipse.

        Parameters:
        @@ -984,7 +984,7 @@
        Documentation Version
        -auxiliary_circle()[source]
        +auxiliary_circle()[source]

        Returns a Circle whose diameter is the major axis of the ellipse.

        Examples

        >>> from sympy import Ellipse, Point, symbols
        @@ -1044,7 +1044,7 @@ 
        Documentation Version
        -director_circle()[source]
        +director_circle()[source]

        Returns a Circle consisting of all points where two perpendicular tangent lines to the ellipse cross each other.

        @@ -1095,7 +1095,7 @@
        Documentation Version
        -encloses_point(p)[source]
        +encloses_point(p)[source]

        Return True if p is enclosed by (is inside of) self.

        Parameters:
        @@ -1127,7 +1127,7 @@
        Documentation Version
        -equation(x='x', y='y', _slope=None)[source]
        +equation(x='x', y='y', _slope=None)[source]

        Returns the equation of an ellipse aligned with the x and y axes; when slope is given, the equation returned corresponds to an ellipse with a major axis having that slope.

        @@ -1194,7 +1194,7 @@
        Documentation Version
        -evolute(x='x', y='y')[source]
        +evolute(x='x', y='y')[source]

        The equation of evolute of the ellipse.

        Parameters:
        @@ -1301,7 +1301,7 @@
        Documentation Version
        -intersection(o)[source]
        +intersection(o)[source]

        The intersection of this ellipse and another geometrical entity \(o\).

        @@ -1349,7 +1349,7 @@
        Documentation Version
        -is_tangent(o)[source]
        +is_tangent(o)[source]

        Is \(o\) tangent to the ellipse?

        Parameters:
        @@ -1462,7 +1462,7 @@
        Documentation Version
        -normal_lines(p, prec=None)[source]
        +normal_lines(p, prec=None)[source]

        Normal lines between \(p\) and the ellipse.

        Parameters:
        @@ -1524,7 +1524,7 @@
        Documentation Version
        -plot_interval(parameter='t')[source]
        +plot_interval(parameter='t')[source]

        The plot interval for the default geometric plot of the Ellipse.

        Parameters:
        @@ -1551,7 +1551,7 @@
        Documentation Version
        -polar_second_moment_of_area()[source]
        +polar_second_moment_of_area()[source]

        Returns the polar second moment of area of an Ellipse

        It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of @@ -1583,7 +1583,7 @@

        Documentation Version
        -random_point(seed=None)[source]
        +random_point(seed=None)[source]

        A random point on the ellipse.

        Returns:
        @@ -1628,7 +1628,7 @@
        Documentation Version
        -reflect(line)[source]
        +reflect(line)[source]

        Override GeometryEntity.reflect since the radius is not a GeometryEntity.

        Examples

        @@ -1653,7 +1653,7 @@
        Documentation Version
        -rotate(angle=0, pt=None)[source]
        +rotate(angle=0, pt=None)[source]

        Rotate angle radians counterclockwise about Point pt.

        Note: since the general ellipse is not supported, only rotations that are integer multiples of pi/2 are allowed.

        @@ -1669,7 +1669,7 @@
        Documentation Version
        -scale(x=1, y=1, pt=None)[source]
        +scale(x=1, y=1, pt=None)[source]

        Override GeometryEntity.scale since it is the major and minor axes which must be scaled and they are not GeometryEntities.

        Examples

        @@ -1684,7 +1684,7 @@
        Documentation Version
        -second_moment_of_area(point=None)[source]
        +second_moment_of_area(point=None)[source]

        Returns the second moment and product moment area of an ellipse.

        Parameters:
        @@ -1722,7 +1722,7 @@
        Documentation Version
        -section_modulus(point=None)[source]
        +section_modulus(point=None)[source]

        Returns a tuple with the section modulus of an ellipse

        Section modulus is a geometric property of an ellipse defined as the ratio of second moment of area to the distance of the extreme end of @@ -1811,7 +1811,7 @@

        Documentation Version
        -tangent_lines(p)[source]
        +tangent_lines(p)[source]

        Tangent lines between \(p\) and the ellipse.

        If \(p\) is on the ellipse, returns the tangent line through point \(p\). Otherwise, returns the tangent line(s) from \(p\) to the ellipse, or @@ -1870,7 +1870,7 @@

        Documentation Version
        -class sympy.geometry.ellipse.Circle(*args, **kwargs)[source]
        +class sympy.geometry.ellipse.Circle(*args, **kwargs)[source]

        A circle in space.

        Constructed simply from a center and a radius, from three non-collinear points, or the equation of a circle.

        @@ -1958,7 +1958,7 @@
        Documentation Version
        -equation(x='x', y='y')[source]
        +equation(x='x', y='y')[source]

        The equation of the circle.

        Parameters:
        @@ -1986,7 +1986,7 @@
        Documentation Version
        -intersection(o)[source]
        +intersection(o)[source]

        The intersection of this circle with another geometrical entity.

        Parameters:
        @@ -2037,7 +2037,7 @@
        Documentation Version
        -reflect(line)[source]
        +reflect(line)[source]

        Override GeometryEntity.reflect since the radius is not a GeometryEntity.

        Examples

        @@ -2050,7 +2050,7 @@
        Documentation Version
        -scale(x=1, y=1, pt=None)[source]
        +scale(x=1, y=1, pt=None)[source]

        Override GeometryEntity.scale since the radius is not a GeometryEntity.

        Examples

        diff --git a/dev/modules/geometry/entities.html b/dev/modules/geometry/entities.html index 8c317664b5c..e06436e6eb0 100644 --- a/dev/modules/geometry/entities.html +++ b/dev/modules/geometry/entities.html @@ -805,7 +805,7 @@
        Documentation Version

        Entities

        -class sympy.geometry.entity.GeometryEntity(*args, **kwargs)[source]
        +class sympy.geometry.entity.GeometryEntity(*args, **kwargs)[source]

        The base class for all geometrical entities.

        This class does not represent any particular geometric entity, it only provides the implementation of some methods common to all subclasses.

        @@ -824,7 +824,7 @@
        Documentation Version
        -encloses(o)[source]
        +encloses(o)[source]

        Return True if o is inside (not on or outside) the boundaries of self.

        The object will be decomposed into Points and individual Entities need only define an encloses_point method for their class.

        @@ -846,7 +846,7 @@
        Documentation Version
        -intersection(o)[source]
        +intersection(o)[source]

        Returns a list of all of the intersections of self with o.

        Notes

        An entity is not required to implement this method.

        @@ -861,7 +861,7 @@
        Documentation Version
        -is_similar(other)[source]
        +is_similar(other)[source]

        Is this geometrical entity similar to another geometrical entity?

        Two entities are similar if a uniform scaling (enlarging or shrinking) of one of the entities will allow one to obtain the other.

        @@ -879,7 +879,7 @@
        Documentation Version
        -parameter_value(other, t)[source]
        +parameter_value(other, t)[source]

        Return the parameter corresponding to the given point. Evaluating an arbitrary point of the entity at this parameter value will return the given point.

        @@ -898,7 +898,7 @@
        Documentation Version
        -reflect(line)[source]
        +reflect(line)[source]

        Reflects an object across a line.

        Parameters:
        @@ -926,7 +926,7 @@
        Documentation Version
        -rotate(angle, pt=None)[source]
        +rotate(angle, pt=None)[source]

        Rotate angle radians counterclockwise about Point pt.

        The default pt is the origin, Point(0, 0)

        Examples

        @@ -946,7 +946,7 @@
        Documentation Version
        -scale(x=1, y=1, pt=None)[source]
        +scale(x=1, y=1, pt=None)[source]

        Scale the object by multiplying the x,y-coordinates by x and y.

        If pt is given, the scaling is done relative to that point; the object is shifted by -pt, scaled, and shifted by pt.

        @@ -969,7 +969,7 @@
        Documentation Version
        -translate(x=0, y=0)[source]
        +translate(x=0, y=0)[source]

        Shift the object by adding to the x,y-coordinates the values x and y.

        Examples

        >>> from sympy import RegularPolygon, Point, Polygon
        diff --git a/dev/modules/geometry/lines.html b/dev/modules/geometry/lines.html
        index 0dfc4e1cc45..07ff0e2c830 100644
        --- a/dev/modules/geometry/lines.html
        +++ b/dev/modules/geometry/lines.html
        @@ -805,7 +805,7 @@ 
        Documentation Version

        Lines

        -class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)[source]
        +class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)[source]

        A base class for all linear entities (Line, Ray and Segment) in n-dimensional Euclidean space.

        Notes

        @@ -871,7 +871,7 @@
        Documentation Version
        -angle_between(l2)[source]
        +angle_between(l2)[source]

        Return the non-reflex angle formed by rays emanating from the origin with directions the same as the direction vectors of the linear entities.

        @@ -926,7 +926,7 @@
        Documentation Version
        -arbitrary_point(parameter='t')[source]
        +arbitrary_point(parameter='t')[source]

        A parameterized point on the Line.

        Parameters:
        @@ -969,7 +969,7 @@
        Documentation Version
        -static are_concurrent(*lines)[source]
        +static are_concurrent(*lines)[source]

        Is a sequence of linear entities concurrent?

        Two or more linear entities are concurrent if they all intersect at a single point.

        @@ -1014,7 +1014,7 @@
        Documentation Version
        -bisectors(other)[source]
        +bisectors(other)[source]

        Returns the perpendicular lines which pass through the intersections of self and other that are in the same plane.

        @@ -1037,7 +1037,7 @@
        Documentation Version
        -contains(other)[source]
        +contains(other)[source]

        Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; @@ -1078,7 +1078,7 @@

        Documentation Version
        -intersection(other)[source]
        +intersection(other)[source]

        The intersection with another geometrical entity.

        Parameters:
        @@ -1125,7 +1125,7 @@
        Documentation Version
        -is_parallel(l2)[source]
        +is_parallel(l2)[source]

        Are two linear entities parallel?

        Parameters:
        @@ -1168,7 +1168,7 @@
        Documentation Version
        -is_perpendicular(l2)[source]
        +is_perpendicular(l2)[source]

        Are two linear entities perpendicular?

        Parameters:
        @@ -1209,7 +1209,7 @@
        Documentation Version
        -is_similar(other)[source]
        +is_similar(other)[source]

        Return True if self and other are contained in the same line.

        Examples

        >>> from sympy import Point, Line
        @@ -1274,7 +1274,7 @@ 
        Documentation Version
        -parallel_line(p)[source]
        +parallel_line(p)[source]

        Create a new Line parallel to this linear entity which passes through the point \(p\).

        @@ -1312,7 +1312,7 @@
        Documentation Version
        -perpendicular_line(p)[source]
        +perpendicular_line(p)[source]

        Create a new Line perpendicular to this linear entity which passes through the point \(p\).

        @@ -1348,7 +1348,7 @@
        Documentation Version
        -perpendicular_segment(p)[source]
        +perpendicular_segment(p)[source]

        Create a perpendicular line segment from \(p\) to this line.

        The endpoints of the segment are p and the closest point in the line containing self. (If self is not a line, the point might @@ -1417,7 +1417,7 @@

        Documentation Version
        -projection(other)[source]
        +projection(other)[source]

        Project a point, line, ray, or segment onto this linear entity.

        Parameters:
        @@ -1472,7 +1472,7 @@
        Documentation Version
        -random_point(seed=None)[source]
        +random_point(seed=None)[source]

        A random point on a LinearEntity.

        Returns:
        @@ -1502,7 +1502,7 @@
        Documentation Version
        -smallest_angle_between(l2)[source]
        +smallest_angle_between(l2)[source]

        Return the smallest angle formed at the intersection of the lines containing the linear entities.

        @@ -1532,7 +1532,7 @@
        Documentation Version
        -class sympy.geometry.line.Line(*args, **kwargs)[source]
        +class sympy.geometry.line.Line(*args, **kwargs)[source]

        An infinite line in space.

        A 2D line is declared with two distinct points, point and slope, or an equation. A 3D line may be defined with a point and a direction ratio.

        @@ -1597,7 +1597,7 @@
        Documentation Version
        -contains(other)[source]
        +contains(other)[source]

        Return True if \(other\) is on this Line, or False otherwise.

        Examples

        >>> from sympy import Line,Point
        @@ -1624,7 +1624,7 @@ 
        Documentation Version
        -distance(other)[source]
        +distance(other)[source]

        Finds the shortest distance between a line and a point.

        Raises:
        @@ -1651,13 +1651,13 @@
        Documentation Version
        -equals(other)[source]
        +equals(other)[source]

        Returns True if self and other are the same mathematical entities

        -plot_interval(parameter='t')[source]
        +plot_interval(parameter='t')[source]

        The plot interval for the default geometric plot of line. Gives values that will produce a line that is +/- 5 units long (where a unit is the distance between the two points that define the line).

        @@ -1689,7 +1689,7 @@
        Documentation Version
        -class sympy.geometry.line.Ray(p1, p2=None, **kwargs)[source]
        +class sympy.geometry.line.Ray(p1, p2=None, **kwargs)[source]

        A Ray is a semi-line in the space with a source point and a direction.

        Parameters:
        @@ -1743,7 +1743,7 @@
        Documentation Version
        -contains(other)[source]
        +contains(other)[source]

        Is other GeometryEntity contained in this Ray?

        Examples

        >>> from sympy import Ray,Point,Segment
        @@ -1773,7 +1773,7 @@ 
        Documentation Version
        -distance(other)[source]
        +distance(other)[source]

        Finds the shortest distance between the ray and a point.

        Raises:
        @@ -1802,13 +1802,13 @@
        Documentation Version
        -equals(other)[source]
        +equals(other)[source]

        Returns True if self and other are the same mathematical entities

        -plot_interval(parameter='t')[source]
        +plot_interval(parameter='t')[source]

        The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray).

        @@ -1861,7 +1861,7 @@
        Documentation Version
        -class sympy.geometry.line.Segment(p1, p2, **kwargs)[source]
        +class sympy.geometry.line.Segment(p1, p2, **kwargs)[source]

        A line segment in space.

        Parameters:
        @@ -1916,7 +1916,7 @@
        Documentation Version
        -contains(other)[source]
        +contains(other)[source]

        Is the other GeometryEntity contained within this Segment?

        Examples

        >>> from sympy import Point, Segment
        @@ -1939,7 +1939,7 @@ 
        Documentation Version
        -distance(other)[source]
        +distance(other)[source]

        Finds the shortest distance between a line segment and a point.

        Raises:
        @@ -1967,7 +1967,7 @@
        Documentation Version
        -equals(other)[source]
        +equals(other)[source]

        Returns True if self and other are the same mathematical entities

        @@ -2019,7 +2019,7 @@
        Documentation Version
        -perpendicular_bisector(p=None)[source]
        +perpendicular_bisector(p=None)[source]

        The perpendicular bisector of this segment.

        If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a @@ -2053,7 +2053,7 @@

        Documentation Version
        -plot_interval(parameter='t')[source]
        +plot_interval(parameter='t')[source]

        The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot.

        @@ -2084,7 +2084,7 @@
        Documentation Version
        -class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)[source]
        +class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)[source]

        A base class for all linear entities (line, ray and segment) in a 2-dimensional Euclidean space.

        Notes

        @@ -2124,7 +2124,7 @@
        Documentation Version
        -perpendicular_line(p)[source]
        +perpendicular_line(p)[source]

        Create a new Line perpendicular to this linear entity which passes through the point \(p\).

        @@ -2193,7 +2193,7 @@
        Documentation Version
        -class sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)[source]
        +class sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)[source]

        An infinite line in space 2D.

        A line is declared with two distinct points or a point and slope as defined using keyword \(slope\).

        @@ -2259,7 +2259,7 @@
        Documentation Version
        -equation(x='x', y='y')[source]
        +equation(x='x', y='y')[source]

        The equation of the line: ax + by + c.

        Parameters:
        @@ -2294,7 +2294,7 @@
        Documentation Version
        -class sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)[source]
        +class sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)[source]

        A Ray is a semi-line in the space with a source point and a direction.

        Parameters:
        @@ -2351,7 +2351,7 @@
        Documentation Version
        -closing_angle(r2)[source]
        +closing_angle(r2)[source]

        Return the angle by which r2 must be rotated so it faces the same direction as r1.

        @@ -2431,7 +2431,7 @@
        Documentation Version
        -class sympy.geometry.line.Segment2D(p1, p2, **kwargs)[source]
        +class sympy.geometry.line.Segment2D(p1, p2, **kwargs)[source]

        A line segment in 2D space.

        Parameters:
        @@ -2476,7 +2476,7 @@
        Documentation Version
        -class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)[source]
        +class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)[source]

        An base class for all linear entities (line, ray and segment) in a 3-dimensional Euclidean space.

        Notes

        @@ -2545,7 +2545,7 @@
        Documentation Version
        -class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)[source]
        +class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)[source]

        An infinite 3D line in space.

        A line is declared with two distinct points or a point and direction_ratio as defined using keyword \(direction_ratio\).

        @@ -2571,7 +2571,7 @@
        Documentation Version
        -distance(other)[source]
        +distance(other)[source]

        Finds the shortest distance between a line and another object.

        Parameters:
        @@ -2607,7 +2607,7 @@
        Documentation Version
        -equation(x='x', y='y', z='z')[source]
        +equation(x='x', y='y', z='z')[source]

        Return the equations that define the line in 3D.

        Parameters:
        @@ -2645,7 +2645,7 @@
        Documentation Version
        -class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)[source]
        +class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)[source]

        A Ray is a semi-line in the space with a source point and a direction.

        Parameters:
        @@ -2772,7 +2772,7 @@
        Documentation Version
        -class sympy.geometry.line.Segment3D(p1, p2, **kwargs)[source]
        +class sympy.geometry.line.Segment3D(p1, p2, **kwargs)[source]

        A line segment in a 3D space.

        Parameters:
        diff --git a/dev/modules/geometry/plane.html b/dev/modules/geometry/plane.html index bdbd83c1518..fda055f90fa 100644 --- a/dev/modules/geometry/plane.html +++ b/dev/modules/geometry/plane.html @@ -805,7 +805,7 @@
        Documentation Version

        Plane

        -class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)[source]
        +class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)[source]

        A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of @@ -837,7 +837,7 @@

        Documentation Version
        -angle_between(o)[source]
        +angle_between(o)[source]

        Angle between the plane and other geometric entity.

        Parameters:
        @@ -864,7 +864,7 @@
        Documentation Version
        -arbitrary_point(u=None, v=None)[source]
        +arbitrary_point(u=None, v=None)[source]

        Returns an arbitrary point on the Plane. If given two parameters, the point ranges over the entire plane. If given 1 or no parameters, returns a point with one parameter which, @@ -897,7 +897,7 @@

        Documentation Version
        -static are_concurrent(*planes)[source]
        +static are_concurrent(*planes)[source]

        Is a sequence of Planes concurrent?

        Two or more Planes are concurrent if their intersections are a common line.

        @@ -924,7 +924,7 @@
        Documentation Version
        -distance(o)[source]
        +distance(o)[source]

        Distance between the plane and another geometric entity.

        Parameters:
        @@ -954,7 +954,7 @@
        Documentation Version
        -equals(o)[source]
        +equals(o)[source]

        Returns True if self and o are the same mathematical entities.

        Examples

        >>> from sympy import Plane, Point3D
        @@ -973,7 +973,7 @@ 
        Documentation Version
        -equation(x=None, y=None, z=None)[source]
        +equation(x=None, y=None, z=None)[source]

        The equation of the Plane.

        Examples

        >>> from sympy import Point3D, Plane
        @@ -989,7 +989,7 @@ 
        Documentation Version
        -intersection(o)[source]
        +intersection(o)[source]

        The intersection with other geometrical entity.

        Parameters:
        @@ -1018,7 +1018,7 @@
        Documentation Version
        -is_coplanar(o)[source]
        +is_coplanar(o)[source]

        Returns True if \(o\) is coplanar with self, else False.

        Examples

        >>> from sympy import Plane
        @@ -1035,7 +1035,7 @@ 
        Documentation Version
        -is_parallel(l)[source]
        +is_parallel(l)[source]

        Is the given geometric entity parallel to the plane?

        Parameters:
        @@ -1057,7 +1057,7 @@
        Documentation Version
        -is_perpendicular(l)[source]
        +is_perpendicular(l)[source]

        Is the given geometric entity perpendicualar to the given plane?

        Parameters:
        @@ -1113,7 +1113,7 @@
        Documentation Version
        -parallel_plane(pt)[source]
        +parallel_plane(pt)[source]

        Plane parallel to the given plane and passing through the point pt.

        Parameters:
        @@ -1134,7 +1134,7 @@
        Documentation Version
        -parameter_value(other, u, v=None)[source]
        +parameter_value(other, u, v=None)[source]

        Return the parameter(s) corresponding to the given point.

        Examples

        >>> from sympy import pi, Plane
        @@ -1174,7 +1174,7 @@ 
        Documentation Version
        -perpendicular_line(pt)[source]
        +perpendicular_line(pt)[source]

        A line perpendicular to the given plane.

        Parameters:
        @@ -1195,7 +1195,7 @@
        Documentation Version
        -perpendicular_plane(*pts)[source]
        +perpendicular_plane(*pts)[source]

        Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane’s normal vector then, to select from the infinite number of possible planes, @@ -1227,7 +1227,7 @@

        Documentation Version
        -projection(pt)[source]
        +projection(pt)[source]

        Project the given point onto the plane along the plane normal.

        Parameters:
        @@ -1261,7 +1261,7 @@
        Documentation Version
        -projection_line(line)[source]
        +projection_line(line)[source]

        Project the given line onto the plane through the normal plane containing the line.

        @@ -1293,7 +1293,7 @@
        Documentation Version
        -random_point(seed=None)[source]
        +random_point(seed=None)[source]

        Returns a random point on the Plane.

        Returns:
        diff --git a/dev/modules/geometry/points.html b/dev/modules/geometry/points.html index 616da184ee6..8c819d78af1 100644 --- a/dev/modules/geometry/points.html +++ b/dev/modules/geometry/points.html @@ -805,7 +805,7 @@
        Documentation Version

        Points

        -class sympy.geometry.point.Point(*args, **kwargs)[source]
        +class sympy.geometry.point.Point(*args, **kwargs)[source]

        A point in a n-dimensional Euclidean space.

        Parameters:
        @@ -883,7 +883,7 @@
        Documentation Version
        -static affine_rank(*args)[source]
        +static affine_rank(*args)[source]

        The affine rank of a set of points is the dimension of the smallest affine space containing all the points. For example, if the points lie on a line (and are not all @@ -900,7 +900,7 @@

        Documentation Version
        -classmethod are_coplanar(*points)[source]
        +classmethod are_coplanar(*points)[source]

        Return True if there exists a plane in which all the points lie. A trivial True value is returned if \(len(points) < 3\) or all Points are 2-dimensional.

        @@ -932,7 +932,7 @@
        Documentation Version
        -canberra_distance(p)[source]
        +canberra_distance(p)[source]

        The Canberra Distance from self to point p.

        Returns the weighted sum of horizontal and vertical distances to point p.

        @@ -967,7 +967,7 @@
        Documentation Version
        -distance(other)[source]
        +distance(other)[source]

        The Euclidean distance between self and another GeometricEntity.

        Returns:
        @@ -1005,19 +1005,19 @@
        Documentation Version
        -dot(p)[source]
        +dot(p)[source]

        Return dot product of self with another Point.

        -equals(other)[source]
        +equals(other)[source]

        Returns whether the coordinates of self and other agree.

        -intersection(other)[source]
        +intersection(other)[source]

        The intersection between this point and another GeometryEntity.

        Parameters:
        @@ -1043,7 +1043,7 @@
        Documentation Version
        -is_collinear(*args)[source]
        +is_collinear(*args)[source]

        Returns \(True\) if there exists a line that contains \(self\) and \(points\). Returns \(False\) otherwise. A trivially True value is returned if no points are given.

        @@ -1074,7 +1074,7 @@
        Documentation Version
        -is_concyclic(*args)[source]
        +is_concyclic(*args)[source]

        Do \(self\) and the given sequence of points lie in a circle?

        Returns True if the set of points are concyclic and False otherwise. A trivial value of True is returned @@ -1118,7 +1118,7 @@

        Documentation Version
        -is_scalar_multiple(p)[source]
        +is_scalar_multiple(p)[source]

        Returns whether each coordinate of \(self\) is a scalar multiple of the corresponding coordinate in point p.

        @@ -1145,7 +1145,7 @@
        Documentation Version
        -midpoint(p)[source]
        +midpoint(p)[source]

        The midpoint between self and point p.

        Parameters:
        @@ -1194,7 +1194,7 @@
        Documentation Version
        -static project(a, b)[source]
        +static project(a, b)[source]

        Project the point \(a\) onto the line between the origin and point \(b\) along the normal direction.

        @@ -1226,7 +1226,7 @@
        Documentation Version
        -taxicab_distance(p)[source]
        +taxicab_distance(p)[source]

        The Taxicab Distance from self to point p.

        Returns the sum of the horizontal and vertical distances to point p.

        @@ -1262,7 +1262,7 @@
        Documentation Version
        -class sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)[source]
        +class sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)[source]

        A point in a 2-dimensional Euclidean space.

        Parameters:
        @@ -1344,7 +1344,7 @@
        Documentation Version
        -rotate(angle, pt=None)[source]
        +rotate(angle, pt=None)[source]

        Rotate angle radians counterclockwise about Point pt.

        Examples

        >>> from sympy import Point2D, pi
        @@ -1363,7 +1363,7 @@ 
        Documentation Version
        -scale(x=1, y=1, pt=None)[source]
        +scale(x=1, y=1, pt=None)[source]

        Scale the coordinates of the Point by multiplying by x and y after subtracting pt – default is (0, 0) – and then adding pt back again (i.e. pt is the point of @@ -1385,7 +1385,7 @@

        Documentation Version
        -transform(matrix)[source]
        +transform(matrix)[source]

        Return the point after applying the transformation described by the 3x3 Matrix, matrix.

        @@ -1396,7 +1396,7 @@
        Documentation Version
        -translate(x=0, y=0)[source]
        +translate(x=0, y=0)[source]

        Shift the Point by adding x and y to the coordinates of the Point.

        Examples

        >>> from sympy import Point2D
        @@ -1445,7 +1445,7 @@ 
        Documentation Version
        -class sympy.geometry.point.Point3D(*args, _nocheck=False, **kwargs)[source]
        +class sympy.geometry.point.Point3D(*args, _nocheck=False, **kwargs)[source]

        A point in a 3-dimensional Euclidean space.

        Parameters:
        @@ -1502,7 +1502,7 @@
        Documentation Version
        -static are_collinear(*points)[source]
        +static are_collinear(*points)[source]

        Is a sequence of points collinear?

        Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise.

        @@ -1546,7 +1546,7 @@
        Documentation Version
        -direction_cosine(point)[source]
        +direction_cosine(point)[source]

        Gives the direction cosine between 2 points

        Parameters:
        @@ -1567,7 +1567,7 @@
        Documentation Version
        -direction_ratio(point)[source]
        +direction_ratio(point)[source]

        Gives the direction ratio between 2 points

        Parameters:
        @@ -1588,7 +1588,7 @@
        Documentation Version
        -intersection(other)[source]
        +intersection(other)[source]

        The intersection between this point and another GeometryEntity.

        Parameters:
        @@ -1614,7 +1614,7 @@
        Documentation Version
        -scale(x=1, y=1, z=1, pt=None)[source]
        +scale(x=1, y=1, z=1, pt=None)[source]

        Scale the coordinates of the Point by multiplying by x and y after subtracting pt – default is (0, 0) – and then adding pt back again (i.e. pt is the point of @@ -1636,7 +1636,7 @@

        Documentation Version
        -transform(matrix)[source]
        +transform(matrix)[source]

        Return the point after applying the transformation described by the 4x4 Matrix, matrix.

        @@ -1647,7 +1647,7 @@
        Documentation Version
        -translate(x=0, y=0, z=0)[source]
        +translate(x=0, y=0, z=0)[source]

        Shift the Point by adding x and y to the coordinates of the Point.

        Examples

        >>> from sympy import Point3D
        diff --git a/dev/modules/geometry/polygons.html b/dev/modules/geometry/polygons.html
        index 6e31fe9c3e3..8f240e28d64 100644
        --- a/dev/modules/geometry/polygons.html
        +++ b/dev/modules/geometry/polygons.html
        @@ -805,7 +805,7 @@ 
        Documentation Version

        Polygons

        -class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)[source]
        +class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)[source]

        A two-dimensional polygon.

        A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle.

        @@ -936,7 +936,7 @@
        Documentation Version
        -arbitrary_point(parameter='t')[source]
        +arbitrary_point(parameter='t')[source]

        A parameterized point on the polygon.

        The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the @@ -1014,7 +1014,7 @@

        Documentation Version
        -bisectors(prec=None)[source]
        +bisectors(prec=None)[source]

        Returns angle bisectors of a polygon. If prec is given then approximate the point defining the ray to that precision.

        The distance between the points defining the bisector ray is 1.

        @@ -1062,7 +1062,7 @@
        Documentation Version
        -cut_section(line)[source]
        +cut_section(line)[source]

        Returns a tuple of two polygon segments that lie above and below the intersecting line respectively.

        @@ -1115,7 +1115,7 @@
        Documentation Version
        -distance(o)[source]
        +distance(o)[source]

        Returns the shortest distance between self and o.

        If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex.

        @@ -1131,7 +1131,7 @@
        Documentation Version
        -encloses_point(p)[source]
        +encloses_point(p)[source]

        Return True if p is enclosed by (is inside of) self.

        Parameters:
        @@ -1169,7 +1169,7 @@
        Documentation Version
        -first_moment_of_area(point=None)[source]
        +first_moment_of_area(point=None)[source]

        Returns the first moment of area of a two-dimensional polygon with respect to a certain point of interest.

        First moment of area is a measure of the distribution of the area @@ -1224,7 +1224,7 @@

        Documentation Version
        -intersection(o)[source]
        +intersection(o)[source]

        The intersection of polygon and geometry entity.

        The intersection may be empty and can contain individual Points and complete Line Segments.

        @@ -1261,7 +1261,7 @@
        Documentation Version
        -is_convex()[source]
        +is_convex()[source]

        Is the polygon convex?

        A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides.

        @@ -1312,7 +1312,7 @@
        Documentation Version
        -plot_interval(parameter='t')[source]
        +plot_interval(parameter='t')[source]

        The plot interval for the default geometric plot of the polygon.

        Parameters:
        @@ -1339,7 +1339,7 @@
        Documentation Version
        -polar_second_moment_of_area()[source]
        +polar_second_moment_of_area()[source]

        Returns the polar modulus of a two-dimensional polygon

        It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of @@ -1368,7 +1368,7 @@

        Documentation Version
        -second_moment_of_area(point=None)[source]
        +second_moment_of_area(point=None)[source]

        Returns the second moment and product moment of area of a two dimensional polygon.

        Parameters:
        @@ -1409,7 +1409,7 @@
        Documentation Version
        -section_modulus(point=None)[source]
        +section_modulus(point=None)[source]

        Returns a tuple with the section modulus of a two-dimensional polygon.

        Section modulus is a geometric property of a polygon defined as the @@ -1515,7 +1515,7 @@

        Documentation Version
        -class sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)[source]
        +class sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)[source]

        A regular polygon.

        Such a polygon has all internal angles equal and all sides the same length.

        @@ -1761,7 +1761,7 @@
        Documentation Version
        -encloses_point(p)[source]
        +encloses_point(p)[source]

        Return True if p is enclosed by (is inside of) self.

        Parameters:
        @@ -1926,7 +1926,7 @@
        Documentation Version
        -reflect(line)[source]
        +reflect(line)[source]

        Override GeometryEntity.reflect since this is not made of only points.

        Examples

        @@ -1941,7 +1941,7 @@
        Documentation Version
        -rotate(angle, pt=None)[source]
        +rotate(angle, pt=None)[source]

        Override GeometryEntity.rotate to first rotate the RegularPolygon about its center.

        >>> from sympy import Point, RegularPolygon, pi
        @@ -1990,7 +1990,7 @@ 
        Documentation Version
        -scale(x=1, y=1, pt=None)[source]
        +scale(x=1, y=1, pt=None)[source]

        Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned.

        >>> from sympy import RegularPolygon
        @@ -2010,7 +2010,7 @@ 
        Documentation Version
        -spin(angle)[source]
        +spin(angle)[source]

        Increment in place the virtual Polygon’s rotation by ccw angle.

        See also: rotate method which moves the center.

        >>> from sympy import Polygon, Point, pi
        @@ -2061,7 +2061,7 @@ 
        Documentation Version
        -class sympy.geometry.polygon.Triangle(*args, **kwargs)[source]
        +class sympy.geometry.polygon.Triangle(*args, **kwargs)[source]

        A polygon with three vertices and three sides.

        Parameters:
        @@ -2172,7 +2172,7 @@
        Documentation Version
        -bisectors()[source]
        +bisectors()[source]

        The angle bisectors of the triangle.

        An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half.

        @@ -2444,7 +2444,7 @@
        Documentation Version
        -is_equilateral()[source]
        +is_equilateral()[source]

        Are all the sides the same length?

        Returns:
        @@ -2472,7 +2472,7 @@
        Documentation Version
        -is_isosceles()[source]
        +is_isosceles()[source]

        Are two or more of the sides the same length?

        Returns:
        @@ -2494,7 +2494,7 @@
        Documentation Version
        -is_right()[source]
        +is_right()[source]

        Is the triangle right-angled.

        Returns:
        @@ -2516,7 +2516,7 @@
        Documentation Version
        -is_scalene()[source]
        +is_scalene()[source]

        Are all the sides of the triangle of different lengths?

        Returns:
        @@ -2538,7 +2538,7 @@
        Documentation Version
        -is_similar(t2)[source]
        +is_similar(t2)[source]

        Is another triangle similar to this one.

        Two triangles are similar if one can be uniformly scaled to the other.

        diff --git a/dev/modules/geometry/utils.html b/dev/modules/geometry/utils.html index 395664c9471..d238eda70b7 100644 --- a/dev/modules/geometry/utils.html +++ b/dev/modules/geometry/utils.html @@ -805,7 +805,7 @@
        Documentation Version

        Utils

        -sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)[source]
        +sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)[source]

        The intersection of a collection of GeometryEntity instances.

        Parameters:
        @@ -862,7 +862,7 @@
        Documentation Version
        -sympy.geometry.util.convex_hull(*args, polygon=True)[source]
        +sympy.geometry.util.convex_hull(*args, polygon=True)[source]

        The convex hull surrounding the Points contained in the list of entities.

        Parameters:
        @@ -915,7 +915,7 @@
        Documentation Version
        -sympy.geometry.util.are_similar(e1, e2)[source]
        +sympy.geometry.util.are_similar(e1, e2)[source]

        Are two geometrical entities similar.

        Can one geometrical entity be uniformly scaled to the other?

        @@ -955,7 +955,7 @@
        Documentation Version
        -sympy.geometry.util.centroid(*args)[source]
        +sympy.geometry.util.centroid(*args)[source]

        Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). @@ -1001,7 +1001,7 @@

        Documentation Version
        -sympy.geometry.util.idiff(eq, y, x, n=1)[source]
        +sympy.geometry.util.idiff(eq, y, x, n=1)[source]

        Return dy/dx assuming that eq == 0.

        Parameters:
        diff --git a/dev/modules/holonomic/convert.html b/dev/modules/holonomic/convert.html index 665e108cf4a..74eca45df79 100644 --- a/dev/modules/holonomic/convert.html +++ b/dev/modules/holonomic/convert.html @@ -807,7 +807,7 @@

        Converting other representations to holonomic

        -sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)[source]
        +sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)[source]

        Converts a hypergeometric function to holonomic. func is the Hypergeometric Function and x0 is the point at which initial conditions are required.

        @@ -836,7 +836,7 @@

        Converting Meijer G-functionsdomain=QQ,

        -)[source] +)[source]

        Converts a Meijer G-function to Holonomic. func is the G-Function and x0 is the point at which initial conditions are required.

        @@ -867,7 +867,7 @@

        Converting symbolic expressionsinitcond=True,

        -)[source] +)[source]

        Converts a function or an expression to a holonomic function.

        Parameters:
        diff --git a/dev/modules/holonomic/internal.html b/dev/modules/holonomic/internal.html index 96c048cfc6c..c4280ac7704 100644 --- a/dev/modules/holonomic/internal.html +++ b/dev/modules/holonomic/internal.html @@ -805,7 +805,7 @@
        Documentation Version

        Internal API

        -sympy.holonomic.holonomic._create_table(table, domain=QQ)[source]
        +sympy.holonomic.holonomic._create_table(table, domain=QQ)[source]

        Creates the look-up table. For a similar implementation see meijerint._create_lookup_table.

        @@ -824,7 +824,7 @@

        Internal APIinitcond=True,

        -)[source] +)[source]

        Converts polynomials, rationals and algebraic functions to holonomic.

        diff --git a/dev/modules/holonomic/operations.html b/dev/modules/holonomic/operations.html index 6d624950923..45508336bad 100644 --- a/dev/modules/holonomic/operations.html +++ b/dev/modules/holonomic/operations.html @@ -844,7 +844,7 @@

        Integration and Differentiationinitcond=False,

        -)[source] +)[source]

        Integrates the given holonomic function.

        Examples

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        @@ -862,7 +862,7 @@ 

        Integration and Differentiation
        -HolonomicFunction.diff(*args, **kwargs)[source]
        +HolonomicFunction.diff(*args, **kwargs)[source]

        Differentiation of the given Holonomic function.

        Examples

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        @@ -895,7 +895,7 @@ 

        Composition with polynomials**kwargs,

        -)[source] +)[source]

        Returns function after composition of a holonomic function with an algebraic function. The method cannot compute initial conditions for the result by itself, so they can be also be @@ -923,7 +923,7 @@

        Composition with polynomials

        -HolonomicFunction.to_sequence(lb=True)[source]
        +HolonomicFunction.to_sequence(lb=True)[source]

        Finds recurrence relation for the coefficients in the series expansion of the function about \(x_0\), where \(x_0\) is the point at which the initial condition is stored.

        @@ -985,7 +985,7 @@

        Series expansion_recur=None,

        -)[source] +)[source]

        Finds the power series expansion of given holonomic function about \(x_0\).

        Explanation

        A list of series might be returned if \(x_0\) is a regular point with @@ -1022,7 +1022,7 @@

        Numerical evaluationderivatives=False,

        -)[source] +)[source]

        Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration.

        @@ -1073,7 +1073,7 @@

        Convert to a linear combination of hypergeometric functions_recur=None,

        -)[source] +)[source]

        Returns a hypergeometric function (or linear combination of them) representing the given holonomic function.

        Explanation

        @@ -1106,7 +1106,7 @@

        Convert to a linear combination of hypergeometric functions

        -HolonomicFunction.to_meijerg()[source]
        +HolonomicFunction.to_meijerg()[source]

        Returns a linear combination of Meijer G-functions.

        Examples

        >>> from sympy.holonomic import expr_to_holonomic
        @@ -1129,7 +1129,7 @@ 

        Convert to a linear combination of Meijer G-functionsConvert to expressions

        -HolonomicFunction.to_expr()[source]
        +HolonomicFunction.to_expr()[source]

        Converts a Holonomic Function back to elementary functions.

        Examples

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        diff --git a/dev/modules/holonomic/represent.html b/dev/modules/holonomic/represent.html
        index d9072842316..947b03c7832 100644
        --- a/dev/modules/holonomic/represent.html
        +++ b/dev/modules/holonomic/represent.html
        @@ -836,7 +836,7 @@ 

        Representation of holonomic functions in SymPy
        -class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)[source]
        +class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)[source]

        A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential @@ -901,7 +901,7 @@

        Representation of holonomic functions in SymPy
        -class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)[source]
        +class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)[source]

        Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to.

        @@ -932,7 +932,7 @@

        Representation of holonomic functions in SymPy
        -is_singular(x0)[source]
        +is_singular(x0)[source]

        Checks if the differential equation is singular at x0.

        @@ -940,7 +940,7 @@

        Representation of holonomic functions in SymPy
        -sympy.holonomic.holonomic.DifferentialOperators(base, generator)[source]
        +sympy.holonomic.holonomic.DifferentialOperators(base, generator)[source]

        This function is used to create annihilators using Dx.

        Parameters:
        @@ -975,7 +975,7 @@

        Representation of holonomic functions in SymPy
        -class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)[source]
        +class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)[source]

        An Ore Algebra is a set of noncommutative polynomials in the intermediate Dx and coefficients in a base polynomial ring \(A\). It follows the commutation rule:

        diff --git a/dev/modules/integrals/g-functions.html b/dev/modules/integrals/g-functions.html index bd73b29edbc..a0cf635194f 100644 --- a/dev/modules/integrals/g-functions.html +++ b/dev/modules/integrals/g-functions.html @@ -1814,19 +1814,19 @@

        Implemented G-Function Formulae
        -exception sympy.integrals.meijerint._CoeffExpValueError[source]
        +exception sympy.integrals.meijerint._CoeffExpValueError[source]

        Exception raised by _get_coeff_exp, for internal use only.

        -sympy.integrals.meijerint._check_antecedents(g1, g2, x)[source]
        +sympy.integrals.meijerint._check_antecedents(g1, g2, x)[source]

        Return a condition under which the integral theorem applies.

        -sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)[source]
        +sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)[source]

        Return a condition under which the mellin transform of g exists. Any power of x has already been absorbed into the G function, so this is just \(\int_0^\infty g\, dx\).

        @@ -1837,13 +1837,13 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._check_antecedents_inversion(g, x)[source]
        +sympy.integrals.meijerint._check_antecedents_inversion(g, x)[source]

        Check antecedents for the laplace inversion integral.

        -sympy.integrals.meijerint._condsimp(cond, first=True)[source]
        +sympy.integrals.meijerint._condsimp(cond, first=True)[source]

        Do naive simplifications on cond.

        Explanation

        Note that this routine is completely ad-hoc, simplification rules being @@ -1860,13 +1860,13 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._create_lookup_table(table)[source]
        +sympy.integrals.meijerint._create_lookup_table(table)[source]

        Add formulae for the function -> meijerg lookup table.

        -sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)[source]
        +sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)[source]

        Return a dummy. This will return the same dummy if the same token+name is requested more than once, and it is not already in expr. This is for being cache-friendly.

        @@ -1874,20 +1874,20 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._dummy_(name, token, **kwargs)[source]
        +sympy.integrals.meijerint._dummy_(name, token, **kwargs)[source]

        Return a dummy associated to name and token. Same effect as declaring it globally.

        -sympy.integrals.meijerint._eval_cond(cond)[source]
        +sympy.integrals.meijerint._eval_cond(cond)[source]

        Re-evaluate the conditions.

        -sympy.integrals.meijerint._exponents(expr, x)[source]
        +sympy.integrals.meijerint._exponents(expr, x)[source]

        Find the exponents of x (not including zero) in expr.

        Examples

        >>> from sympy.integrals.meijerint import _exponents
        @@ -1907,7 +1907,7 @@ 

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._find_splitting_points(expr, x)[source]
        +sympy.integrals.meijerint._find_splitting_points(expr, x)[source]

        Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr.

        Examples

        @@ -1926,20 +1926,20 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._flip_g(g)[source]
        +sympy.integrals.meijerint._flip_g(g)[source]

        Turn the G function into one of inverse argument (i.e. G(1/x) -> G’(x))

        -sympy.integrals.meijerint._functions(expr, x)[source]
        +sympy.integrals.meijerint._functions(expr, x)[source]

        Find the types of functions in expr, to estimate the complexity.

        -sympy.integrals.meijerint._get_coeff_exp(expr, x)[source]
        +sympy.integrals.meijerint._get_coeff_exp(expr, x)[source]

        When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b.

        Examples

        @@ -1959,13 +1959,13 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._guess_expansion(f, x)[source]
        +sympy.integrals.meijerint._guess_expansion(f, x)[source]

        Try to guess sensible rewritings for integrand f(x).

        -sympy.integrals.meijerint._inflate_fox_h(g, a)[source]
        +sympy.integrals.meijerint._inflate_fox_h(g, a)[source]

        Let d denote the integrand in the definition of the G function g. Consider the function H which is defined in the same way, but with integrand d/Gamma(a*s) (contour conventions as usual).

        @@ -1976,14 +1976,14 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._inflate_g(g, n)[source]
        +sympy.integrals.meijerint._inflate_g(g, n)[source]

        Return C, h such that h is a G function of argument z**n and g = C*h.

        -sympy.integrals.meijerint._int0oo(g1, g2, x)[source]
        +sympy.integrals.meijerint._int0oo(g1, g2, x)[source]

        Express integral from zero to infinity g1*g2 using a G function, assuming the necessary conditions are fulfilled.

        Examples

        @@ -2000,7 +2000,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._int0oo_1(g, x)[source]
        +sympy.integrals.meijerint._int0oo_1(g, x)[source]

        Evaluate \(\int_0^\infty g\, dx\) using G functions, assuming the necessary conditions are fulfilled.

        Examples

        @@ -2015,20 +2015,20 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._int_inversion(g, x, t)[source]
        +sympy.integrals.meijerint._int_inversion(g, x, t)[source]

        Compute the laplace inversion integral, assuming the formula applies.

        -sympy.integrals.meijerint._is_analytic(f, x)[source]
        +sympy.integrals.meijerint._is_analytic(f, x)[source]

        Check if f(x), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere

        -sympy.integrals.meijerint._meijerint_definite_2(f, x)[source]
        +sympy.integrals.meijerint._meijerint_definite_2(f, x)[source]

        Try to integrate f dx from zero to infinity.

        The body of this function computes various ‘simplifications’ f1, f2, … of f (e.g. by calling expand_mul(), trigexpand() @@ -2040,7 +2040,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._meijerint_definite_3(f, x)[source]
        +sympy.integrals.meijerint._meijerint_definite_3(f, x)[source]

        Try to integrate f dx from zero to infinity.

        This function calls _meijerint_definite_4 to try to compute the integral. If this fails, it tries using linearity.

        @@ -2048,7 +2048,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._meijerint_definite_4(f, x, only_double=False)[source]
        +sympy.integrals.meijerint._meijerint_definite_4(f, x, only_double=False)[source]

        Try to integrate f dx from zero to infinity.

        Explanation

        This function tries to apply the integration theorems found in literature, @@ -2059,13 +2059,13 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._meijerint_indefinite_1(f, x)[source]
        +sympy.integrals.meijerint._meijerint_indefinite_1(f, x)[source]

        Helper that does not attempt any substitution.

        -sympy.integrals.meijerint._mul_args(f)[source]
        +sympy.integrals.meijerint._mul_args(f)[source]

        Return a list L such that Mul(*L) == f.

        If f is not a Mul or Pow, L=[f]. If f=g**n for an integer n, L=[g]*n. @@ -2074,7 +2074,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._mul_as_two_parts(f)[source]
        +sympy.integrals.meijerint._mul_as_two_parts(f)[source]

        Find all the ways to split f into a product of two terms. Return None on failure.

        Explanation

        @@ -2094,7 +2094,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._my_principal_branch(expr, period, full_pb=False)[source]
        +sympy.integrals.meijerint._my_principal_branch(expr, period, full_pb=False)[source]

        Bring expr nearer to its principal branch by removing superfluous factors. This function does not guarantee to yield the principal branch, @@ -2111,13 +2111,13 @@

        Implemented G-Function Formulaex: Symbol,

        -) tuple[type[Basic], ...][source] +) tuple[type[Basic], ...][source]

        Create a hashable entity describing the type of f.

        -sympy.integrals.meijerint._rewrite1(f, x, recursive=True)[source]
        +sympy.integrals.meijerint._rewrite1(f, x, recursive=True)[source]

        Try to rewrite f using a (sum of) single G functions with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of x. and po = x**s. @@ -2127,7 +2127,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._rewrite2(f, x)[source]
        +sympy.integrals.meijerint._rewrite2(f, x)[source]

        Try to rewrite f as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. @@ -2137,13 +2137,13 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)[source]
        +sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)[source]

        Absorb po == x**s into g.

        -sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)[source]
        +sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)[source]

        Rewrite the integral fac*po*g1*g2 from 0 to oo in terms of G functions with argument c*x.

        Explanation

        @@ -2168,7 +2168,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)[source]
        +sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)[source]

        Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G.

        @@ -2176,7 +2176,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)[source]
        +sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)[source]

        Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) @@ -2187,7 +2187,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint._split_mul(f, x)[source]
        +sympy.integrals.meijerint._split_mul(f, x)[source]

        Split expression f into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is “the rest”.

        Examples

        @@ -2202,7 +2202,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint.meijerint_definite(f, x, a, b)[source]
        +sympy.integrals.meijerint.meijerint_definite(f, x, a, b)[source]

        Integrate f over the interval [a, b], by rewriting it as a product of two G functions, or as a single G function.

        Return res, cond, where cond are convergence conditions.

        @@ -2223,7 +2223,7 @@

        Implemented G-Function Formulae
        -sympy.integrals.meijerint.meijerint_indefinite(f, x)[source]
        +sympy.integrals.meijerint.meijerint_indefinite(f, x)[source]

        Compute an indefinite integral of f by rewriting it as a G function.

        Examples

        >>> from sympy.integrals.meijerint import meijerint_indefinite
        @@ -2237,7 +2237,7 @@ 

        Implemented G-Function Formulae
        -sympy.integrals.meijerint.meijerint_inversion(f, x, t)[source]
        +sympy.integrals.meijerint.meijerint_inversion(f, x, t)[source]

        Compute the inverse laplace transform \(\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx\), for real c larger than the real part of all singularities of f.

        diff --git a/dev/modules/integrals/integrals.html b/dev/modules/integrals/integrals.html index c972f448673..ce49804eb27 100644 --- a/dev/modules/integrals/integrals.html +++ b/dev/modules/integrals/integrals.html @@ -853,7 +853,7 @@

        Examples

        SymPy has special support for definite integrals, and integral transforms.

        -sympy.integrals.transforms.mellin_transform(f, x, s, **hints)[source]
        +sympy.integrals.transforms.mellin_transform(f, x, s, **hints)[source]

        Compute the Mellin transform \(F(s)\) of \(f(x)\),

        @@ -890,7 +890,7 @@

        Examples
        -class sympy.integrals.transforms.MellinTransform(*args)[source]
        +class sympy.integrals.transforms.MellinTransform(*args)[source]

        Class representing unevaluated Mellin transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute Mellin transforms, see the mellin_transform() @@ -899,7 +899,7 @@

        Examples
        -sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)[source]
        +sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)[source]

        Compute the inverse Mellin transform of \(F(s)\) over the fundamental strip given by strip=(a, b).

        Explanation

        @@ -945,7 +945,7 @@

        Examples
        -class sympy.integrals.transforms.InverseMellinTransform(*args)[source]
        +class sympy.integrals.transforms.InverseMellinTransform(*args)[source]

        Class representing unevaluated inverse Mellin transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute inverse Mellin transforms, see the @@ -964,7 +964,7 @@

        Examples
        **hints,

        -)[source] +)[source]

        Compute the Laplace Transform \(F(s)\) of \(f(t)\),

        @@ -1063,7 +1063,7 @@

        Examples
        -sympy.integrals.transforms.laplace_correspondence(f, fdict, /)[source]
        +sympy.integrals.transforms.laplace_correspondence(f, fdict, /)[source]

        This helper function takes a function \(f\) that is the result of a laplace_transform or an inverse_laplace_transform. It replaces all unevaluated LaplaceTransform(y(t), t, s) by \(Y(s)\) for any \(s\) and @@ -1104,7 +1104,7 @@

        Examples
        -sympy.integrals.transforms.laplace_initial_conds(f, t, fdict, /)[source]
        +sympy.integrals.transforms.laplace_initial_conds(f, t, fdict, /)[source]

        This helper function takes a function \(f\) that is the result of a laplace_transform. It takes an fdict of the form {y: [1, 4, 2]}, where the values in the list are the initial value, the initial slope, the @@ -1145,7 +1145,7 @@

        Examples
        -class sympy.integrals.transforms.LaplaceTransform(*args)[source]
        +class sympy.integrals.transforms.LaplaceTransform(*args)[source]

        Class representing unevaluated Laplace transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute Laplace transforms, see the laplace_transform() @@ -1155,7 +1155,7 @@

        Examples tuple containing the same expression, a convergence plane, and conditions.

        -doit(**hints)[source]
        +doit(**hints)[source]

        Try to evaluate the transform in closed form.

        Explanation

        Standard hints are the following: @@ -1179,7 +1179,7 @@

        Examples
        **hints,

        -)[source] +)[source]

        Compute the inverse Laplace transform of \(F(s)\), defined as

        @@ -1216,14 +1216,14 @@

        Examples
        -class sympy.integrals.transforms.InverseLaplaceTransform(*args)[source]
        +class sympy.integrals.transforms.InverseLaplaceTransform(*args)[source]

        Class representing unevaluated inverse Laplace transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute inverse Laplace transforms, see the inverse_laplace_transform() docstring.

        -doit(**hints)[source]
        +doit(**hints)[source]

        Try to evaluate the transform in closed form.

        Explanation

        Standard hints are the following: @@ -1237,7 +1237,7 @@

        Examples
        -sympy.integrals.transforms.fourier_transform(f, x, k, **hints)[source]
        +sympy.integrals.transforms.fourier_transform(f, x, k, **hints)[source]

        Compute the unitary, ordinary-frequency Fourier transform of f, defined as

        @@ -1281,7 +1281,7 @@

        Examples
        simplify=True,

        -)[source] +)[source]

        Compute a general Fourier-type transform

        @@ -1293,7 +1293,7 @@

        Examples
        -class sympy.integrals.transforms.FourierTransform(*args)[source]
        +class sympy.integrals.transforms.FourierTransform(*args)[source]

        Class representing unevaluated Fourier transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute Fourier transforms, see the fourier_transform() @@ -1302,7 +1302,7 @@

        Examples
        -sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)[source]
        +sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)[source]

        Compute the unitary, ordinary-frequency inverse Fourier transform of \(F\), defined as

        @@ -1334,7 +1334,7 @@

        Examples
        -class sympy.integrals.transforms.InverseFourierTransform(*args)[source]
        +class sympy.integrals.transforms.InverseFourierTransform(*args)[source]

        Class representing unevaluated inverse Fourier transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute inverse Fourier transforms, see the @@ -1343,7 +1343,7 @@

        Examples
        -sympy.integrals.transforms.sine_transform(f, x, k, **hints)[source]
        +sympy.integrals.transforms.sine_transform(f, x, k, **hints)[source]

        Compute the unitary, ordinary-frequency sine transform of \(f\), defined as

        @@ -1373,7 +1373,7 @@

        Examples
        -class sympy.integrals.transforms.SineTransform(*args)[source]
        +class sympy.integrals.transforms.SineTransform(*args)[source]

        Class representing unevaluated sine transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute sine transforms, see the sine_transform() @@ -1382,7 +1382,7 @@

        Examples
        -sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)[source]
        +sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)[source]

        Compute the unitary, ordinary-frequency inverse sine transform of \(F\), defined as

        @@ -1413,7 +1413,7 @@

        Examples
        -class sympy.integrals.transforms.InverseSineTransform(*args)[source]
        +class sympy.integrals.transforms.InverseSineTransform(*args)[source]

        Class representing unevaluated inverse sine transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute inverse sine transforms, see the @@ -1422,7 +1422,7 @@

        Examples
        -sympy.integrals.transforms.cosine_transform(f, x, k, **hints)[source]
        +sympy.integrals.transforms.cosine_transform(f, x, k, **hints)[source]

        Compute the unitary, ordinary-frequency cosine transform of \(f\), defined as

        @@ -1452,7 +1452,7 @@

        Examples
        -class sympy.integrals.transforms.CosineTransform(*args)[source]
        +class sympy.integrals.transforms.CosineTransform(*args)[source]

        Class representing unevaluated cosine transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute cosine transforms, see the cosine_transform() @@ -1461,7 +1461,7 @@

        Examples
        -sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)[source]
        +sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)[source]

        Compute the unitary, ordinary-frequency inverse cosine transform of \(F\), defined as

        @@ -1491,7 +1491,7 @@

        Examples
        -class sympy.integrals.transforms.InverseCosineTransform(*args)[source]
        +class sympy.integrals.transforms.InverseCosineTransform(*args)[source]

        Class representing unevaluated inverse cosine transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute inverse cosine transforms, see the @@ -1500,7 +1500,7 @@

        Examples
        -sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)[source]
        +sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)[source]

        Compute the Hankel transform of \(f\), defined as

        @@ -1544,7 +1544,7 @@

        Examples
        -class sympy.integrals.transforms.HankelTransform(*args)[source]
        +class sympy.integrals.transforms.HankelTransform(*args)[source]

        Class representing unevaluated Hankel transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute Hankel transforms, see the hankel_transform() @@ -1553,7 +1553,7 @@

        Examples
        -sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)[source]
        +sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)[source]

        Compute the inverse Hankel transform of \(F\) defined as

        @@ -1597,7 +1597,7 @@

        Examples
        -class sympy.integrals.transforms.InverseHankelTransform(*args)[source]
        +class sympy.integrals.transforms.InverseHankelTransform(*args)[source]

        Class representing unevaluated inverse Hankel transforms.

        For usage of this class, see the IntegralTransform docstring.

        For how to compute inverse Hankel transforms, see the @@ -1606,7 +1606,7 @@

        Examples
        -class sympy.integrals.transforms.IntegralTransform(*args)[source]
        +class sympy.integrals.transforms.IntegralTransform(*args)[source]

        Base class for integral transforms.

        Explanation

        This class represents unevaluated transforms.

        @@ -1623,7 +1623,7 @@

        Examples number and possibly a convergence condition.

        -doit(**hints)[source]
        +doit(**hints)[source]

        Try to evaluate the transform in closed form.

        Explanation

        This general function handles linearity, but apart from that leaves @@ -1665,7 +1665,7 @@

        Examples
        -exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)[source]
        +exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)[source]

        Exception raised in relation to problems computing transforms.

        Explanation

        This class is mostly used internally; if integrals cannot be computed @@ -1688,7 +1688,7 @@

        Internalsratint().

        -sympy.integrals.rationaltools.ratint(f, x, **flags)[source]
        +sympy.integrals.rationaltools.ratint(f, x, **flags)[source]

        Performs indefinite integration of rational functions.

        Explanation

        Given a field \(K\) and a rational function \(f = p/q\), @@ -1719,7 +1719,7 @@

        Internals
        -sympy.integrals.rationaltools.ratint_ratpart(f, g, x)[source]
        +sympy.integrals.rationaltools.ratint_ratpart(f, g, x)[source]

        Horowitz-Ostrogradsky algorithm.

        Explanation

        Given a field K and polynomials f and g in K[x], such that f and g @@ -1748,7 +1748,7 @@

        Internals
        -sympy.integrals.rationaltools.ratint_logpart(f, g, x, t=None)[source]
        +sympy.integrals.rationaltools.ratint_logpart(f, g, x, t=None)[source]

        Lazard-Rioboo-Trager algorithm.

        Explanation

        Given a field K and polynomials f and g in K[x], such that f and g @@ -1787,7 +1787,7 @@

        Internals
        -sympy.integrals.trigonometry.trigintegrate(f, x, conds='piecewise')[source]
        +sympy.integrals.trigonometry.trigintegrate(f, x, conds='piecewise')[source]

        Integrate f = Mul(trig) over x.

        Examples

        >>> from sympy import sin, cos, tan, sec
        @@ -1828,7 +1828,7 @@ 

        Internalsdeltaintegrate() solves integrals with DiracDelta objects.

        -sympy.integrals.deltafunctions.deltaintegrate(f, x)[source]
        +sympy.integrals.deltafunctions.deltaintegrate(f, x)[source]

        Explanation

        The idea for integration is the following:

          @@ -1878,7 +1878,7 @@

          Internalssingularityintegrate() is applied if the function contains a SingularityFunction

          -sympy.integrals.singularityfunctions.singularityintegrate(f, x)[source]
          +sympy.integrals.singularityfunctions.singularityintegrate(f, x)[source]

          This function handles the indefinite integrations of Singularity functions. The integrate function calls this function internally whenever an instance of SingularityFunction is passed as argument.

          @@ -1943,7 +1943,7 @@

          Internalsconds='piecewise',

          -)[source] +)[source]

          The Risch Integration Algorithm.

          Explanation

          Only transcendental functions are supported. Currently, only exponentials @@ -2051,7 +2051,7 @@

          Internals**assumptions,

        -)[source] +)[source]

        Represents a nonelementary Integral.

        Explanation

        If the result of integrate() is an instance of this class, it is @@ -2103,7 +2103,7 @@

        Internalsintegral_steps() function.

        -sympy.integrals.manualintegrate.manualintegrate(f, var)[source]
        +sympy.integrals.manualintegrate.manualintegrate(f, var)[source]

        Explanation

        Compute indefinite integral of a single variable using an algorithm that resembles what a student would do by hand.

        @@ -2146,7 +2146,7 @@

        Internals
        -sympy.integrals.manualintegrate.integral_steps(integrand, symbol, **options)[source]
        +sympy.integrals.manualintegrate.integral_steps(integrand, symbol, **options)[source]

        Returns the steps needed to compute an integral.

        Returns:
        @@ -2206,7 +2206,7 @@

        Internals_try_heurisch=None,

        -)[source] +)[source]

        Compute indefinite integral using heuristic Risch algorithm.

        Explanation

        This is a heuristic approach to indefinite integration in finite @@ -2292,7 +2292,7 @@

        Internals
        -sympy.integrals.heurisch.components(f, x)[source]
        +sympy.integrals.heurisch.components(f, x)[source]

        Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with @@ -2320,7 +2320,7 @@

        Internals

        -sympy.integrals.integrals.integrate(f, var, ...)[source]
        +sympy.integrals.integrals.integrate(f, var, ...)[source]

        Deprecated since version 1.6: Using integrate() with Poly is deprecated. Use Poly.integrate() instead. See Using integrate with Poly.

        @@ -2469,7 +2469,7 @@

        API reference
        -sympy.integrals.integrals.line_integrate(field, Curve, variables)[source]
        +sympy.integrals.integrals.line_integrate(field, Curve, variables)[source]

        Compute the line integral.

        Examples

        >>> from sympy import Curve, line_integrate, E, ln
        @@ -2488,7 +2488,7 @@ 

        API referenceIntegral represents an unevaluated integral and has some methods that help in the integration of an expression.

        -class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)[source]
        +class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)[source]

        Represents unevaluated integral.

        @@ -2506,7 +2506,7 @@

        API referenceevaluate=True,

        -)[source] +)[source]

        Approximates a definite integral by a sum.

        Parameters:
        @@ -2617,7 +2617,7 @@

        API reference
        -doit(**hints)[source]
        +doit(**hints)[source]

        Perform the integration using any hints given.

        Examples

        >>> from sympy import Piecewise, S
        @@ -2659,7 +2659,7 @@ 

        API reference
        -principal_value(**kwargs)[source]
        +principal_value(**kwargs)[source]

        Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis.

        Explanation

        @@ -2694,7 +2694,7 @@

        API reference
        -transform(x, u)[source]
        +transform(x, u)[source]

        Performs a change of variables from \(x\) to \(u\) using the relationship given by \(x\) and \(u\) which will define the transformations \(f\) and \(F\) (which are inverses of each other) as follows:

        @@ -2801,7 +2801,7 @@

        API referenceIntegral and Sum.

        -class sympy.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)[source]
        +class sympy.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)[source]
        property bound_symbols
        @@ -2987,7 +2987,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_legendre(n, n_digits)[source]
        +sympy.integrals.quadrature.gauss_legendre(n, n_digits)[source]

        Computes the Gauss-Legendre quadrature [R578] points and weights.

        Parameters:
        @@ -3054,7 +3054,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_laguerre(n, n_digits)[source]
        +sympy.integrals.quadrature.gauss_laguerre(n, n_digits)[source]

        Computes the Gauss-Laguerre quadrature [R580] points and weights.

        Parameters:
        @@ -3121,7 +3121,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_hermite(n, n_digits)[source]
        +sympy.integrals.quadrature.gauss_hermite(n, n_digits)[source]

        Computes the Gauss-Hermite quadrature [R582] points and weights.

        Parameters:
        @@ -3195,7 +3195,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)[source]
        +sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)[source]

        Computes the generalized Gauss-Laguerre quadrature [R585] points and weights.

        Parameters:
        @@ -3271,7 +3271,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_chebyshev_t(n, n_digits)[source]
        +sympy.integrals.quadrature.gauss_chebyshev_t(n, n_digits)[source]

        Computes the Gauss-Chebyshev quadrature [R587] points and weights of the first kind.

        @@ -3342,7 +3342,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)[source]
        +sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)[source]

        Computes the Gauss-Chebyshev quadrature [R589] points and weights of the second kind.

        @@ -3407,7 +3407,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)[source]
        +sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)[source]

        Computes the Gauss-Jacobi quadrature [R591] points and weights.

        Parameters:
        @@ -3482,7 +3482,7 @@

        Numeric Integrals
        -sympy.integrals.quadrature.gauss_lobatto(n, n_digits)[source]
        +sympy.integrals.quadrature.gauss_lobatto(n, n_digits)[source]

        Computes the Gauss-Lobatto quadrature [R594] points and weights.

        Parameters:
        @@ -3648,7 +3648,7 @@

        API referencemax_degree=None,

        -)[source] +)[source]

        Integrates polynomials over 2/3-Polytopes.

        Parameters:
        diff --git a/dev/modules/interactive.html b/dev/modules/interactive.html index 3e3bb33bd58..cab8ff8f77e 100644 --- a/dev/modules/interactive.html +++ b/dev/modules/interactive.html @@ -809,13 +809,13 @@
        Documentation Version

        Tools for setting up interactive sessions.

        -sympy.interactive.session.enable_automatic_int_sympification(shell)[source]
        +sympy.interactive.session.enable_automatic_int_sympification(shell)[source]

        Allow IPython to automatically convert integer literals to Integer.

        -sympy.interactive.session.enable_automatic_symbols(shell)[source]
        +sympy.interactive.session.enable_automatic_symbols(shell)[source]

        Allow IPython to automatically create symbols (isympy -a).

        @@ -830,13 +830,13 @@
        Documentation Version
        auto_int_to_Integer=False,
        -)[source] +)[source]

        Construct new IPython session.

        -sympy.interactive.session.init_python_session()[source]
        +sympy.interactive.session.init_python_session()[source]

        Construct new Python session.

        @@ -859,7 +859,7 @@
        Documentation Version
        argv=[],

        -)[source] +)[source]

        Initialize an embedded IPython or Python session. The IPython session is initiated with the –pylab option, without the numpy imports, so that matplotlib plotting can be interactive.

        @@ -977,7 +977,7 @@
        Documentation Version
        -sympy.interactive.session.int_to_Integer(s)[source]
        +sympy.interactive.session.int_to_Integer(s)[source]

        Wrap integer literals with Integer.

        This is based on the decistmt example from https://docs.python.org/3/library/tokenize.html.

        @@ -1029,7 +1029,7 @@
        Documentation Version
        **settings,
        -)[source] +)[source]

        Initializes pretty-printer depending on the environment.

        Parameters:
        diff --git a/dev/modules/liealgebras/index.html b/dev/modules/liealgebras/index.html index 2b1cde41c1a..83be2d91d01 100644 --- a/dev/modules/liealgebras/index.html +++ b/dev/modules/liealgebras/index.html @@ -805,7 +805,7 @@
        Documentation Version

        Lie Algebra

        -class sympy.liealgebras.root_system.RootSystem(cartantype)[source]
        +class sympy.liealgebras.root_system.RootSystem(cartantype)[source]

        Represent the root system of a simple Lie algebra

        Every simple Lie algebra has a unique root system. To find the root system, we first consider the Cartan subalgebra of g, which is the maximal @@ -840,7 +840,7 @@

        Documentation Version

        -add_as_roots(root1, root2)[source]
        +add_as_roots(root1, root2)[source]

        Add two roots together if and only if their sum is also a root

        It takes as input two vectors which should be roots. It then computes their sum and checks if it is in the list of all possible roots. If it @@ -859,7 +859,7 @@

        Documentation Version
        -add_simple_roots(root1, root2)[source]
        +add_simple_roots(root1, root2)[source]

        Add two simple roots together

        The function takes as input two integers, root1 and root2. It then uses these integers as keys in the dictionary of simple roots, and gets @@ -876,7 +876,7 @@

        Documentation Version
        -all_roots()[source]
        +all_roots()[source]

        Generate all the roots of a given root system

        The result is a dictionary where the keys are integer numbers. It generates the roots by getting the dictionary of all positive roots @@ -887,7 +887,7 @@

        Documentation Version
        -cartan_matrix()[source]
        +cartan_matrix()[source]

        Cartan matrix of Lie algebra associated with this root system

        Examples

        >>> from sympy.liealgebras.root_system import RootSystem
        @@ -903,7 +903,7 @@ 
        Documentation Version
        -dynkin_diagram()[source]
        +dynkin_diagram()[source]

        Dynkin diagram of the Lie algebra associated with this root system

        Examples

        >>> from sympy.liealgebras.root_system import RootSystem
        @@ -917,7 +917,7 @@ 
        Documentation Version
        -root_space()[source]
        +root_space()[source]

        Return the span of the simple roots

        The root space is the vector space spanned by the simple roots, i.e. it is a vector space with a distinguished basis, the simple roots. This @@ -934,7 +934,7 @@

        Documentation Version
        -simple_roots()[source]
        +simple_roots()[source]

        Generate the simple roots of the Lie algebra

        The rank of the Lie algebra determines the number of simple roots that it has. This method obtains the rank of the Lie algebra, and then uses @@ -954,13 +954,13 @@

        Documentation Version
        -class sympy.liealgebras.type_a.TypeA(n)[source]
        +class sympy.liealgebras.type_a.TypeA(n)[source]

        This class contains the information about the A series of simple Lie algebras. ====

        -basic_root(i, j)[source]
        +basic_root(i, j)[source]

        This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

        @@ -968,13 +968,13 @@
        Documentation Version
        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of A_n

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        Returns the Cartan matrix for A_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -995,7 +995,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dimension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1008,19 +1008,19 @@ 
        Documentation Version
        -highest_root()[source]
        +highest_root()[source]

        Returns the highest weight root for A_n

        -lie_algebra()[source]
        +lie_algebra()[source]

        Returns the Lie algebra associated with A_n

        -positive_roots()[source]
        +positive_roots()[source]

        This method generates all the positive roots of A_n. This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we @@ -1037,13 +1037,13 @@

        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots for A_n

        -simple_root(i)[source]
        +simple_root(i)[source]

        Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1069,10 +1069,10 @@

        Documentation Version
        -class sympy.liealgebras.type_b.TypeB(n)[source]
        +class sympy.liealgebras.type_b.TypeB(n)[source]
        -basic_root(i, j)[source]
        +basic_root(i, j)[source]

        This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

        @@ -1080,13 +1080,13 @@
        Documentation Version
        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of B_n

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        Returns the Cartan matrix for B_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1107,7 +1107,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dimension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1120,13 +1120,13 @@ 
        Documentation Version
        -lie_algebra()[source]
        +lie_algebra()[source]

        Returns the Lie algebra associated with B_n

        -positive_roots()[source]
        +positive_roots()[source]

        This method generates all the positive roots of A_n. This is half of all of the roots of B_n; by multiplying all the positive roots by -1 we @@ -1143,13 +1143,13 @@

        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots for B_n”

        -simple_root(i)[source]
        +simple_root(i)[source]

        Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1177,22 +1177,22 @@

        Documentation Version
        -class sympy.liealgebras.type_c.TypeC(n)[source]
        +class sympy.liealgebras.type_c.TypeC(n)[source]
        -basic_root(i, j)[source]
        +basic_root(i, j)[source]

        Generate roots with 1 in ith position and a -1 in jth position

        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of C_n

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        The Cartan matrix for C_n

        The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1213,7 +1213,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dimension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1226,13 +1226,13 @@ 
        Documentation Version
        -lie_algebra()[source]
        +lie_algebra()[source]

        Returns the Lie algebra associated with C_n”

        -positive_roots()[source]
        +positive_roots()[source]

        Generates all the positive roots of A_n

        This is half of all of the roots of C_n; by multiplying all the positive roots by -1 we get the negative roots.

        @@ -1248,13 +1248,13 @@
        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots for C_n”

        -simple_root(i)[source]
        +simple_root(i)[source]

        The ith simple root for the C series

        Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1282,10 +1282,10 @@

        Documentation Version
        -class sympy.liealgebras.type_d.TypeD(n)[source]
        +class sympy.liealgebras.type_d.TypeD(n)[source]
        -basic_root(i, j)[source]
        +basic_root(i, j)[source]

        This is a method just to generate roots with a 1 iin the ith position and a -1 in the jth position.

        @@ -1293,13 +1293,13 @@
        Documentation Version
        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of D_n

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        Returns the Cartan matrix for D_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1320,7 +1320,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dmension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1333,13 +1333,13 @@ 
        Documentation Version
        -lie_algebra()[source]
        +lie_algebra()[source]

        Returns the Lie algebra associated with D_n”

        -positive_roots()[source]
        +positive_roots()[source]

        This method generates all the positive roots of A_n. This is half of all of the roots of D_n by multiplying all the positive roots by -1 we @@ -1356,13 +1356,13 @@

        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots for D_n”

        -simple_root(i)[source]
        +simple_root(i)[source]

        Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1390,10 +1390,10 @@

        Documentation Version
        -class sympy.liealgebras.type_e.TypeE(n)[source]
        +class sympy.liealgebras.type_e.TypeE(n)[source]
        -basic_root(i, j)[source]
        +basic_root(i, j)[source]

        This is a method just to generate roots with a -1 in the ith position and a 1 in the jth position.

        @@ -1401,13 +1401,13 @@
        Documentation Version
        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of E_n

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        Returns the Cartan matrix for G_2 The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1428,7 +1428,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dimension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1441,7 +1441,7 @@ 
        Documentation Version
        -positive_roots()[source]
        +positive_roots()[source]

        This method generates all the positive roots of A_n. This is half of all of the roots of E_n; by multiplying all the positive roots by -1 we @@ -1458,13 +1458,13 @@

        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots of E_n

        -simple_root(i)[source]
        +simple_root(i)[source]

        Every Lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a @@ -1487,22 +1487,22 @@

        Documentation Version
        -class sympy.liealgebras.type_f.TypeF(n)[source]
        +class sympy.liealgebras.type_f.TypeF(n)[source]
        -basic_root(i, j)[source]
        +basic_root(i, j)[source]

        Generate roots with 1 in ith position and -1 in jth position

        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of F_4

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        The Cartan matrix for F_4

        The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1523,7 +1523,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dimension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1536,7 +1536,7 @@ 
        Documentation Version
        -positive_roots()[source]
        +positive_roots()[source]

        Generate all the positive roots of A_n

        This is half of all of the roots of F_4; by multiplying all the positive roots by -1 we get the negative roots.

        @@ -1552,13 +1552,13 @@
        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots for F_4

        -simple_root(i)[source]
        +simple_root(i)[source]

        The ith simple root of F_4

        Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1581,16 +1581,16 @@

        Documentation Version
        -class sympy.liealgebras.type_g.TypeG(n)[source]
        +class sympy.liealgebras.type_g.TypeG(n)[source]
        -basis()[source]
        +basis()[source]

        Returns the number of independent generators of G_2

        -cartan_matrix()[source]
        +cartan_matrix()[source]

        The Cartan matrix for G_2

        The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple @@ -1609,7 +1609,7 @@

        Documentation Version
        -dimension()[source]
        +dimension()[source]

        Dimension of the vector space V underlying the Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_type import CartanType
        @@ -1622,7 +1622,7 @@ 
        Documentation Version
        -positive_roots()[source]
        +positive_roots()[source]

        Generate all the positive roots of A_n

        This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we get the negative roots.

        @@ -1638,13 +1638,13 @@
        Documentation Version
        -roots()[source]
        +roots()[source]

        Returns the total number of roots of G_2”

        -simple_root(i)[source]
        +simple_root(i)[source]

        The ith simple root of G_2

        Every lie algebra has a unique root system. Given a root system Q, there is a subset of the @@ -1667,7 +1667,7 @@

        Documentation Version
        -class sympy.liealgebras.weyl_group.WeylGroup(cartantype)[source]
        +class sympy.liealgebras.weyl_group.WeylGroup(cartantype)[source]

        For each semisimple Lie group, we have a Weyl group. It is a subgroup of the isometry group of the root system. Specifically, it’s the subgroup that is generated by reflections through the hyperplanes orthogonal to @@ -1675,7 +1675,7 @@

        Documentation Version
        group is a finite Coxeter group.

        -coxeter_diagram()[source]
        +coxeter_diagram()[source]

        This method returns the Coxeter diagram corresponding to a Weyl group. The Coxeter diagram can be obtained from a Lie algebra’s Dynkin diagram by deleting all arrows; the Coxeter diagram is the undirected graph. @@ -1696,7 +1696,7 @@

        Documentation Version
        -delete_doubles(reflections)[source]
        +delete_doubles(reflections)[source]

        This is a helper method for determining the order of an element in the Weyl group of G2. It takes a Weyl element and if repeated simple reflections in it, it deletes them.

        @@ -1704,7 +1704,7 @@
        Documentation Version
        -element_order(weylelt)[source]
        +element_order(weylelt)[source]

        This method returns the order of a given Weyl group element, which should be specified by the user in the form of products of the generating reflections, i.e. of the form r1*r2 etc.

        @@ -1722,7 +1722,7 @@
        Documentation Version
        -generators()[source]
        +generators()[source]

        This method creates the generating reflections of the Weyl group for a given Lie algebra. For a Lie algebra of rank n, there are n different generating reflections. This function returns them as @@ -1738,7 +1738,7 @@

        Documentation Version
        -group_name()[source]
        +group_name()[source]

        This method returns some general information about the Weyl group for a given Lie algebra. It returns the name of the group and the elements it acts on, if relevant.

        @@ -1746,7 +1746,7 @@
        Documentation Version
        -group_order()[source]
        +group_order()[source]

        This method returns the order of the Weyl group. For types A, B, C, D, and E the order depends on the rank of the Lie algebra. For types F and G, @@ -1762,7 +1762,7 @@

        Documentation Version
        -matrix_form(weylelt)[source]
        +matrix_form(weylelt)[source]

        This method takes input from the user in the form of products of the generating reflections, and returns the matrix corresponding to the element of the Weyl group. Since each element of the Weyl group is @@ -1786,23 +1786,23 @@

        Documentation Version
        -class sympy.liealgebras.cartan_type.CartanType_generator[source]
        +class sympy.liealgebras.cartan_type.CartanType_generator[source]

        Constructor for actually creating things

        -class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)[source]
        +class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)[source]

        Concrete base class for Cartan types such as A4, etc

        -rank()[source]
        +rank()[source]

        Returns the rank of the Lie algebra

        -series()[source]
        +series()[source]

        Returns the type of the Lie algebra

        @@ -1810,7 +1810,7 @@
        Documentation Version
        -sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)[source]
        +sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)[source]

        Display the Dynkin diagram of a given Lie algebra

        Works by generating the CartanType for the input, t, and then returning the Dynkin diagram method from the individual classes.

        @@ -1830,7 +1830,7 @@
        Documentation Version
        -sympy.liealgebras.cartan_matrix.CartanMatrix(ct)[source]
        +sympy.liealgebras.cartan_matrix.CartanMatrix(ct)[source]

        Access the Cartan matrix of a specific Lie algebra

        Examples

        >>> from sympy.liealgebras.cartan_matrix import CartanMatrix
        diff --git a/dev/modules/logic.html b/dev/modules/logic.html
        index 72aebcadb26..305f743bf34 100644
        --- a/dev/modules/logic.html
        +++ b/dev/modules/logic.html
        @@ -840,7 +840,7 @@ 

        Forming logical expressions
        -sympy.logic.boolalg.SOPform(variables, minterms, dontcares=None)[source]
        +sympy.logic.boolalg.SOPform(variables, minterms, dontcares=None)[source]

        The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate ‘1’ (the minterms) into the smallest sum-of-products form.

        @@ -901,7 +901,7 @@

        Forming logical expressions
        -sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)[source]
        +sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)[source]

        The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate ‘1’ (the minterms) into the smallest product-of-sums form.

        @@ -962,7 +962,7 @@

        Forming logical expressions
        -sympy.logic.boolalg.ANFform(variables, truthvalues)[source]
        +sympy.logic.boolalg.ANFform(variables, truthvalues)[source]

        The ANFform function converts the list of truth values to Algebraic Normal Form (ANF).

        The variables must be given as the first argument.

        @@ -1006,11 +1006,11 @@

        Forming logical expressions

        -class sympy.logic.boolalg.Boolean(*args)[source]
        +class sympy.logic.boolalg.Boolean(*args)[source]

        A Boolean object is an object for which logic operations make sense.

        -as_set()[source]
        +as_set()[source]

        Rewrites Boolean expression in terms of real sets.

        Examples

        >>> from sympy import Symbol, Eq, Or, And
        @@ -1029,7 +1029,7 @@ 

        Boolean functions
        -equals(other)[source]
        +equals(other)[source]

        Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals.

        Examples

        @@ -1049,7 +1049,7 @@

        Boolean functions
        -class sympy.logic.boolalg.BooleanTrue[source]
        +class sympy.logic.boolalg.BooleanTrue[source]

        SymPy version of True, a singleton that can be accessed via S.true.

        This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand Boolean @@ -1122,7 +1122,7 @@

        Boolean functions
        -as_set()[source]
        +as_set()[source]

        Rewrite logic operators and relationals in terms of real sets.

        Examples

        >>> from sympy import true
        @@ -1136,7 +1136,7 @@ 

        Boolean functions
        -class sympy.logic.boolalg.BooleanFalse[source]
        +class sympy.logic.boolalg.BooleanFalse[source]

        SymPy version of False, a singleton that can be accessed via S.false.

        This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand @@ -1173,7 +1173,7 @@

        Boolean functions
        -as_set()[source]
        +as_set()[source]

        Rewrite logic operators and relationals in terms of real sets.

        Examples

        >>> from sympy import false
        @@ -1187,7 +1187,7 @@ 

        Boolean functions
        -class sympy.logic.boolalg.And(*args)[source]
        +class sympy.logic.boolalg.And(*args)[source]

        Logical AND function.

        It evaluates its arguments in order, returning false immediately when an argument is false and true if they are all true.

        @@ -1211,7 +1211,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Or(*args)[source]
        +class sympy.logic.boolalg.Or(*args)[source]

        Logical OR function

        It evaluates its arguments in order, returning true immediately when an argument is true, and false if they are all false.

        @@ -1235,7 +1235,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Not(arg)[source]
        +class sympy.logic.boolalg.Not(arg)[source]

        Logical Not function (negation)

        Returns true if the statement is false or False. Returns false if the statement is true or True.

        @@ -1281,7 +1281,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Xor(*args)[source]
        +class sympy.logic.boolalg.Xor(*args)[source]

        Logical XOR (exclusive OR) function.

        Returns True if an odd number of the arguments are True and the rest are False.

        @@ -1316,7 +1316,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Nand(*args)[source]
        +class sympy.logic.boolalg.Nand(*args)[source]

        Logical NAND function.

        It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True.

        @@ -1338,7 +1338,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Nor(*args)[source]
        +class sympy.logic.boolalg.Nor(*args)[source]

        Logical NOR function.

        It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False.

        @@ -1366,7 +1366,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Xnor(*args)[source]
        +class sympy.logic.boolalg.Xnor(*args)[source]

        Logical XNOR function.

        Returns False if an odd number of the arguments are True and the rest are False.

        @@ -1390,7 +1390,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Implies(*args)[source]
        +class sympy.logic.boolalg.Implies(*args)[source]

        Logical implication.

        A implies B is equivalent to if A then B. Mathematically, it is written as \(A \Rightarrow B\) and is equivalent to \(\neg A \vee B\) or ~A | B.

        @@ -1436,7 +1436,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Equivalent(*args)[source]
        +class sympy.logic.boolalg.Equivalent(*args)[source]

        Equivalence relation.

        Equivalent(A, B) is True iff A and B are both True or both False.

        Returns True if all of the arguments are logically equivalent. @@ -1457,7 +1457,7 @@

        Boolean functions
        -class sympy.logic.boolalg.ITE(*args)[source]
        +class sympy.logic.boolalg.ITE(*args)[source]

        If-then-else clause.

        ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans.

        @@ -1491,7 +1491,7 @@

        Boolean functions
        -class sympy.logic.boolalg.Exclusive(*args)[source]
        +class sympy.logic.boolalg.Exclusive(*args)[source]

        True if only one or no argument is true.

        Exclusive(A, B, C) is equivalent to ~(A & B) & ~(A & C) & ~(B & C).

        For two arguments, this is equivalent to Xor.

        @@ -1511,7 +1511,7 @@

        Boolean functions
        -sympy.logic.boolalg.to_anf(expr, deep=True)[source]
        +sympy.logic.boolalg.to_anf(expr, deep=True)[source]

        Converts expr to Algebraic Normal Form (ANF).

        ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF.

        @@ -1550,7 +1550,7 @@

        Boolean functions
        -sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)[source]
        +sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)[source]

        Convert a propositional logical sentence expr to conjunctive normal form: ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, expr is evaluated to its simplest CNF @@ -1570,7 +1570,7 @@

        Boolean functions
        -sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)[source]
        +sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)[source]

        Convert a propositional logical sentence expr to disjunctive normal form: ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, expr is evaluated to its simplest DNF form using @@ -1590,7 +1590,7 @@

        Boolean functions
        -sympy.logic.boolalg.to_nnf(expr, simplify=True)[source]
        +sympy.logic.boolalg.to_nnf(expr, simplify=True)[source]

        Converts expr to Negation Normal Form (NNF).

        A logical expression is in NNF if it contains only And, Or and Not, @@ -1609,7 +1609,7 @@

        Boolean functions
        -sympy.logic.boolalg.is_anf(expr)[source]
        +sympy.logic.boolalg.is_anf(expr)[source]

        Checks if expr is in Algebraic Normal Form (ANF).

        A logical expression is in ANF if it has the form

        @@ -1637,7 +1637,7 @@

        Boolean functions
        -sympy.logic.boolalg.is_cnf(expr)[source]
        +sympy.logic.boolalg.is_cnf(expr)[source]

        Test whether or not an expression is in conjunctive normal form.

        Examples

        >>> from sympy.logic.boolalg import is_cnf
        @@ -1654,7 +1654,7 @@ 

        Boolean functions
        -sympy.logic.boolalg.is_dnf(expr)[source]
        +sympy.logic.boolalg.is_dnf(expr)[source]

        Test whether or not an expression is in disjunctive normal form.

        Examples

        >>> from sympy.logic.boolalg import is_dnf
        @@ -1673,7 +1673,7 @@ 

        Boolean functions
        -sympy.logic.boolalg.is_nnf(expr, simplified=True)[source]
        +sympy.logic.boolalg.is_nnf(expr, simplified=True)[source]

        Checks if expr is in Negation Normal Form (NNF).

        A logical expression is in NNF if it contains only And, Or and Not, @@ -1698,7 +1698,7 @@

        Boolean functions
        -sympy.logic.boolalg.gateinputcount(expr)[source]
        +sympy.logic.boolalg.gateinputcount(expr)[source]

        Return the total number of inputs for the logic gates realizing the Boolean expression.

        @@ -1762,7 +1762,7 @@

        Simplification and equivalence-testingdontcare=None,

        -)[source] +)[source]

        This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy.

        @@ -1823,7 +1823,7 @@

        Simplification and equivalence-testing
        -sympy.logic.boolalg.bool_map(bool1, bool2)[source]
        +sympy.logic.boolalg.bool_map(bool1, bool2)[source]

        Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables @@ -1861,7 +1861,7 @@

        Manipulating expressions
        -sympy.logic.boolalg.distribute_and_over_or(expr)[source]
        +sympy.logic.boolalg.distribute_and_over_or(expr)[source]

        Given a sentence expr consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF.

        Examples

        @@ -1875,7 +1875,7 @@

        Manipulating expressions
        -sympy.logic.boolalg.distribute_or_over_and(expr)[source]
        +sympy.logic.boolalg.distribute_or_over_and(expr)[source]

        Given a sentence expr consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF.

        Note that the output is NOT simplified.

        @@ -1890,7 +1890,7 @@

        Manipulating expressions
        -sympy.logic.boolalg.distribute_xor_over_and(expr)[source]
        +sympy.logic.boolalg.distribute_xor_over_and(expr)[source]

        Given a sentence expr consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction.

        @@ -1906,7 +1906,7 @@

        Manipulating expressions
        -sympy.logic.boolalg.eliminate_implications(expr)[source]
        +sympy.logic.boolalg.eliminate_implications(expr)[source]

        Change Implies and Equivalent into And, Or, and Not. That is, return an expression that is equivalent to expr, but has only @@ -1931,7 +1931,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.truth_table(expr, variables, input=True)[source]
        +sympy.logic.boolalg.truth_table(expr, variables, input=True)[source]

        Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values.

        @@ -1987,7 +1987,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.integer_to_term(n, bits=None, str=False)[source]
        +sympy.logic.boolalg.integer_to_term(n, bits=None, str=False)[source]

        Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are @@ -2030,7 +2030,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.term_to_integer(term)[source]
        +sympy.logic.boolalg.term_to_integer(term)[source]

        Return an integer corresponding to the base-2 digits given by term.

        Parameters:
        @@ -2049,7 +2049,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.bool_maxterm(k, variables)[source]
        +sympy.logic.boolalg.bool_maxterm(k, variables)[source]

        Return the k-th maxterm.

        Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm @@ -2081,7 +2081,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.bool_minterm(k, variables)[source]
        +sympy.logic.boolalg.bool_minterm(k, variables)[source]

        Return the k-th minterm.

        Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to @@ -2112,7 +2112,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.bool_monomial(k, variables)[source]
        +sympy.logic.boolalg.bool_monomial(k, variables)[source]

        Return the k-th monomial.

        Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value @@ -2145,7 +2145,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.anf_coeffs(truthvalues)[source]
        +sympy.logic.boolalg.anf_coeffs(truthvalues)[source]

        Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF @@ -2178,7 +2178,7 @@

        Truth tables and related functions
        -sympy.logic.boolalg.to_int_repr(clauses, symbols)[source]
        +sympy.logic.boolalg.to_int_repr(clauses, symbols)[source]

        Takes clauses in CNF format and puts them into an integer representation.

        Examples

        >>> from sympy.logic.boolalg import to_int_repr
        @@ -2223,7 +2223,7 @@ 

        Truth tables and related functionsuse_lra_theory=False,

        -)[source] +)[source]

        Check satisfiability of a propositional sentence. Returns a model when it succeeds. Returns {true: true} for trivially true expressions.

        diff --git a/dev/modules/matrices/dense.html b/dev/modules/matrices/dense.html index 11663f8bd77..23386f4ce39 100644 --- a/dev/modules/matrices/dense.html +++ b/dev/modules/matrices/dense.html @@ -805,17 +805,17 @@
        Documentation Version

        Dense Matrices

        -sympy.matrices.dense.Matrix[source]
        +sympy.matrices.dense.Matrix[source]

        alias of MutableDenseMatrix

        -class sympy.matrices.dense.DenseMatrix[source]
        +class sympy.matrices.dense.DenseMatrix[source]

        Matrix implementation based on DomainMatrix as the internal representation

        -LDLdecomposition(hermitian=True)[source]
        +LDLdecomposition(hermitian=True)[source]

        Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. @@ -865,13 +865,13 @@

        Dense Matrices
        -as_immutable()[source]
        +as_immutable()[source]

        Returns an Immutable version of this Matrix

        -as_mutable()[source]
        +as_mutable()[source]

        Returns a mutable version of this matrix

        Examples

        >>> from sympy import ImmutableMatrix
        @@ -888,7 +888,7 @@ 

        Dense Matrices
        -cholesky(hermitian=True)[source]
        +cholesky(hermitian=True)[source]

        Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False.

        @@ -942,7 +942,7 @@

        Dense Matrices
        -lower_triangular_solve(rhs)[source]
        +lower_triangular_solve(rhs)[source]

        Solves Ax = B, where A is a lower triangular matrix.

        See also

        @@ -952,7 +952,7 @@

        Dense Matrices
        -upper_triangular_solve(rhs)[source]
        +upper_triangular_solve(rhs)[source]

        Solves Ax = B, where A is an upper triangular matrix.

        See also

        @@ -964,10 +964,10 @@

        Dense Matrices
        -class sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]
        +class sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]
        -simplify(**kwargs)[source]
        +simplify(**kwargs)[source]

        Applies simplify to the elements of a matrix in place.

        This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))

        @@ -980,7 +980,7 @@

        Dense Matrices
        -class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]
        +class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]

        Create an immutable version of a matrix.

        Examples

        >>> from sympy import eye, ImmutableMatrix
        diff --git a/dev/modules/matrices/expressions.html b/dev/modules/matrices/expressions.html
        index 9e085e1664b..f7615829140 100644
        --- a/dev/modules/matrices/expressions.html
        +++ b/dev/modules/matrices/expressions.html
        @@ -842,7 +842,7 @@ 
        Documentation Version

        Matrix Expressions Core Reference

        -class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)[source]
        +class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)[source]

        Superclass for Matrix Expressions

        MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.

        @@ -865,13 +865,13 @@

        Matrix Expressions Core Reference
        -as_coeff_Mul(rational=False)[source]
        +as_coeff_Mul(rational=False)[source]

        Efficiently extract the coefficient of a product.

        -as_explicit()[source]
        +as_explicit()[source]

        Returns a dense Matrix with elements represented explicitly

        Returns an object of type ImmutableDenseMatrix.

        Examples

        @@ -897,7 +897,7 @@

        Matrix Expressions Core Reference
        -as_mutable()[source]
        +as_mutable()[source]

        Returns a dense, mutable matrix with elements represented explicitly

        Examples

        >>> from sympy import Identity
        @@ -924,7 +924,7 @@ 

        Matrix Expressions Core Reference
        -equals(other)[source]
        +equals(other)[source]

        Test elementwise equality between matrices, potentially of different types

        >>> from sympy import Identity, eye
        @@ -945,7 +945,7 @@ 

        Matrix Expressions Core Referencedimensions=None,

        -)[source] +)[source]

        Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible.

        This transformation expressed in mathematical notation:

        @@ -986,7 +986,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.MatrixSymbol(name, n, m)[source]
        +class sympy.matrices.expressions.MatrixSymbol(name, n, m)[source]

        Symbolic representation of a Matrix object

        Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions

        @@ -1013,7 +1013,7 @@

        Matrix Expressions Core Reference_sympify=True,

        -)[source] +)[source]

        A Sum of Matrix Expressions

        MatAdd inherits from and operates like SymPy Add

        Examples

        @@ -1038,7 +1038,7 @@

        Matrix Expressions Core Reference_sympify=True,

        -)[source] +)[source]

        A product of matrix expressions

        Examples

        >>> from sympy import MatMul, MatrixSymbol
        @@ -1053,12 +1053,12 @@ 

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)[source]
        +class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)[source]

        -sympy.matrices.expressions.hadamard_product(*matrices)[source]
        +sympy.matrices.expressions.hadamard_product(*matrices)[source]

        Return the elementwise (aka Hadamard) product of matrices.

        Examples

        >>> from sympy import hadamard_product, MatrixSymbol
        @@ -1076,7 +1076,7 @@ 

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)[source]
        +class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)[source]

        Elementwise product of matrix expressions

        Examples

        Hadamard product for matrix symbols:

        @@ -1095,7 +1095,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.HadamardPower(base, exp)[source]
        +class sympy.matrices.expressions.HadamardPower(base, exp)[source]

        Elementwise power of matrix expressions

        Parameters:
        @@ -1149,7 +1149,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.Inverse(mat, exp=-1)[source]
        +class sympy.matrices.expressions.Inverse(mat, exp=-1)[source]

        The multiplicative inverse of a matrix expression

        This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the .inverse() @@ -1172,7 +1172,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.Transpose(*args, **kwargs)[source]
        +class sympy.matrices.expressions.Transpose(*args, **kwargs)[source]

        The transpose of a matrix expression.

        This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the transpose() @@ -1195,7 +1195,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.Trace(mat)[source]
        +class sympy.matrices.expressions.Trace(mat)[source]

        Matrix Trace

        Represents the trace of a matrix expression.

        Examples

        @@ -1216,7 +1216,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)[source]
        +class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)[source]

        Represents a matrix using a function (Lambda) which gives outputs according to the coordinates of each matrix entries.

        @@ -1284,7 +1284,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.PermutationMatrix(perm)[source]
        +class sympy.matrices.expressions.PermutationMatrix(perm)[source]

        A Permutation Matrix

        Parameters:
        @@ -1335,7 +1335,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)[source]
        +class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)[source]

        Symbolic representation for permuting matrix rows or columns.

        Parameters:
        @@ -1388,7 +1388,7 @@

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.Identity(n)[source]
        +class sympy.matrices.expressions.Identity(n)[source]

        The Matrix Identity I - multiplicative identity

        Examples

        >>> from sympy import Identity, MatrixSymbol
        @@ -1402,7 +1402,7 @@ 

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.ZeroMatrix(m, n)[source]
        +class sympy.matrices.expressions.ZeroMatrix(m, n)[source]

        The Matrix Zero 0 - additive identity

        Examples

        >>> from sympy import MatrixSymbol, ZeroMatrix
        @@ -1418,7 +1418,7 @@ 

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.CompanionMatrix(poly)[source]
        +class sympy.matrices.expressions.CompanionMatrix(poly)[source]

        A symbolic companion matrix of a polynomial.

        Examples

        >>> from sympy import Poly, Symbol, symbols
        @@ -1435,7 +1435,7 @@ 

        Matrix Expressions Core Reference
        -class sympy.matrices.expressions.MatrixSet(n, m, set)[source]
        +class sympy.matrices.expressions.MatrixSet(n, m, set)[source]

        MatrixSet represents the set of matrices with shape = (n, m) over the given set.

        Examples

        @@ -1460,7 +1460,7 @@

        Block MatricesImmutableMatrix objects.

        -class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)[source]
        +class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)[source]

        A BlockMatrix is a Matrix comprised of other matrices.

        The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression

        @@ -1519,7 +1519,7 @@

        Block Matrices
        -LDUdecomposition()[source]
        +LDUdecomposition()[source]

        Returns the Block LDU decomposition of a 2x2 Block Matrix

        @@ -1565,7 +1565,7 @@

        Block Matrices
        -LUdecomposition()[source]
        +LUdecomposition()[source]

        Returns the Block LU decomposition of a 2x2 Block Matrix

        @@ -1610,7 +1610,7 @@

        Block Matrices
        -UDLdecomposition()[source]
        +UDLdecomposition()[source]

        Returns the Block UDL decomposition of a 2x2 Block Matrix

        @@ -1656,7 +1656,7 @@

        Block Matrices
        -schur(mat='A', generalized=False)[source]
        +schur(mat='A', generalized=False)[source]

        Return the Schur Complement of the 2x2 BlockMatrix

        Parameters:
        @@ -1731,7 +1731,7 @@

        Block Matrices
        -transpose()[source]
        +transpose()[source]

        Return transpose of matrix.

        Examples

        >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
        @@ -1756,7 +1756,7 @@ 

        Block Matrices
        -class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]
        +class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]

        A sparse matrix with block matrices along its diagonals

        Examples

        >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
        @@ -1778,7 +1778,7 @@ 

        Block Matrices
        -get_diag_blocks()[source]
        +get_diag_blocks()[source]

        Return the list of diagonal blocks of the matrix.

        Examples

        >>> from sympy import BlockDiagMatrix, Matrix
        @@ -1807,7 +1807,7 @@ 

        Block Matrices
        -sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]
        +sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]

        Evaluates a block matrix expression

        >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
         >>> n,m,l = symbols('n m l')
        diff --git a/dev/modules/matrices/immutablematrices.html b/dev/modules/matrices/immutablematrices.html
        index 27b5274464a..d387582fd28 100644
        --- a/dev/modules/matrices/immutablematrices.html
        +++ b/dev/modules/matrices/immutablematrices.html
        @@ -835,13 +835,13 @@ 

        Immutable Matrices

        ImmutableMatrix Class Reference

        -sympy.matrices.immutable.ImmutableMatrix[source]
        +sympy.matrices.immutable.ImmutableMatrix[source]

        alias of ImmutableDenseMatrix

        -class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]
        +class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]

        Create an immutable version of a matrix.

        Examples

        >>> from sympy import eye, ImmutableMatrix
        diff --git a/dev/modules/matrices/kind.html b/dev/modules/matrices/kind.html
        index 94eb3a06056..31b7c5eda4e 100644
        --- a/dev/modules/matrices/kind.html
        +++ b/dev/modules/matrices/kind.html
        @@ -805,7 +805,7 @@ 
        Documentation Version

        Matrix Kind

        -class sympy.matrices.kind.MatrixKind(element_kind=NumberKind)[source]
        +class sympy.matrices.kind.MatrixKind(element_kind=NumberKind)[source]

        Kind for all matrices in SymPy.

        Basic class for this kind is MatrixBase and MatrixExpr, but any expression representing the matrix can have this.

        diff --git a/dev/modules/matrices/matrices.html b/dev/modules/matrices/matrices.html index ab4d2c5c894..1bfe3fe2eab 100644 --- a/dev/modules/matrices/matrices.html +++ b/dev/modules/matrices/matrices.html @@ -1327,7 +1327,7 @@

        Matrix Base ClassesSparse Matrices.

        -class sympy.matrices.matrixbase.MatrixBase[source]
        +class sympy.matrices.matrixbase.MatrixBase[source]

        All common matrix operations including basic arithmetic, shaping, and special matrices like \(zeros\), and \(eye\).

        @@ -1404,7 +1404,7 @@

        Matrix Base Classes
        -LDLdecomposition(hermitian=True)[source]
        +LDLdecomposition(hermitian=True)[source]

        Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. @@ -1454,7 +1454,7 @@

        Matrix Base Classes
        -LDLsolve(rhs)[source]
        +LDLsolve(rhs)[source]

        Solves Ax = B using LDL decomposition, for a general square and non-singular matrix.

        For a non-square matrix with rows > cols, @@ -1483,7 +1483,7 @@

        Matrix Base Classesrankcheck=False,

        -)[source] +)[source]

        Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then @@ -1546,7 +1546,7 @@

        Matrix Base Classes
        -LUdecompositionFF()[source]
        +LUdecompositionFF()[source]

        Compute a fraction-free LU decomposition.

        Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all @@ -1576,7 +1576,7 @@

        Matrix Base Classesrankcheck=False,

        -)[source] +)[source]

        Compute the PLU decomposition of the matrix.

        Parameters:
        @@ -1846,7 +1846,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Solve the linear system Ax = rhs for x where A = M.

        This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve.

        @@ -1858,7 +1858,7 @@

        Matrix Base Classes
        -QRdecomposition()[source]
        +QRdecomposition()[source]

        Returns a QR decomposition.

        Explanation

        A QR decomposition is a decomposition in the form \(A = Q R\) @@ -2030,7 +2030,7 @@

        Matrix Base Classes
        -QRsolve(b)[source]
        +QRsolve(b)[source]

        Solve the linear system Ax = b.

        M is the matrix A, the method argument is the vector b. The method returns the solution vector x. If b is a @@ -2056,19 +2056,19 @@

        Matrix Base Classes
        -__abs__()[source]
        +__abs__()[source]

        Returns a new matrix with entry-wise absolute values.

        -__add__(other)[source]
        +__add__(other)[source]

        Return self + other, raising ShapeError if shapes do not match.

        -__getitem__(key)[source]
        +__getitem__(key)[source]

        Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) @@ -2077,14 +2077,14 @@

        Matrix Base Classes
        -__len__()[source]
        +__len__()[source]

        Return the number of elements of self.

        Implemented mainly so bool(Matrix()) == False.

        -__mul__(other)[source]
        +__mul__(other)[source]

        Return self*other where other is either a scalar or a matrix of compatible dimensions.

        Examples

        @@ -2112,7 +2112,7 @@

        Matrix Base Classes
        -__pow__(exp)[source]
        +__pow__(exp)[source]

        Return self**exp a scalar or symbol.

        @@ -2124,19 +2124,19 @@

        Matrix Base Classes
        -add(b)[source]
        +add(b)[source]

        Return self + b.

        -adjoint()[source]
        +adjoint()[source]

        Conjugate transpose or Hermitian conjugation.

        -adjugate(method='berkowitz')[source]
        +adjugate(method='berkowitz')[source]

        Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors.

        https://en.wikipedia.org/wiki/Adjugate

        @@ -2166,7 +2166,7 @@

        Matrix Base Classes
        -analytic_func(f, x)[source]
        +analytic_func(f, x)[source]

        Computes f(A) where A is a Square Matrix and f is an analytic function.

        @@ -2198,7 +2198,7 @@

        Matrix Base Classes
        -applyfunc(f)[source]
        +applyfunc(f)[source]

        Apply a function to each element of the matrix.

        Examples

        >>> from sympy import Matrix
        @@ -2217,13 +2217,13 @@ 

        Matrix Base Classes
        -as_real_imag(deep=True, **hints)[source]
        +as_real_imag(deep=True, **hints)[source]

        Returns a tuple containing the (real, imaginary) part of matrix.

        -atoms(*types)[source]
        +atoms(*types)[source]

        Returns the atoms that form the current object.

        Examples

        >>> from sympy.abc import x, y
        @@ -2244,7 +2244,7 @@ 

        Matrix Base Classes
        -berkowitz_det()[source]
        +berkowitz_det()[source]

        Computes determinant using Berkowitz method.

        See also

        @@ -2254,19 +2254,19 @@

        Matrix Base Classes
        -berkowitz_eigenvals(**flags)[source]
        +berkowitz_eigenvals(**flags)[source]

        Computes eigenvalues of a Matrix using Berkowitz method.

        -berkowitz_minors()[source]
        +berkowitz_minors()[source]

        Computes principal minors using Berkowitz method.

        -bidiagonal_decomposition(upper=True)[source]
        +bidiagonal_decomposition(upper=True)[source]

        Returns \((U,B,V.H)\) for

        @@ -2298,7 +2298,7 @@

        Matrix Base Classes
        -bidiagonalize(upper=True)[source]
        +bidiagonalize(upper=True)[source]

        Returns \(B\), the Bidiagonalized form of the input matrix.

        Note: Bidiagonal Computation can hang for symbolic matrices.

        @@ -2331,7 +2331,7 @@

        Matrix Base Classessimplify=<function _simplify>,

        -)[source] +)[source]

        Computes characteristic polynomial det(x*I - M) where I is the identity matrix.

        A PurePoly is returned, so using different variables for x does @@ -2400,7 +2400,7 @@

        Matrix Base Classes
        -cholesky(hermitian=True)[source]
        +cholesky(hermitian=True)[source]

        Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False.

        @@ -2454,7 +2454,7 @@

        Matrix Base Classes
        -cholesky_solve(rhs)[source]
        +cholesky_solve(rhs)[source]

        Solves Ax = B using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, @@ -2467,7 +2467,7 @@

        Matrix Base Classes
        -cofactor(i, j, method='berkowitz')[source]
        +cofactor(i, j, method='berkowitz')[source]

        Calculate the cofactor of an element.

        Parameters:
        @@ -2493,7 +2493,7 @@

        Matrix Base Classes
        -cofactor_matrix(method='berkowitz')[source]
        +cofactor_matrix(method='berkowitz')[source]

        Return a matrix containing the cofactor of each element.

        Parameters:
        @@ -2521,7 +2521,7 @@

        Matrix Base Classes
        -col(j)[source]
        +col(j)[source]

        Elementary column selector.

        Examples

        >>> from sympy import eye
        @@ -2539,13 +2539,13 @@ 

        Matrix Base Classes
        -col_del(col)[source]
        +col_del(col)[source]

        Delete the specified column.

        -col_insert(pos, other)[source]
        +col_insert(pos, other)[source]

        Insert one or more columns at the given column position.

        Examples

        >>> from sympy import zeros, ones
        @@ -2566,7 +2566,7 @@ 

        Matrix Base Classes
        -col_join(other)[source]
        +col_join(other)[source]

        Concatenates two matrices along self’s last and other’s first row.

        Examples

        >>> from sympy import zeros, ones
        @@ -2588,7 +2588,7 @@ 

        Matrix Base Classes
        -columnspace(simplify=False)[source]
        +columnspace(simplify=False)[source]

        Returns a list of vectors (Matrix objects) that span columnspace of M

        Examples

        >>> from sympy import Matrix
        @@ -2616,7 +2616,7 @@ 

        Matrix Base Classes
        -classmethod companion(poly)[source]
        +classmethod companion(poly)[source]

        Returns a companion matrix of a polynomial.

        Examples

        >>> from sympy import Matrix, Poly, Symbol, symbols
        @@ -2636,7 +2636,7 @@ 

        Matrix Base Classes
        -condition_number()[source]
        +condition_number()[source]

        Returns the condition number of a matrix.

        This is the maximum singular value divided by the minimum singular value

        Examples

        @@ -2654,7 +2654,7 @@

        Matrix Base Classes
        -conjugate()[source]
        +conjugate()[source]

        Return the by-element conjugation.

        Examples

        >>> from sympy import SparseMatrix, I
        @@ -2686,7 +2686,7 @@ 

        Matrix Base Classes
        -connected_components()[source]
        +connected_components()[source]

        Returns the list of connected vertices of the graph when a square matrix is viewed as a weighted graph.

        Examples

        @@ -2714,7 +2714,7 @@

        Matrix Base Classes
        -connected_components_decomposition()[source]
        +connected_components_decomposition()[source]

        Decomposes a square matrix into block diagonal form only using the permutations.

        @@ -2783,7 +2783,7 @@

        Matrix Base Classes
        -copy()[source]
        +copy()[source]

        Returns the copy of a matrix.

        Examples

        >>> from sympy import Matrix
        @@ -2798,7 +2798,7 @@ 

        Matrix Base Classes
        -cramer_solve(rhs, det_method='laplace')[source]
        +cramer_solve(rhs, det_method='laplace')[source]

        Solves system of linear equations using Cramer’s rule.

        This method is relatively inefficient compared to other methods. However it only uses a single division, assuming a division-free determinant @@ -2852,7 +2852,7 @@

        Matrix Base Classes
        -cross(b)[source]
        +cross(b)[source]

        Return the cross product of self and b relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as self will be returned. If b has the same @@ -2871,7 +2871,7 @@

        Matrix Base Classes
        -det(method='bareiss', iszerofunc=None)[source]
        +det(method='bareiss', iszerofunc=None)[source]

        Computes the determinant of a matrix if M is a concrete matrix object otherwise return an expressions Determinant(M) if M is a MatrixSymbol or other expression.

        @@ -2959,7 +2959,7 @@

        Matrix Base Classes
        -det_LU_decomposition()[source]
        +det_LU_decomposition()[source]

        Compute matrix determinant using LU decomposition.

        Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method @@ -2985,7 +2985,7 @@

        Matrix Base Classes**kwargs,

        -)[source] +)[source]

        Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the “direct sum” of the matrices).

        @@ -3069,7 +3069,7 @@

        Matrix Base Classes
        -diagonal(k=0)[source]
        +diagonal(k=0)[source]

        Returns the kth diagonal of self. The main diagonal corresponds to \(k=0\); diagonals above and below correspond to \(k > 0\) and \(k < 0\), respectively. The values of \(self[i, j]\) @@ -3104,7 +3104,7 @@

        Matrix Base Classes
        -diagonal_solve(rhs)[source]
        +diagonal_solve(rhs)[source]

        Solves Ax = B efficiently, where A is a diagonal Matrix, with non-zero diagonal entries.

        Examples

        @@ -3131,7 +3131,7 @@

        Matrix Base Classesnormalize=False,

        -)[source] +)[source]

        Return (P, D), where D is diagonal and

        D = P^-1 * M * P

        @@ -3181,7 +3181,7 @@

        Matrix Base Classes
        -diff(*args, evaluate=True, **kwargs)[source]
        +diff(*args, evaluate=True, **kwargs)[source]

        Calculate the derivative of each element in the matrix.

        Examples

        >>> from sympy import Matrix
        @@ -3209,7 +3209,7 @@ 

        Matrix Base Classesconjugate_convention=None,

        -)[source] +)[source]

        Return the dot or inner product of two vectors of equal length. Here self must be a Matrix of size 1 x n or n x 1, and b must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. @@ -3259,7 +3259,7 @@

        Matrix Base Classes
        -dual()[source]
        +dual()[source]

        Returns the dual of a matrix.

        A dual of a matrix is:

        (1/2)*levicivita(i, j, k, l)*M(k, l) summed over indices \(k\) and \(l\)

        @@ -3280,7 +3280,7 @@

        Matrix Base Classeswith_pivots=False,

        -)[source] +)[source]

        Returns a matrix row-equivalent to M that is in echelon form. Note that echelon form of a matrix is not unique, however, properties like the row space and the null space are preserved.

        @@ -3304,7 +3304,7 @@

        Matrix Base Classes**flags,

        -)[source] +)[source]

        Compute eigenvalues of the matrix.

        Parameters:
        @@ -3388,7 +3388,7 @@

        Matrix Base Classes**flags,

        -)[source] +)[source]

        Compute eigenvectors of the matrix.

        Parameters:
        @@ -3474,7 +3474,7 @@

        Matrix Base Classescol2=None,

        -)[source] +)[source]

        Performs the elementary column operation \(op\).

        \(op\) may be one of

        @@ -3510,7 +3510,7 @@

        Matrix Base Classesrow2=None,

        -)[source] +)[source]

        Performs the elementary row operation \(op\).

        \(op\) may be one of

        @@ -3548,13 +3548,13 @@

        Matrix Base Classesverbose=False,

        -)[source] +)[source]

        Apply evalf() to each element of self.

        -exp()[source]
        +exp()[source]

        Return the exponential of a square matrix.

        Examples

        >>> from sympy import Symbol, Matrix
        @@ -3586,7 +3586,7 @@ 

        Matrix Base Classes**hints,

        -)[source] +)[source]

        Apply core.function.expand to each entry of the matrix.

        Examples

        >>> from sympy.abc import x
        @@ -3601,7 +3601,7 @@ 

        Matrix Base Classes
        -extract(rowsList, colsList)[source]
        +extract(rowsList, colsList)[source]

        Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range \(-n \le i < n\) where \(n\) is the number of rows or columns.

        @@ -3650,7 +3650,7 @@

        Matrix Base Classes
        -classmethod eye(rows, cols=None, **kwargs)[source]
        +classmethod eye(rows, cols=None, **kwargs)[source]

        Returns an identity matrix.

        Parameters:
        @@ -3664,7 +3664,7 @@

        Matrix Base Classes
        -flat()[source]
        +flat()[source]

        Returns a flat list of all elements in the matrix.

        Examples

        >>> from sympy import Matrix
        @@ -3694,7 +3694,7 @@ 

        Matrix Base Classes
        -classmethod from_dok(rows, cols, dok)[source]
        +classmethod from_dok(rows, cols, dok)[source]

        Create a matrix from a dictionary of keys.

        Examples

        >>> from sympy import Matrix
        @@ -3710,7 +3710,7 @@ 

        Matrix Base Classes
        -gauss_jordan_solve(B, freevar=False)[source]
        +gauss_jordan_solve(B, freevar=False)[source]

        Solves Ax = B using Gauss Jordan elimination.

        There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will @@ -3836,7 +3836,7 @@

        Matrix Base Classes
        -get_diag_blocks()[source]
        +get_diag_blocks()[source]

        Obtains the square sub-matrices on the main diagonal of a square matrix.

        Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal @@ -3860,7 +3860,7 @@

        Matrix Base Classes
        -has(*patterns)[source]
        +has(*patterns)[source]

        Test whether any subexpression matches any of the patterns.

        Examples

        >>> from sympy import Matrix, SparseMatrix, Float
        @@ -3885,7 +3885,7 @@ 

        Matrix Base Classes
        -hat()[source]
        +hat()[source]

        Return the skew-symmetric matrix representing the cross product, so that self.hat() * b is equivalent to self.cross(b).

        Examples

        @@ -3924,7 +3924,7 @@

        Matrix Base Classes
        -classmethod hstack(*args)[source]
        +classmethod hstack(*args)[source]

        Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join).

        Examples

        @@ -3939,7 +3939,7 @@

        Matrix Base Classes
        -integrate(*args, **kwargs)[source]
        +integrate(*args, **kwargs)[source]

        Integrate each element of the matrix. args will be passed to the integrate function.

        Examples

        @@ -3972,7 +3972,7 @@

        Matrix Base Classestry_block_diag=False,

        -)[source] +)[source]

        Return the inverse of a matrix using the method indicated. The default is DM if a suitable domain is found or otherwise GE for dense matrices LDL for sparse matrices.

        @@ -4061,7 +4061,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using the adjugate matrix and a determinant.

        See also

        @@ -4077,7 +4077,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using BLOCKWISE inversion.

        See also

        @@ -4093,7 +4093,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using cholesky decomposition.

        See also

        @@ -4109,7 +4109,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using Gaussian elimination.

        See also

        @@ -4125,7 +4125,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using LDL decomposition.

        See also

        @@ -4141,7 +4141,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using LU decomposition.

        See also

        @@ -4157,7 +4157,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Calculates the inverse using QR decomposition.

        See also

        @@ -4167,7 +4167,7 @@

        Matrix Base Classes
        -classmethod irregular(ntop, *matrices, **kwargs)[source]
        +classmethod irregular(ntop, *matrices, **kwargs)[source]

        Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the @@ -4187,7 +4187,7 @@

        Matrix Base Classes
        -is_anti_symmetric(simplify=True)[source]
        +is_anti_symmetric(simplify=True)[source]

        Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i].

        When simplify=True (default), the sum M[i, j] + M[j, i] is @@ -4251,7 +4251,7 @@

        Matrix Base Classes
        -is_diagonal()[source]
        +is_diagonal()[source]

        Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero.

        Examples

        @@ -4299,7 +4299,7 @@

        Matrix Base Classes**kwargs,

        -)[source] +)[source]

        Returns True if a matrix is diagonalizable.

        Parameters:
        @@ -4960,7 +4960,7 @@

        Matrix Base Classes
        -is_nilpotent()[source]
        +is_nilpotent()[source]

        Checks if a matrix is nilpotent.

        A matrix B is nilpotent if for some integer k, B**k is a zero matrix.

        @@ -5378,7 +5378,7 @@

        Matrix Base Classes
        -is_symbolic()[source]
        +is_symbolic()[source]

        Checks if any elements contain Symbols.

        Examples

        >>> from sympy import Matrix
        @@ -5392,7 +5392,7 @@ 

        Matrix Base Classes
        -is_symmetric(simplify=True)[source]
        +is_symmetric(simplify=True)[source]

        Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose.

        By default, simplifications occur before testing symmetry. @@ -5581,7 +5581,7 @@

        Matrix Base Classes
        -iter_items()[source]
        +iter_items()[source]

        Iterate over indices and values of nonzero items.

        Examples

        >>> from sympy import Matrix
        @@ -5598,7 +5598,7 @@ 

        Matrix Base Classes
        -iter_values()[source]
        +iter_values()[source]

        Iterate over non-zero values of self.

        Examples

        >>> from sympy import Matrix
        @@ -5615,7 +5615,7 @@ 

        Matrix Base Classes
        -jacobian(X)[source]
        +jacobian(X)[source]

        Calculates the Jacobian matrix (derivative of a vector-valued function).

        Parameters:
        @@ -5660,7 +5660,7 @@

        Matrix Base Classes**kwargs,

        -)[source] +)[source]

        Returns a Jordan block

        Parameters:
        @@ -5752,7 +5752,7 @@

        Matrix Base Classes**kwargs,

        -)[source] +)[source]

        Return \((P, J)\) where \(J\) is a Jordan block matrix and \(P\) is a matrix such that \(M = P J P^{-1}\)

        @@ -5790,7 +5790,7 @@

        Matrix Base Classes
        -key2bounds(keys)[source]
        +key2bounds(keys)[source]

        Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self’s range.

        @@ -5802,7 +5802,7 @@

        Matrix Base Classes
        -key2ij(key)[source]
        +key2ij(key)[source]

        Converts key into canonical form, converting integers or indexable items into valid integers for self’s range or returning slices unchanged.

        @@ -5814,7 +5814,7 @@

        Matrix Base Classes
        -left_eigenvects(**flags)[source]
        +left_eigenvects(**flags)[source]

        Returns left eigenvectors and eigenvalues.

        This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for @@ -5843,7 +5843,7 @@

        Matrix Base Classes
        -limit(*args)[source]
        +limit(*args)[source]

        Calculate the limit of each element in the matrix. args will be passed to the limit function.

        Examples

        @@ -5864,7 +5864,7 @@

        Matrix Base Classes
        -log(simplify=<function cancel>)[source]
        +log(simplify=<function cancel>)[source]

        Return the logarithm of a square matrix.

        Parameters:
        @@ -5921,7 +5921,7 @@

        Matrix Base Classes
        -lower_triangular(k=0)[source]
        +lower_triangular(k=0)[source]

        Return the elements on and below the kth diagonal of a matrix. If k is not specified then simply returns lower-triangular portion of a matrix

        @@ -5956,7 +5956,7 @@

        Matrix Base Classes
        -lower_triangular_solve(rhs)[source]
        +lower_triangular_solve(rhs)[source]

        Solves Ax = B, where A is a lower triangular matrix.

        See also

        @@ -5966,7 +5966,7 @@

        Matrix Base Classes
        -minor(i, j, method='berkowitz')[source]
        +minor(i, j, method='berkowitz')[source]

        Return the (i,j) minor of M. That is, return the determinant of the matrix obtained by deleting the \(i`th row and `j`th column from ``M`\).

        @@ -5998,7 +5998,7 @@

        Matrix Base Classes
        -minor_submatrix(i, j)[source]
        +minor_submatrix(i, j)[source]

        Return the submatrix obtained by removing the \(i`th row and `j`th column from ``M`\) (works with Pythonic negative indices).

        @@ -6026,7 +6026,7 @@

        Matrix Base Classes
        -multiply(other, dotprodsimp=None)[source]
        +multiply(other, dotprodsimp=None)[source]

        Same as __mul__() but with optional simplification.

        Parameters:
        @@ -6042,7 +6042,7 @@

        Matrix Base Classes
        -multiply_elementwise(other)[source]
        +multiply_elementwise(other)[source]

        Return the Hadamard product (elementwise product) of A and B

        Examples

        >>> from sympy import Matrix
        @@ -6062,13 +6062,13 @@ 

        Matrix Base Classes
        -n(*args, **kwargs)[source]
        +n(*args, **kwargs)[source]

        Apply evalf() to each element of self.

        -norm(ord=None)[source]
        +norm(ord=None)[source]

        Return the Norm of a Matrix or Vector.

        In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter

        @@ -6165,7 +6165,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Return the normalized version of self.

        Parameters:
        @@ -6206,7 +6206,7 @@

        Matrix Base Classesiszerofunc=<function _iszero>,

        -)[source] +)[source]

        Returns list of vectors (Matrix objects) that span nullspace of M

        Examples

        >>> from sympy import Matrix
        @@ -6231,7 +6231,7 @@ 

        Matrix Base Classes
        -classmethod ones(rows, cols=None, **kwargs)[source]
        +classmethod ones(rows, cols=None, **kwargs)[source]

        Returns a matrix of ones.

        Parameters:
        @@ -6245,7 +6245,7 @@

        Matrix Base Classes
        -classmethod orthogonalize(*vecs, **kwargs)[source]
        +classmethod orthogonalize(*vecs, **kwargs)[source]

        Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in vecs.

        @@ -6299,7 +6299,7 @@

        Matrix Base Classes
        -per()[source]
        +per()[source]

        Returns the permanent of a matrix. Unlike determinant, permanent is defined for both square and non-square matrices.

        For an m x n matrix, with m less than or equal to n, @@ -6352,7 +6352,7 @@

        Matrix Base Classesdirection='forward',

        -)[source] +)[source]

        Permute the rows or columns of a matrix by the given list of swaps.

        @@ -6446,13 +6446,13 @@

        Matrix Base Classes
        -permuteBkwd(perm)[source]
        +permuteBkwd(perm)[source]

        Permute the rows of the matrix with the given permutation in reverse.

        -permuteFwd(perm)[source]
        +permuteFwd(perm)[source]

        Permute the rows of the matrix with the given permutation.

        @@ -6465,7 +6465,7 @@

        Matrix Base Classesdirection='forward',

        -)[source] +)[source]

        Alias for self.permute(swaps, orientation='cols', direction=direction)

        @@ -6483,7 +6483,7 @@

        Matrix Base Classesdirection='forward',

        -)[source] +)[source]

        Alias for self.permute(swaps, orientation='rows', direction=direction)

        @@ -6494,7 +6494,7 @@

        Matrix Base Classes
        -pinv(method='RD')[source]
        +pinv(method='RD')[source]

        Calculate the Moore-Penrose pseudoinverse of the matrix.

        The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the @@ -6545,7 +6545,7 @@

        Matrix Base Classes
        -pinv_solve(B, arbitrary_matrix=None)[source]
        +pinv_solve(B, arbitrary_matrix=None)[source]

        Solve Ax = B using the Moore-Penrose pseudoinverse.

        There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will @@ -6616,7 +6616,7 @@

        Matrix Base Classes
        -pow(exp, method=None)[source]
        +pow(exp, method=None)[source]

        Return self**exp a scalar or symbol.

        Parameters:
        @@ -6638,7 +6638,7 @@

        Matrix Base Classes
        -print_nonzero(symb='X')[source]
        +print_nonzero(symb='X')[source]

        Shows location of non-zero entries for fast shape lookup.

        Examples

        >>> from sympy import Matrix, eye
        @@ -6662,7 +6662,7 @@ 

        Matrix Base Classes
        -project(v)[source]
        +project(v)[source]

        Return the projection of self onto the line containing v.

        Examples

        >>> from sympy import Matrix, S, sqrt
        @@ -6685,7 +6685,7 @@ 

        Matrix Base Classessimplify=False,

        -)[source] +)[source]

        Returns the rank of a matrix.

        Examples

        >>> from sympy import Matrix
        @@ -6709,7 +6709,7 @@ 

        Matrix Base Classessimplify=False,

        -)[source] +)[source]

        Returns a pair of matrices (\(C\), \(F\)) with matching rank such that \(A = C F\).

        @@ -6797,7 +6797,7 @@

        Matrix Base Classes
        -refine(assumptions=True)[source]
        +refine(assumptions=True)[source]

        Apply refine to each element of the matrix.

        Examples

        >>> from sympy import Symbol, Matrix, Abs, sqrt, Q
        @@ -6826,7 +6826,7 @@ 

        Matrix Base Classesexact=None,

        -)[source] +)[source]

        Replaces Function F in Matrix entries with Function G.

        Examples

        >>> from sympy import symbols, Function, Matrix
        @@ -6846,7 +6846,7 @@ 

        Matrix Base Classes
        -reshape(rows, cols)[source]
        +reshape(rows, cols)[source]

        Reshape the matrix. Total number of elements must remain the same.

        Examples

        >>> from sympy import Matrix
        @@ -6868,7 +6868,7 @@ 

        Matrix Base Classes
        -rmultiply(other, dotprodsimp=None)[source]
        +rmultiply(other, dotprodsimp=None)[source]

        Same as __rmul__() but with optional simplification.

        Parameters:
        @@ -6884,7 +6884,7 @@

        Matrix Base Classes
        -rot90(k=1)[source]
        +rot90(k=1)[source]

        Rotates Matrix by 90 degrees

        Parameters:
        @@ -6922,7 +6922,7 @@

        Matrix Base Classes
        -row(i)[source]
        +row(i)[source]

        Elementary row selector.

        Examples

        >>> from sympy import eye
        @@ -6938,13 +6938,13 @@ 

        Matrix Base Classes
        -row_del(row)[source]
        +row_del(row)[source]

        Delete the specified row.

        -row_insert(pos, other)[source]
        +row_insert(pos, other)[source]

        Insert one or more rows at the given row position.

        Examples

        >>> from sympy import zeros, ones
        @@ -6966,7 +6966,7 @@ 

        Matrix Base Classes
        -row_join(other)[source]
        +row_join(other)[source]

        Concatenates two matrices along self’s last and rhs’s first column

        Examples

        >>> from sympy import zeros, ones
        @@ -6987,7 +6987,7 @@ 

        Matrix Base Classes
        -rowspace(simplify=False)[source]
        +rowspace(simplify=False)[source]

        Returns a list of vectors that span the row space of M.

        Examples

        >>> from sympy import Matrix
        @@ -7014,7 +7014,7 @@ 

        Matrix Base Classesnormalize_last=True,

        -)[source] +)[source]

        Return reduced row-echelon form of matrix and indices of pivot vars.

        @@ -7090,7 +7090,7 @@

        Matrix Base Classes
        -rref_rhs(rhs)[source]
        +rref_rhs(rhs)[source]

        Return reduced row-echelon form of matrix, matrix showing rhs after reduction steps. rhs must have the same number of rows as self.

        @@ -7126,7 +7126,7 @@

        Matrix Base Classes
        -simplify(**kwargs)[source]
        +simplify(**kwargs)[source]

        Apply simplify to each element of the matrix.

        Examples

        >>> from sympy.abc import x, y
        @@ -7141,7 +7141,7 @@ 

        Matrix Base Classes
        -singular_value_decomposition()[source]
        +singular_value_decomposition()[source]

        Returns a Condensed Singular Value decomposition.

        Explanation

        A Singular Value decomposition is a decomposition in the form \(A = U \Sigma V^H\) @@ -7312,7 +7312,7 @@

        Matrix Base Classes
        -singular_values()[source]
        +singular_values()[source]

        Compute the singular values of a Matrix

        Examples

        >>> from sympy import Matrix, Symbol
        @@ -7330,7 +7330,7 @@ 

        Matrix Base Classes
        -solve(rhs, method='GJ')[source]
        +solve(rhs, method='GJ')[source]

        Solves linear equation where the unique solution exists.

        Parameters:
        @@ -7374,7 +7374,7 @@

        Matrix Base Classes
        -solve_least_squares(rhs, method='CH')[source]
        +solve_least_squares(rhs, method='CH')[source]

        Return the least-square fit to the data.

        Parameters:
        @@ -7449,7 +7449,7 @@

        Matrix Base Classes
        -strongly_connected_components()[source]
        +strongly_connected_components()[source]

        Returns the list of strongly connected vertices of the graph when a square matrix is viewed as a weighted graph.

        Examples

        @@ -7478,7 +7478,7 @@

        Matrix Base Classeslower=True,

        -)[source] +)[source]

        Decomposes a square matrix into block triangular form only using the permutations.

        @@ -7579,7 +7579,7 @@

        Matrix Base Classes
        -subs(*args, **kwargs)[source]
        +subs(*args, **kwargs)[source]

        Return a new matrix with subs applied to each entry.

        Examples

        >>> from sympy.abc import x, y
        @@ -7607,7 +7607,7 @@ 

        Matrix Base Classesalign='right',

        -)[source] +)[source]

        String form of Matrix as a table.

        printer is the printer to use for on the elements (generally something like StrPrinter())

        @@ -7649,7 +7649,7 @@

        Matrix Base Classes
        -todod()[source]
        +todod()[source]

        Returns matrix as dict of dicts containing non-zero elements of the Matrix

        Examples

        >>> from sympy import Matrix
        @@ -7666,7 +7666,7 @@ 

        Matrix Base Classes
        -todok()[source]
        +todok()[source]

        Return the matrix as dictionary of keys.

        Examples

        >>> from sympy import Matrix
        @@ -7679,7 +7679,7 @@ 

        Matrix Base Classes
        -tolist()[source]
        +tolist()[source]

        Return the Matrix as a nested Python list.

        Examples

        >>> from sympy import Matrix, ones
        @@ -7705,7 +7705,7 @@ 

        Matrix Base Classes
        -trace()[source]
        +trace()[source]

        Returns the trace of a square matrix i.e. the sum of the diagonal elements.

        Examples

        @@ -7719,7 +7719,7 @@

        Matrix Base Classes
        -transpose()[source]
        +transpose()[source]

        Returns the transpose of the matrix.

        Examples

        >>> from sympy import Matrix
        @@ -7755,7 +7755,7 @@ 

        Matrix Base Classes
        -upper_hessenberg_decomposition()[source]
        +upper_hessenberg_decomposition()[source]

        Converts a matrix into Hessenberg matrix H.

        Returns 2 matrices H, P s.t. \(P H P^{T} = A\), where H is an upper hessenberg matrix @@ -7793,7 +7793,7 @@

        Matrix Base Classes
        -upper_triangular(k=0)[source]
        +upper_triangular(k=0)[source]

        Return the elements on and above the kth diagonal of a matrix. If k is not specified then simply returns upper-triangular portion of a matrix

        @@ -7828,7 +7828,7 @@

        Matrix Base Classes
        -upper_triangular_solve(rhs)[source]
        +upper_triangular_solve(rhs)[source]

        Solves Ax = B, where A is an upper triangular matrix.

        See also

        @@ -7838,7 +7838,7 @@

        Matrix Base Classes
        -values()[source]
        +values()[source]

        Return non-zero values of self.

        Examples

        >>> from sympy import Matrix
        @@ -7855,7 +7855,7 @@ 

        Matrix Base Classes
        -vec()[source]
        +vec()[source]

        Return the Matrix converted into a one column matrix by stacking columns

        Examples

        >>> from sympy import Matrix
        @@ -7887,7 +7887,7 @@ 

        Matrix Base Classescheck_symmetry=True,

        -)[source] +)[source]

        Reshapes the matrix into a column vector by stacking the elements in the lower triangle.

        @@ -7930,7 +7930,7 @@

        Matrix Base Classes
        -vee()[source]
        +vee()[source]

        Return a 3x1 vector from a skew-symmetric matrix representing the cross product, so that self * b is equivalent to self.vee().cross(b).

        Examples

        @@ -7993,7 +7993,7 @@

        Matrix Base Classes
        -classmethod vstack(*args)[source]
        +classmethod vstack(*args)[source]

        Return a matrix formed by joining args vertically (i.e. by repeated application of col_join).

        Examples

        @@ -8010,7 +8010,7 @@

        Matrix Base Classes
        -classmethod wilkinson(n, **kwargs)[source]
        +classmethod wilkinson(n, **kwargs)[source]

        Returns two square Wilkinson Matrix of size 2*n + 1 \(W_{2n + 1}^-, W_{2n + 1}^+ =\) Wilkinson(n)

        Examples

        @@ -8056,7 +8056,7 @@

        Matrix Base Classes
        -xreplace(rule)[source]
        +xreplace(rule)[source]

        Return a new matrix with xreplace applied to each entry.

        Examples

        >>> from sympy.abc import x, y
        @@ -8073,7 +8073,7 @@ 

        Matrix Base Classes
        -classmethod zeros(rows, cols=None, **kwargs)[source]
        +classmethod zeros(rows, cols=None, **kwargs)[source]

        Returns a matrix of zeros.

        Parameters:
        @@ -8092,18 +8092,18 @@

        Matrix Base Classes

        -class sympy.matrices.matrixbase.MatrixError[source]
        +class sympy.matrices.matrixbase.MatrixError[source]
        -class sympy.matrices.matrixbase.ShapeError[source]
        +class sympy.matrices.matrixbase.ShapeError[source]

        Wrong matrix shape

        -class sympy.matrices.matrixbase.NonSquareMatrixError[source]
        +class sympy.matrices.matrixbase.NonSquareMatrixError[source]
        @@ -8111,7 +8111,7 @@

        Matrix Exceptions

        -sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]
        +sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]

        Return the Hadamard product (elementwise product) of A and B

        >>> from sympy import Matrix, matrix_multiply_elementwise
         >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
        @@ -8130,7 +8130,7 @@ 

        Matrix Functions
        -sympy.matrices.dense.zeros(*args, **kwargs)[source]
        +sympy.matrices.dense.zeros(*args, **kwargs)[source]

        Returns a matrix of zeros with rows rows and cols columns; if cols is omitted a square matrix will be returned.

        @@ -8141,7 +8141,7 @@

        Matrix Functions
        -sympy.matrices.dense.ones(*args, **kwargs)[source]
        +sympy.matrices.dense.ones(*args, **kwargs)[source]

        Returns a matrix of ones with rows rows and cols columns; if cols is omitted a square matrix will be returned.

        @@ -8152,7 +8152,7 @@

        Matrix Functions
        -sympy.matrices.dense.eye(*args, **kwargs)[source]
        +sympy.matrices.dense.eye(*args, **kwargs)[source]

        Create square identity matrix n x n

        See also

        @@ -8162,7 +8162,7 @@

        Matrix Functions
        -sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)[source]
        +sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)[source]

        Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix.

        @@ -8196,7 +8196,7 @@

        Matrix Functions
        -sympy.matrices.dense.jordan_cell(eigenval, n)[source]
        +sympy.matrices.dense.jordan_cell(eigenval, n)[source]

        Create a Jordan block:

        Examples

        >>> from sympy import jordan_cell
        @@ -8213,7 +8213,7 @@ 

        Matrix Functions
        -sympy.matrices.dense.hessian(f, varlist, constraints=())[source]
        +sympy.matrices.dense.hessian(f, varlist, constraints=())[source]

        Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.

        @@ -8258,7 +8258,7 @@

        Matrix Functions
        -sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]
        +sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]

        Apply the Gram-Schmidt process to a set of vectors.

        Parameters:
        @@ -8298,7 +8298,7 @@

        Matrix Functions
        -sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]
        +sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]

        Compute Wronskian for [] of functions

                         | f1       f2        ...   fn      |
                          | f1'      f2'       ...   fn'     |
        @@ -8318,7 +8318,7 @@ 

        Matrix Functions
        -sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]
        +sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]

        Given linear difference operator L of order ‘k’ and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of ‘k’ sequences: a(n), b(n), … z(n).

        @@ -8362,7 +8362,7 @@

        Matrix Functionsprng=None,

        -)[source] +)[source]

        Create random matrix with dimensions r x c. If c is omitted the matrix will be square. If symmetric is True the matrix must be square. If percent is less than 100 then only approximately the given @@ -8414,7 +8414,7 @@

        Matrix Functions

        -sympy.matrices.dense.rot_givens(i, j, theta, dim=3)[source]
        +sympy.matrices.dense.rot_givens(i, j, theta, dim=3)[source]

        Returns a a Givens rotation matrix, a a rotation in the plane spanned by two coordinates axes.

        @@ -8517,7 +8517,7 @@

        Rotation matrices
        -sympy.matrices.dense.rot_axis1(theta)[source]
        +sympy.matrices.dense.rot_axis1(theta)[source]

        Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

        Explanation

        @@ -8569,7 +8569,7 @@

        Rotation matrices
        -sympy.matrices.dense.rot_axis2(theta)[source]
        +sympy.matrices.dense.rot_axis2(theta)[source]

        Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

        Explanation

        @@ -8621,7 +8621,7 @@

        Rotation matrices
        -sympy.matrices.dense.rot_axis3(theta)[source]
        +sympy.matrices.dense.rot_axis3(theta)[source]

        Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

        Explanation

        @@ -8673,7 +8673,7 @@

        Rotation matrices
        -sympy.matrices.dense.rot_ccw_axis1(theta)[source]
        +sympy.matrices.dense.rot_ccw_axis1(theta)[source]

        Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

        Explanation

        @@ -8725,7 +8725,7 @@

        Rotation matrices
        -sympy.matrices.dense.rot_ccw_axis2(theta)[source]
        +sympy.matrices.dense.rot_ccw_axis2(theta)[source]

        Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

        Explanation

        @@ -8777,7 +8777,7 @@

        Rotation matrices
        -sympy.matrices.dense.rot_ccw_axis3(theta)[source]
        +sympy.matrices.dense.rot_ccw_axis3(theta)[source]

        Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

        Explanation

        @@ -8832,7 +8832,7 @@

        Rotation matrices

        -sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]
        +sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]

        Converts Python list of SymPy expressions to a NumPy array.

        See also

        @@ -8842,7 +8842,7 @@

        Numpy Utility Functions
        -sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]
        +sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]

        Converts SymPy’s matrix to a NumPy array.

        See also

        @@ -8852,7 +8852,7 @@

        Numpy Utility Functions
        -sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]
        +sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]

        Create a numpy ndarray of symbols (as an object array).

        The created symbols are named prefix_i1_i2_… You should thus provide a non-empty prefix if you want your symbols to be unique for different output @@ -8921,7 +8921,7 @@

        Numpy Utility Functions
        -sympy.matrices.matrixbase.a2idx(j, n=None)[source]
        +sympy.matrices.matrixbase.a2idx(j, n=None)[source]

        Return integer after making positive and validating against n.

        diff --git a/dev/modules/matrices/normalforms.html b/dev/modules/matrices/normalforms.html index 580a8d72cd6..e939963067f 100644 --- a/dev/modules/matrices/normalforms.html +++ b/dev/modules/matrices/normalforms.html @@ -805,7 +805,7 @@
        Documentation Version

        Matrix Normal Forms

        -sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]
        +sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]

        Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.

        Examples

        @@ -829,7 +829,7 @@
        Documentation Version
        check_rank=False,
        -)[source] +)[source]

        Compute the Hermite Normal Form of a Matrix A of integers.

        Parameters:
        diff --git a/dev/modules/matrices/sparse.html b/dev/modules/matrices/sparse.html index 6f389e54573..eaa0daa7dbb 100644 --- a/dev/modules/matrices/sparse.html +++ b/dev/modules/matrices/sparse.html @@ -807,13 +807,13 @@
        Documentation Version

        SparseMatrix Class Reference

        -sympy.matrices.sparse.SparseMatrix[source]
        +sympy.matrices.sparse.SparseMatrix[source]

        alias of MutableSparseMatrix

        -class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]
        +class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]
        @@ -821,7 +821,7 @@

        SparseMatrix Class Reference

        -class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]
        +class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]

        Create an immutable version of a sparse matrix.

        Examples

        >>> from sympy import eye, ImmutableSparseMatrix
        diff --git a/dev/modules/matrices/sparsetools.html b/dev/modules/matrices/sparsetools.html
        index 65cc29445cd..308228a5709 100644
        --- a/dev/modules/matrices/sparsetools.html
        +++ b/dev/modules/matrices/sparsetools.html
        @@ -805,7 +805,7 @@ 
        Documentation Version

        Sparse Tools

        -sympy.matrices.sparsetools._doktocsr()[source]
        +sympy.matrices.sparsetools._doktocsr()[source]

        Converts a sparse matrix to Compressed Sparse Row (CSR) format.

        Parameters:
        @@ -832,7 +832,7 @@
        Documentation Version
        -sympy.matrices.sparsetools._csrtodok()[source]
        +sympy.matrices.sparsetools._csrtodok()[source]

        Converts a CSR representation to DOK representation.

        Examples

        >>> from sympy.matrices.sparsetools import _csrtodok
        @@ -848,7 +848,7 @@ 
        Documentation Version
        -sympy.matrices.sparsetools.banded(**kwargs)[source]
        +sympy.matrices.sparsetools.banded(**kwargs)[source]

        Returns a SparseMatrix from the given dictionary describing the diagonals of the matrix. The keys are positive for upper diagonals and negative for those below the main diagonal. The diff --git a/dev/modules/ntheory.html b/dev/modules/ntheory.html index a433d54303a..7d41341866b 100644 --- a/dev/modules/ntheory.html +++ b/dev/modules/ntheory.html @@ -807,7 +807,7 @@

        Documentation Version

        Ntheory Class Reference

        -class sympy.ntheory.generate.Sieve(sieve_interval=1000000)[source]
        +class sympy.ntheory.generate.Sieve(sieve_interval=1000000)[source]

        A list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically @@ -824,7 +824,7 @@

        Ntheory Class Reference
        -extend(n)[source]
        +extend(n)[source]

        Grow the sieve to cover all primes <= n.

        Examples

        >>> from sympy import sieve
        @@ -838,7 +838,7 @@ 

        Ntheory Class Reference
        -extend_to_no(i)[source]
        +extend_to_no(i)[source]

        Extend to include the ith prime number.

        Parameters:
        @@ -860,7 +860,7 @@

        Ntheory Class Reference
        -mobiusrange(a, b)[source]
        +mobiusrange(a, b)[source]

        Generate all mobius numbers for the range [a, b).

        Parameters:
        @@ -884,7 +884,7 @@

        Ntheory Class Reference
        -primerange(a, b=None)[source]
        +primerange(a, b=None)[source]

        Generate all prime numbers in the range [2, a) or [a, b).

        Examples

        >>> from sympy import sieve, prime
        @@ -909,7 +909,7 @@ 

        Ntheory Class Reference
        -search(n)[source]
        +search(n)[source]

        Return the indices i, j of the primes that bound n.

        If n is prime then i == j.

        Although n can be an expression, if ceiling cannot convert @@ -926,7 +926,7 @@

        Ntheory Class Reference
        -totientrange(a, b)[source]
        +totientrange(a, b)[source]

        Generate all totient numbers for the range [a, b).

        Examples

        >>> from sympy import sieve
        @@ -940,7 +940,7 @@ 

        Ntheory Class Reference
        -class sympy.ntheory.factor_.FactorCache(maxsize: int | None = None)[source]
        +class sympy.ntheory.factor_.FactorCache(maxsize: int | None = None)[source]

        Provides a cache for prime factors. factor_cache is pre-prepared as an instance of FactorCache, and factorint internally references it to speed up @@ -972,13 +972,13 @@

        Ntheory Class Referencefactorint.

        -cache_clear() None[source]
        +cache_clear() None[source]

        Clear the cache

        -get(n: int, default=None)[source]
        +get(n: int, default=None)[source]

        Return the prime factor of n. If it does not exist in the cache, return the value of default.

        @@ -996,7 +996,7 @@

        Ntheory Class Reference

        Ntheory Functions Reference

        -sympy.ntheory.generate.prime(nth)[source]
        +sympy.ntheory.generate.prime(nth)[source]

        Return the nth prime number, where primes are indexed starting from 1: prime(1) = 2, prime(2) = 3, etc.

        @@ -1053,7 +1053,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.primepi(n)[source]
        +sympy.ntheory.generate.primepi(n)[source]

        Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n.

        @@ -1129,7 +1129,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.nextprime(n, ith=1)[source]
        +sympy.ntheory.generate.nextprime(n, ith=1)[source]

        Return the ith prime greater than n.

        Parameters:
        @@ -1170,7 +1170,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.prevprime(n)[source]
        +sympy.ntheory.generate.prevprime(n)[source]

        Return the largest prime smaller than n.

        Notes

        Potential primes are located at 6*j +/- 1. This @@ -1193,7 +1193,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.primerange(a, b=None)[source]
        +sympy.ntheory.generate.primerange(a, b=None)[source]

        Generate a list of all prime numbers in the range [2, a), or [a, b).

        If the range exists in the default sieve, the values will @@ -1290,7 +1290,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.randprime(a, b)[source]
        +sympy.ntheory.generate.randprime(a, b)[source]

        Return a random prime number in the range [a, b).

        Bertrand’s postulate assures that randprime(a, 2*a) will always succeed for a > 1.

        @@ -1325,7 +1325,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.primorial(n, nth=True)[source]
        +sympy.ntheory.generate.primorial(n, nth=True)[source]

        Returns the product of the first n primes (default) or the primes less than or equal to n (when nth=False).

        Examples

        @@ -1376,7 +1376,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)[source]
        +sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)[source]

        For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if values is True then the @@ -1429,7 +1429,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.composite(nth)[source]
        +sympy.ntheory.generate.composite(nth)[source]

        Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc….

        Examples

        @@ -1461,7 +1461,7 @@

        Ntheory Class Reference
        -sympy.ntheory.generate.compositepi(n)[source]
        +sympy.ntheory.generate.compositepi(n)[source]

        Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1.

        Examples

        @@ -1491,7 +1491,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.smoothness(n)[source]
        +sympy.ntheory.factor_.smoothness(n)[source]

        Return the B-smooth and B-power smooth values of n.

        The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity.

        @@ -1513,7 +1513,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.smoothness_p(n, m=-1, power=0, visual=None)[source]
        +sympy.ntheory.factor_.smoothness_p(n, m=-1, power=0, visual=None)[source]

        Return a list of [m, (p, (M, sm(p + m), psm(p + m)))…] where:

          @@ -1606,7 +1606,7 @@

          Ntheory Class Reference
          -sympy.ntheory.factor_.multiplicity(p, n)[source]
          +sympy.ntheory.factor_.multiplicity(p, n)[source]

          Find the greatest integer m such that p**m divides n.

          Examples

          >>> from sympy import multiplicity, Rational
          @@ -1647,7 +1647,7 @@ 

          Ntheory Class Referencefactor=True,

        -)[source] +)[source]

        Return (b, e) such that n == b**e if n is a unique perfect power with e > 1, else False (e.g. 1 is not a perfect power). A ValueError is raised if n is not Rational.

        @@ -1723,7 +1723,7 @@

        Ntheory Class ReferenceF=None,

        -)[source] +)[source]

        Use Pollard’s rho method to try to extract a nontrivial factor of n. The returned factor may be a composite number. If no factor is found, None is returned.

        @@ -1809,7 +1809,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.pollard_pm1(n, B=10, a=2, retries=0, seed=1234)[source]
        +sympy.ntheory.factor_.pollard_pm1(n, B=10, a=2, retries=0, seed=1234)[source]

        Use Pollard’s p-1 method to try to extract a nontrivial factor of n. Either a divisor (perhaps composite) or None is returned.

        The value of a is the base that is used in the test gcd(a**M - 1, n). @@ -1954,7 +1954,7 @@

        Ntheory Class Referencemultiple=False,

        -)[source] +)[source]

        Given a positive integer n, factorint(n) returns a dict containing the prime factors of n as keys and their respective multiplicities as values. For example:

        @@ -2131,7 +2131,7 @@

        Ntheory Class Referencemultiple=False,

        -)[source] +)[source]

        Given a Rational r, factorrat(r) returns a dict containing the prime factors of r as keys and their respective multiplicities as values. For example:

        @@ -2168,7 +2168,7 @@

        Ntheory Class Reference**kwargs,

        -)[source] +)[source]

        Return a sorted list of n’s prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does @@ -2217,7 +2217,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.divisors(n, generator=False, proper=False)[source]
        +sympy.ntheory.factor_.divisors(n, generator=False, proper=False)[source]

        Return all divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

        The number of divisors of n can be quite large if there are many @@ -2246,7 +2246,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.proper_divisors(n, generator=False)[source]
        +sympy.ntheory.factor_.proper_divisors(n, generator=False)[source]

        Return all divisors of n except n, sorted by default. If generator is True an unordered generator is returned.

        Examples

        @@ -2267,7 +2267,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)[source]
        +sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)[source]

        Return the number of divisors of n. If modulus is not 1 then only those that are divisible by modulus are counted. If proper is True then the divisor of n will not be counted.

        @@ -2289,7 +2289,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)[source]
        +sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)[source]

        Return the number of proper divisors of n.

        Examples

        >>> from sympy import proper_divisor_count
        @@ -2307,7 +2307,7 @@ 

        Ntheory Class Reference
        -sympy.ntheory.factor_.udivisors(n, generator=False)[source]
        +sympy.ntheory.factor_.udivisors(n, generator=False)[source]

        Return all unitary divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

        The number of unitary divisors of n can be quite large if there are many @@ -2344,7 +2344,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.udivisor_count(n)[source]
        +sympy.ntheory.factor_.udivisor_count(n)[source]

        Return the number of unitary divisors of n.

        Parameters:
        @@ -2372,7 +2372,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.antidivisors(n, generator=False)[source]
        +sympy.ntheory.factor_.antidivisors(n, generator=False)[source]

        Return all antidivisors of n sorted from 1..n by default.

        Antidivisors [R661] of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned.

        @@ -2402,7 +2402,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.antidivisor_count(n)[source]
        +sympy.ntheory.factor_.antidivisor_count(n)[source]

        Return the number of antidivisors [R662] of n.

        Parameters:
        @@ -2433,7 +2433,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.totient(n)[source]
        +sympy.ntheory.factor_.totient(n)[source]

        Calculate the Euler totient function phi(n)

        Deprecated since version 1.13: The totient function is deprecated. Use sympy.functions.combinatorial.numbers.totient @@ -2476,7 +2476,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.reduced_totient(n)[source]
        +sympy.ntheory.factor_.reduced_totient(n)[source]

        Calculate the Carmichael reduced totient function lambda(n)

        Deprecated since version 1.13: The reduced_totient function is deprecated. Use sympy.functions.combinatorial.numbers.reduced_totient @@ -2514,7 +2514,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.divisor_sigma(n, k=1)[source]
        +sympy.ntheory.factor_.divisor_sigma(n, k=1)[source]

        Calculate the divisor function \(\sigma_k(n)\) for positive integer n

        Deprecated since version 1.13: The divisor_sigma function is deprecated. Use sympy.functions.combinatorial.numbers.divisor_sigma @@ -2573,7 +2573,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.udivisor_sigma(n, k=1)[source]
        +sympy.ntheory.factor_.udivisor_sigma(n, k=1)[source]

        Calculate the unitary divisor function \(\sigma_k^*(n)\) for positive integer n

        Deprecated since version 1.13: The udivisor_sigma function is deprecated. Use sympy.functions.combinatorial.numbers.udivisor_sigma @@ -2629,7 +2629,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.core(n, t=2)[source]
        +sympy.ntheory.factor_.core(n, t=2)[source]

        Calculate core(n, t) = \(core_t(n)\) of a positive integer n

        core_2(n) is equal to the squarefree part of n

        If n’s prime factorization is:

        @@ -2681,7 +2681,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.digits(n, b=10, digits=None)[source]
        +sympy.ntheory.factor_.digits(n, b=10, digits=None)[source]

        Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

        @@ -2731,7 +2731,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.primenu(n)[source]
        +sympy.ntheory.factor_.primenu(n)[source]

        Calculate the number of distinct prime factors for a positive integer n.

        Deprecated since version 1.13: The primenu function is deprecated. Use sympy.functions.combinatorial.numbers.primenu @@ -2771,7 +2771,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.primeomega(n)[source]
        +sympy.ntheory.factor_.primeomega(n)[source]

        Calculate the number of prime factors counting multiplicities for a positive integer n.

        @@ -2812,7 +2812,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.mersenne_prime_exponent(nth)[source]
        +sympy.ntheory.factor_.mersenne_prime_exponent(nth)[source]

        Returns the exponent i for the nth Mersenne prime (which has the form \(2^i - 1\)).

        Examples

        @@ -2827,7 +2827,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.is_perfect(n)[source]
        +sympy.ntheory.factor_.is_perfect(n)[source]

        Returns True if n is a perfect number, else False.

        A perfect number is equal to the sum of its positive, proper divisors.

        Examples

        @@ -2856,7 +2856,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.abundance(n)[source]
        +sympy.ntheory.factor_.abundance(n)[source]

        Returns the difference between the sum of the positive proper divisors of a number and the number.

        Examples

        @@ -2875,7 +2875,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.is_abundant(n)[source]
        +sympy.ntheory.factor_.is_abundant(n)[source]

        Returns True if n is an abundant number, else False.

        A abundant number is smaller than the sum of its positive proper divisors.

        Examples

        @@ -2897,7 +2897,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.is_deficient(n)[source]
        +sympy.ntheory.factor_.is_deficient(n)[source]

        Returns True if n is a deficient number, else False.

        A deficient number is greater than the sum of its positive proper divisors.

        Examples

        @@ -2919,7 +2919,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.is_amicable(m, n)[source]
        +sympy.ntheory.factor_.is_amicable(m, n)[source]

        Returns True if the numbers \(m\) and \(n\) are “amicable”, else False.

        Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other.

        @@ -2943,7 +2943,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.is_carmichael(n)[source]
        +sympy.ntheory.factor_.is_carmichael(n)[source]

        Returns True if the numbers \(n\) is Carmichael number, else False.

        Parameters:
        @@ -2965,7 +2965,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.find_carmichael_numbers_in_range(x, y)[source]
        +sympy.ntheory.factor_.find_carmichael_numbers_in_range(x, y)[source]

        Returns a list of the number of Carmichael in the range

        See also

        @@ -2975,7 +2975,7 @@

        Ntheory Class Reference
        -sympy.ntheory.factor_.find_first_n_carmichaels(n)[source]
        +sympy.ntheory.factor_.find_first_n_carmichaels(n)[source]

        Returns the first n Carmichael numbers.

        Parameters:
        @@ -2990,7 +2990,7 @@

        Ntheory Class Reference
        -sympy.ntheory.modular.symmetric_residue(a, m)[source]
        +sympy.ntheory.modular.symmetric_residue(a, m)[source]

        Return the residual mod m such that it is within half of the modulus.

        >>> from sympy.ntheory.modular import symmetric_residue
         >>> symmetric_residue(1, 6)
        @@ -3003,7 +3003,7 @@ 

        Ntheory Class Reference
        -sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)[source]
        +sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)[source]

        Chinese Remainder Theorem.

        The moduli in m are assumed to be pairwise coprime. The output is then an integer f, such that f = v_i mod m_i for each pair out @@ -3059,7 +3059,7 @@

        Ntheory Class Reference
        -sympy.ntheory.modular.crt1(m)[source]
        +sympy.ntheory.modular.crt1(m)[source]

        First part of Chinese Remainder Theorem, for multiple application.

        Examples

        >>> from sympy.ntheory.modular import crt, crt1, crt2
        @@ -3099,7 +3099,7 @@ 

        Ntheory Class Reference
        -sympy.ntheory.modular.crt2(m, v, mm, e, s, symmetric=False)[source]
        +sympy.ntheory.modular.crt2(m, v, mm, e, s, symmetric=False)[source]

        Second part of Chinese Remainder Theorem, for multiple application.

        See crt1 for usage.

        Examples

        @@ -3121,7 +3121,7 @@

        Ntheory Class Reference
        -sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)[source]
        +sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)[source]

        Compute the integer n that has the residual ai when it is divided by mi where the ai and mi are given as pairs to this function: ((a1, m1), (a2, m2), …). If there is no solution, @@ -3175,7 +3175,7 @@

        Ntheory Class Reference
        -sympy.ntheory.multinomial.binomial_coefficients(n)[source]
        +sympy.ntheory.multinomial.binomial_coefficients(n)[source]

        Return a dictionary containing pairs \({(k1,k2) : C_kn}\) where \(C_kn\) are binomial coefficients and \(n=k1+k2\).

        Examples

        @@ -3193,7 +3193,7 @@

        Ntheory Class Reference
        -sympy.ntheory.multinomial.binomial_coefficients_list(n)[source]
        +sympy.ntheory.multinomial.binomial_coefficients_list(n)[source]

        Return a list of binomial coefficients as rows of the Pascal’s triangle.

        Examples

        @@ -3210,7 +3210,7 @@

        Ntheory Class Reference
        -sympy.ntheory.multinomial.multinomial_coefficients(m, n)[source]
        +sympy.ntheory.multinomial.multinomial_coefficients(m, n)[source]

        Return a dictionary containing pairs {(k1,k2,..,km) : C_kn} where C_kn are multinomial coefficients such that n=k1+k2+..+km.

        @@ -3245,7 +3245,7 @@

        Ntheory Class Reference_tuple=<class 'tuple'>,

        -)[source] +)[source]

        multinomial coefficient iterator

        This routine has been optimized for \(m\) large with respect to \(n\) by taking advantage of the fact that when the monomial tuples \(t\) are stripped of @@ -3269,7 +3269,7 @@

        Ntheory Class Reference
        -sympy.ntheory.partitions_.npartitions(n, verbose=False)[source]
        +sympy.ntheory.partitions_.npartitions(n, verbose=False)[source]

        Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers.

        @@ -3297,7 +3297,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_fermat_pseudoprime(n, a)[source]
        +sympy.ntheory.primetest.is_fermat_pseudoprime(n, a)[source]

        Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

        @@ -3346,7 +3346,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_euler_pseudoprime(n, a)[source]
        +sympy.ntheory.primetest.is_euler_pseudoprime(n, a)[source]

        Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

        @@ -3394,7 +3394,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_euler_jacobi_pseudoprime(n, a)[source]
        +sympy.ntheory.primetest.is_euler_jacobi_pseudoprime(n, a)[source]

        Returns True if n is prime or is an odd composite integer that is coprime to a and satisfy the modular arithmetic congruence relation:

        @@ -3441,7 +3441,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_square(n, prep=True)[source]
        +sympy.ntheory.primetest.is_square(n, prep=True)[source]

        Return True if n == a * a for some integer a, else False. If n is suspected of not being a square then this is a quick method of confirming that it is not.

        @@ -3468,7 +3468,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.mr(n, bases)[source]
        +sympy.ntheory.primetest.mr(n, bases)[source]

        Perform a Miller-Rabin strong pseudoprime test on n using a given list of bases/witnesses.

        Examples

        @@ -3493,7 +3493,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_lucas_prp(n)[source]
        +sympy.ntheory.primetest.is_lucas_prp(n)[source]

        Standard Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a Lucas probable prime.

        @@ -3537,7 +3537,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_strong_lucas_prp(n)[source]
        +sympy.ntheory.primetest.is_strong_lucas_prp(n)[source]

        Strong Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a strong Lucas probable prime.

        @@ -3582,7 +3582,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)[source]
        +sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)[source]

        Extra Strong Lucas compositeness test. Returns False if n is definitely composite, and True if n is an “extra strong” Lucas probable prime.

        @@ -3629,7 +3629,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.proth_test(n)[source]
        +sympy.ntheory.primetest.proth_test(n)[source]

        Test if the Proth number \(n = k2^m + 1\) is prime. where k is a positive odd number and \(2^m > k\).

        Parameters:
        @@ -3667,7 +3667,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_mersenne_prime(n)[source]
        +sympy.ntheory.primetest.is_mersenne_prime(n)[source]

        Returns True if n is a Mersenne prime, else False.

        A Mersenne prime is a prime number having the form \(2^i - 1\).

        Examples

        @@ -3689,7 +3689,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.isprime(n)[source]
        +sympy.ntheory.primetest.isprime(n)[source]

        Test if n is a prime number (True) or not (False). For n < 2^64 the answer is definitive; larger n values have a small probability of actually being pseudoprimes.

        @@ -3769,7 +3769,7 @@

        Ntheory Class Reference
        -sympy.ntheory.primetest.is_gaussian_prime(num)[source]
        +sympy.ntheory.primetest.is_gaussian_prime(num)[source]

        Test if num is a Gaussian prime number.

        References

        @@ -3782,7 +3782,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.n_order(a, n)[source]
        +sympy.ntheory.residue_ntheory.n_order(a, n)[source]

        Returns the order of a modulo n.

        Parameters:
        @@ -3822,7 +3822,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.is_primitive_root(a, p)[source]
        +sympy.ntheory.residue_ntheory.is_primitive_root(a, p)[source]

        Returns True if a is a primitive root of p.

        Parameters:
        @@ -3874,7 +3874,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.primitive_root(p, smallest=True)[source]
        +sympy.ntheory.residue_ntheory.primitive_root(p, smallest=True)[source]

        Returns a primitive root of p or None.

        Parameters:
        @@ -3941,7 +3941,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)[source]
        +sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)[source]

        Find a root of x**2 = a mod p.

        Parameters:
        @@ -3968,7 +3968,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)[source]
        +sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)[source]

        Iterate over solutions to x**2 = a mod p.

        Parameters:
        @@ -3994,7 +3994,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.quadratic_residues(p) list[int][source]
        +sympy.ntheory.residue_ntheory.quadratic_residues(p) list[int][source]

        Returns the list of quadratic residues.

        Examples

        >>> from sympy.ntheory.residue_ntheory import quadratic_residues
        @@ -4006,7 +4006,7 @@ 

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)[source]
        +sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)[source]

        Find the solutions to x**n = a mod p.

        Parameters:
        @@ -4081,7 +4081,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)[source]
        +sympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)[source]

        Returns True if x**n == a (mod m) has solutions.

        References

        @@ -4096,7 +4096,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.is_quad_residue(a, p)[source]
        +sympy.ntheory.residue_ntheory.is_quad_residue(a, p)[source]

        Returns True if a (mod p) is in the set of squares mod p, i.e a % p in set([i**2 % p for i in range(p)]).

        @@ -4144,7 +4144,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.legendre_symbol(a, p)[source]
        +sympy.ntheory.residue_ntheory.legendre_symbol(a, p)[source]

        Returns the Legendre symbol \((a / p)\).

        Deprecated since version 1.13: The legendre_symbol function is deprecated. Use sympy.functions.combinatorial.numbers.legendre_symbol @@ -4183,7 +4183,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)[source]
        +sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)[source]

        Returns the Jacobi symbol \((m / n)\).

        Deprecated since version 1.13: The jacobi_symbol function is deprecated. Use sympy.functions.combinatorial.numbers.jacobi_symbol @@ -4243,7 +4243,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.mobius(n)[source]
        +sympy.ntheory.residue_ntheory.mobius(n)[source]

        Mobius function maps natural number to {-1, 0, 1}

        Deprecated since version 1.13: The mobius function is deprecated. Use sympy.functions.combinatorial.numbers.mobius @@ -4305,7 +4305,7 @@

        Ntheory Class Referenceprime_order=None,

        -)[source] +)[source]

        Compute the discrete logarithm of a to the base b modulo n.

        This is a recursive function to reduce the discrete logarithm problem in cyclic groups of composite order to the problem in cyclic groups of prime @@ -4343,7 +4343,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.quadratic_congruence(a, b, c, n)[source]
        +sympy.ntheory.residue_ntheory.quadratic_congruence(a, b, c, n)[source]

        Find the solutions to \(a x^2 + b x + c \equiv 0 \pmod{n}\).

        Parameters:
        @@ -4381,7 +4381,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.polynomial_congruence(expr, m)[source]
        +sympy.ntheory.residue_ntheory.polynomial_congruence(expr, m)[source]

        Find the solutions to a polynomial congruence equation modulo m.

        Parameters:
        @@ -4408,7 +4408,7 @@

        Ntheory Class Reference
        -sympy.ntheory.residue_ntheory.binomial_mod(n, m, k)[source]
        +sympy.ntheory.residue_ntheory.binomial_mod(n, m, k)[source]

        Compute binomial(n, m) % k.

        Parameters:
        @@ -4443,7 +4443,7 @@

        Ntheory Class Reference
        -sympy.ntheory.continued_fraction.continued_fraction(a) list[source]
        +sympy.ntheory.continued_fraction.continued_fraction(a) list[source]

        Return the continued fraction representation of a Rational or quadratic irrational.

        Examples

        @@ -4461,7 +4461,7 @@

        Ntheory Class Reference
        -sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)[source]
        +sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)[source]

        Return an iterator over the convergents of a continued fraction (cf).

        The parameter should be in either of the following to forms: - A list of partial quotients, possibly with the last element being a list @@ -4518,7 +4518,7 @@

        Ntheory Class Reference
        -sympy.ntheory.continued_fraction.continued_fraction_iterator(x)[source]
        +sympy.ntheory.continued_fraction.continued_fraction_iterator(x)[source]

        Return continued fraction expansion of x as iterator.

        Examples

        >>> from sympy import Rational, pi
        @@ -4565,7 +4565,7 @@ 

        Ntheory Class References=1,

        -) list[source] +) list[source]

        Find the periodic continued fraction expansion of a quadratic irrational.

        Compute the continued fraction expansion of a rational or a quadratic irrational number, i.e. \(\frac{p + s\sqrt{d}}{q}\), where @@ -4632,7 +4632,7 @@

        Ntheory Class Reference
        -sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)[source]
        +sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)[source]

        Reduce a continued fraction to a rational or quadratic irrational.

        Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The @@ -4672,7 +4672,7 @@

        Ntheory Class Reference
        -sympy.ntheory.digits.count_digits(n, b=10)[source]
        +sympy.ntheory.digits.count_digits(n, b=10)[source]

        Return a dictionary whose keys are the digits of n in the given base, b, with keys indicating the digits appearing in the number and values indicating how many times that digit appeared.

        @@ -4713,7 +4713,7 @@

        Ntheory Class Reference
        -sympy.ntheory.digits.digits(n, b=10, digits=None)[source]
        +sympy.ntheory.digits.digits(n, b=10, digits=None)[source]

        Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

        @@ -4763,7 +4763,7 @@

        Ntheory Class Reference
        -sympy.ntheory.digits.is_palindromic(n, b=10)[source]
        +sympy.ntheory.digits.is_palindromic(n, b=10)[source]

        return True if n is the same when read from left to right or right to left in the given base, b.

        Examples

        @@ -4796,7 +4796,7 @@

        Ntheory Class Reference
        -sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')[source]
        +sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')[source]

        Return the list of denominators of an Egyptian fraction expansion [R713] of the said rational \(r\).

        @@ -4903,7 +4903,7 @@

        Ntheory Class Reference
        -sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)[source]
        +sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)[source]

        Returns a string containing prec (default 14) digits starting at the nth digit of pi in hex. Counting of digits starts at 0 and the decimal is not counted, so for n = 0 the @@ -4977,7 +4977,7 @@

        Ntheory Class Referenceseed=1234,

        -)[source] +)[source]

        Performs factorization using Lenstra’s Elliptic curve method.

        This function repeatedly calls _ecm_one_factor to compute the factors of n. First all the small factors are taken out using trial division. @@ -5028,7 +5028,7 @@

        Examples with two 25 digit factors. \(qs\) is able to factorize this in around 248s.

        -sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)[source]
        +sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)[source]

        Performs factorization using Self-Initializing Quadratic Sieve. In SIQS, let N be a number to be factored, and this N should not be a perfect power. If we find two integers such that X**2 = Y**2 modN and diff --git a/dev/modules/parsing.html b/dev/modules/parsing.html index b38659ee6ba..15c80466459 100644 --- a/dev/modules/parsing.html +++ b/dev/modules/parsing.html @@ -807,7 +807,7 @@

        Documentation Version

        Parsing Functions Reference

        -sympy.parsing.sympy_parser.parse_expr(s: str, local_dict: ~typing.Dict[str, ~typing.Any] | None = None, transformations: ~typing.Tuple[~typing.Callable[[~typing.List[~typing.Tuple[int, str]], ~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Any]], ~typing.List[~typing.Tuple[int, str]]], ...] | str = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>), global_dict: ~typing.Dict[str, ~typing.Any] | None = None, evaluate=True)[source]
        +sympy.parsing.sympy_parser.parse_expr(s: str, local_dict: ~typing.Dict[str, ~typing.Any] | None = None, transformations: ~typing.Tuple[~typing.Callable[[~typing.List[~typing.Tuple[int, str]], ~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Any]], ~typing.List[~typing.Tuple[int, str]]], ...] | str = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>), global_dict: ~typing.Dict[str, ~typing.Any] | None = None, evaluate=True)[source]

        Converts the string s to a SymPy expression, in local_dict.

        Parameters:
        @@ -947,7 +947,7 @@

        Parsing Functions Referencetransformations: Tuple[Callable[[List[Tuple[int, str]], Dict[str, Any], Dict[str, Any]], List[Tuple[int, str]]], ...],

        -) str[source] +) str[source]

        Converts the string s to Python code, in local_dict

        Generally, parse_expr should be used.

        @@ -962,19 +962,19 @@

        Parsing Functions Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Evaluate Python code generated by stringify_expr.

        Generally, parse_expr should be used.

        -sympy.parsing.maxima.parse_maxima(str, globals=None, name_dict={})[source]
        +sympy.parsing.maxima.parse_maxima(str, globals=None, name_dict={})[source]
        -sympy.parsing.mathematica.parse_mathematica(s)[source]
        +sympy.parsing.mathematica.parse_mathematica(s)[source]

        Translate a string containing a Wolfram Mathematica expression to a SymPy expression.

        If the translator is unable to find a suitable SymPy expression, the @@ -1047,7 +1047,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Splits symbol names for implicit multiplication.

        Intended to let expressions like xyz be parsed as x*y*z. Does not split Greek character names, so theta will not become @@ -1063,7 +1063,7 @@

        Parsing Transformations Referencepredicate: Callable[[str], bool],

        -)[source] +)[source]

        Creates a transformation that splits symbol names.

        predicate should return True if the symbol name is to be split.

        For instance, to retain the default behavior but avoid splitting certain @@ -1094,7 +1094,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

        Makes the multiplication operator optional in most cases.

        Use this before implicit_application(), otherwise expressions like sin 2x will be parsed as x * sin(2) rather than sin(2*x).

        @@ -1118,7 +1118,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

        Makes parentheses optional in some cases for function calls.

        Use this after implicit_multiplication(), otherwise expressions like sin 2x will be parsed as x * sin(2) rather than @@ -1143,7 +1143,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Allows functions to be exponentiated, e.g. cos**2(x).

        Examples

        >>> from sympy.parsing.sympy_parser import (parse_expr,
        @@ -1165,7 +1165,7 @@ 

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -) List[Tuple[int, str]][source] +) List[Tuple[int, str]][source]

        Allows a slightly relaxed syntax.

        • Parentheses for single-argument method calls are optional.

        • @@ -1195,7 +1195,7 @@

          Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Converts floats into Rational. Run AFTER auto_number.

        @@ -1209,7 +1209,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Treats XOR, ^, as exponentiation, **.

        @@ -1226,7 +1226,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Substitutes “lambda” with its SymPy equivalent Lambda(). However, the conversion does not take place if only “lambda” is passed because that is a syntax error.

        @@ -1242,7 +1242,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Inserts calls to Symbol/Function for undefined variables.

        @@ -1256,7 +1256,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Allows 0.2[1] notation to represent the repeated decimal 0.2111… (19/90)

        Run this before auto_number.

        @@ -1271,7 +1271,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Converts numeric literals to use SymPy equivalents.

        Complex numbers use I, integer literals use Integer, and float literals use Float.

        @@ -1287,7 +1287,7 @@

        Parsing Transformations Referenceglobal_dict: Dict[str, Any],

        -)[source] +)[source]

        Allows standard notation for factorial.

        @@ -1303,7 +1303,7 @@

        Experimental \(\mathrm{\LaTeX}\)<

        \(\mathrm{\LaTeX}\) Parsing Functions Reference

        -sympy.parsing.latex.parse_latex(s, strict=False, backend='antlr')[source]
        +sympy.parsing.latex.parse_latex(s, strict=False, backend='antlr')[source]

        Converts the input LaTeX string s to a SymPy Expr.

        Parameters:
        @@ -1477,7 +1477,7 @@

        Lark \(\mathrm{\LaTeX}\) P

        Lark \(\mathrm{\LaTeX}\) Parser Functions

        -sympy.parsing.latex.parse_latex_lark(s: str)[source]
        +sympy.parsing.latex.parse_latex_lark(s: str)[source]

        Experimental LaTeX parser using Lark.

        This function is still under development and its API may change with the next releases of SymPy.

        @@ -1497,7 +1497,7 @@

        Lark \(\mathrm{\LaTeX}\) P
        transformer=None,

        -)[source] +)[source]

        Class for converting input \(\mathrm{\LaTeX}\) strings into SymPy Expressions. It holds all the necessary internal data for doing so, and exposes hooks for customizing its behavior.

        @@ -1530,7 +1530,7 @@

        Lark \(\mathrm{\LaTeX}\) P
        -class sympy.parsing.latex.lark.TransformToSymPyExpr[source]
        +class sympy.parsing.latex.lark.TransformToSymPyExpr[source]

        Returns a SymPy expression that is generated by traversing the lark.Tree passed to the .transform() function.

        @@ -1557,7 +1557,7 @@

        Lark \(\mathrm{\LaTeX}\) P

        \(\mathrm{\LaTeX}\) Parsing Exceptions Reference

        -class sympy.parsing.latex.LaTeXParsingError[source]
        +class sympy.parsing.latex.LaTeXParsingError[source]
        @@ -1565,7 +1565,7 @@

        \(\mathrm{\LaTeX}\) Parsin

        SymPy Expression Reference

        -class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)[source]
        +class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)[source]

        Class to store and handle SymPy expressions

        This class will hold SymPy Expressions and handle the API for the conversion to and from different languages.

        @@ -1636,7 +1636,7 @@

        \(\mathrm{\LaTeX}\) Parsin

        -convert_to_c()[source]
        +convert_to_c()[source]

        Returns a list with the c source code for the SymPy expressions

        Examples

        >>> from sympy.parsing.sym_expr import SymPyExpression
        @@ -1658,7 +1658,7 @@ 

        \(\mathrm{\LaTeX}\) Parsin
        -convert_to_expr(src_code, mode)[source]
        +convert_to_expr(src_code, mode)[source]

        Converts the given source code to SymPy Expressions

        Examples

        >>> from sympy.parsing.sym_expr import SymPyExpression
        @@ -1697,7 +1697,7 @@ 

        \(\mathrm{\LaTeX}\) Parsin
        -convert_to_fortran()[source]
        +convert_to_fortran()[source]

        Returns a list with the fortran source code for the SymPy expressions

        Examples

        >>> from sympy.parsing.sym_expr import SymPyExpression
        @@ -1718,7 +1718,7 @@ 

        \(\mathrm{\LaTeX}\) Parsin
        -convert_to_python()[source]
        +convert_to_python()[source]

        Returns a list with Python code for the SymPy expressions

        Examples

        >>> from sympy.parsing.sym_expr import SymPyExpression
        @@ -1739,7 +1739,7 @@ 

        \(\mathrm{\LaTeX}\) Parsin
        -return_expr()[source]
        +return_expr()[source]

        Returns the expression list

        Examples

        >>> from sympy.parsing.sym_expr import SymPyExpression
        diff --git a/dev/modules/physics/biomechanics/api/activation.html b/dev/modules/physics/biomechanics/api/activation.html
        index c95b2d6e932..03366bb7287 100644
        --- a/dev/modules/physics/biomechanics/api/activation.html
        +++ b/dev/modules/physics/biomechanics/api/activation.html
        @@ -814,7 +814,7 @@ 
        Documentation Version
        module.

        -class sympy.physics.biomechanics.activation.ActivationBase(name)[source]
        +class sympy.physics.biomechanics.activation.ActivationBase(name)[source]

        Abstract base class for all activation dynamics classes to inherit from.

        Notes

        Instances of this class cannot be directly instantiated by users. However, @@ -928,7 +928,7 @@

        Documentation Version
        -abstract rhs()[source]
        +abstract rhs()[source]

        Explanation

        The solution to the linear system of ordinary differential equations governing the activation dynamics:

        @@ -946,7 +946,7 @@
        Documentation Version
        -abstract classmethod with_defaults(name)[source]
        +abstract classmethod with_defaults(name)[source]

        Alternate constructor that provides recommended defaults for constants.

        @@ -973,7 +973,7 @@
        Documentation Version
        smoothing_rate=None,
        -)[source] +)[source]

        First-order activation dynamics based on De Groote et al., 2016 [R720].

        Explanation

        Gives the first-order activation dynamics equation for the rate of change @@ -1106,7 +1106,7 @@

        Documentation Version
        -rhs()[source]
        +rhs()[source]

        Ordered column matrix of equations for the solution of M x' = F.

        Explanation

        The solution to the linear system of ordinary differential equations @@ -1157,7 +1157,7 @@

        Documentation Version
        name,
        -)[source] +)[source]

        Alternate constructor that will use the published constants.

        Explanation

        Returns an instance of FirstOrderActivationDeGroote2016 using the @@ -1181,7 +1181,7 @@

        Documentation Version
        -class sympy.physics.biomechanics.activation.ZerothOrderActivation(name)[source]
        +class sympy.physics.biomechanics.activation.ZerothOrderActivation(name)[source]

        Simple zeroth-order activation dynamics mapping excitation to activation.

        Explanation

        @@ -1285,7 +1285,7 @@
        Documentation Version
        -rhs()[source]
        +rhs()[source]

        Ordered column matrix of equations for the solution of M x' = F.

        Explanation

        The solution to the linear system of ordinary differential equations @@ -1310,7 +1310,7 @@

        Documentation Version
        -classmethod with_defaults(name)[source]
        +classmethod with_defaults(name)[source]

        Alternate constructor that provides recommended defaults for constants.

        Explanation

        diff --git a/dev/modules/physics/biomechanics/api/curve.html b/dev/modules/physics/biomechanics/api/curve.html index cb762c96b40..c3794503e75 100644 --- a/dev/modules/physics/biomechanics/api/curve.html +++ b/dev/modules/physics/biomechanics/api/curve.html @@ -818,13 +818,13 @@
        Documentation Version
        fiber_force_velocity_inverse: CharacteristicCurveFunction,
        -)[source] +)[source]

        Simple data container to group together related characteristic curves.

        -class sympy.physics.biomechanics.curve.CharacteristicCurveFunction[source]
        +class sympy.physics.biomechanics.curve.CharacteristicCurveFunction[source]

        Base class for all musculotendon characteristic curve functions.

        @@ -848,7 +848,7 @@
        Documentation Version
        c11,
        -)[source] +)[source]

        Active muscle fiber force-length curve based on De Groote et al., 2016 [R721].

        Explanation

        @@ -951,7 +951,7 @@
        Documentation Version
        **hints,
        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -996,7 +996,7 @@
        Documentation Version
        c11,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -1076,7 +1076,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -1098,7 +1098,7 @@
        Documentation Version
        l_M_tilde,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -1140,7 +1140,7 @@
        Documentation Version
        c1,
        -)[source] +)[source]

        Passive muscle fiber force-length curve based on De Groote et al., 2016 [R722].

        Explanation

        @@ -1223,7 +1223,7 @@
        Documentation Version
        **hints,
        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -1258,7 +1258,7 @@
        Documentation Version
        c1,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -1288,7 +1288,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -1310,7 +1310,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Inverse function.

        Parameters:
        @@ -1330,7 +1330,7 @@
        Documentation Version
        l_M_tilde,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -1361,7 +1361,7 @@
        Documentation Version
        c1,
        -)[source] +)[source]

        Inverse passive muscle fiber force-length curve based on De Groote et al., 2016 [R723].

        Explanation

        @@ -1438,7 +1438,7 @@
        Documentation Version
        **hints,

        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -1473,7 +1473,7 @@
        Documentation Version
        c1,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -1503,7 +1503,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -1525,7 +1525,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Inverse function.

        Parameters:
        @@ -1545,7 +1545,7 @@
        Documentation Version
        fl_M_pas,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -1579,7 +1579,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Muscle fiber force-velocity curve based on De Groote et al., 2016 [R724].

        Explanation

        Gives the normalized muscle fiber force produced as a function of @@ -1665,7 +1665,7 @@

        Documentation Version
        **hints,

        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -1702,7 +1702,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -1736,7 +1736,7 @@
        Documentation Version
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -1752,7 +1752,7 @@
        Documentation Version
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Inverse function.

        Parameters:
        @@ -1772,7 +1772,7 @@
        Documentation Version
        v_M_tilde,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -1806,7 +1806,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Inverse muscle fiber force-velocity curve based on De Groote et al., 2016 [R725].

        Explanation

        @@ -1882,7 +1882,7 @@
        Documentation Version
        **hints,
        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -1919,7 +1919,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -1960,7 +1960,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -1982,7 +1982,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Inverse function.

        Parameters:
        @@ -2002,7 +2002,7 @@
        Documentation Version
        fv_M,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -2037,7 +2037,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Tendon force-length curve based on De Groote et al., 2016 [R726].

        Explanation

        Gives the normalized tendon force produced as a function of normalized @@ -2124,7 +2124,7 @@

        Documentation Version
        **hints,
        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -2161,7 +2161,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -2195,7 +2195,7 @@
        Documentation Version
        -fdiff(argindex=1)[source]
        +fdiff(argindex=1)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -2211,7 +2211,7 @@
        Documentation Version
        -inverse(argindex=1)[source]
        +inverse(argindex=1)[source]

        Inverse function.

        Parameters:
        @@ -2231,7 +2231,7 @@
        Documentation Version
        l_T_tilde,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -2265,7 +2265,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Inverse tendon force-length curve based on De Groote et al., 2016 [R727].

        Explanation

        Gives the normalized tendon length that produces a specific normalized @@ -2341,7 +2341,7 @@

        Documentation Version
        **hints,
        -)[source] +)[source]

        Evaluate the expression defining the function.

        Parameters:
        @@ -2378,7 +2378,7 @@
        Documentation Version
        c3,
        -)[source] +)[source]

        Evaluation of basic inputs.

        Parameters:
        @@ -2418,7 +2418,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Derivative of the function with respect to a single argument.

        Parameters:
        @@ -2440,7 +2440,7 @@
        Documentation Version
        argindex=1,
        -)[source] +)[source]

        Inverse function.

        Parameters:
        @@ -2460,7 +2460,7 @@
        Documentation Version
        fl_T,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        diff --git a/dev/modules/physics/biomechanics/api/musculotendon.html b/dev/modules/physics/biomechanics/api/musculotendon.html index 480d4aae059..d188691666c 100644 --- a/dev/modules/physics/biomechanics/api/musculotendon.html +++ b/dev/modules/physics/biomechanics/api/musculotendon.html @@ -830,7 +830,7 @@
        Documentation Version
        with_defaults=False,
        -)[source] +)[source]

        Abstract base class for all musculotendon classes to inherit from.

        Parameters:
        @@ -1035,7 +1035,7 @@
        Documentation Version
        -abstract curves()[source]
        +abstract curves()[source]

        Return a CharacteristicCurveCollection of the curves related to the specific model.

        @@ -1204,7 +1204,7 @@
        Documentation Version
        -rhs()[source]
        +rhs()[source]

        Ordered column matrix of equations for the solution of M x' = F.

        Explanation

        The solution to the linear system of ordinary differential equations @@ -1268,7 +1268,7 @@

        Documentation Version
        fiber_damping_coefficient=0.100000000000000,
        -)[source] +)[source]

        Recommended constructor that will use the published constants.

        Parameters:
        @@ -1399,7 +1399,7 @@
        Documentation Version
        with_defaults=False,
        -)[source] +)[source]

        Musculotendon model using the curves of De Groote et al., 2016 [R728].

        Parameters:
        @@ -1787,7 +1787,7 @@
        Documentation Version
        boundary=None,
        -)[source] +)[source]

        Enumeration of types of musculotendon dynamics formulations.

        Explanation

        An (integer) enumeration is used as it allows for clearer selection of the diff --git a/dev/modules/physics/continuum_mechanics/beam.html b/dev/modules/physics/continuum_mechanics/beam.html index 4fbae9f5a19..c4f148fed07 100644 --- a/dev/modules/physics/continuum_mechanics/beam.html +++ b/dev/modules/physics/continuum_mechanics/beam.html @@ -819,7 +819,7 @@

        Documentation Version
        ild_variable=a,
        -)[source] +)[source]

        A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length @@ -936,7 +936,7 @@

        Documentation Version
        -apply_load(value, start, order, end=None)[source]
        +apply_load(value, start, order, end=None)[source]

        This method adds up the loads given to a particular beam object.

        Parameters:
        @@ -1004,7 +1004,7 @@
        Documentation Version
        -apply_rotation_hinge(loc)[source]
        +apply_rotation_hinge(loc)[source]

        This method applies a rotation hinge at a single location on the beam.

        Parameters:
        @@ -1058,7 +1058,7 @@
        Documentation Version
        -apply_sliding_hinge(loc)[source]
        +apply_sliding_hinge(loc)[source]

        This method applies a sliding hinge at a single location on the beam.

        Parameters:
        @@ -1105,7 +1105,7 @@
        Documentation Version
        -apply_support(loc, type='fixed')[source]
        +apply_support(loc, type='fixed')[source]

        This method applies support to a particular beam object and returns the symbol of the unknown reaction load(s).

        @@ -1168,7 +1168,7 @@
        Documentation Version
        -bending_moment()[source]
        +bending_moment()[source]

        Returns a Singularity Function expression which represents the bending moment curve of the Beam object.

        Examples

        @@ -1231,7 +1231,7 @@
        Documentation Version
        -deflection()[source]
        +deflection()[source]

        Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object.

        Examples

        @@ -1271,7 +1271,7 @@
        Documentation Version
        -draw(pictorial=True)[source]
        +draw(pictorial=True)[source]

        Returns a plot object representing the beam diagram of the beam. In particular, the diagram might include:

          @@ -1386,7 +1386,7 @@
          Documentation Version
          -join(beam, via='fixed')[source]
          +join(beam, via='fixed')[source]

          This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous @@ -1466,28 +1466,28 @@

          Documentation Version
          -max_bmoment()[source]
          +max_bmoment()[source]

          Returns maximum Shear force and its coordinate in the Beam object.

          -max_deflection()[source]
          +max_deflection()[source]

          Returns point of max deflection and its corresponding deflection value in a Beam object.

          -max_shear_force()[source]
          +max_shear_force()[source]

          Returns maximum Shear force and its coordinate in the Beam object.

          -plot_bending_moment(subs=None)[source]
          +plot_bending_moment(subs=None)[source]

          Returns a plot for Bending moment present in the Beam object.

          Parameters:
          @@ -1531,7 +1531,7 @@
          Documentation Version
          -plot_deflection(subs=None)[source]
          +plot_deflection(subs=None)[source]

          Returns a plot for deflection curve of the Beam object.

          Parameters:
          @@ -1576,7 +1576,7 @@
          Documentation Version
          -plot_ild_moment(subs=None)[source]
          +plot_ild_moment(subs=None)[source]

          Plots the Influence Line Diagram for Moment under the effect of a moving load. This function should be called after calling solve_for_ild_moment().

          @@ -1626,7 +1626,7 @@
          Documentation Version
          -plot_ild_reactions(subs=None)[source]
          +plot_ild_reactions(subs=None)[source]

          Plots the Influence Line Diagram of Reaction Forces under the effect of a moving load. This function should be called after calling solve_for_ild_reactions().

          @@ -1682,7 +1682,7 @@
          Documentation Version
          -plot_ild_shear(subs=None)[source]
          +plot_ild_shear(subs=None)[source]

          Plots the Influence Line Diagram for Shear under the effect of a moving load. This function should be called after calling solve_for_ild_shear().

          @@ -1732,7 +1732,7 @@
          Documentation Version
          -plot_loading_results(subs=None)[source]
          +plot_loading_results(subs=None)[source]

          Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object.

          @@ -1773,7 +1773,7 @@
          Documentation Version
          -plot_shear_force(subs=None)[source]
          +plot_shear_force(subs=None)[source]

          Returns a plot for Shear force present in the Beam object.

          Parameters:
          @@ -1817,7 +1817,7 @@
          Documentation Version
          -plot_shear_stress(subs=None)[source]
          +plot_shear_stress(subs=None)[source]

          Returns a plot of shear stress present in the beam object.

          Parameters:
          @@ -1862,7 +1862,7 @@
          Documentation Version
          -plot_slope(subs=None)[source]
          +plot_slope(subs=None)[source]

          Returns a plot for slope of deflection curve of the Beam object.

          Parameters:
          @@ -1906,7 +1906,7 @@
          Documentation Version
          -point_cflexure()[source]
          +point_cflexure()[source]

          Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa.

          @@ -1944,7 +1944,7 @@
          Documentation Version
          -remove_load(value, start, order, end=None)[source]
          +remove_load(value, start, order, end=None)[source]

          This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam.

          @@ -2015,7 +2015,7 @@
          Documentation Version
          -shear_force()[source]
          +shear_force()[source]

          Returns a Singularity Function expression which represents the shear force curve of the Beam object.

          Examples

          @@ -2046,14 +2046,14 @@
          Documentation Version
          -shear_stress()[source]
          +shear_stress()[source]

          Returns an expression representing the Shear Stress curve of the Beam object.

          -slope()[source]
          +slope()[source]

          Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object.

          Examples

          @@ -2093,7 +2093,7 @@
          Documentation Version
          *reactions,
          -)[source] +)[source]

          Determines the Influence Line Diagram equations for moment at a specified point under the effect of a moving load.

          @@ -2141,7 +2141,7 @@
          Documentation Version
          -solve_for_ild_reactions(value, *reactions)[source]
          +solve_for_ild_reactions(value, *reactions)[source]

          Determines the Influence Line Diagram equations for reaction forces under the effect of a moving load.

          @@ -2190,7 +2190,7 @@
          Documentation Version
          *reactions,
          -)[source] +)[source]

          Determines the Influence Line Diagram equations for shear at a specified point under the effect of a moving load.

          @@ -2238,7 +2238,7 @@
          Documentation Version
          -solve_for_reaction_loads(*reactions)[source]
          +solve_for_reaction_loads(*reactions)[source]

          Solves for the reaction forces.

          Examples

          There is a beam of length 30 meters. A moment of magnitude 120 Nm is @@ -2312,7 +2312,7 @@

          Documentation Version
          variable=x,
          -)[source] +)[source]

          This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes.

          @@ -2366,14 +2366,14 @@
          Documentation Version
          -angular_deflection()[source]
          +angular_deflection()[source]

          Returns a function in x depicting how the angular deflection, due to moments in the x-axis on the beam, varies with x.

          -apply_load(value, start, order, dir='y')[source]
          +apply_load(value, start, order, dir='y')[source]

          This method adds up the force load to a particular beam object.

          Parameters:
          @@ -2409,7 +2409,7 @@
          Documentation Version
          dir='y',
          -)[source] +)[source]

          This method adds up the moment loads to a particular beam object.

          Parameters:
          @@ -2442,19 +2442,19 @@
          Documentation Version
          -axial_force()[source]
          +axial_force()[source]

          Returns expression of Axial shear force present inside the Beam object.

          -axial_stress()[source]
          +axial_stress()[source]

          Returns expression of Axial stress present inside the Beam object.

          -bending_moment()[source]
          +bending_moment()[source]

          Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes.

          @@ -2489,7 +2489,7 @@
          Documentation Version
          -deflection()[source]
          +deflection()[source]

          Returns a three element list representing deflection curve along all the three axes.

          @@ -2502,7 +2502,7 @@
          Documentation Version
          -max_bending_moment()[source]
          +max_bending_moment()[source]

          Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

          @@ -2532,7 +2532,7 @@
          Documentation Version
          -max_bmoment()[source]
          +max_bmoment()[source]

          Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

          @@ -2562,7 +2562,7 @@
          Documentation Version
          -max_deflection()[source]
          +max_deflection()[source]

          Returns point of max deflection and its corresponding deflection value along all directions in a Beam object as a list. solve_for_reaction_loads() and solve_slope_deflection() must be called @@ -2594,7 +2594,7 @@

          Documentation Version
          -max_shear_force()[source]
          +max_shear_force()[source]

          Returns point of max shear force and its corresponding shear value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

          @@ -2630,7 +2630,7 @@
          Documentation Version
          -plot_bending_moment(dir='all', subs=None)[source]
          +plot_bending_moment(dir='all', subs=None)[source]

          Returns a plot for bending moment along all three directions present in the Beam object.

          @@ -2683,7 +2683,7 @@
          Documentation Version
          -plot_deflection(dir='all', subs=None)[source]
          +plot_deflection(dir='all', subs=None)[source]

          Returns a plot for Deflection along all three directions present in the Beam object.

          @@ -2737,7 +2737,7 @@
          Documentation Version
          -plot_loading_results(dir='x', subs=None)[source]
          +plot_loading_results(dir='x', subs=None)[source]

          Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object along the direction specified.

          @@ -2794,7 +2794,7 @@
          Documentation Version
          -plot_shear_force(dir='all', subs=None)[source]
          +plot_shear_force(dir='all', subs=None)[source]

          Returns a plot for Shear force along all three directions present in the Beam object.

          @@ -2847,7 +2847,7 @@
          Documentation Version
          -plot_shear_stress(dir='all', subs=None)[source]
          +plot_shear_stress(dir='all', subs=None)[source]

          Returns a plot for Shear Stress along all three directions present in the Beam object.

          @@ -2900,7 +2900,7 @@
          Documentation Version
          -plot_slope(dir='all', subs=None)[source]
          +plot_slope(dir='all', subs=None)[source]

          Returns a plot for Slope along all three directions present in the Beam object.

          @@ -2954,7 +2954,7 @@
          Documentation Version
          -polar_moment()[source]
          +polar_moment()[source]

          Returns the polar moment of area of the beam about the X axis with respect to the centroid.

          Examples

          @@ -2980,7 +2980,7 @@
          Documentation Version
          -shear_force()[source]
          +shear_force()[source]

          Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes.

          @@ -2993,21 +2993,21 @@
          Documentation Version
          -shear_stress()[source]
          +shear_stress()[source]

          Returns a list of three expressions which represents the shear stress curve of the Beam object along all three axes.

          -slope()[source]
          +slope()[source]

          Returns a three element list representing slope of deflection curve along all the three axes.

          -solve_for_reaction_loads(*reaction)[source]
          +solve_for_reaction_loads(*reaction)[source]

          Solves for the reaction forces.

          Examples

          There is a beam of length 30 meters. It it supported by rollers at @@ -3035,7 +3035,7 @@

          Documentation Version
          -solve_for_torsion()[source]
          +solve_for_torsion()[source]

          Solves for the angular deflection due to the torsional effects of moments being applied in the x-direction i.e. out of or into the beam.

          Here, a positive torque means the direction of the torque is positive @@ -3058,7 +3058,7 @@

          Documentation Version
          -torsional_moment()[source]
          +torsional_moment()[source]

          Returns expression of Torsional moment present inside the Beam object.

          diff --git a/dev/modules/physics/continuum_mechanics/cable.html b/dev/modules/physics/continuum_mechanics/cable.html index 4e247e445ff..74d029be383 100644 --- a/dev/modules/physics/continuum_mechanics/cable.html +++ b/dev/modules/physics/continuum_mechanics/cable.html @@ -809,7 +809,7 @@

          Cable (Docstrings)
          -class sympy.physics.continuum_mechanics.cable.Cable(support_1, support_2)[source]
          +class sympy.physics.continuum_mechanics.cable.Cable(support_1, support_2)[source]

          Cables are structures in engineering that support the applied transverse loads through the tensile resistance developed in its members.

          @@ -834,7 +834,7 @@

          Cable (Docstrings)
          -apply_length(length)[source]
          +apply_length(length)[source]

          This method specifies the length of the cable

          Parameters:
          @@ -856,7 +856,7 @@

          Cable (Docstrings)
          -apply_load(order, load)[source]
          +apply_load(order, load)[source]

          This method adds load to the cable.

          Parameters:
          @@ -924,7 +924,7 @@

          Cable (Docstrings)
          -change_support(label, new_support)[source]
          +change_support(label, new_support)[source]

          This method changes the mentioned support with a new support.

          Parameters:
          @@ -959,7 +959,7 @@

          Cable (Docstrings)
          -draw()[source]
          +draw()[source]

          This method is used to obtain a plot for the specified cable with its supports, shape and loads.

          Examples

          @@ -1021,7 +1021,7 @@

          Cable (Docstrings)
          -plot_tension()[source]
          +plot_tension()[source]

          Returns the diagram/plot of the tension generated in the cable at various points.

          Examples

          For point loads,

          @@ -1060,7 +1060,7 @@

          Cable (Docstrings)
          -remove_loads(*args)[source]
          +remove_loads(*args)[source]

          This methods removes the specified loads.

          Parameters:
          @@ -1092,7 +1092,7 @@

          Cable (Docstrings)
          -solve(*args)[source]
          +solve(*args)[source]

          This method solves for the reaction forces at the supports, the tension developed in the cable, and updates the length of the cable.

          @@ -1156,7 +1156,7 @@

          Cable (Docstrings)
          -tension_at(x)[source]
          +tension_at(x)[source]

          Returns the tension at a given value of x developed due to distributed load.

          diff --git a/dev/modules/physics/continuum_mechanics/truss.html b/dev/modules/physics/continuum_mechanics/truss.html index 7566a4aa31a..436f7eb1630 100644 --- a/dev/modules/physics/continuum_mechanics/truss.html +++ b/dev/modules/physics/continuum_mechanics/truss.html @@ -807,7 +807,7 @@
          Documentation Version
          to 2D Trusses.

          -class sympy.physics.continuum_mechanics.truss.Truss[source]
          +class sympy.physics.continuum_mechanics.truss.Truss[source]

          A Truss is an assembly of members such as beams, connected by nodes, that create a rigid structure. In engineering, a truss is a structure that @@ -831,7 +831,7 @@

          Documentation Version

        -add_member(*args)[source]
        +add_member(*args)[source]

        This method adds a member between any two nodes in the given truss.

        Parameters:
        @@ -863,7 +863,7 @@
        Documentation Version
        -add_node(*args)[source]
        +add_node(*args)[source]

        This method adds a node to the truss along with its name/label and its location. Multiple nodes can be added at the same time.

        @@ -898,7 +898,7 @@
        Documentation Version
        -apply_load(*args)[source]
        +apply_load(*args)[source]

        This method applies external load(s) at the specified node(s).

        Parameters:
        @@ -935,7 +935,7 @@
        Documentation Version
        -apply_support(*args)[source]
        +apply_support(*args)[source]

        This method adds a pinned or roller support at specified node(s).

        Parameters:
        @@ -963,7 +963,7 @@
        Documentation Version
        -change_member_label(*args)[source]
        +change_member_label(*args)[source]

        This method changes the label(s) of the specified member(s).

        Parameters:
        @@ -1000,7 +1000,7 @@
        Documentation Version
        -change_node_label(*args)[source]
        +change_node_label(*args)[source]

        This method changes the label(s) of the specified node(s).

        Parameters:
        @@ -1031,7 +1031,7 @@
        Documentation Version
        -draw(subs_dict=None)[source]
        +draw(subs_dict=None)[source]

        Returns a plot object of the Truss with all its nodes, members, supports and loads.

        @@ -1127,7 +1127,7 @@
        Documentation Version
        -remove_load(*args)[source]
        +remove_load(*args)[source]

        This method removes already present external load(s) at specified node(s).

        @@ -1167,7 +1167,7 @@
        Documentation Version
        -remove_member(*args)[source]
        +remove_member(*args)[source]

        This method removes members from the given truss.

        Parameters:
        @@ -1193,7 +1193,7 @@
        Documentation Version
        -remove_node(*args)[source]
        +remove_node(*args)[source]

        This method removes a node from the truss. Multiple nodes can be removed at the same time.

        @@ -1220,7 +1220,7 @@
        Documentation Version
        -remove_support(*args)[source]
        +remove_support(*args)[source]

        This method removes support from specified node(s.)

        Parameters:
        @@ -1246,7 +1246,7 @@
        Documentation Version
        -solve()[source]
        +solve()[source]

        This method solves for all reaction forces of all supports and all internal forces of all the members in the truss, provided the Truss is solvable.

        A Truss is solvable if the following condition is met,

        diff --git a/dev/modules/physics/control/control_plots.html b/dev/modules/physics/control/control_plots.html index c1e31516f57..872df0257ca 100644 --- a/dev/modules/physics/control/control_plots.html +++ b/dev/modules/physics/control/control_plots.html @@ -824,7 +824,7 @@

        Pole-Zero Plot**kwargs,

        -)[source] +)[source]

        Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.

        A Pole-Zero plot is a graphical representation of a system’s poles and zeros. It is plotted on a complex plane, with circular markers representing @@ -900,7 +900,7 @@

        Pole-Zero Plot
        -control_plots.pole_zero_numerical_data()[source]
        +control_plots.pole_zero_numerical_data()[source]

        Returns the numerical data of poles and zeros of the system. It is internally used by pole_zero_plot to get the data for plotting poles and zeros. Users can use this data to further @@ -968,7 +968,7 @@

        Bode Plot**kwargs,

        -)[source] +)[source]

        Returns the Bode phase and magnitude plots of a continuous-time system.

        Parameters:
        @@ -1046,7 +1046,7 @@

        Bode Plot**kwargs,

        -)[source] +)[source]

        Returns the Bode magnitude plot of a continuous-time system.

        See bode_plot for all the parameters.

        @@ -1068,7 +1068,7 @@

        Bode Plot**kwargs,

        -)[source] +)[source]

        Returns the Bode phase plot of a continuous-time system.

        See bode_plot for all the parameters.

        @@ -1084,7 +1084,7 @@

        Bode Plot**kwargs,

        -)[source] +)[source]

        Returns the numerical data of the Bode magnitude plot of the system. It is internally used by bode_magnitude_plot to get the data for plotting Bode magnitude plot. Users can use this data to further @@ -1160,7 +1160,7 @@

        Bode Plot**kwargs,

        -)[source] +)[source]

        Returns the numerical data of the Bode phase plot of the system. It is internally used by bode_phase_plot to get the data for plotting Bode phase plot. Users can use this data to further @@ -1249,7 +1249,7 @@

        Impulse-Response Plot**kwargs,

        -)[source] +)[source]

        Returns the unit impulse response (Input is the Dirac-Delta Function) of a continuous-time system.

        @@ -1327,7 +1327,7 @@

        Impulse-Response Plot**kwargs,

        -)[source] +)[source]

        Returns the numerical values of the points in the impulse response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1416,7 +1416,7 @@

        Step-Response Plot**kwargs,

        -)[source] +)[source]

        Returns the unit step response of a continuous-time system. It is the response of the system when the input signal is a step function.

        @@ -1494,7 +1494,7 @@

        Step-Response Plot**kwargs,

        -)[source] +)[source]

        Returns the numerical values of the points in the step response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1584,7 +1584,7 @@

        Ramp-Response Plot**kwargs,

        -)[source] +)[source]

        Returns the ramp response of a continuous-time system.

        Ramp function is defined as the straight line passing through origin (\(f(x) = mx\)). The slope of @@ -1670,7 +1670,7 @@

        Ramp-Response Plot**kwargs,

        -)[source] +)[source]

        Returns the numerical values of the points in the ramp response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly @@ -1761,7 +1761,7 @@

        Nyquist Plot**kwargs,

        -)[source] +)[source]

        Generates the Nyquist plot for a continuous-time system.

        Parameters:
        @@ -1828,7 +1828,7 @@

        Nichols Plot**kwargs,

        -)[source] +)[source]

        Generates the Nichols plot for a LTI system.

        Parameters:
        diff --git a/dev/modules/physics/control/lti.html b/dev/modules/physics/control/lti.html index cd1ca442381..9c836bee960 100644 --- a/dev/modules/physics/control/lti.html +++ b/dev/modules/physics/control/lti.html @@ -807,7 +807,7 @@

        Control API

        lti

        -class sympy.physics.control.lti.TransferFunction(num, den, var)[source]
        +class sympy.physics.control.lti.TransferFunction(num, den, var)[source]

        A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are num, den, and var, where num and den are numerator and @@ -998,7 +998,7 @@

        Control API
        -dc_gain()[source]
        +dc_gain()[source]

        Computes the gain of the response as the frequency approaches zero.

        The DC gain is infinite for systems with pure integrators.

        Examples

        @@ -1039,7 +1039,7 @@

        Control API
        -eval_frequency(other)[source]
        +eval_frequency(other)[source]

        Returns the system response at any point in the real or complex plane.

        Examples

        >>> from sympy.abc import s, p, a
        @@ -1060,7 +1060,7 @@ 

        Control API
        -expand()[source]
        +expand()[source]

        Returns the transfer function with numerator and denominator in expanded form.

        Examples

        @@ -1086,7 +1086,7 @@

        Control APIvar,

        -)[source] +)[source]

        Creates a new TransferFunction efficiently from a list of coefficients.

        Parameters:
        @@ -1136,7 +1136,7 @@

        Control APIvar=None,

        -)[source] +)[source]

        Creates a new TransferFunction efficiently from a rational expression.

        Parameters:
        @@ -1202,7 +1202,7 @@

        Control API
        -classmethod from_zpk(zeros, poles, gain, var)[source]
        +classmethod from_zpk(zeros, poles, gain, var)[source]

        Creates a new TransferFunction from given zeros, poles and gain.

        Parameters:
        @@ -1284,7 +1284,7 @@

        Control API
        -is_stable()[source]
        +is_stable()[source]

        Returns True if the transfer function is asymptotically stable; else False.

        This would not check the marginal or conditional stability of the system.

        Examples

        @@ -1345,7 +1345,7 @@

        Control API
        -poles()[source]
        +poles()[source]

        Returns the poles of a transfer function.

        Examples

        >>> from sympy.abc import s, p, a
        @@ -1365,7 +1365,7 @@ 

        Control API
        -to_expr()[source]
        +to_expr()[source]

        Converts a TransferFunction object to SymPy Expr.

        Examples

        >>> from sympy.abc import s, p, a, b
        @@ -1406,7 +1406,7 @@ 

        Control API
        -zeros()[source]
        +zeros()[source]

        Returns the zeros of a transfer function.

        Examples

        >>> from sympy.abc import s, p, a
        @@ -1428,7 +1428,7 @@ 

        Control API
        -class sympy.physics.control.lti.Series(*args, evaluate=False)[source]
        +class sympy.physics.control.lti.Series(*args, evaluate=False)[source]

        A class for representing a series configuration of SISO systems.

        Parameters:
        @@ -1521,7 +1521,7 @@

        Control API
        -doit(**hints)[source]
        +doit(**hints)[source]

        Returns the resultant transfer function or StateSpace obtained after evaluating the series interconnection.

        Examples

        @@ -1609,7 +1609,7 @@

        Control API
        -to_expr()[source]
        +to_expr()[source]

        Returns the equivalent Expr object.

        @@ -1635,7 +1635,7 @@

        Control API
        -class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]
        +class sympy.physics.control.lti.Parallel(*args, evaluate=False)[source]

        A class for representing a parallel configuration of SISO systems.

        Parameters:
        @@ -1731,7 +1731,7 @@

        Control API
        -doit(**hints)[source]
        +doit(**hints)[source]

        Returns the resultant transfer function or state space obtained by parallel connection of transfer functions or state space objects.

        Examples

        @@ -1815,7 +1815,7 @@

        Control API
        -to_expr()[source]
        +to_expr()[source]

        Returns the equivalent Expr object.

        @@ -1841,7 +1841,7 @@

        Control API
        -class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]
        +class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)[source]

        A class for representing closed-loop feedback interconnection between two SISO input/output systems.

        The first argument, sys1, is the feedforward part of the closed-loop @@ -1966,7 +1966,7 @@

        Control API
        -doit(cancel=False, expand=False, **hints)[source]
        +doit(cancel=False, expand=False, **hints)[source]

        Returns the resultant transfer function or state space obtained by feedback connection of transfer functions or state space objects.

        Examples

        @@ -2101,7 +2101,7 @@

        Control API
        -to_expr()[source]
        +to_expr()[source]

        Converts a Feedback object to SymPy Expr.

        Examples

        >>> from sympy.abc import s, a, b
        @@ -2145,7 +2145,7 @@ 

        Control API
        -class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]
        +class sympy.physics.control.lti.TransferFunctionMatrix(arg)[source]

        A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function.

        It is a matrix of transfer functions (TransferFunction, SISO-Series or SISO-Parallel). @@ -2499,7 +2499,7 @@

        Control API
        -elem_poles()[source]
        +elem_poles()[source]

        Returns the poles of each element of the TransferFunctionMatrix.

        Note

        @@ -2527,7 +2527,7 @@

        Control API
        -elem_zeros()[source]
        +elem_zeros()[source]

        Returns the zeros of each element of the TransferFunctionMatrix.

        Note

        @@ -2555,7 +2555,7 @@

        Control API
        -eval_frequency(other)[source]
        +eval_frequency(other)[source]

        Evaluates system response of each transfer function in the TransferFunctionMatrix at any point in the real or complex plane.

        Examples

        >>> from sympy.abc import s
        @@ -2582,13 +2582,13 @@ 

        Control API
        -expand(**hints)[source]
        +expand(**hints)[source]

        Expands the transfer function matrix

        -classmethod from_Matrix(matrix, var)[source]
        +classmethod from_Matrix(matrix, var)[source]

        Creates a new TransferFunctionMatrix efficiently from a SymPy Matrix of Expr objects.

        Parameters:
        @@ -2687,7 +2687,7 @@

        Control API
        -transpose()[source]
        +transpose()[source]

        Returns the transpose of the TransferFunctionMatrix (switched input and output layers).

        @@ -2722,7 +2722,7 @@

        Control API
        -class sympy.physics.control.lti.PIDController(kp=kp, ki=ki, kd=kd, tf=0, var=s)[source]
        +class sympy.physics.control.lti.PIDController(kp=kp, ki=ki, kd=kd, tf=0, var=s)[source]

        A class for representing PID (Proportional-Integral-Derivative) controllers in control systems. The PIDController class is a subclass of TransferFunction, representing the controller’s transfer function @@ -2796,7 +2796,7 @@

        Control API
        -doit()[source]
        +doit()[source]

        Convert the PIDController into TransferFunction.

        @@ -2828,7 +2828,7 @@

        Control API
        -class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]
        +class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)[source]

        A class for representing a series configuration of MIMO systems.

        Parameters:
        @@ -2952,7 +2952,7 @@

        Control API
        -doit(cancel=False, **kwargs)[source]
        +doit(cancel=False, **kwargs)[source]

        Returns the resultant obtained after evaluating the MIMO systems arranged in a series configuration. For TransferFunction systems it returns a TransferFunctionMatrix and for StateSpace systems it returns the resultant StateSpace system.

        @@ -3009,7 +3009,7 @@

        Control API
        -class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]
        +class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)[source]

        A class for representing a parallel configuration of MIMO systems.

        Parameters:
        @@ -3140,7 +3140,7 @@

        Control API
        -doit(**hints)[source]
        +doit(**hints)[source]

        Returns the resultant transfer function matrix or StateSpace obtained after evaluating the MIMO systems arranged in a parallel configuration.

        Examples

        @@ -3197,7 +3197,7 @@

        Control API
        -class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]
        +class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)[source]

        A class for representing closed-loop feedback interconnection between two MIMO input/output systems.

        @@ -3344,7 +3344,7 @@

        Control API**hints,

        -)[source] +)[source]

        Returns the resultant transfer function matrix obtained by the feedback interconnection.

        Examples

        @@ -3562,7 +3562,7 @@

        Control API
        -class sympy.physics.control.lti.StateSpace(A=None, B=None, C=None, D=None)[source]
        +class sympy.physics.control.lti.StateSpace(A=None, B=None, C=None, D=None)[source]

        State space model (ssm) of a linear, time invariant control system.

        Represents the standard state-space model with A, B, C, D as state-space matrices. This makes the linear control system:

        @@ -3713,7 +3713,7 @@

        Control API
        -append(other)[source]
        +append(other)[source]

        Returns the first model appended with the second model. The order is preserved.

        Examples

        >>> from sympy import Matrix
        @@ -3744,7 +3744,7 @@ 

        Control API
        -controllability_matrix()[source]
        +controllability_matrix()[source]
        Returns the controllability matrix of the system:

        [B, A * B, A^2 * B, .. , A^(n-1) * B]; A in R^(n x n), B in R^(n x m)

        @@ -3774,7 +3774,7 @@

        Control API
        -controllable_subspace()[source]
        +controllable_subspace()[source]

        Returns the controllable subspace of the state space model.

        Examples

        >>> from sympy import Matrix
        @@ -3805,7 +3805,7 @@ 

        Control APIvar=t,

        -)[source] +)[source]
        Returns \(y(t)\) or output of StateSpace given by the solution of equations:

        x’(t) = A * x(t) + B * u(t) y(t) = C * x(t) + D * u(t)

        @@ -3898,7 +3898,7 @@

        Control API
        -is_controllable()[source]
        +is_controllable()[source]

        Returns if the state space model is controllable.

        Examples

        >>> from sympy import Matrix
        @@ -3916,7 +3916,7 @@ 

        Control API
        -is_observable()[source]
        +is_observable()[source]

        Returns if the state space model is observable.

        Examples

        >>> from sympy import Matrix
        @@ -3988,7 +3988,7 @@ 

        Control API
        -observability_matrix()[source]
        +observability_matrix()[source]
        Returns the observability matrix of the state space model:

        [C, C * A^1, C * A^2, .. , C * A^(n-1)]; A in R^(n x n), C in R^(m x k)

        @@ -4019,7 +4019,7 @@

        Control API
        -observable_subspace()[source]
        +observable_subspace()[source]

        Returns the observable subspace of the state space model.

        Examples

        >>> from sympy import Matrix
        @@ -4088,7 +4088,7 @@ 

        Control API
        -sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]
        +sympy.physics.control.lti.gbt(tf, sample_per, alpha)[source]

        Returns falling coefficients of H(z) from numerator and denominator.

        Explanation

        Where H(z) is the corresponding discretized transfer function, @@ -4143,7 +4143,7 @@

        Control API
        -sympy.physics.control.lti.bilinear(tf, sample_per)[source]
        +sympy.physics.control.lti.bilinear(tf, sample_per)[source]

        Returns falling coefficients of H(z) from numerator and denominator.

        Explanation

        Where H(z) is the corresponding discretized transfer function, @@ -4170,7 +4170,7 @@

        Control API
        -sympy.physics.control.lti.forward_diff(tf, sample_per)[source]
        +sympy.physics.control.lti.forward_diff(tf, sample_per)[source]

        Returns falling coefficients of H(z) from numerator and denominator.

        Explanation

        Where H(z) is the corresponding discretized transfer function, @@ -4197,7 +4197,7 @@

        Control API
        -sympy.physics.control.lti.backward_diff(tf, sample_per)[source]
        +sympy.physics.control.lti.backward_diff(tf, sample_per)[source]

        Returns falling coefficients of H(z) from numerator and denominator.

        Explanation

        Where H(z) is the corresponding discretized transfer function, diff --git a/dev/modules/physics/hep/index.html b/dev/modules/physics/hep/index.html index 925e494d1b1..eb402e675fb 100644 --- a/dev/modules/physics/hep/index.html +++ b/dev/modules/physics/hep/index.html @@ -836,7 +836,7 @@

        Examples
        -sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)[source]
        +sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)[source]

        Extract from a TensExpr all tensors with \(component\).

        Returns two tensor expressions:

          @@ -847,7 +847,7 @@

          Examples
          -sympy.physics.hep.gamma_matrices.gamma_trace(t)[source]
          +sympy.physics.hep.gamma_matrices.gamma_trace(t)[source]

          trace of a single line of gamma matrices

          Examples

          >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,         gamma_trace, LorentzIndex
          @@ -868,7 +868,7 @@ 

          Examples
          -sympy.physics.hep.gamma_matrices.kahane_simplify(expression)[source]
          +sympy.physics.hep.gamma_matrices.kahane_simplify(expression)[source]

          This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices.

          @@ -935,7 +935,7 @@

          Examples
          -sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)[source]
          +sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)[source]

          simplify products G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)

          Examples

          >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,         LorentzIndex, simplify_gpgp
          diff --git a/dev/modules/physics/hydrogen.html b/dev/modules/physics/hydrogen.html
          index 5d0aa4d7e67..48d7652a460 100644
          --- a/dev/modules/physics/hydrogen.html
          +++ b/dev/modules/physics/hydrogen.html
          @@ -805,7 +805,7 @@ 
          Documentation Version

          Hydrogen Wavefunctions

          -sympy.physics.hydrogen.E_nl(n, Z=1)[source]
          +sympy.physics.hydrogen.E_nl(n, Z=1)[source]

          Returns the energy of the state (n, l) in Hartree atomic units.

          The energy does not depend on “l”.

          @@ -850,7 +850,7 @@
          Documentation Version
          c=137.035999037000,
          -)[source] +)[source]

          Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units.

          The energy is calculated from the Dirac equation. The rest mass energy is @@ -912,7 +912,7 @@

          Documentation Version
          -sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[source]
          +sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[source]

          Returns the Hydrogen wave function psi_{nlm}. It’s the product of the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.

          @@ -979,7 +979,7 @@
          Documentation Version
          -sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[source]
          +sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[source]

          Returns the Hydrogen radial wavefunction R_{nl}.

          Parameters:
          diff --git a/dev/modules/physics/matrices.html b/dev/modules/physics/matrices.html index baa18f080e8..2f30d96436c 100644 --- a/dev/modules/physics/matrices.html +++ b/dev/modules/physics/matrices.html @@ -806,7 +806,7 @@
          Documentation Version

          Known matrices related to physics

          -sympy.physics.matrices.mdft(n)[source]
          +sympy.physics.matrices.mdft(n)[source]

          Deprecated since version 1.9: Use DFT from sympy.matrices.expressions.fourier instead.

          To get identical behavior to mdft(n), use DFT(n).as_explicit().

          @@ -815,7 +815,7 @@
          Documentation Version
          -sympy.physics.matrices.mgamma(mu, lower=False)[source]
          +sympy.physics.matrices.mgamma(mu, lower=False)[source]

          Returns a Dirac gamma matrix \(\gamma^\mu\) in the standard (Dirac) representation.

          Explanation

          @@ -844,7 +844,7 @@
          Documentation Version
          -sympy.physics.matrices.msigma(i)[source]
          +sympy.physics.matrices.msigma(i)[source]

          Returns a Pauli matrix \(\sigma_i\) with \(i=1,2,3\).

          Examples

          >>> from sympy.physics.matrices import msigma
          @@ -865,7 +865,7 @@ 
          Documentation Version
          -sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]
          +sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]

          Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of \((dx, dy, dz)\) for a body of mass m.

          Examples

          diff --git a/dev/modules/physics/mechanics/api/actuator.html b/dev/modules/physics/mechanics/api/actuator.html index 4770bd753a1..04e10e1c4b2 100644 --- a/dev/modules/physics/mechanics/api/actuator.html +++ b/dev/modules/physics/mechanics/api/actuator.html @@ -806,14 +806,14 @@
          Documentation Version

          Implementations of actuators for linked force and torque application.

          -class sympy.physics.mechanics.actuator.ActuatorBase[source]
          +class sympy.physics.mechanics.actuator.ActuatorBase[source]

          Abstract base class for all actuator classes to inherit from.

          Notes

          Instances of this class cannot be directly instantiated by users. However, it can be used to created custom actuator types through subclassing.

          -abstract to_loads()[source]
          +abstract to_loads()[source]

          Loads required by the equations of motion method classes.

          Explanation

          KanesMethod requires a list of Point-Vector tuples to be @@ -842,7 +842,7 @@

          Documentation Version
          mu_s=None,
          -)[source] +)[source]

          Coulomb kinetic friction with Stribeck and viscous effects.

          Parameters:
          @@ -1001,7 +1001,7 @@
          Documentation Version
          equilibrium_length=0,
          -)[source] +)[source]

          A nonlinear spring based on the Duffing equation.

          Parameters:
          @@ -1037,7 +1037,7 @@
          Documentation Version
          -class sympy.physics.mechanics.actuator.ForceActuator(force, pathway)[source]
          +class sympy.physics.mechanics.actuator.ForceActuator(force, pathway)[source]

          Force-producing actuator.

          Parameters:
          @@ -1115,7 +1115,7 @@
          Documentation Version
          -to_loads()[source]
          +to_loads()[source]

          Loads required by the equations of motion method classes.

          Explanation

          KanesMethod requires a list of Point-Vector tuples to be @@ -1186,7 +1186,7 @@

          Documentation Version
          -class sympy.physics.mechanics.actuator.LinearDamper(damping, pathway)[source]
          +class sympy.physics.mechanics.actuator.LinearDamper(damping, pathway)[source]

          A damper whose force is a linear function of its extension velocity.

          Parameters:
          @@ -1304,7 +1304,7 @@
          Documentation Version
          equilibrium_length=0,
          -)[source] +)[source]

          A spring with its spring force as a linear function of its length.

          Parameters:
          @@ -1441,7 +1441,7 @@
          Documentation Version
          reaction_frame=None,
          -)[source] +)[source]

          Torque-producing actuator.

          Parameters:
          @@ -1492,7 +1492,7 @@
          Documentation Version
          when one is passed instead of a ReferenceFrame.

          -classmethod at_pin_joint(torque, pin_joint)[source]
          +classmethod at_pin_joint(torque, pin_joint)[source]

          Alternate construtor to instantiate from a PinJoint instance.

          Parameters:
          @@ -1571,7 +1571,7 @@
          Documentation Version
          -to_loads()[source]
          +to_loads()[source]

          Loads required by the equations of motion method classes.

          Explanation

          KanesMethod requires a list of Point-Vector tuples to be diff --git a/dev/modules/physics/mechanics/api/deprecated_classes.html b/dev/modules/physics/mechanics/api/deprecated_classes.html index 33778651b48..2fccb33c299 100644 --- a/dev/modules/physics/mechanics/api/deprecated_classes.html +++ b/dev/modules/physics/mechanics/api/deprecated_classes.html @@ -821,7 +821,7 @@

          Deprecated Classes (Docstrings)central_inertia=None,

          -)[source] +)[source]

          Body is a common representation of either a RigidBody or a Particle SymPy object depending on what is passed in during initialization. If a mass is passed in and central_inertia is left as None, the Particle object is @@ -932,7 +932,7 @@

          Deprecated Classes (Docstrings)
          -ang_vel_in(body)[source]
          +ang_vel_in(body)[source]

          Returns this body’s angular velocity with respect to the provided rigid body or reference frame.

          @@ -966,7 +966,7 @@

          Deprecated Classes (Docstrings)
          -angular_momentum(point, frame)[source]
          +angular_momentum(point, frame)[source]

          Returns the angular momentum of the rigid body about a point in the given frame.

          @@ -1019,7 +1019,7 @@

          Deprecated Classes (Docstrings)reaction_point=None,

          -)[source] +)[source]

          Add force to the body(s).

          Parameters:
          @@ -1113,7 +1113,7 @@

          Deprecated Classes (Docstrings)
          -apply_torque(torque, reaction_body=None)[source]
          +apply_torque(torque, reaction_body=None)[source]

          Add torque to the body(s).

          Parameters:
          @@ -1199,7 +1199,7 @@

          Deprecated Classes (Docstrings)
          -clear_loads()[source]
          +clear_loads()[source]

          Clears the Body’s loads list.

          Example

          As Body has been deprecated, the following examples are for illustrative @@ -1223,7 +1223,7 @@

          Deprecated Classes (Docstrings)
          -dcm(body)[source]
          +dcm(body)[source]

          Returns the direction cosine matrix of this body relative to the provided rigid body or reference frame.

          @@ -1273,7 +1273,7 @@

          Deprecated Classes (Docstrings)
          -kinetic_energy(frame)[source]
          +kinetic_energy(frame)[source]

          Kinetic energy of the body.

          Parameters:
          @@ -1325,7 +1325,7 @@

          Deprecated Classes (Docstrings)
          -linear_momentum(frame)[source]
          +linear_momentum(frame)[source]

          Linear momentum of the rigid body.

          Parameters:
          @@ -1373,7 +1373,7 @@

          Deprecated Classes (Docstrings)
          -masscenter_vel(body)[source]
          +masscenter_vel(body)[source]

          Returns the velocity of the mass center with respect to the provided rigid body or reference frame.

          @@ -1411,7 +1411,7 @@

          Deprecated Classes (Docstrings)
          -parallel_axis(point, frame=None)[source]
          +parallel_axis(point, frame=None)[source]

          Returns the inertia dyadic of the body with respect to another point.

          @@ -1477,7 +1477,7 @@

          Deprecated Classes (Docstrings)
          -remove_load(about=None)[source]
          +remove_load(about=None)[source]

          Remove load about a point or frame.

          Parameters:
          @@ -1537,7 +1537,7 @@

          Deprecated Classes (Docstrings)
          -class sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)[source]
          +class sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)[source]

          Method for formulating the equations of motion using a set of interconnected bodies with joints.

          Deprecated since version 1.13: The JointsMethod class is deprecated. Its functionality has been @@ -1653,7 +1653,7 @@

          Deprecated Classes (Docstrings)method=<class 'sympy.physics.mechanics.kane.KanesMethod'>,

          -)[source] +)[source]

          Method to form system’s equation of motions.

          Parameters:
          @@ -1746,7 +1746,7 @@

          Deprecated Classes (Docstrings)
          -rhs(inv_method=None)[source]
          +rhs(inv_method=None)[source]

          Returns equations that can be solved numerically.

          Parameters:
          diff --git a/dev/modules/physics/mechanics/api/expr_manip.html b/dev/modules/physics/mechanics/api/expr_manip.html index 6b34bea1700..0c8c7854a6a 100644 --- a/dev/modules/physics/mechanics/api/expr_manip.html +++ b/dev/modules/physics/mechanics/api/expr_manip.html @@ -805,7 +805,7 @@
          Documentation Version

          Expression Manipulation (Docstrings)

          -sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)[source]
          +sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)[source]

          A custom subs for use on expressions derived in physics.mechanics.

          Traverses the expression tree once, performing the subs found in sub_dicts. Terms inside Derivative expressions are ignored:

          @@ -851,7 +851,7 @@

          Expression Manipulation (Docstrings)reference_frame=None,

          -)[source] +)[source]

          Find all dynamicsymbols in expression.

          Parameters:
          diff --git a/dev/modules/physics/mechanics/api/joint.html b/dev/modules/physics/mechanics/api/joint.html index 26844b60127..3a3df539757 100644 --- a/dev/modules/physics/mechanics/api/joint.html +++ b/dev/modules/physics/mechanics/api/joint.html @@ -825,7 +825,7 @@

          Joints Framework (Docstrings)child_joint_pos=None,

          -)[source] +)[source]

          Abstract base class for all specific joints.

          Parameters:
          @@ -1059,7 +1059,7 @@

          Joints Framework (Docstrings)child_joint_pos=None,

          -)[source] +)[source]

          Pin (Revolute) Joint.

          @@ -1390,7 +1390,7 @@

          Joints Framework (Docstrings)child_joint_pos=None,

          -)[source] +)[source]

          Prismatic (Sliding) Joint.

          ../../../../_images/PrismaticJoint.svg
          @@ -1677,7 +1677,7 @@

          Joints Framework (Docstrings)joint_axis=None,

          -)[source] +)[source]

          Cylindrical Joint.

          ../../../../_images/CylindricalJoint.svg @@ -1983,7 +1983,7 @@

          Joints Framework (Docstrings)child_interframe=None,

          -)[source] +)[source]

          Planar Joint.

          Joints Framework (Docstrings)rot_order=123,

          -)[source] +)[source]

          Spherical (Ball-and-Socket) Joint.

          ../../../../_images/SphericalJoint.svg @@ -2750,7 +2750,7 @@

          Joints Framework (Docstrings)child_interframe=None,

          -)[source] +)[source]

          Weld Joint.

          diff --git a/dev/modules/physics/mechanics/api/kane_lagrange.html b/dev/modules/physics/mechanics/api/kane_lagrange.html index 93dd3d3fbb4..be9e4693a35 100644 --- a/dev/modules/physics/mechanics/api/kane_lagrange.html +++ b/dev/modules/physics/mechanics/api/kane_lagrange.html @@ -825,7 +825,7 @@
          Documentation Version
          constraint_solver='LU',

          -)[source] +)[source]

          Kane’s method object.

          Parameters:
          @@ -1070,7 +1070,7 @@
          Documentation Version
          loads=None,
          -)[source] +)[source]

          Method to form Kane’s equations, Fr + Fr* = 0.

          Parameters:
          @@ -1099,7 +1099,7 @@
          Documentation Version
          -kindiffdict()[source]
          +kindiffdict()[source]

          Returns a dictionary mapping q’ to u.

          @@ -1114,7 +1114,7 @@
          Documentation Version
          **kwargs,
          -)[source] +)[source]

          Linearize the equations of motion about a symbolic operating point.

          Parameters:
          @@ -1182,7 +1182,7 @@
          Documentation Version
          -rhs(inv_method=None)[source]
          +rhs(inv_method=None)[source]

          Returns the system’s equations of motion in first order form. The output is the right hand side of:

          x' = |q'| =: f(q, u, r, p, t)
          @@ -1205,7 +1205,7 @@ 
          Documentation Version
          -to_linearizer(linear_solver='LU')[source]
          +to_linearizer(linear_solver='LU')[source]

          Returns an instance of the Linearizer class, initiated from the data in the KanesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more @@ -1251,7 +1251,7 @@

          Documentation Version
          nonhol_coneqs=None,
          -)[source] +)[source]

          Lagrange’s method object.

          Explanation

          This object generates the equations of motion in a two step procedure. The @@ -1355,7 +1355,7 @@

          Documentation Version
          -form_lagranges_equations()[source]
          +form_lagranges_equations()[source]

          Method to form Lagrange’s equations of motion.

          Returns a vector of equations of motion using Lagrange’s equations of the second kind.

          @@ -1374,7 +1374,7 @@
          Documentation Version
          **kwargs,
          -)[source] +)[source]

          Linearize the equations of motion about a symbolic operating point.

          Parameters:
          @@ -1439,7 +1439,7 @@
          Documentation Version
          -rhs(inv_method=None, **kwargs)[source]
          +rhs(inv_method=None, **kwargs)[source]

          Returns equations that can be solved numerically.

          Parameters:
          @@ -1462,7 +1462,7 @@
          Documentation Version
          sol_type='dict',
          -)[source] +)[source]

          Solves for the values of the lagrange multipliers symbolically at the specified operating point.

          @@ -1495,7 +1495,7 @@
          Documentation Version
          linear_solver='LU',
          -)[source] +)[source]

          Returns an instance of the Linearizer class, initiated from the data in the LagrangesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more diff --git a/dev/modules/physics/mechanics/api/linearize.html b/dev/modules/physics/mechanics/api/linearize.html index 83e1bf5b22b..9ab73870068 100644 --- a/dev/modules/physics/mechanics/api/linearize.html +++ b/dev/modules/physics/mechanics/api/linearize.html @@ -827,7 +827,7 @@

          Documentation Version
          linear_solver='LU',
          -)[source] +)[source]

          This object holds the general model form for a dynamic system. This model is used for computing the linearized form of the system, while properly dealing with constraints leading to dependent coordinates and @@ -889,7 +889,7 @@

          Documentation Version
          linear_solver='LU',
          -)[source] +)[source]
          Parameters:

          f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : array_like

          @@ -948,7 +948,7 @@
          Documentation Version
          simplify=False,
          -)[source] +)[source]

          Linearize the system about the operating point. Note that q_op, u_op, qd_op, ud_op must satisfy the equations of motion. These may be either symbolic or numeric.

          diff --git a/dev/modules/physics/mechanics/api/part_bod.html b/dev/modules/physics/mechanics/api/part_bod.html index 292df7a7d77..a39d683d260 100644 --- a/dev/modules/physics/mechanics/api/part_bod.html +++ b/dev/modules/physics/mechanics/api/part_bod.html @@ -807,7 +807,7 @@
          Documentation Version

          Bodies

          -class sympy.physics.mechanics.particle.Particle(name, point=None, mass=None)[source]
          +class sympy.physics.mechanics.particle.Particle(name, point=None, mass=None)[source]

          A particle.

          Parameters:
          @@ -847,7 +847,7 @@

          Bodies
          -angular_momentum(point, frame)[source]
          +angular_momentum(point, frame)[source]

          Angular momentum of the particle about the point.

          Parameters:
          @@ -887,7 +887,7 @@

          Bodies
          -kinetic_energy(frame)[source]
          +kinetic_energy(frame)[source]

          Kinetic energy of the particle.

          Parameters:
          @@ -920,7 +920,7 @@

          Bodies
          -linear_momentum(frame)[source]
          +linear_momentum(frame)[source]

          Linear momentum of the particle.

          Parameters:
          @@ -972,7 +972,7 @@

          Bodies
          -parallel_axis(point, frame)[source]
          +parallel_axis(point, frame)[source]

          Returns an inertia dyadic of the particle with respect to another point and frame.

          @@ -1033,7 +1033,7 @@

          Bodiesinertia=None,

          -)[source] +)[source]

          An idealized rigid body.

          Explanation

          This is essentially a container which holds the various components which @@ -1083,7 +1083,7 @@

          Bodies
          -angular_momentum(point, frame)[source]
          +angular_momentum(point, frame)[source]

          Returns the angular momentum of the rigid body about a point in the given frame.

          @@ -1145,7 +1145,7 @@

          Bodies
          -kinetic_energy(frame)[source]
          +kinetic_energy(frame)[source]

          Kinetic energy of the rigid body.

          Parameters:
          @@ -1185,7 +1185,7 @@

          Bodies
          -linear_momentum(frame)[source]
          +linear_momentum(frame)[source]

          Linear momentum of the rigid body.

          Parameters:
          @@ -1239,7 +1239,7 @@

          Bodies
          -parallel_axis(point, frame=None)[source]
          +parallel_axis(point, frame=None)[source]

          Returns the inertia dyadic of the body with respect to another point.

          Parameters:
          @@ -1304,7 +1304,7 @@

          BodiesInertias

          -class sympy.physics.mechanics.inertia.Inertia(dyadic, point)[source]
          +class sympy.physics.mechanics.inertia.Inertia(dyadic, point)[source]

          Inertia object consisting of a Dyadic and a Point of reference.

          Explanation

          This is a simple class to store the Point and Dyadic, belonging to an @@ -1352,7 +1352,7 @@

          Inertias
          izx=0,

          -)[source] +)[source]

          Simple way to create an Inertia object based on the tensor values.

          Parameters:
          @@ -1417,7 +1417,7 @@

          Inertias
          -sympy.physics.mechanics.inertia.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)[source]
          +sympy.physics.mechanics.inertia.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)[source]

          Simple way to create inertia Dyadic object.

          Parameters:
          @@ -1465,7 +1465,7 @@

          Inertias
          -sympy.physics.mechanics.inertia.inertia_of_point_mass(mass, pos_vec, frame)[source]
          +sympy.physics.mechanics.inertia.inertia_of_point_mass(mass, pos_vec, frame)[source]

          Inertia dyadic of a point mass relative to point O.

          Parameters:
          @@ -1500,7 +1500,7 @@

          Inertias

          Loads

          -class sympy.physics.mechanics.loads.Force(point, force)[source]
          +class sympy.physics.mechanics.loads.Force(point, force)[source]

          Force acting upon a point.

          Explanation

          A force is a vector that is bound to a line of action. This class stores @@ -1528,7 +1528,7 @@

          Loads
          -class sympy.physics.mechanics.loads.Torque(frame, torque)[source]
          +class sympy.physics.mechanics.loads.Torque(frame, torque)[source]

          Torque acting upon a frame.

          Explanation

          A torque is a free vector that is acting on a reference frame, which is @@ -1558,7 +1558,7 @@

          Loads

          Other Functions

          -sympy.physics.mechanics.functions.center_of_mass(point, *bodies)[source]
          +sympy.physics.mechanics.functions.center_of_mass(point, *bodies)[source]

          Returns the position vector from the given point to the center of mass of the given bodies(particles or rigidbodies).

          Example

          @@ -1591,7 +1591,7 @@

          Other Functions
          -sympy.physics.mechanics.functions.linear_momentum(frame, *body)[source]
          +sympy.physics.mechanics.functions.linear_momentum(frame, *body)[source]

          Linear momentum of the system.

          Parameters:
          @@ -1632,7 +1632,7 @@

          Other Functions
          -sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)[source]
          +sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)[source]

          Angular momentum of a system.

          Parameters:
          @@ -1681,7 +1681,7 @@

          Other Functions
          -sympy.physics.mechanics.functions.kinetic_energy(frame, *body)[source]
          +sympy.physics.mechanics.functions.kinetic_energy(frame, *body)[source]

          Kinetic energy of a multibody system.

          Parameters:
          @@ -1728,7 +1728,7 @@

          Other Functions
          -sympy.physics.mechanics.functions.potential_energy(*body)[source]
          +sympy.physics.mechanics.functions.potential_energy(*body)[source]

          Potential energy of a multibody system.

          Parameters:
          @@ -1771,7 +1771,7 @@

          Other Functions
          -sympy.physics.mechanics.functions.Lagrangian(frame, *body)[source]
          +sympy.physics.mechanics.functions.Lagrangian(frame, *body)[source]

          Lagrangian of a multibody system.

          Parameters:
          @@ -1829,7 +1829,7 @@

          Other Functionsreference_frame=None,

          -)[source] +)[source]

          Find all dynamicsymbols in expression.

          Parameters:
          diff --git a/dev/modules/physics/mechanics/api/pathway.html b/dev/modules/physics/mechanics/api/pathway.html index 3454fbde10b..7faf337e6c9 100644 --- a/dev/modules/physics/mechanics/api/pathway.html +++ b/dev/modules/physics/mechanics/api/pathway.html @@ -806,7 +806,7 @@
          Documentation Version

          Implementations of pathways for use by actuators.

          -class sympy.physics.mechanics.pathway.LinearPathway(*attachments)[source]
          +class sympy.physics.mechanics.pathway.LinearPathway(*attachments)[source]

          Linear pathway between a pair of attachment points.

          Parameters:
          @@ -896,7 +896,7 @@
          Documentation Version
          -to_loads(force)[source]
          +to_loads(force)[source]

          Loads required by the equations of motion method classes.

          Parameters:
          @@ -950,7 +950,7 @@
          Documentation Version
          -class sympy.physics.mechanics.pathway.ObstacleSetPathway(*attachments)[source]
          +class sympy.physics.mechanics.pathway.ObstacleSetPathway(*attachments)[source]

          Obstacle-set pathway between a set of attachment points.

          Parameters:
          @@ -1031,7 +1031,7 @@
          Documentation Version
          -to_loads(force)[source]
          +to_loads(force)[source]

          Loads required by the equations of motion method classes.

          Parameters:
          @@ -1098,7 +1098,7 @@
          Documentation Version
          -class sympy.physics.mechanics.pathway.PathwayBase(*attachments)[source]
          +class sympy.physics.mechanics.pathway.PathwayBase(*attachments)[source]

          Abstract base class for all pathway classes to inherit from.

          Notes

          Instances of this class cannot be directly instantiated by users. However, @@ -1123,7 +1123,7 @@

          Documentation Version
          -abstract to_loads(force)[source]
          +abstract to_loads(force)[source]

          Loads required by the equations of motion method classes.

          Explanation

          KanesMethod requires a list of Point-Vector tuples to be @@ -1148,7 +1148,7 @@

          Documentation Version
          geometry,
          -)[source] +)[source]

          Pathway that wraps a geometry object.

          Parameters:
          @@ -1235,7 +1235,7 @@
          Documentation Version
          -to_loads(force)[source]
          +to_loads(force)[source]

          Loads required by the equations of motion method classes.

          Parameters:
          diff --git a/dev/modules/physics/mechanics/api/system.html b/dev/modules/physics/mechanics/api/system.html index 7eb2ee8ece0..c2935b92553 100644 --- a/dev/modules/physics/mechanics/api/system.html +++ b/dev/modules/physics/mechanics/api/system.html @@ -821,7 +821,7 @@

          System (Docstrings)loads=None,

          -)[source] +)[source]

          SymbolicSystem is a class that contains all the information about a system in a symbolic format such as the equations of motions and the bodies and loads in the system.

          @@ -1023,7 +1023,7 @@

          System (Docstrings)
          -compute_explicit_form()[source]
          +compute_explicit_form()[source]

          If the explicit right hand side of the combined equations of motion is to provided upon initialization, this method will calculate it. This calculation can potentially take awhile to compute.

          @@ -1031,7 +1031,7 @@

          System (Docstrings)
          -constant_symbols()[source]
          +constant_symbols()[source]

          Returns a column matrix containing all of the symbols in the system that do not depend on time

          @@ -1060,7 +1060,7 @@

          System (Docstrings)
          -dynamic_symbols()[source]
          +dynamic_symbols()[source]

          Returns a column matrix containing all of the symbols in the system that depend on time

          @@ -1094,7 +1094,7 @@

          System (Docstrings)
          -class sympy.physics.mechanics.system.System(frame=None, fixed_point=None)[source]
          +class sympy.physics.mechanics.system.System(frame=None, fixed_point=None)[source]

          Class to define a multibody system and form its equations of motion.

          Explanation

          A System instance stores the different objects associated with a model, @@ -1309,7 +1309,7 @@

          System (Docstrings)
          -add_actuators(*actuators)[source]
          +add_actuators(*actuators)[source]

          Add actuator(s) to the system.

          Parameters:
          @@ -1323,7 +1323,7 @@

          System (Docstrings)
          -add_auxiliary_speeds(*speeds)[source]
          +add_auxiliary_speeds(*speeds)[source]

          Add auxiliary speed(s) to the system.

          Parameters:
          @@ -1337,7 +1337,7 @@

          System (Docstrings)
          -add_bodies(*bodies)[source]
          +add_bodies(*bodies)[source]

          Add body(ies) to the system.

          Parameters:
          @@ -1358,7 +1358,7 @@

          System (Docstrings)independent=True,

          -)[source] +)[source]

          Add generalized coordinate(s) to the system.

          Parameters:
          @@ -1378,7 +1378,7 @@

          System (Docstrings)
          -add_holonomic_constraints(*constraints)[source]
          +add_holonomic_constraints(*constraints)[source]

          Add holonomic constraint(s) to the system.

          Parameters:
          @@ -1393,7 +1393,7 @@

          System (Docstrings)
          -add_joints(*joints)[source]
          +add_joints(*joints)[source]

          Add joint(s) to the system.

          Parameters:
          @@ -1417,7 +1417,7 @@

          System (Docstrings)
          -add_kdes(*kdes)[source]
          +add_kdes(*kdes)[source]

          Add kinematic differential equation(s) to the system.

          Parameters:
          @@ -1431,7 +1431,7 @@

          System (Docstrings)
          -add_loads(*loads)[source]
          +add_loads(*loads)[source]

          Add load(s) to the system.

          Parameters:
          @@ -1445,7 +1445,7 @@

          System (Docstrings)
          -add_nonholonomic_constraints(*constraints)[source]
          +add_nonholonomic_constraints(*constraints)[source]

          Add nonholonomic constraint(s) to the system.

          Parameters:
          @@ -1460,7 +1460,7 @@

          System (Docstrings)
          -add_speeds(*speeds, independent=True)[source]
          +add_speeds(*speeds, independent=True)[source]

          Add generalized speed(s) to the system.

          Parameters:
          @@ -1479,7 +1479,7 @@

          System (Docstrings)
          -apply_uniform_gravity(acceleration)[source]
          +apply_uniform_gravity(acceleration)[source]

          Apply uniform gravity to all bodies in the system by adding loads.

          Parameters:
          @@ -1531,7 +1531,7 @@

          System (Docstrings)**kwargs,

          -)[source] +)[source]

          Form the equations of motion of the system.

          Parameters:
          @@ -1585,13 +1585,13 @@

          System (Docstrings)
          -classmethod from_newtonian(newtonian)[source]
          +classmethod from_newtonian(newtonian)[source]

          Constructs the system with respect to a Newtonian body.

          -get_body(name)[source]
          +get_body(name)[source]

          Retrieve a body from the system by name.

          Parameters:
          @@ -1611,7 +1611,7 @@

          System (Docstrings)
          -get_joint(name)[source]
          +get_joint(name)[source]

          Retrieve a joint from the system by name.

          Parameters:
          @@ -1714,7 +1714,7 @@

          System (Docstrings)
          -rhs(inv_method=None)[source]
          +rhs(inv_method=None)[source]

          Compute the equations of motion in the explicit form.

          Parameters:
          @@ -1777,7 +1777,7 @@

          System (Docstrings)check_duplicates=False,

          -)[source] +)[source]

          Validates the system using some basic checks.

          Parameters:
          diff --git a/dev/modules/physics/mechanics/api/wrapping_geometry.html b/dev/modules/physics/mechanics/api/wrapping_geometry.html index 3db48b15740..95180d281a0 100644 --- a/dev/modules/physics/mechanics/api/wrapping_geometry.html +++ b/dev/modules/physics/mechanics/api/wrapping_geometry.html @@ -806,7 +806,7 @@
          Documentation Version

          Geometry objects for use by wrapping pathways.

          -class sympy.physics.mechanics.wrapping_geometry.WrappingCylinder(radius, point, axis)[source]
          +class sympy.physics.mechanics.wrapping_geometry.WrappingCylinder(radius, point, axis)[source]

          A solid (infinite) cylindrical object.

          Parameters:
          @@ -873,7 +873,7 @@
          Documentation Version
          point_2,
          -)[source] +)[source]

          The vectors parallel to the geodesic at the two end points.

          Parameters:
          @@ -891,7 +891,7 @@
          Documentation Version
          -geodesic_length(point_1, point_2)[source]
          +geodesic_length(point_1, point_2)[source]

          The shortest distance between two points on a geometry’s surface.

          Parameters:
          @@ -964,7 +964,7 @@
          Documentation Version
          -point_on_surface(point)[source]
          +point_on_surface(point)[source]

          Returns True if a point is on the cylinder’s surface.

          Parameters:
          @@ -989,7 +989,7 @@
          Documentation Version
          -class sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase[source]
          +class sympy.physics.mechanics.wrapping_geometry.WrappingGeometryBase[source]

          Abstract base class for all geometry classes to inherit from.

          Notes

          Instances of this class cannot be directly instantiated by users. However, @@ -1003,7 +1003,7 @@

          Documentation Version
          point_2,
          -)[source] +)[source]

          The vectors parallel to the geodesic at the two end points.

          Parameters:
          @@ -1028,7 +1028,7 @@
          Documentation Version
          point_2,
          -)[source] +)[source]

          Returns the shortest distance between two points on a geometry’s surface.

          @@ -1053,7 +1053,7 @@
          Documentation Version
          -abstract point_on_surface(point)[source]
          +abstract point_on_surface(point)[source]

          Returns True if a point is on the geometry’s surface.

          Parameters:
          @@ -1070,7 +1070,7 @@
          Documentation Version
          -class sympy.physics.mechanics.wrapping_geometry.WrappingSphere(radius, point)[source]
          +class sympy.physics.mechanics.wrapping_geometry.WrappingSphere(radius, point)[source]

          A solid spherical object.

          Parameters:
          @@ -1119,7 +1119,7 @@
          Documentation Version
          point_2,
          -)[source] +)[source]

          The vectors parallel to the geodesic at the two end points.

          Parameters:
          @@ -1137,7 +1137,7 @@
          Documentation Version
          -geodesic_length(point_1, point_2)[source]
          +geodesic_length(point_1, point_2)[source]

          Returns the shortest distance between two points on the sphere’s surface.

          @@ -1210,7 +1210,7 @@
          Documentation Version
          -point_on_surface(point)[source]
          +point_on_surface(point)[source]

          Returns True if a point is on the sphere’s surface.

          Parameters:
          diff --git a/dev/modules/physics/optics/gaussopt.html b/dev/modules/physics/optics/gaussopt.html index aea8b1387df..7089921e5dd 100644 --- a/dev/modules/physics/optics/gaussopt.html +++ b/dev/modules/physics/optics/gaussopt.html @@ -824,7 +824,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.BeamParameter(wavelen, z, z_r=None, w=None, n=1)[source]
          +class sympy.physics.optics.gaussopt.BeamParameter(wavelen, z, z_r=None, w=None, n=1)[source]

          Representation for a gaussian ray in the Ray Transfer Matrix formalism.

          Parameters:
          @@ -989,7 +989,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.CurvedMirror(R)[source]
          +class sympy.physics.optics.gaussopt.CurvedMirror(R)[source]

          Ray Transfer Matrix for reflection from curved surface.

          Parameters:
          @@ -1014,7 +1014,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)[source]
          +class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)[source]

          Ray Transfer Matrix for refraction on curved interface.

          Parameters:
          @@ -1050,7 +1050,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.FlatMirror[source]
          +class sympy.physics.optics.gaussopt.FlatMirror[source]

          Ray Transfer Matrix for reflection.

          Examples

          >>> from sympy.physics.optics import FlatMirror
          @@ -1068,7 +1068,7 @@ 
          Documentation Version
          -class sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)[source]
          +class sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)[source]

          Ray Transfer Matrix for refraction.

          Parameters:
          @@ -1100,7 +1100,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.FreeSpace(d)[source]
          +class sympy.physics.optics.gaussopt.FreeSpace(d)[source]

          Ray Transfer Matrix for free space.

          Parameters:
          @@ -1125,7 +1125,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.GeometricRay(*args)[source]
          +class sympy.physics.optics.gaussopt.GeometricRay(*args)[source]

          Representation for a geometric ray in the Ray Transfer Matrix formalism.

          Parameters:
          @@ -1196,7 +1196,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)[source]
          +class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)[source]

          Base class for a Ray Transfer Matrix.

          It should be used if there is not already a more specific subclass mentioned in See Also.

          @@ -1309,7 +1309,7 @@
          Documentation Version
          -class sympy.physics.optics.gaussopt.ThinLens(f)[source]
          +class sympy.physics.optics.gaussopt.ThinLens(f)[source]

          Ray Transfer Matrix for a thin lens.

          Parameters:
          @@ -1346,7 +1346,7 @@
          Documentation Version
          **kwargs,
          -)[source] +)[source]

          Find the optical setup conjugating the object/image waists.

          Parameters:
          @@ -1402,7 +1402,7 @@
          Documentation Version
          -sympy.physics.optics.gaussopt.gaussian_conj(s_in, z_r_in, f)[source]
          +sympy.physics.optics.gaussopt.gaussian_conj(s_in, z_r_in, f)[source]

          Conjugation relation for gaussian beams.

          Parameters:
          @@ -1457,7 +1457,7 @@
          Documentation Version
          -sympy.physics.optics.gaussopt.geometric_conj_ab(a, b)[source]
          +sympy.physics.optics.gaussopt.geometric_conj_ab(a, b)[source]

          Conjugation relation for geometrical beams under paraxial conditions.

          Explanation

          Takes the distances to the optical element and returns the needed @@ -1478,7 +1478,7 @@

          Documentation Version
          -sympy.physics.optics.gaussopt.geometric_conj_af(a, f)[source]
          +sympy.physics.optics.gaussopt.geometric_conj_af(a, f)[source]

          Conjugation relation for geometrical beams under paraxial conditions.

          Explanation

          Takes the object distance (for geometric_conj_af) or the image distance @@ -1502,7 +1502,7 @@

          Documentation Version
          -sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)[source]
          +sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)[source]

          Conjugation relation for geometrical beams under paraxial conditions.

          Explanation

          Takes the object distance (for geometric_conj_af) or the image distance @@ -1526,7 +1526,7 @@

          Documentation Version
          -sympy.physics.optics.gaussopt.rayleigh2waist(z_r, wavelen)[source]
          +sympy.physics.optics.gaussopt.rayleigh2waist(z_r, wavelen)[source]

          Calculate the waist from the rayleigh range of a gaussian beam.

          Examples

          >>> from sympy.physics.optics import rayleigh2waist
          @@ -1544,7 +1544,7 @@ 
          Documentation Version
          -sympy.physics.optics.gaussopt.waist2rayleigh(w, wavelen, n=1)[source]
          +sympy.physics.optics.gaussopt.waist2rayleigh(w, wavelen, n=1)[source]

          Calculate the rayleigh range from the waist of a gaussian beam.

          Examples

          >>> from sympy.physics.optics import waist2rayleigh
          diff --git a/dev/modules/physics/optics/medium.html b/dev/modules/physics/optics/medium.html
          index ca5696fdba2..8bd17266a35 100644
          --- a/dev/modules/physics/optics/medium.html
          +++ b/dev/modules/physics/optics/medium.html
          @@ -818,7 +818,7 @@ 
          Documentation Version
          n=None,
          -)[source] +)[source]

          This class represents an optical medium. The prime reason to implement this is to facilitate refraction, Fermat’s principle, etc.

          diff --git a/dev/modules/physics/optics/polarization.html b/dev/modules/physics/optics/polarization.html index 42bba0afdcb..915b4f62c26 100644 --- a/dev/modules/physics/optics/polarization.html +++ b/dev/modules/physics/optics/polarization.html @@ -893,7 +893,7 @@

          References
          -sympy.physics.optics.polarization.half_wave_retarder(theta)[source]
          +sympy.physics.optics.polarization.half_wave_retarder(theta)[source]

          A half-wave retarder Jones matrix at angle theta.

          Parameters:
          @@ -927,7 +927,7 @@

          References
          -sympy.physics.optics.polarization.jones_2_stokes(e)[source]
          +sympy.physics.optics.polarization.jones_2_stokes(e)[source]

          Return the Stokes vector for a Jones vector e.

          Parameters:
          @@ -969,7 +969,7 @@

          References
          -sympy.physics.optics.polarization.jones_vector(psi, chi)[source]
          +sympy.physics.optics.polarization.jones_vector(psi, chi)[source]

          A Jones vector corresponding to a polarization ellipse with \(psi\) tilt, and \(chi\) circularity.

          @@ -1066,7 +1066,7 @@

          References
          -sympy.physics.optics.polarization.linear_polarizer(theta=0)[source]
          +sympy.physics.optics.polarization.linear_polarizer(theta=0)[source]

          A linear polarizer Jones matrix with transmission axis at an angle theta.

          @@ -1101,7 +1101,7 @@

          References
          -sympy.physics.optics.polarization.mueller_matrix(J)[source]
          +sympy.physics.optics.polarization.mueller_matrix(J)[source]

          The Mueller matrix corresponding to Jones matrix \(J\).

          Parameters:
          @@ -1174,7 +1174,7 @@

          References
          -sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)[source]
          +sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)[source]

          A phase retarder Jones matrix with retardance delta at angle theta.

          Parameters:
          @@ -1228,7 +1228,7 @@

          Referencesphib=0,

          -)[source] +)[source]

          A polarizing beam splitter Jones matrix at angle \(theta\).

          Parameters:
          @@ -1297,7 +1297,7 @@

          References
          -sympy.physics.optics.polarization.quarter_wave_retarder(theta)[source]
          +sympy.physics.optics.polarization.quarter_wave_retarder(theta)[source]

          A quarter-wave retarder Jones matrix at angle theta.

          Parameters:
          @@ -1335,7 +1335,7 @@

          References
          -sympy.physics.optics.polarization.reflective_filter(R)[source]
          +sympy.physics.optics.polarization.reflective_filter(R)[source]

          A reflective filter Jones matrix with reflectance R.

          Parameters:
          @@ -1366,7 +1366,7 @@

          References
          -sympy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)[source]
          +sympy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)[source]

          A Stokes vector corresponding to a polarization ellipse with psi tilt, and chi circularity.

          @@ -1491,7 +1491,7 @@

          References
          -sympy.physics.optics.polarization.transmissive_filter(T)[source]
          +sympy.physics.optics.polarization.transmissive_filter(T)[source]

          An attenuator Jones matrix with transmittance T.

          Parameters:
          diff --git a/dev/modules/physics/optics/utils.html b/dev/modules/physics/optics/utils.html index c2ec39a7f6e..da7a72c671f 100644 --- a/dev/modules/physics/optics/utils.html +++ b/dev/modules/physics/optics/utils.html @@ -818,7 +818,7 @@
          Documentation Version

        -sympy.physics.optics.utils.brewster_angle(medium1, medium2)[source]
        +sympy.physics.optics.utils.brewster_angle(medium1, medium2)[source]

        This function calculates the Brewster’s angle of incidence to Medium 2 from Medium 1 in radians.

        @@ -843,7 +843,7 @@
        Documentation Version
        -sympy.physics.optics.utils.critical_angle(medium1, medium2)[source]
        +sympy.physics.optics.utils.critical_angle(medium1, medium2)[source]

        This function calculates the critical angle of incidence (marking the onset of total internal) to Medium 2 from Medium 1 in radians.

        @@ -878,7 +878,7 @@
        Documentation Version
        plane=None,
        -)[source] +)[source]

        This function calculates the angle of deviation of a ray due to refraction at planar surface.

        @@ -935,7 +935,7 @@
        Documentation Version
        medium2,
        -)[source] +)[source]

        This function uses Fresnel equations to calculate reflection and transmission coefficients. Those are obtained for both polarisations when the electric field vector is in the plane of incidence (labelled ‘p’) @@ -987,7 +987,7 @@

        Documentation Version
        -sympy.physics.optics.utils.hyperfocal_distance(f, N, c)[source]
        +sympy.physics.optics.utils.hyperfocal_distance(f, N, c)[source]
        Parameters:

        f: sympifiable

        @@ -1014,7 +1014,7 @@
        Documentation Version
        -sympy.physics.optics.utils.lens_formula(focal_length=None, u=None, v=None)[source]
        +sympy.physics.optics.utils.lens_formula(focal_length=None, u=None, v=None)[source]

        This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

        @@ -1051,7 +1051,7 @@
        Documentation Version
        -sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)[source]
        +sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)[source]

        This function calculates focal length of a lens. It follows cartesian sign convention.

        @@ -1093,7 +1093,7 @@
        Documentation Version
        -sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)[source]
        +sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)[source]

        This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

        @@ -1140,7 +1140,7 @@
        Documentation Version
        plane=None,
        -)[source] +)[source]

        This function calculates transmitted vector after refraction at planar surface. medium1 and medium2 can be Medium or any sympifiable object. If incident is a number then treated as angle of incidence (in radians) @@ -1214,7 +1214,7 @@

        Documentation Version
        -sympy.physics.optics.utils.transverse_magnification(si, so)[source]
        +sympy.physics.optics.utils.transverse_magnification(si, so)[source]

        Calculates the transverse magnification upon reflection in a mirror, which is the ratio of the image size to the object size.

        diff --git a/dev/modules/physics/optics/waves.html b/dev/modules/physics/optics/waves.html index a1f7a6f01c0..1ff565f2be2 100644 --- a/dev/modules/physics/optics/waves.html +++ b/dev/modules/physics/optics/waves.html @@ -820,7 +820,7 @@
        Documentation Version
        n=n,
        -)[source] +)[source]

        This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided.

        diff --git a/dev/modules/physics/paulialgebra.html b/dev/modules/physics/paulialgebra.html index fa3c4a8ab51..613b0ca7c07 100644 --- a/dev/modules/physics/paulialgebra.html +++ b/dev/modules/physics/paulialgebra.html @@ -817,7 +817,7 @@

        References
        -sympy.physics.paulialgebra.evaluate_pauli_product(arg)[source]
        +sympy.physics.paulialgebra.evaluate_pauli_product(arg)[source]

        Help function to evaluate Pauli matrices product with symbolic objects.

        diff --git a/dev/modules/physics/qho_1d.html b/dev/modules/physics/qho_1d.html index 7d1a456a50c..5dd427d8e10 100644 --- a/dev/modules/physics/qho_1d.html +++ b/dev/modules/physics/qho_1d.html @@ -805,7 +805,7 @@
        Documentation Version

        Quantum Harmonic Oscillator in 1-D

        -sympy.physics.qho_1d.E_n(n, omega)[source]
        +sympy.physics.qho_1d.E_n(n, omega)[source]

        Returns the Energy of the One-dimensional harmonic oscillator.

        Parameters:
        @@ -836,7 +836,7 @@
        Documentation Version
        -sympy.physics.qho_1d.coherent_state(n, alpha)[source]
        +sympy.physics.qho_1d.coherent_state(n, alpha)[source]

        Returns <n|alpha> for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states

        @@ -855,7 +855,7 @@
        Documentation Version
        -sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]
        +sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]

        Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.

        Parameters:
        diff --git a/dev/modules/physics/quantum/anticommutator.html b/dev/modules/physics/quantum/anticommutator.html index 2a11c2ced31..eafc8cccee6 100644 --- a/dev/modules/physics/quantum/anticommutator.html +++ b/dev/modules/physics/quantum/anticommutator.html @@ -806,7 +806,7 @@
        Documentation Version

        The anti-commutator: {A,B} = A*B + B*A.

        -class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]
        +class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]

        The standard anticommutator, in an unevaluated state.

        Parameters:
        @@ -869,7 +869,7 @@
        Documentation Version

        -doit(**hints)[source]
        +doit(**hints)[source]

        Evaluate anticommutator

        diff --git a/dev/modules/physics/quantum/cartesian.html b/dev/modules/physics/quantum/cartesian.html index 16de5e816d4..707a305ca73 100644 --- a/dev/modules/physics/quantum/cartesian.html +++ b/dev/modules/physics/quantum/cartesian.html @@ -810,19 +810,19 @@
        Documentation Version

    -class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)[source]

    3D cartesian position eigenbra

    -class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)[source]

    3D cartesian position eigenket

    -class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)[source]

    Base class for 3D cartesian position eigenstates

    @@ -846,7 +846,7 @@
    Documentation Version
    -class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)[source]

    1D cartesian momentum eigenbra.

    @@ -858,7 +858,7 @@
    Documentation Version
    -class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)[source]

    1D cartesian momentum eigenket.

    @@ -870,13 +870,13 @@
    Documentation Version
    -class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)[source]

    1D cartesian momentum operator.

    -class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)[source]

    1D cartesian position eigenbra.

    @@ -888,7 +888,7 @@
    Documentation Version
    -class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)[source]

    1D cartesian position eigenket.

    @@ -900,19 +900,19 @@
    Documentation Version
    -class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)[source]

    1D cartesian position operator.

    -class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)[source]

    Y cartesian coordinate operator (for 2D or 3D systems)

    -class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)[source]
    +class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)[source]

    Z cartesian coordinate operator (for 3D systems)

    diff --git a/dev/modules/physics/quantum/cg.html b/dev/modules/physics/quantum/cg.html index 94f80b5259f..f90c4a72553 100644 --- a/dev/modules/physics/quantum/cg.html +++ b/dev/modules/physics/quantum/cg.html @@ -806,7 +806,7 @@
    Documentation Version

    Clebsch-Gordon Coefficients.

    -class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]
    +class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]

    Class for Clebsch-Gordan coefficient.

    Parameters:
    @@ -869,7 +869,7 @@
    Documentation Version
    -class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]
    +class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]

    Class for the Wigner-3j symbols.

    Parameters:
    @@ -914,7 +914,7 @@
    Documentation Version
    -class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]
    +class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]

    Class for the Wigner-6j symbols

    See also

    @@ -927,7 +927,7 @@
    Documentation Version
    -class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]
    +class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]

    Class for the Wigner-9j symbols

    See also

    @@ -940,7 +940,7 @@
    Documentation Version
    -sympy.physics.quantum.cg.cg_simp(e)[source]
    +sympy.physics.quantum.cg.cg_simp(e)[source]

    Simplify and combine CG coefficients.

    Explanation

    This function uses various symmetry and properties of sums and diff --git a/dev/modules/physics/quantum/circuitplot.html b/dev/modules/physics/quantum/circuitplot.html index 563b6b29f35..92f7084ee44 100644 --- a/dev/modules/physics/quantum/circuitplot.html +++ b/dev/modules/physics/quantum/circuitplot.html @@ -819,7 +819,7 @@

    Documentation Version

-class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)[source]
+class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)[source]

A class for managing a circuit plot.

@@ -831,43 +831,43 @@
Documentation Version
max_wire,
-)[source] +)[source]

Draw a vertical control line.

-control_point(gate_idx, wire_idx)[source]
+control_point(gate_idx, wire_idx)[source]

Draw a control point.

-not_point(gate_idx, wire_idx)[source]
+not_point(gate_idx, wire_idx)[source]

Draw a NOT gates as the circle with plus in the middle.

-one_qubit_box(t, gate_idx, wire_idx)[source]
+one_qubit_box(t, gate_idx, wire_idx)[source]

Draw a box for a single qubit gate.

-swap_point(gate_idx, wire_idx)[source]
+swap_point(gate_idx, wire_idx)[source]

Draw a swap point as a cross.

-two_qubit_box(t, gate_idx, wire_idx)[source]
+two_qubit_box(t, gate_idx, wire_idx)[source]

Draw a box for a two qubit gate. Does not work yet.

-update(kwargs)[source]
+update(kwargs)[source]

Load the kwargs into the instance dict.

@@ -875,13 +875,13 @@
Documentation Version
-sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)[source]
+sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)[source]

Use a lexical closure to make a controlled gate.

-class sympy.physics.quantum.circuitplot.Mx(*args, **kwargs)[source]
+class sympy.physics.quantum.circuitplot.Mx(*args, **kwargs)[source]

Mock-up of an x measurement gate.

This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

@@ -889,7 +889,7 @@
Documentation Version
-class sympy.physics.quantum.circuitplot.Mz(*args, **kwargs)[source]
+class sympy.physics.quantum.circuitplot.Mz(*args, **kwargs)[source]

Mock-up of a z measurement gate.

This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

@@ -897,7 +897,7 @@
Documentation Version
-sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwargs)[source]
+sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwargs)[source]

Draw the circuit diagram for the circuit with nqubits.

Parameters:
@@ -916,7 +916,7 @@
Documentation Version
-sympy.physics.quantum.circuitplot.labeller(n, symbol='q')[source]
+sympy.physics.quantum.circuitplot.labeller(n, symbol='q')[source]

Autogenerate labels for wires of quantum circuits.

Parameters:
diff --git a/dev/modules/physics/quantum/commutator.html b/dev/modules/physics/quantum/commutator.html index 67410c42826..a24aa55e06c 100644 --- a/dev/modules/physics/quantum/commutator.html +++ b/dev/modules/physics/quantum/commutator.html @@ -806,7 +806,7 @@
Documentation Version

The commutator: [A,B] = A*B - B*A.

-class sympy.physics.quantum.commutator.Commutator(A, B)[source]
+class sympy.physics.quantum.commutator.Commutator(A, B)[source]

The standard commutator, in an unevaluated state.

Parameters:
@@ -881,7 +881,7 @@
Documentation Version

-doit(**hints)[source]
+doit(**hints)[source]

Evaluate commutator

diff --git a/dev/modules/physics/quantum/constants.html b/dev/modules/physics/quantum/constants.html index 413196cbf1f..0062b22ad81 100644 --- a/dev/modules/physics/quantum/constants.html +++ b/dev/modules/physics/quantum/constants.html @@ -806,7 +806,7 @@
Documentation Version

Constants (like hbar) related to quantum mechanics.

-class sympy.physics.quantum.constants.HBar[source]
+class sympy.physics.quantum.constants.HBar[source]

Reduced Plank’s constant in numerical and symbolic form [R763].

Examples

>>> from sympy.physics.quantum.constants import hbar
diff --git a/dev/modules/physics/quantum/dagger.html b/dev/modules/physics/quantum/dagger.html
index 86c760447f1..8eb56ee5ea8 100644
--- a/dev/modules/physics/quantum/dagger.html
+++ b/dev/modules/physics/quantum/dagger.html
@@ -806,7 +806,7 @@ 
Documentation Version

Hermitian conjugation.

-class sympy.physics.quantum.dagger.Dagger(arg)[source]
+class sympy.physics.quantum.dagger.Dagger(arg)[source]

General Hermitian conjugate operation.

Parameters:
diff --git a/dev/modules/physics/quantum/gate.html b/dev/modules/physics/quantum/gate.html index 01623ae9dc6..145be076dc3 100644 --- a/dev/modules/physics/quantum/gate.html +++ b/dev/modules/physics/quantum/gate.html @@ -817,7 +817,7 @@
Documentation Version
-class sympy.physics.quantum.gate.CGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.CGate(*args, **kwargs)[source]

A general unitary gate with control qubits.

A general control gate applies a target gate to a set of targets if all of the control qubits have a particular values (set by @@ -840,13 +840,13 @@

Documentation Version
-decompose(**options)[source]
+decompose(**options)[source]

Decompose the controlled gate into CNOT and single qubits gates.

-eval_controls(qubit)[source]
+eval_controls(qubit)[source]

Return True/False to indicate if the controls are satisfied.

@@ -872,7 +872,7 @@
Documentation Version
-plot_gate(circ_plot, gate_idx)[source]
+plot_gate(circ_plot, gate_idx)[source]

Plot the controlled gate. If simplify_cgate is true, simplify C-X and C-Z gates into their more familiar forms.

@@ -887,20 +887,20 @@
Documentation Version
-class sympy.physics.quantum.gate.CGateS(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.CGateS(*args, **kwargs)[source]

Version of CGate that allows gate simplifications. I.e. cnot looks like an oplus, cphase has dots, etc.

-sympy.physics.quantum.gate.CNOT[source]
+sympy.physics.quantum.gate.CNOT[source]

alias of CNotGate

-class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)[source]

Two qubit controlled-NOT.

This gate performs the NOT or X gate on the target qubit if the control qubits all have the value 1.

@@ -949,7 +949,7 @@
Documentation Version
-class sympy.physics.quantum.gate.Gate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.Gate(*args, **kwargs)[source]

Non-controlled unitary gate operator that acts on qubits.

This is a general abstract gate that needs to be subclassed to do anything useful.

@@ -963,7 +963,7 @@
Documentation Version
-get_target_matrix(format='sympy')[source]
+get_target_matrix(format='sympy')[source]

The matrix representation of the target part of the gate.

Parameters:
@@ -999,13 +999,13 @@
Documentation Version
-sympy.physics.quantum.gate.H[source]
+sympy.physics.quantum.gate.H[source]

alias of HadamardGate

-class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)[source]

The single qubit Hadamard gate.

Parameters:
@@ -1032,7 +1032,7 @@
Documentation Version
-class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)[source]

The single qubit identity gate.

Parameters:
@@ -1046,19 +1046,19 @@
Documentation Version
-class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)[source]

A single qubit unitary gate base class.

-sympy.physics.quantum.gate.Phase[source]
+sympy.physics.quantum.gate.Phase[source]

alias of PhaseGate

-class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)[source]

The single qubit phase, or S, gate.

This gate rotates the phase of the state by pi/2 if the state is |1> and does nothing if the state is |0>.

@@ -1074,19 +1074,19 @@
Documentation Version
-sympy.physics.quantum.gate.S[source]
+sympy.physics.quantum.gate.S[source]

alias of PhaseGate

-sympy.physics.quantum.gate.SWAP[source]
+sympy.physics.quantum.gate.SWAP[source]

alias of SwapGate

-class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)[source]

Two qubit SWAP gate.

This gate swap the values of the two qubits.

@@ -1099,7 +1099,7 @@
Documentation Version
-decompose(**options)[source]
+decompose(**options)[source]

Decompose the SWAP gate into CNOT gates.

@@ -1107,13 +1107,13 @@
Documentation Version
-sympy.physics.quantum.gate.T[source]
+sympy.physics.quantum.gate.T[source]

alias of TGate

-class sympy.physics.quantum.gate.TGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.TGate(*args, **kwargs)[source]

The single qubit pi/8 gate.

This gate rotates the phase of the state by pi/4 if the state is |1> and does nothing if the state is |0>.

@@ -1129,13 +1129,13 @@
Documentation Version
-class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)[source]

A two qubit unitary gate base class.

-class sympy.physics.quantum.gate.UGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.UGate(*args, **kwargs)[source]

General gate specified by a set of targets and a target matrix.

Parameters:
@@ -1149,7 +1149,7 @@
Documentation Version
-get_target_matrix(format='sympy')[source]
+get_target_matrix(format='sympy')[source]

The matrix rep. of the target part of the gate.

Parameters:
@@ -1171,13 +1171,13 @@
Documentation Version
-sympy.physics.quantum.gate.X[source]
+sympy.physics.quantum.gate.X[source]

alias of XGate

-class sympy.physics.quantum.gate.XGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.XGate(*args, **kwargs)[source]

The single qubit X, or NOT, gate.

Parameters:
@@ -1191,13 +1191,13 @@
Documentation Version
-sympy.physics.quantum.gate.Y[source]
+sympy.physics.quantum.gate.Y[source]

alias of YGate

-class sympy.physics.quantum.gate.YGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.YGate(*args, **kwargs)[source]

The single qubit Y gate.

Parameters:
@@ -1211,13 +1211,13 @@
Documentation Version
-sympy.physics.quantum.gate.Z[source]
+sympy.physics.quantum.gate.Z[source]

alias of ZGate

-class sympy.physics.quantum.gate.ZGate(*args, **kwargs)[source]
+class sympy.physics.quantum.gate.ZGate(*args, **kwargs)[source]

The single qubit Z gate.

Parameters:
@@ -1231,7 +1231,7 @@
Documentation Version
-sympy.physics.quantum.gate.gate_simp(circuit)[source]
+sympy.physics.quantum.gate.gate_simp(circuit)[source]

Simplifies gates symbolically

It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity

@@ -1239,7 +1239,7 @@
Documentation Version
-sympy.physics.quantum.gate.gate_sort(circuit)[source]
+sympy.physics.quantum.gate.gate_sort(circuit)[source]

Sorts the gates while keeping track of commutation relations

This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation @@ -1250,7 +1250,7 @@

Documentation Version
-sympy.physics.quantum.gate.normalized(normalize)[source]
+sympy.physics.quantum.gate.normalized(normalize)[source]

Set flag controlling normalization of Hadamard gates by \(1/\sqrt{2}\).

This is a global setting that can be used to simplify the look of various expressions, by leaving off the leading \(1/\sqrt{2}\) of the Hadamard gate.

@@ -1283,7 +1283,7 @@
Documentation Version
<class 'sympy.physics.quantum.gate.SwapGate'>),
-)[source] +)[source]

Return a random circuit of ngates and nqubits.

This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates.

diff --git a/dev/modules/physics/quantum/grover.html b/dev/modules/physics/quantum/grover.html index 2991be496b6..16bbd54baa1 100644 --- a/dev/modules/physics/quantum/grover.html +++ b/dev/modules/physics/quantum/grover.html @@ -813,7 +813,7 @@
Documentation Version
-class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]
+class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]

A black box gate.

The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it @@ -859,7 +859,7 @@

Documentation Version
-class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]
+class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]

General n qubit W Gate in Grover’s algorithm.

The gate performs the operation 2|phi><phi| - 1 on some qubits. |phi> = (tensor product of n Hadamards)*(|0> with n qubits)

@@ -875,7 +875,7 @@
Documentation Version
-sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]
+sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]

Applies grover’s algorithm.

Parameters:
@@ -906,7 +906,7 @@
Documentation Version
-sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]
+sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]

Applies one application of the Oracle and W Gate, WV.

Parameters:
@@ -942,7 +942,7 @@
Documentation Version
-sympy.physics.quantum.grover.superposition_basis(nqubits)[source]
+sympy.physics.quantum.grover.superposition_basis(nqubits)[source]

Creates an equal superposition of the computational basis.

Parameters:
diff --git a/dev/modules/physics/quantum/hilbert.html b/dev/modules/physics/quantum/hilbert.html index 6ca03607f26..f537e7d432e 100644 --- a/dev/modules/physics/quantum/hilbert.html +++ b/dev/modules/physics/quantum/hilbert.html @@ -809,7 +809,7 @@
Documentation Version
* Matt Curry

-class sympy.physics.quantum.hilbert.ComplexSpace(dimension)[source]
+class sympy.physics.quantum.hilbert.ComplexSpace(dimension)[source]

Finite dimensional Hilbert space of complex vectors.

The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate @@ -840,7 +840,7 @@

Documentation Version
-class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)[source]
+class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)[source]

A direct sum of Hilbert spaces [R766].

This class uses the + operator to represent direct sums between different Hilbert spaces.

@@ -872,7 +872,7 @@
Documentation Version
-classmethod eval(args)[source]
+classmethod eval(args)[source]

Evaluates the direct product.

@@ -886,7 +886,7 @@
Documentation Version
-class sympy.physics.quantum.hilbert.FockSpace[source]
+class sympy.physics.quantum.hilbert.FockSpace[source]

The Hilbert space for second quantization.

Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [R767]. This is a mess, so we have @@ -912,7 +912,7 @@

Documentation Version
-class sympy.physics.quantum.hilbert.HilbertSpace[source]
+class sympy.physics.quantum.hilbert.HilbertSpace[source]

An abstract Hilbert space for quantum mechanics.

In short, a Hilbert space is an abstract vector space that is complete with inner products defined [R768].

@@ -941,7 +941,7 @@
Documentation Version
-class sympy.physics.quantum.hilbert.L2(interval)[source]
+class sympy.physics.quantum.hilbert.L2(interval)[source]

The Hilbert space of square integrable functions on an interval.

An L2 object takes in a single SymPy Interval argument which represents the interval its functions (vectors) are defined on.

@@ -961,7 +961,7 @@
Documentation Version
-class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)[source]
+class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)[source]

An exponentiated Hilbert space [R769].

Tensor powers (repeated tensor products) are represented by the operator ** Identical Hilbert spaces that are multiplied together @@ -1003,7 +1003,7 @@

Documentation Version
-class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)[source]
+class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)[source]

A tensor product of Hilbert spaces [R770].

The tensor product between Hilbert spaces is represented by the operator * Products of the same Hilbert space will be combined into @@ -1048,7 +1048,7 @@

Documentation Version
-classmethod eval(args)[source]
+classmethod eval(args)[source]

Evaluates the direct product.

diff --git a/dev/modules/physics/quantum/innerproduct.html b/dev/modules/physics/quantum/innerproduct.html index b0dfef353ec..64197f21ecc 100644 --- a/dev/modules/physics/quantum/innerproduct.html +++ b/dev/modules/physics/quantum/innerproduct.html @@ -806,7 +806,7 @@
Documentation Version

Symbolic inner product.

-class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)[source]
+class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)[source]

An unevaluated inner product between a Bra and a Ket [1].

Parameters:
diff --git a/dev/modules/physics/quantum/operator.html b/dev/modules/physics/quantum/operator.html index 6571fc7151f..336d508f520 100644 --- a/dev/modules/physics/quantum/operator.html +++ b/dev/modules/physics/quantum/operator.html @@ -814,7 +814,7 @@
Documentation Version
-class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)[source]

An operator for representing the differential operator, i.e. d/dx

It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as Derivative(f(x), x). The @@ -928,7 +928,7 @@

Documentation Version
-class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)[source]

A Hermitian operator that satisfies H == Dagger(H).

Parameters:
@@ -950,7 +950,7 @@
Documentation Version
-class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)[source]

An identity operator I that satisfies op * I == I * op == op for any operator op.

@@ -972,7 +972,7 @@
Documentation Version
-class sympy.physics.quantum.operator.Operator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.Operator(*args, **kwargs)[source]

Base class for non-commuting quantum operators.

An operator maps between quantum states [R772]. In quantum mechanics, observables (including, but not limited to, measured physical values) are @@ -1047,7 +1047,7 @@

Documentation Version
-class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)[source]
+class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)[source]

An unevaluated outer product between a ket and bra.

This constructs an outer product between any subclass of KetBase and BraBase as |a><b|. An OuterProduct inherits from Operator as they act as @@ -1127,7 +1127,7 @@

Documentation Version
-class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)[source]
+class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)[source]

A unitary operator that satisfies U*Dagger(U) == 1.

Parameters:
diff --git a/dev/modules/physics/quantum/operatorset.html b/dev/modules/physics/quantum/operatorset.html index fd984d291e0..4989d3ae1ea 100644 --- a/dev/modules/physics/quantum/operatorset.html +++ b/dev/modules/physics/quantum/operatorset.html @@ -816,7 +816,7 @@
Documentation Version
- Update the dictionary with a complete list of state-operator pairs

-sympy.physics.quantum.operatorset.operators_to_state(operators, **options)[source]
+sympy.physics.quantum.operatorset.operators_to_state(operators, **options)[source]

Returns the eigenstate of the given operator or set of operators

A global function for mapping operator classes to their associated states. It takes either an Operator or a set of operators and @@ -867,7 +867,7 @@

Documentation Version
-sympy.physics.quantum.operatorset.state_to_operators(state, **options)[source]
+sympy.physics.quantum.operatorset.state_to_operators(state, **options)[source]

Returns the operator or set of operators corresponding to the given eigenstate

A global function for mapping state classes to their associated diff --git a/dev/modules/physics/quantum/piab.html b/dev/modules/physics/quantum/piab.html index e1e170e5c1c..456dbdb835b 100644 --- a/dev/modules/physics/quantum/piab.html +++ b/dev/modules/physics/quantum/piab.html @@ -806,19 +806,19 @@

Documentation Version

1D quantum particle in a box.

-class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)[source]
+class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)[source]

Particle in a box eigenbra.

-class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)[source]
+class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)[source]

Particle in a box Hamiltonian operator.

-class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)[source]
+class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)[source]

Particle in a box eigenket.

diff --git a/dev/modules/physics/quantum/qapply.html b/dev/modules/physics/quantum/qapply.html index 37e9b65c628..1f19bd93e15 100644 --- a/dev/modules/physics/quantum/qapply.html +++ b/dev/modules/physics/quantum/qapply.html @@ -808,7 +808,7 @@
Documentation Version
* Sometimes the final result needs to be expanded, we should do this by hand.

-sympy.physics.quantum.qapply.qapply(e, **options)[source]
+sympy.physics.quantum.qapply.qapply(e, **options)[source]

Apply operators to states in a quantum expression.

Parameters:
diff --git a/dev/modules/physics/quantum/qft.html b/dev/modules/physics/quantum/qft.html index f2e5767e406..e9212590056 100644 --- a/dev/modules/physics/quantum/qft.html +++ b/dev/modules/physics/quantum/qft.html @@ -816,11 +816,11 @@
Documentation Version
-class sympy.physics.quantum.qft.IQFT(*args, **kwargs)[source]
+class sympy.physics.quantum.qft.IQFT(*args, **kwargs)[source]

The inverse quantum Fourier transform.

-decompose()[source]
+decompose()[source]

Decomposes IQFT into elementary gates.

@@ -828,11 +828,11 @@
Documentation Version
-class sympy.physics.quantum.qft.QFT(*args, **kwargs)[source]
+class sympy.physics.quantum.qft.QFT(*args, **kwargs)[source]

The forward quantum Fourier transform.

-decompose()[source]
+decompose()[source]

Decomposes QFT into elementary gates.

@@ -840,13 +840,13 @@
Documentation Version
-sympy.physics.quantum.qft.Rk[source]
+sympy.physics.quantum.qft.Rk[source]

alias of RkGate

-class sympy.physics.quantum.qft.RkGate(*args)[source]
+class sympy.physics.quantum.qft.RkGate(*args)[source]

This is the R_k gate of the QTF.

diff --git a/dev/modules/physics/quantum/qubit.html b/dev/modules/physics/quantum/qubit.html index a52e4bf3fc4..b0e78d416de 100644 --- a/dev/modules/physics/quantum/qubit.html +++ b/dev/modules/physics/quantum/qubit.html @@ -810,7 +810,7 @@
Documentation Version
* Update tests.

-class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)[source]
+class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)[source]

A qubit ket that store integers as binary numbers in qubit values.

The differences between this class and Qubit are:

    @@ -885,13 +885,13 @@
    Documentation Version
    -class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)[source]

    A qubit bra that store integers as binary numbers in qubit values.

    -class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)[source]

    A multi-qubit ket in the computational (z) basis.

    We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

    @@ -948,7 +948,7 @@
    Documentation Version
    -class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)[source]
    +class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)[source]

    A multi-qubit bra in the computational (z) basis.

    We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

    @@ -971,7 +971,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.matrix_to_density(mat)[source]
    +sympy.physics.quantum.qubit.matrix_to_density(mat)[source]

    Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: sum(EigenVal*|Eigenvect><Eigenvect|)

    @@ -979,7 +979,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.matrix_to_qubit(matrix)[source]
    +sympy.physics.quantum.qubit.matrix_to_qubit(matrix)[source]

    Convert from the matrix repr. to a sum of Qubit objects.

    Parameters:
    @@ -1003,7 +1003,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)[source]
    +sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)[source]

    Perform an ensemble measurement of all qubits.

    Parameters:
    @@ -1044,7 +1044,7 @@
    Documentation Version
    -sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')[source]
    +sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')[source]

    Perform a oneshot ensemble measurement on all qubits.

    A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities @@ -1085,7 +1085,7 @@

    Documentation Version
    normalize=True,
    -)[source] +)[source]

    Perform a partial ensemble measure on the specified qubits.

    Parameters:
    @@ -1138,7 +1138,7 @@
    Documentation Version
    format='sympy',
    -)[source] +)[source]

    Perform a partial oneshot measurement on the specified qubits.

    A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities @@ -1174,7 +1174,7 @@

    Documentation Version
    -sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')[source]
    +sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')[source]

    Converts an Add/Mul of Qubit objects into it’s matrix representation

    This function is the inverse of matrix_to_qubit and is a shorthand for represent(qubit).

    diff --git a/dev/modules/physics/quantum/represent.html b/dev/modules/physics/quantum/represent.html index 20386551653..df42273924f 100644 --- a/dev/modules/physics/quantum/represent.html +++ b/dev/modules/physics/quantum/represent.html @@ -811,7 +811,7 @@
    Documentation Version
-sympy.physics.quantum.represent.enumerate_states(*args, **options)[source]
+sympy.physics.quantum.represent.enumerate_states(*args, **options)[source]

Returns instances of the given state with dummy indices appended

Operates in two different modes:

    @@ -855,7 +855,7 @@
    Documentation Version
    **options,
-)[source] +)[source]

Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression.

@@ -902,7 +902,7 @@
Documentation Version
-sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)[source]
+sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)[source]

Returns the result of integrating over any unities (|x><x|) in the given expression. Intended for integrating over the result of representations in continuous bases.

@@ -944,7 +944,7 @@
Documentation Version
-sympy.physics.quantum.represent.rep_expectation(expr, **options)[source]
+sympy.physics.quantum.represent.rep_expectation(expr, **options)[source]

Returns an <x'|A|x> type representation for the given operator.

Parameters:
@@ -969,7 +969,7 @@
Documentation Version
-sympy.physics.quantum.represent.rep_innerproduct(expr, **options)[source]
+sympy.physics.quantum.represent.rep_innerproduct(expr, **options)[source]

Returns an innerproduct like representation (e.g. <x'|x>) for the given state.

Attempts to calculate inner product with a bra from the specified @@ -997,7 +997,7 @@

Documentation Version
-sympy.physics.quantum.represent.represent(expr, **options)[source]
+sympy.physics.quantum.represent.represent(expr, **options)[source]

Represent the quantum expression in the given basis.

In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen:

diff --git a/dev/modules/physics/quantum/shor.html b/dev/modules/physics/quantum/shor.html index 62e70ae56e0..99a4441db1a 100644 --- a/dev/modules/physics/quantum/shor.html +++ b/dev/modules/physics/quantum/shor.html @@ -812,7 +812,7 @@
Documentation Version
-class sympy.physics.quantum.shor.CMod(*args, **kwargs)[source]
+class sympy.physics.quantum.shor.CMod(*args, **kwargs)[source]

A controlled mod gate.

This is black box controlled Mod function for use by shor’s algorithm. TODO: implement a decompose property that returns how to do this in terms @@ -839,7 +839,7 @@

Documentation Version
-sympy.physics.quantum.shor.period_find(a, N)[source]
+sympy.physics.quantum.shor.period_find(a, N)[source]

Finds the period of a in modulo N arithmetic

This is quantum part of Shor’s algorithm. It takes two registers, puts first in superposition of states with Hadamards so: |k>|0> @@ -849,7 +849,7 @@

Documentation Version
-sympy.physics.quantum.shor.shor(N)[source]
+sympy.physics.quantum.shor.shor(N)[source]

This function implements Shor’s factoring algorithm on the Integer N

The algorithm starts by picking a random number (a) and seeing if it is coprime with N. If it is not, then the gcd of the two numbers is a factor diff --git a/dev/modules/physics/quantum/spin.html b/dev/modules/physics/quantum/spin.html index c5552d02dd5..a441b291139 100644 --- a/dev/modules/physics/quantum/spin.html +++ b/dev/modules/physics/quantum/spin.html @@ -806,13 +806,13 @@

Documentation Version

Quantum mechanical angular momemtum.

-class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[source]
+class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[source]

The J^2 operator.

-class sympy.physics.quantum.spin.JxBra(j, m)[source]
+class sympy.physics.quantum.spin.JxBra(j, m)[source]

Eigenbra of Jx.

See JzKet for the usage of spin eigenstates.

@@ -826,7 +826,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenbra of Jx.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -840,7 +840,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JxKet(j, m)[source]
+class sympy.physics.quantum.spin.JxKet(j, m)[source]

Eigenket of Jx.

See JzKet for the usage of spin eigenstates.

@@ -854,7 +854,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenket of Jx.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -868,7 +868,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyBra(j, m)[source]
+class sympy.physics.quantum.spin.JyBra(j, m)[source]

Eigenbra of Jy.

See JzKet for the usage of spin eigenstates.

@@ -882,7 +882,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenbra of Jy.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -896,7 +896,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyKet(j, m)[source]
+class sympy.physics.quantum.spin.JyKet(j, m)[source]

Eigenket of Jy.

See JzKet for the usage of spin eigenstates.

@@ -910,7 +910,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenket of Jy.

See JzKetCoupled for the usage of coupled spin eigenstates.

@@ -924,7 +924,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JzBra(j, m)[source]
+class sympy.physics.quantum.spin.JzBra(j, m)[source]

Eigenbra of Jz.

See the JzKet for the usage of spin eigenstates.

@@ -938,7 +938,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenbra of Jz.

See the JzKetCoupled for the usage of coupled spin eigenstates.

@@ -952,7 +952,7 @@
Documentation Version
-class sympy.physics.quantum.spin.JzKet(j, m)[source]
+class sympy.physics.quantum.spin.JzKet(j, m)[source]

Eigenket of Jz.

Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin @@ -1068,7 +1068,7 @@

Documentation Version
-class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[source]
+class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[source]

Coupled eigenket of Jz

Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces.

@@ -1186,13 +1186,13 @@
Documentation Version
-class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[source]
+class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[source]

The Jz operator.

-class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[source]
+class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[source]

Wigner D operator in terms of Euler angles.

Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate @@ -1254,7 +1254,7 @@

Documentation Version
-classmethod D(j, m, mp, alpha, beta, gamma)[source]
+classmethod D(j, m, mp, alpha, beta, gamma)[source]

Wigner D-function.

Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters.

@@ -1307,7 +1307,7 @@
Documentation Version
-classmethod d(j, m, mp, beta)[source]
+classmethod d(j, m, mp, beta)[source]

Wigner small-d function.

Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles @@ -1355,7 +1355,7 @@

Documentation Version
-class sympy.physics.quantum.spin.WignerD(*args, **hints)[source]
+class sympy.physics.quantum.spin.WignerD(*args, **hints)[source]

Wigner-D function

The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles \(\alpha\), @@ -1448,7 +1448,7 @@

Documentation Version
-sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[source]
+sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[source]

Couple a tensor product of spin states

This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It @@ -1507,7 +1507,7 @@

Documentation Version
-sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[source]
+sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[source]

Uncouple a coupled spin state

Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin diff --git a/dev/modules/physics/quantum/state.html b/dev/modules/physics/quantum/state.html index 63e8cbbba2a..c0fe6a243aa 100644 --- a/dev/modules/physics/quantum/state.html +++ b/dev/modules/physics/quantum/state.html @@ -806,7 +806,7 @@

Documentation Version

Dirac notation for states.

-class sympy.physics.quantum.state.Bra(*args, **kwargs)[source]
+class sympy.physics.quantum.state.Bra(*args, **kwargs)[source]

A general time-independent Bra in quantum mechanics.

Inherits from State and BraBase. A Bra is the dual of a Ket [R777]. This class and its subclasses will be the main classes that users will use for @@ -866,7 +866,7 @@

Documentation Version
-class sympy.physics.quantum.state.BraBase(*args, **kwargs)[source]
+class sympy.physics.quantum.state.BraBase(*args, **kwargs)[source]

Base class for Bras.

This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, @@ -875,7 +875,7 @@

Documentation Version
-class sympy.physics.quantum.state.Ket(*args, **kwargs)[source]
+class sympy.physics.quantum.state.Ket(*args, **kwargs)[source]

A general time-independent Ket in quantum mechanics.

Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class @@ -939,7 +939,7 @@

Documentation Version
-class sympy.physics.quantum.state.KetBase(*args, **kwargs)[source]
+class sympy.physics.quantum.state.KetBase(*args, **kwargs)[source]

Base class for Kets.

This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead @@ -948,13 +948,13 @@

Documentation Version
-class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)[source]
+class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)[source]

Orthogonal Bra in quantum mechanics.

-class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)[source]
+class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)[source]

Orthogonal Ket in quantum mechanics.

The inner product of two states with different labels will give zero, states with the same label will give one.

@@ -972,19 +972,19 @@
Documentation Version
-class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)[source]
+class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)[source]

General abstract quantum state used as a base class for Ket and Bra.

-class sympy.physics.quantum.state.State(*args, **kwargs)[source]
+class sympy.physics.quantum.state.State(*args, **kwargs)[source]

General abstract quantum state used as a base class for Ket and Bra.

-class sympy.physics.quantum.state.StateBase(*args, **kwargs)[source]
+class sympy.physics.quantum.state.StateBase(*args, **kwargs)[source]

Abstract base class for general abstract states in quantum mechanics.

All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint @@ -999,7 +999,7 @@

Documentation Version
-classmethod dual_class()[source]
+classmethod dual_class()[source]

Return the class used to construct the dual.

@@ -1013,7 +1013,7 @@
Documentation Version
-class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)[source]
+class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)[source]

General time-dependent Bra in quantum mechanics.

This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra.

@@ -1046,7 +1046,7 @@
Documentation Version
-class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)[source]
+class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)[source]

General time-dependent Ket in quantum mechanics.

This inherits from TimeDepState and KetBase and is the main class that should be used for Kets that vary with time. Its dual is a @@ -1086,7 +1086,7 @@

Documentation Version
-class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)[source]
+class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)[source]

Base class for a general time-dependent quantum state.

This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this @@ -1118,7 +1118,7 @@

Documentation Version
-class sympy.physics.quantum.state.Wavefunction(*args)[source]
+class sympy.physics.quantum.state.Wavefunction(*args)[source]

Class for representations in continuous bases

This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities.

@@ -1288,7 +1288,7 @@
Documentation Version
-normalize()[source]
+normalize()[source]

Return a normalized version of the Wavefunction

Examples

>>> from sympy import symbols, pi
@@ -1307,7 +1307,7 @@ 
Documentation Version
-prob()[source]
+prob()[source]

Return the absolute magnitude of the w.f., \(|\psi(x)|^2\)

Examples

>>> from sympy import symbols, pi
diff --git a/dev/modules/physics/quantum/tensorproduct.html b/dev/modules/physics/quantum/tensorproduct.html
index 01cbc032f51..ac81d92df8f 100644
--- a/dev/modules/physics/quantum/tensorproduct.html
+++ b/dev/modules/physics/quantum/tensorproduct.html
@@ -806,7 +806,7 @@ 
Documentation Version

Abstract tensor product.

-class sympy.physics.quantum.tensorproduct.TensorProduct(*args)[source]
+class sympy.physics.quantum.tensorproduct.TensorProduct(*args)[source]

The tensor product of two or more arguments.

For matrices, this uses matrix_tensor_product to compute the Kronecker or tensor product matrix. For other objects a symbolic TensorProduct @@ -875,7 +875,7 @@

Documentation Version
-sympy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)[source]
+sympy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)[source]

Try to simplify and combine TensorProducts.

In general this will try to pull expressions inside of TensorProducts. It currently only works for relatively simple cases where the products have diff --git a/dev/modules/physics/secondquant.html b/dev/modules/physics/secondquant.html index 05b278081aa..363897ac247 100644 --- a/dev/modules/physics/secondquant.html +++ b/dev/modules/physics/secondquant.html @@ -808,7 +808,7 @@

Documentation Version
of Many-Particle Systems.”

-class sympy.physics.secondquant.AnnihilateBoson(k)[source]
+class sympy.physics.secondquant.AnnihilateBoson(k)[source]

Bosonic annihilation operator.

Examples

>>> from sympy.physics.secondquant import B
@@ -819,7 +819,7 @@ 
Documentation Version
-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -837,11 +837,11 @@
Documentation Version
-class sympy.physics.secondquant.AnnihilateFermion(k)[source]
+class sympy.physics.secondquant.AnnihilateFermion(k)[source]

Fermionic annihilation operator.

-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -949,7 +949,7 @@
Documentation Version
-class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)[source]
+class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)[source]

Stores upper and lower indices in separate Tuple’s.

Each group of indices is assumed to be antisymmetric.

Examples

@@ -1019,37 +1019,37 @@
Documentation Version
-sympy.physics.secondquant.B[source]
+sympy.physics.secondquant.B[source]

alias of AnnihilateBoson

-sympy.physics.secondquant.BBra[source]
+sympy.physics.secondquant.BBra[source]

alias of FockStateBosonBra

-sympy.physics.secondquant.BKet[source]
+sympy.physics.secondquant.BKet[source]

alias of FockStateBosonKet

-sympy.physics.secondquant.Bd[source]
+sympy.physics.secondquant.Bd[source]

alias of CreateBoson

-class sympy.physics.secondquant.BosonicBasis[source]
+class sympy.physics.secondquant.BosonicBasis[source]

Base class for a basis set of bosonic Fock states.

-class sympy.physics.secondquant.Commutator(a, b)[source]
+class sympy.physics.secondquant.Commutator(a, b)[source]

The Commutator: [A, B] = A*B - B*A

The arguments are ordered according to .__cmp__()

Examples

@@ -1090,7 +1090,7 @@
Documentation Version
-doit(**hints)[source]
+doit(**hints)[source]

Enables the computation of complex expressions.

Examples

>>> from sympy.physics.secondquant import Commutator, F, Fd
@@ -1106,7 +1106,7 @@ 
Documentation Version
-classmethod eval(a, b)[source]
+classmethod eval(a, b)[source]

The Commutator [A,B] is on canonical form if A < B.

Examples

>>> from sympy.physics.secondquant import Commutator, F, Fd
@@ -1123,11 +1123,11 @@ 
Documentation Version
-class sympy.physics.secondquant.CreateBoson(k)[source]
+class sympy.physics.secondquant.CreateBoson(k)[source]

Bosonic creation operator.

-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -1145,11 +1145,11 @@
Documentation Version
-class sympy.physics.secondquant.CreateFermion(k)[source]
+class sympy.physics.secondquant.CreateFermion(k)[source]

Fermionic creation operator.

-apply_operator(state)[source]
+apply_operator(state)[source]

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

@@ -1257,7 +1257,7 @@
Documentation Version
-class sympy.physics.secondquant.Dagger(arg)[source]
+class sympy.physics.secondquant.Dagger(arg)[source]

Hermitian conjugate of creation/annihilation operators.

Examples

>>> from sympy import I
@@ -1272,7 +1272,7 @@ 
Documentation Version
-classmethod eval(arg)[source]
+classmethod eval(arg)[source]

Evaluates the Dagger instance.

Examples

>>> from sympy import I
@@ -1292,31 +1292,31 @@ 
Documentation Version
-sympy.physics.secondquant.F[source]
+sympy.physics.secondquant.F[source]

alias of AnnihilateFermion

-sympy.physics.secondquant.FBra[source]
+sympy.physics.secondquant.FBra[source]

alias of FockStateFermionBra

-sympy.physics.secondquant.FKet[source]
+sympy.physics.secondquant.FKet[source]

alias of FockStateFermionKet

-sympy.physics.secondquant.Fd[source]
+sympy.physics.secondquant.Fd[source]

alias of CreateFermion

-class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)[source]
+class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)[source]

Fixed particle number basis set.

Examples

>>> from sympy.physics.secondquant import FixedBosonicBasis
@@ -1332,7 +1332,7 @@ 
Documentation Version
-index(state)[source]
+index(state)[source]

Returns the index of state in basis.

Examples

>>> from sympy.physics.secondquant import FixedBosonicBasis
@@ -1345,7 +1345,7 @@ 
Documentation Version
-state(i)[source]
+state(i)[source]

Returns the state that lies at index i of the basis

Examples

>>> from sympy.physics.secondquant import FixedBosonicBasis
@@ -1360,7 +1360,7 @@ 
Documentation Version
-class sympy.physics.secondquant.FockState(occupations)[source]
+class sympy.physics.secondquant.FockState(occupations)[source]

Many particle Fock state with a sequence of occupation numbers.

Anywhere you can have a FockState, you can also have S.Zero. All code must check for this!

@@ -1369,7 +1369,7 @@
Documentation Version
-class sympy.physics.secondquant.FockStateBosonBra(occupations)[source]
+class sympy.physics.secondquant.FockStateBosonBra(occupations)[source]

Describes a collection of BosonBra particles.

Examples

>>> from sympy.physics.secondquant import BBra
@@ -1381,7 +1381,7 @@ 
Documentation Version
-class sympy.physics.secondquant.FockStateBosonKet(occupations)[source]
+class sympy.physics.secondquant.FockStateBosonKet(occupations)[source]

Many particle Fock state with a sequence of occupation numbers.

Occupation numbers can be any integer >= 0.

Examples

@@ -1394,13 +1394,13 @@
Documentation Version
-class sympy.physics.secondquant.FockStateBra(occupations)[source]
+class sympy.physics.secondquant.FockStateBra(occupations)[source]

Representation of a bra.

-class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)[source]
+class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)[source]

Examples

>>> from sympy.physics.secondquant import FBra
 >>> FBra([1, 2])
@@ -1415,7 +1415,7 @@ 
Documentation Version
-class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)[source]
+class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)[source]

Many-particle Fock state with a sequence of occupied orbits.

Explanation

Each state can only have one particle, so we choose to store a list of @@ -1434,13 +1434,13 @@

Documentation Version
-class sympy.physics.secondquant.FockStateKet(occupations)[source]
+class sympy.physics.secondquant.FockStateKet(occupations)[source]

Representation of a ket.

-class sympy.physics.secondquant.InnerProduct(bra, ket)[source]
+class sympy.physics.secondquant.InnerProduct(bra, ket)[source]

An unevaluated inner product between a bra and ket.

Explanation

Currently this class just reduces things to a product of @@ -1463,7 +1463,7 @@

Documentation Version
-class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)[source]
+class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)[source]

The discrete, or Kronecker, delta function.

Parameters:
@@ -1514,7 +1514,7 @@
Documentation Version
-classmethod eval(i, j, delta_range=None)[source]
+classmethod eval(i, j, delta_range=None)[source]

Evaluates the discrete delta function.

Examples

>>> from sympy import KroneckerDelta
@@ -1711,7 +1711,7 @@ 
Documentation Version
-class sympy.physics.secondquant.NO(arg)[source]
+class sympy.physics.secondquant.NO(arg)[source]

This Object is used to represent normal ordering brackets.

i.e. {abcd} sometimes written :abcd:

Explanation

@@ -1736,7 +1736,7 @@
Documentation Version
Nothing more, nothing less.

-doit(**hints)[source]
+doit(**hints)[source]

Either removes the brackets or enables complex computations in its arguments.

Examples

@@ -1757,7 +1757,7 @@
Documentation Version
-get_subNO(i)[source]
+get_subNO(i)[source]

Returns a NO() without FermionicOperator at index i.

Examples

>>> from sympy import symbols
@@ -1817,7 +1817,7 @@ 
Documentation Version
-iter_q_annihilators()[source]
+iter_q_annihilators()[source]

Iterates over the annihilation operators.

Examples

>>> from sympy import symbols
@@ -1839,7 +1839,7 @@ 
Documentation Version
-iter_q_creators()[source]
+iter_q_creators()[source]

Iterates over the creation operators.

Examples

>>> from sympy import symbols
@@ -1863,12 +1863,12 @@ 
Documentation Version
-class sympy.physics.secondquant.PermutationOperator(i, j)[source]
+class sympy.physics.secondquant.PermutationOperator(i, j)[source]

Represents the index permutation operator P(ij).

P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)

-get_permuted(expr)[source]
+get_permuted(expr)[source]

Returns -expr with permuted indices.

Explanation

>>> from sympy import symbols, Function
@@ -1885,7 +1885,7 @@ 
Documentation Version
-class sympy.physics.secondquant.VarBosonicBasis(n_max)[source]
+class sympy.physics.secondquant.VarBosonicBasis(n_max)[source]

A single state, variable particle number basis set.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis
@@ -1897,7 +1897,7 @@ 
Documentation Version
-index(state)[source]
+index(state)[source]

Returns the index of state in basis.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis
@@ -1915,7 +1915,7 @@ 
Documentation Version
-state(i)[source]
+state(i)[source]

The state of a single basis.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis
@@ -1930,7 +1930,7 @@ 
Documentation Version
-sympy.physics.secondquant.apply_operators(e)[source]
+sympy.physics.secondquant.apply_operators(e)[source]

Take a SymPy expression with operators and states and apply the operators.

Examples

>>> from sympy.physics.secondquant import apply_operators
@@ -1943,7 +1943,7 @@ 
Documentation Version
-sympy.physics.secondquant.contraction(a, b)[source]
+sympy.physics.secondquant.contraction(a, b)[source]

Calculates contraction of Fermionic operators a and b.

Examples

>>> from sympy import symbols
@@ -1980,7 +1980,7 @@ 
Documentation Version
-sympy.physics.secondquant.evaluate_deltas(e)[source]
+sympy.physics.secondquant.evaluate_deltas(e)[source]

We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.

Explanation

If one index is repeated it is summed over and in effect substituted with @@ -2040,7 +2040,7 @@

Documentation Version
-sympy.physics.secondquant.matrix_rep(op, basis)[source]
+sympy.physics.secondquant.matrix_rep(op, basis)[source]

Find the representation of an operator in a basis.

Examples

>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
@@ -2066,7 +2066,7 @@ 
Documentation Version
permutation_operators,
-)[source] +)[source]

Performs simplification by introducing PermutationOperators where appropriate.

Explanation

@@ -2109,7 +2109,7 @@
Documentation Version
pretty_indices={},
-)[source] +)[source]

Collect terms by substitution of dummy variables.

Explanation

This routine allows simplification of Add expressions containing terms @@ -2168,7 +2168,7 @@

Documentation Version
-sympy.physics.secondquant.wicks(e, **kw_args)[source]
+sympy.physics.secondquant.wicks(e, **kw_args)[source]

Returns the normal ordered equivalent of an expression using Wicks Theorem.

Examples

>>> from sympy import symbols, Dummy
diff --git a/dev/modules/physics/sho.html b/dev/modules/physics/sho.html
index 13d4c6482b3..6324664f6c0 100644
--- a/dev/modules/physics/sho.html
+++ b/dev/modules/physics/sho.html
@@ -805,7 +805,7 @@ 
Documentation Version

Quantum Harmonic Oscillator in 3-D

-sympy.physics.sho.E_nl(n, l, hw)[source]
+sympy.physics.sho.E_nl(n, l, hw)[source]

Returns the Energy of an isotropic harmonic oscillator.

Parameters:
@@ -841,7 +841,7 @@
Documentation Version
-sympy.physics.sho.R_nl(n, l, nu, r)[source]
+sympy.physics.sho.R_nl(n, l, nu, r)[source]

Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic oscillator.

diff --git a/dev/modules/physics/units/dimensions.html b/dev/modules/physics/units/dimensions.html index 64c272d4344..1294558101e 100644 --- a/dev/modules/physics/units/dimensions.html +++ b/dev/modules/physics/units/dimensions.html @@ -812,7 +812,7 @@
Documentation Version
question of adding time to length has no meaning.

-class sympy.physics.units.dimensions.Dimension(name, symbol=None)[source]
+class sympy.physics.units.dimensions.Dimension(name, symbol=None)[source]

This class represent the dimension of a physical quantities.

The Dimension constructor takes as parameters a name and an optional symbol.

@@ -853,7 +853,7 @@
Documentation Version
-has_integer_powers(dim_sys)[source]
+has_integer_powers(dim_sys)[source]

Check if the dimension object has only integer powers.

All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the @@ -872,7 +872,7 @@

Documentation Version
dimensional_dependencies={},
-)[source] +)[source]

DimensionSystem represents a coherent set of dimensions.

The constructor takes three parameters:

    @@ -905,7 +905,7 @@
    Documentation Version
    -dim_can_vector(dim)[source]
    +dim_can_vector(dim)[source]

    Useless method, kept for compatibility with previous versions.

    DO NOT USE.

    Dimensional representation in terms of the canonical base dimensions.

    @@ -913,7 +913,7 @@
    Documentation Version
    -dim_vector(dim)[source]
    +dim_vector(dim)[source]

    Useless method, kept for compatibility with previous versions.

    DO NOT USE.

    Vector representation in terms of the base dimensions.

    @@ -944,7 +944,7 @@
    Documentation Version
    -is_dimensionless(dimension)[source]
    +is_dimensionless(dimension)[source]

    Check if the dimension object really has a dimension.

    A dimension should have at least one component with non-zero power.

    @@ -959,7 +959,7 @@
    Documentation Version
    -print_dim_base(dim)[source]
    +print_dim_base(dim)[source]

    Give the string expression of a dimension in term of the basis symbols.

    diff --git a/dev/modules/physics/units/prefixes.html b/dev/modules/physics/units/prefixes.html index 27522d6fe3f..fa076f811eb 100644 --- a/dev/modules/physics/units/prefixes.html +++ b/dev/modules/physics/units/prefixes.html @@ -818,7 +818,7 @@
    Documentation Version
    latex_repr=None,
    -)[source] +)[source]

    This class represent prefixes, with their name, symbol and factor.

    Prefixes are used to create derived units from a given unit. They should always be encapsulated into units.

    diff --git a/dev/modules/physics/units/quantities.html b/dev/modules/physics/units/quantities.html index 12e43283076..9a8c5223334 100644 --- a/dev/modules/physics/units/quantities.html +++ b/dev/modules/physics/units/quantities.html @@ -819,7 +819,7 @@
    Documentation Version
    **assumptions,
    -)[source] +)[source]

    Physical quantity: can be a unit of measure, a constant or a generic quantity.

    @@ -830,7 +830,7 @@
    Documentation Version
    -convert_to(other, unit_system='SI')[source]
    +convert_to(other, unit_system='SI')[source]

    Convert the quantity to another quantity of same dimensions.

    Examples

    >>> from sympy.physics.units import speed_of_light, meter, second
    @@ -874,7 +874,7 @@ 
    Documentation Version
    reference_quantity,
    -)[source] +)[source]

    Setting a scale factor that is valid across all unit system.

@@ -885,7 +885,7 @@
Documentation Version

Several methods to simplify expressions involving unit objects.

-sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')[source]
+sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')[source]

Convert expr to the same expression with all of its units and quantities represented as factors of target_units, whenever the dimension is compatible.

target_units may be a single unit/quantity, or a collection of diff --git a/dev/modules/physics/units/unitsystem.html b/dev/modules/physics/units/unitsystem.html index 216633b879e..b79ae8d2cfa 100644 --- a/dev/modules/physics/units/unitsystem.html +++ b/dev/modules/physics/units/unitsystem.html @@ -817,7 +817,7 @@

Documentation Version
derived_units: Dict[Dimension, Quantity] = {},
-)[source] +)[source]

UnitSystem represents a coherent set of units.

A unit system is basically a dimension system with notions of scales. Many of the methods are defined in the same way.

@@ -842,7 +842,7 @@
Documentation Version
derived_units: Dict[Dimension, Quantity] = {},
-)[source] +)[source]

Extend the current system into a new one.

Take the base and normal units of the current system to merge them to the base and normal units given in argument. @@ -851,7 +851,7 @@

Documentation Version
-get_units_non_prefixed() Set[Quantity][source]
+get_units_non_prefixed() Set[Quantity][source]

Return the units of the system that do not have a prefix.

diff --git a/dev/modules/physics/vector/api/classes.html b/dev/modules/physics/vector/api/classes.html index 0ff8b9a783b..15a7f6370d7 100644 --- a/dev/modules/physics/vector/api/classes.html +++ b/dev/modules/physics/vector/api/classes.html @@ -805,7 +805,7 @@
Documentation Version

Essential Classes

-class sympy.physics.vector.frame.CoordinateSym(name, frame, index)[source]
+class sympy.physics.vector.frame.CoordinateSym(name, frame, index)[source]

A coordinate symbol/base scalar associated wrt a Reference Frame.

Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame @@ -853,7 +853,7 @@

Essential Classesvariables=None,

-)[source] +)[source]

A reference frame in classical mechanics.

ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame’s @@ -864,7 +864,7 @@

Essential Classes
-ang_acc_in(otherframe)[source]
+ang_acc_in(otherframe)[source]

Returns the angular acceleration Vector of the ReferenceFrame.

Effectively returns the Vector:

N_alpha_B

@@ -892,7 +892,7 @@

Essential Classes
-ang_vel_in(otherframe)[source]
+ang_vel_in(otherframe)[source]

Returns the angular velocity Vector of the ReferenceFrame.

Effectively returns the Vector:

^N omega ^B

@@ -920,7 +920,7 @@

Essential Classes
-dcm(otherframe)[source]
+dcm(otherframe)[source]

Returns the direction cosine matrix of this reference frame relative to the provided reference frame.

The returned matrix can be used to express the orthogonal unit vectors @@ -997,7 +997,7 @@

Essential Classesrot_order='',

-)[source] +)[source]

Sets the orientation of this reference frame relative to another (parent) reference frame.

@@ -1060,7 +1060,7 @@

Essential Classes
-orient_axis(parent, axis, angle)[source]
+orient_axis(parent, axis, angle)[source]

Sets the orientation of this reference frame with respect to a parent reference frame by rotating through an angle about an axis fixed in the parent reference frame.

@@ -1134,7 +1134,7 @@

Essential Classesrotation_order,

-)[source] +)[source]

Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive body fixed simple axis rotations. Each subsequent axis of rotation is about the “body fixed” @@ -1219,7 +1219,7 @@

Essential Classes
-orient_dcm(parent, dcm)[source]
+orient_dcm(parent, dcm)[source]

Sets the orientation of this reference frame relative to another (parent) reference frame using a direction cosine matrix that describes the rotation from the child to the parent.

@@ -1278,7 +1278,7 @@

Essential Classes
-orient_quaternion(parent, numbers)[source]
+orient_quaternion(parent, numbers)[source]

Sets the orientation of this reference frame relative to a parent reference frame via an orientation quaternion. An orientation quaternion is defined as a finite rotation a unit vector, (lambda_x, @@ -1342,7 +1342,7 @@

Essential Classesrotation_order,

-)[source] +)[source]

Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive space fixed simple axis rotations. Each subsequent axis of rotation is about the “space fixed” @@ -1442,7 +1442,7 @@

Essential Classeslatexs=None,

-)[source] +)[source]

Returns a new reference frame oriented with respect to this reference frame.

See ReferenceFrame.orient() for detailed examples of how to orient @@ -1541,7 +1541,7 @@

Essential Classes*gen_speeds,

-)[source] +)[source]

Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds.

@@ -1579,7 +1579,7 @@

Essential Classes
-set_ang_acc(otherframe, value)[source]
+set_ang_acc(otherframe, value)[source]

Define the angular acceleration Vector in a ReferenceFrame.

Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different @@ -1611,7 +1611,7 @@

Essential Classes
-set_ang_vel(otherframe, value)[source]
+set_ang_vel(otherframe, value)[source]

Define the angular velocity vector in a ReferenceFrame.

Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different @@ -1649,7 +1649,7 @@

Essential Classes
-variable_map(otherframe)[source]
+variable_map(otherframe)[source]

Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe.

If Vector.simp is True, returns a simplified version of the mapped @@ -1750,7 +1750,7 @@

Essential Classes
-class sympy.physics.vector.vector.Vector(inlist)[source]
+class sympy.physics.vector.vector.Vector(inlist)[source]

The class used to define vectors.

It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector.

@@ -1766,7 +1766,7 @@

Essential Classes
-angle_between(vec)[source]
+angle_between(vec)[source]

Returns the smallest angle between Vector ‘vec’ and self.

Warning

@@ -1797,13 +1797,13 @@

Essential Classes
-applyfunc(f)[source]
+applyfunc(f)[source]

Apply a function to each component of a vector.

-cross(other)[source]
+cross(other)[source]

The cross product operator for two Vectors.

Returns a Vector, expressed in the same ReferenceFrames as self.

@@ -1833,7 +1833,7 @@

Essential Classes
-diff(var, frame, var_in_dcm=True)[source]
+diff(var, frame, var_in_dcm=True)[source]

Returns the partial derivative of the vector with respect to a variable in the provided reference frame.

@@ -1881,13 +1881,13 @@

Essential Classes
-doit(**hints)[source]
+doit(**hints)[source]

Calls .doit() on each term in the Vector

-dot(other)[source]
+dot(other)[source]

Dot product of two vectors.

Returns a scalar, the dot product of the two Vectors

@@ -1916,7 +1916,7 @@

Essential Classes
-dt(otherframe)[source]
+dt(otherframe)[source]

Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe.

Calls the global time_derivative method

@@ -1932,7 +1932,7 @@

Essential Classes
-express(otherframe, variables=False)[source]
+express(otherframe, variables=False)[source]

Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method.

@@ -1963,7 +1963,7 @@

Essential Classes
-free_dynamicsymbols(reference_frame)[source]
+free_dynamicsymbols(reference_frame)[source]

Returns the free dynamic symbols (functions of time t) in the measure numbers of the vector expressed in the given reference frame.

@@ -1986,7 +1986,7 @@

Essential Classes
-free_symbols(reference_frame)[source]
+free_symbols(reference_frame)[source]

Returns the free symbols in the measure numbers of the vector expressed in the given reference frame.

@@ -2015,7 +2015,7 @@

Essential Classes
-magnitude()[source]
+magnitude()[source]

Returns the magnitude (Euclidean norm) of self.

Warning

@@ -2028,13 +2028,13 @@

Essential Classes
-normalize()[source]
+normalize()[source]

Returns a Vector of magnitude 1, codirectional with self.

-outer(other)[source]
+outer(other)[source]

Outer product between two Vectors.

A rank increasing operation, which returns a Dyadic from two Vectors

@@ -2056,7 +2056,7 @@

Essential Classes
-separate()[source]
+separate()[source]

The constituents of this vector in different reference frames, as per its definition.

Returns a dict mapping each ReferenceFrame to the corresponding @@ -2074,13 +2074,13 @@

Essential Classes
-simplify()[source]
+simplify()[source]

Returns a simplified Vector.

-subs(*args, **kwargs)[source]
+subs(*args, **kwargs)[source]

Substitution on the Vector.

Examples

>>> from sympy.physics.vector import ReferenceFrame
@@ -2096,7 +2096,7 @@ 

Essential Classes
-to_matrix(reference_frame)[source]
+to_matrix(reference_frame)[source]

Returns the matrix form of the vector with respect to the given frame.

@@ -2137,7 +2137,7 @@

Essential Classes
-xreplace(rule)[source]
+xreplace(rule)[source]

Replace occurrences of objects within the measure numbers of the vector.

@@ -2179,7 +2179,7 @@

Essential Classes
-class sympy.physics.vector.dyadic.Dyadic(inlist)[source]
+class sympy.physics.vector.dyadic.Dyadic(inlist)[source]

A Dyadic object.

See: https://en.wikipedia.org/wiki/Dyadic_tensor @@ -2189,13 +2189,13 @@

Essential Classes
-applyfunc(f)[source]
+applyfunc(f)[source]

Apply a function to each component of a Dyadic.

-cross(other)[source]
+cross(other)[source]

Returns the dyadic resulting from the dyadic vector cross product: Dyadic x Vector.

@@ -2218,13 +2218,13 @@

Essential Classes
-doit(**hints)[source]
+doit(**hints)[source]

Calls .doit() on each term in the Dyadic

-dot(other)[source]
+dot(other)[source]

The inner product operator for a Dyadic and a Dyadic or Vector.

Parameters:
@@ -2249,7 +2249,7 @@

Essential Classes
-dt(frame)[source]
+dt(frame)[source]

Take the time derivative of this Dyadic in a frame.

This function calls the global time_derivative method

@@ -2276,7 +2276,7 @@

Essential Classes
-express(frame1, frame2=None)[source]
+express(frame1, frame2=None)[source]

Expresses this Dyadic in alternate frame(s)

The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two @@ -2317,13 +2317,13 @@

Essential Classes
-simplify()[source]
+simplify()[source]

Returns a simplified Dyadic.

-subs(*args, **kwargs)[source]
+subs(*args, **kwargs)[source]

Substitution on the Dyadic.

Examples

>>> from sympy.physics.vector import ReferenceFrame
@@ -2346,7 +2346,7 @@ 

Essential Classessecond_reference_frame=None,

-)[source] +)[source]

Returns the matrix form of the dyadic with respect to one or two reference frames.

@@ -2395,7 +2395,7 @@

Essential Classes
-xreplace(rule)[source]
+xreplace(rule)[source]

Replace occurrences of objects within the measure numbers of the Dyadic.

diff --git a/dev/modules/physics/vector/api/fieldfunctions.html b/dev/modules/physics/vector/api/fieldfunctions.html index 6fba1615fc5..519ec1069aa 100644 --- a/dev/modules/physics/vector/api/fieldfunctions.html +++ b/dev/modules/physics/vector/api/fieldfunctions.html @@ -809,7 +809,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]
+sympy.physics.vector.fieldfunctions.curl(vect, frame)[source]

Returns the curl of a vector field computed wrt the coordinate symbols of the given frame.

@@ -840,7 +840,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]
+sympy.physics.vector.fieldfunctions.divergence(vect, frame)[source]

Returns the divergence of a vector field computed wrt the coordinate symbols of the given frame.

@@ -871,7 +871,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]
+sympy.physics.vector.fieldfunctions.gradient(scalar, frame)[source]

Returns the vector gradient of a scalar field computed wrt the coordinate symbols of the given frame.

@@ -902,7 +902,7 @@

Field operation functions
-sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]
+sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)[source]

Returns the scalar potential function of a field in a given frame (without the added integration constant).

@@ -944,7 +944,7 @@

Field operation functionsorigin,

-)[source] +)[source]

Returns the scalar potential difference between two points in a certain frame, wrt a given field.

If a scalar field is provided, its values at the two points are @@ -997,7 +997,7 @@

Field operation functions

-sympy.physics.vector.fieldfunctions.is_conservative(field)[source]
+sympy.physics.vector.fieldfunctions.is_conservative(field)[source]

Checks if a field is conservative.

Parameters:
@@ -1021,7 +1021,7 @@

Checking the type of vector field
-sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]
+sympy.physics.vector.fieldfunctions.is_solenoidal(field)[source]

Checks if a field is solenoidal.

Parameters:
diff --git a/dev/modules/physics/vector/api/functions.html b/dev/modules/physics/vector/api/functions.html index 83766b8ee57..4a7c7df1320 100644 --- a/dev/modules/physics/vector/api/functions.html +++ b/dev/modules/physics/vector/api/functions.html @@ -805,7 +805,7 @@
Documentation Version

Essential Functions (Docstrings)

-sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)[source]
+sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)[source]

Uses symbols and Function for functions of time.

Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable, the default being Symbol(‘t’).

@@ -874,7 +874,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.dot(vec1, vec2)[source]
+sympy.physics.vector.functions.dot(vec1, vec2)[source]

Dot product convenience wrapper for Vector.dot(): Dot product of two vectors.

@@ -906,7 +906,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.cross(vec1, vec2)[source]
+sympy.physics.vector.functions.cross(vec1, vec2)[source]

Cross product convenience wrapper for Vector.cross(): The cross product operator for two Vectors.

@@ -939,7 +939,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.outer(vec1, vec2)[source]
+sympy.physics.vector.functions.outer(vec1, vec2)[source]

Outer product convenience wrapper for Vector.outer(): Outer product between two Vectors.

@@ -964,7 +964,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)[source]
+sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)[source]

Global function for ‘express’ functionality.

Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.

Refer to the local methods of Vector and Dyadic for details. @@ -1014,7 +1014,7 @@

Essential Functions (Docstrings)
-sympy.physics.vector.functions.time_derivative(expr, frame, order=1)[source]
+sympy.physics.vector.functions.time_derivative(expr, frame, order=1)[source]

Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame.

diff --git a/dev/modules/physics/vector/api/kinematics.html b/dev/modules/physics/vector/api/kinematics.html index a50e62cef1a..a258f9b7c01 100644 --- a/dev/modules/physics/vector/api/kinematics.html +++ b/dev/modules/physics/vector/api/kinematics.html @@ -805,7 +805,7 @@
Documentation Version

Kinematics (Docstrings)

-class sympy.physics.vector.point.Point(name)[source]
+class sympy.physics.vector.point.Point(name)[source]

This object represents a point in a dynamic system.

It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent @@ -858,7 +858,7 @@

Documentation Version
interframe,
-)[source] +)[source]

Sets the acceleration of this point with the 1-point theory.

The 1-point theory for point acceleration looks like this:

^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B @@ -913,7 +913,7 @@

Documentation Version
fixedframe,
-)[source] +)[source]

Sets the acceleration of this point with the 2-point theory.

The 2-point theory for point acceleration looks like this:

^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)

@@ -954,7 +954,7 @@
Documentation Version
-acc(frame)[source]
+acc(frame)[source]

The acceleration Vector of this Point in a ReferenceFrame.

Parameters:
@@ -978,7 +978,7 @@
Documentation Version
-locatenew(name, value)[source]
+locatenew(name, value)[source]

Creates a new point with a position defined from this point.

Parameters:
@@ -1003,7 +1003,7 @@
Documentation Version
-partial_velocity(frame, *gen_speeds)[source]
+partial_velocity(frame, *gen_speeds)[source]

Returns the partial velocities of the linear velocity vector of this point in the given frame with respect to one or more provided generalized speeds.

@@ -1044,7 +1044,7 @@
Documentation Version
-pos_from(otherpoint)[source]
+pos_from(otherpoint)[source]

Returns a Vector distance between this Point and the other Point.

Parameters:
@@ -1068,7 +1068,7 @@
Documentation Version
-set_acc(frame, value)[source]
+set_acc(frame, value)[source]

Used to set the acceleration of this Point in a ReferenceFrame.

Parameters:
@@ -1095,7 +1095,7 @@
Documentation Version
-set_pos(otherpoint, value)[source]
+set_pos(otherpoint, value)[source]

Used to set the position of this point w.r.t. another point.

Parameters:
@@ -1123,7 +1123,7 @@
Documentation Version
-set_vel(frame, value)[source]
+set_vel(frame, value)[source]

Sets the velocity Vector of this Point in a ReferenceFrame.

Parameters:
@@ -1158,7 +1158,7 @@
Documentation Version
interframe,
-)[source] +)[source]

Sets the velocity of this point with the 1-point theory.

The 1-point theory for point velocity looks like this:

^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP

@@ -1212,7 +1212,7 @@
Documentation Version
fixedframe,
-)[source] +)[source]

Sets the velocity of this point with the 2-point theory.

The 2-point theory for point velocity looks like this:

^N v^P = ^N v^O + ^N omega^B x r^OP

@@ -1253,7 +1253,7 @@
Documentation Version
-vel(frame)[source]
+vel(frame)[source]

The velocity Vector of this Point in the ReferenceFrame.

Parameters:
@@ -1296,7 +1296,7 @@
Documentation Version

kinematic_equations

-sympy.physics.vector.functions.get_motion_params(frame, **kwargs)[source]
+sympy.physics.vector.functions.get_motion_params(frame, **kwargs)[source]

Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame.

If a higher order differential function is provided, the lower order @@ -1377,7 +1377,7 @@

Documentation Version
rot_order='',
-)[source] +)[source]

Gives equations relating the qdot’s to u’s for a rotation type.

Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, @@ -1418,7 +1418,7 @@

Documentation Version
-sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)[source]
+sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)[source]

Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors.

diff --git a/dev/modules/physics/vector/api/printing.html b/dev/modules/physics/vector/api/printing.html index ac51a72738e..31c3f06b75b 100644 --- a/dev/modules/physics/vector/api/printing.html +++ b/dev/modules/physics/vector/api/printing.html @@ -805,7 +805,7 @@
Documentation Version

Printing (Docstrings)

-sympy.physics.vector.printing.init_vprinting(**kwargs)[source]
+sympy.physics.vector.printing.init_vprinting(**kwargs)[source]

Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of @@ -953,7 +953,7 @@

Printing (Docstrings)
-sympy.physics.vector.printing.vprint(expr, **settings)[source]
+sympy.physics.vector.printing.vprint(expr, **settings)[source]

Function for printing of expressions generated in the sympy.physics vector package.

Extends SymPy’s StrPrinter, takes the same setting accepted by SymPy’s @@ -983,7 +983,7 @@

Printing (Docstrings)
-sympy.physics.vector.printing.vpprint(expr, **settings)[source]
+sympy.physics.vector.printing.vpprint(expr, **settings)[source]

Function for pretty printing of expressions generated in the sympy.physics vector package.

Mainly used for expressions not inside a vector; the output of running @@ -1005,7 +1005,7 @@

Printing (Docstrings)
-sympy.physics.vector.printing.vlatex(expr, **settings)[source]
+sympy.physics.vector.printing.vlatex(expr, **settings)[source]

Function for printing latex representation of sympy.physics.vector objects.

For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the diff --git a/dev/modules/physics/wigner.html b/dev/modules/physics/wigner.html index 397281f7395..a323dd9649a 100644 --- a/dev/modules/physics/wigner.html +++ b/dev/modules/physics/wigner.html @@ -871,7 +871,7 @@

Authors
-sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]
+sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]

Calculates the Clebsch-Gordan coefficient. \(\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle\).

The reference for this function is [Edmonds74].

@@ -916,7 +916,7 @@

Authors
-sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]
+sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]

Returns dot product of rotational gradients of spherical harmonics.

Explanation

This function returns the right hand side of the following expression:

@@ -941,7 +941,7 @@

Authors
-sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]
+sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]

Calculate the Gaunt coefficient.

Parameters:
@@ -1036,7 +1036,7 @@

Authors
-sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]
+sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]

Calculate the Racah symbol \(W(a,b,c,d;e,f)\).

Parameters:
@@ -1096,7 +1096,7 @@

Authors
prec=None,

-)[source] +)[source]

Calculate the real Gaunt coefficient.

Parameters:
@@ -1211,7 +1211,7 @@

Authors
-sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]
+sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]

Calculate the Wigner 3j symbol \(\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)\).

Parameters:
@@ -1294,7 +1294,7 @@

Authors
-sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]
+sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]

Calculate the Wigner 6j symbol \(\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)\).

Parameters:
@@ -1398,7 +1398,7 @@

Authors
prec=None,

-)[source] +)[source]

Calculate the Wigner 9j symbol \(\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)\).

@@ -1450,7 +1450,7 @@

Authors
-sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]
+sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]

Return the Wigner D matrix for angular momentum J.

Returns:
@@ -1500,7 +1500,7 @@

Authors
-sympy.physics.wigner.wigner_d_small(J, beta)[source]
+sympy.physics.wigner.wigner_d_small(J, beta)[source]

Return the small Wigner d matrix for angular momentum J.

Returns:
diff --git a/dev/modules/plotting.html b/dev/modules/plotting.html index f88c124e0f1..6a1d538ac8c 100644 --- a/dev/modules/plotting.html +++ b/dev/modules/plotting.html @@ -853,7 +853,7 @@

Plot Class**kwargs,

-)[source] +)[source]

Base class for all backends. A backend represents the plotting library, which implements the necessary functionalities in order to use SymPy plotting functions.

@@ -1010,7 +1010,7 @@

Plot Class
-append(arg)[source]
+append(arg)[source]

Adds an element from a plot’s series to an existing plot.

Examples

Consider two Plot objects, p1 and p2. To add the @@ -1041,7 +1041,7 @@

Plot Class
-extend(arg)[source]
+extend(arg)[source]

Adds all series from another plot.

Examples

Consider two Plot objects, p1 and p2. To add the @@ -1097,7 +1097,7 @@

Plot Class

-sympy.plotting.plot.plot(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot(*args, show=True, **kwargs)[source]

Plots a function of a single variable as a curve.

Parameters:
@@ -1306,7 +1306,7 @@

Plotting Function Reference
-sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)[source]

Plots a 2D parametric curve.

Parameters:
@@ -1491,7 +1491,7 @@

Plotting Function Reference
-sympy.plotting.plot.plot3d(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot3d(*args, show=True, **kwargs)[source]

Plots a 3D surface plot.

Usage

Single plot

@@ -1590,7 +1590,7 @@

Plotting Function Reference
-sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)[source]
+sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)[source]

Plots a 3D parametric line plot.

Usage

Single plot:

@@ -1684,7 +1684,7 @@

Plotting Function Reference**kwargs,

-)[source] +)[source]

Plots a 3D parametric surface plot.

Explanation

Single plot.

@@ -1774,7 +1774,7 @@

Plotting Function Reference**kwargs,

-)[source] +)[source]

A plot function to plot implicit equations / inequalities.

Arguments

    @@ -1933,7 +1933,7 @@

    PlotGrid Class**kwargs,

-)[source] +)[source]

This class helps to plot subplots from already created SymPy plots in a single figure.

Examples

@@ -2029,7 +2029,7 @@

PlotGrid Class

-class sympy.plotting.series.BaseSeries(*args, **kwargs)[source]
+class sympy.plotting.series.BaseSeries(*args, **kwargs)[source]

Base class for the data objects containing stuff to be plotted.

Notes

The backend should check if it supports the data series that is given. @@ -2044,7 +2044,7 @@

Series Classes
-eval_color_func(*args)[source]
+eval_color_func(*args)[source]

Evaluate the color function.

Parameters:
@@ -2070,7 +2070,7 @@

Series Classes
-get_data()[source]
+get_data()[source]

Compute and returns the numerical data.

The number of parameters returned by this method depends on the specific instance. If s is the series, make sure to read @@ -2086,7 +2086,7 @@

Series Classeswrapper='$%s$',

-)[source] +)[source]

Return the label to be used to display the expression.

Parameters:
@@ -2134,7 +2134,7 @@

Series Classes
-class sympy.plotting.series.Line2DBaseSeries(**kwargs)[source]
+class sympy.plotting.series.Line2DBaseSeries(**kwargs)[source]

A base class for 2D lines.

  • adding the label, steps and only_integers options

  • @@ -2143,7 +2143,7 @@

    Series Classes
    -get_data()[source]
    +get_data()[source]

    Return coordinates for plotting the line.

    Returns:
    @@ -2183,11 +2183,11 @@

    Series Classes**kwargs,

-)[source] +)[source]

Representation for a line consisting of a SymPy expression over a range.

-get_points()[source]
+get_points()[source]

Return lists of coordinates for plotting. Depending on the adaptive option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range.

@@ -2223,14 +2223,14 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a line consisting of two parametric SymPy expressions over a range.

-class sympy.plotting.series.Line3DBaseSeries[source]
+class sympy.plotting.series.Line3DBaseSeries[source]

A base class for 3D lines.

Most of the stuff is derived from Line2DBaseSeries.

@@ -2248,14 +2248,14 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a 3D line consisting of three parametric SymPy expressions and a range.

-class sympy.plotting.series.SurfaceBaseSeries(*args, **kwargs)[source]
+class sympy.plotting.series.SurfaceBaseSeries(*args, **kwargs)[source]

A base class for 3D surfaces.

@@ -2271,12 +2271,12 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a 3D surface consisting of a SymPy expression and 2D range.

-get_data()[source]
+get_data()[source]

Return arrays of coordinates for plotting.

Returns:
@@ -2298,7 +2298,7 @@

Series Classes
-get_meshes()[source]
+get_meshes()[source]

Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using get_data() instead.

@@ -2320,12 +2320,12 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for a 3D surface consisting of three parametric SymPy expressions and a range.

-get_data()[source]
+get_data()[source]

Return arrays of coordinates for plotting.

Returns:
@@ -2355,7 +2355,7 @@

Series Classes
-get_meshes()[source]
+get_meshes()[source]

Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using get_data() instead.

@@ -2365,7 +2365,7 @@

Series Classes
-class sympy.plotting.series.GenericDataSeries(tp, *args, **kwargs)[source]
+class sympy.plotting.series.GenericDataSeries(tp, *args, **kwargs)[source]

Represents generic numerical data.

Notes

This class serves the purpose of back-compatibility with the “markers, @@ -2421,11 +2421,11 @@

Series Classes**kwargs,

-)[source] +)[source]

Representation for 2D Implicit plot.

-get_data()[source]
+get_data()[source]

Returns numerical data.

Returns:
@@ -2462,7 +2462,7 @@

Series Classeswrapper='$%s$',

-)[source] +)[source]

Return the label to be used to display the expression.

Parameters:
@@ -2490,12 +2490,12 @@

Series Classes

-class sympy.plotting.plot.MatplotlibBackend(*series, **kwargs)[source]
+class sympy.plotting.plot.MatplotlibBackend(*series, **kwargs)[source]

This class implements the functionalities to use Matplotlib with SymPy plotting functions.

-static get_segments(x, y, z=None)[source]
+static get_segments(x, y, z=None)[source]

Convert two list of coordinates to a list of segments to be used with Matplotlib’s LineCollection.

@@ -2518,7 +2518,7 @@

Backends
-process_series()[source]
+process_series()[source]

Iterates over every Plot object and further calls _process_series()

@@ -2527,7 +2527,7 @@

Backends
-class sympy.plotting.plot.TextBackend(*args, **kwargs)[source]
+class sympy.plotting.plot.TextBackend(*args, **kwargs)[source]
@@ -2761,7 +2761,7 @@

Using Custom Color Functions

-sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)[source]
+sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)[source]

Print a crude ASCII art plot of the SymPy expression ‘expr’ (which should contain a single symbol, e.g. x or something else) over the interval [a, b].

diff --git a/dev/modules/polys/agca.html b/dev/modules/polys/agca.html index e8a49c8aa66..83bce2f9344 100644 --- a/dev/modules/polys/agca.html +++ b/dev/modules/polys/agca.html @@ -903,11 +903,11 @@

Base Rings
-class sympy.polys.domains.ring.Ring[source]
+class sympy.polys.domains.ring.Ring[source]

Represents a ring domain.

-free_module(rank)[source]
+free_module(rank)[source]

Generate a free module of rank rank over self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -919,7 +919,7 @@ 

Base Rings
-ideal(*gens)[source]
+ideal(*gens)[source]

Generate an ideal of self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -931,7 +931,7 @@ 

Base Rings
-quotient_ring(e)[source]
+quotient_ring(e)[source]

Form a quotient ring of self.

Here e can be an ideal or an iterable.

>>> from sympy.abc import x
@@ -961,13 +961,13 @@ 

Base Ringsorder=None,

-)[source] +)[source]

A class for representing multivariate polynomial rings.

-class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]
+class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]

Class representing (commutative) quotient rings.

You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

@@ -1047,7 +1047,7 @@

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.Module(ring)[source]
+class sympy.polys.agca.modules.Module(ring)[source]

Abstract base class for modules.

Do not instantiate - use ring explicit constructors instead:

>>> from sympy import QQ
@@ -1072,56 +1072,56 @@ 

Modules, Ideals and their Elementary Properties
-contains(elem)[source]
+contains(elem)[source]

Return True if elem is an element of this module.

-convert(elem, M=None)[source]
+convert(elem, M=None)[source]

Convert elem into internal representation of this module.

If M is not None, it should be a module containing it.

-identity_hom()[source]
+identity_hom()[source]

Return the identity homomorphism on self.

-is_submodule(other)[source]
+is_submodule(other)[source]

Returns True if other is a submodule of self.

-is_zero()[source]
+is_zero()[source]

Returns True if self is a zero module.

-multiply_ideal(other)[source]
+multiply_ideal(other)[source]

Multiply self by the ideal other.

-quotient_module(other)[source]
+quotient_module(other)[source]

Generate a quotient module.

-submodule(*gens)[source]
+submodule(*gens)[source]

Generate a submodule.

-subset(other)[source]
+subset(other)[source]

Returns True if other is is a subset of self.

Examples

>>> from sympy.abc import x
@@ -1139,7 +1139,7 @@ 

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.FreeModule(ring, rank)[source]
+class sympy.polys.agca.modules.FreeModule(ring, rank)[source]

Abstract base class for free modules.

Additional attributes:

    @@ -1151,7 +1151,7 @@

    Modules, Ideals and their Elementary Properties
    -basis()[source]
    +basis()[source]

    Return a set of basis elements.

    Examples

    >>> from sympy.abc import x
    @@ -1164,7 +1164,7 @@ 

    Modules, Ideals and their Elementary Properties
    -convert(elem, M=None)[source]
    +convert(elem, M=None)[source]

    Convert elem into the internal representation.

    This method is called implicitly whenever computations involve elements not in the internal representation.

    @@ -1180,13 +1180,13 @@

    Modules, Ideals and their Elementary Properties
    -dtype[source]
    +dtype[source]

    alias of FreeModuleElement

-identity_hom()[source]
+identity_hom()[source]

Return the identity homomorphism on self.

Examples

>>> from sympy.abc import x
@@ -1201,7 +1201,7 @@ 

Modules, Ideals and their Elementary Properties
-is_submodule(other)[source]
+is_submodule(other)[source]

Returns True if other is a submodule of self.

Examples

>>> from sympy.abc import x
@@ -1220,7 +1220,7 @@ 

Modules, Ideals and their Elementary Properties
-is_zero()[source]
+is_zero()[source]

Returns True if self is a zero module.

(If, as this implementation assumes, the coefficient ring is not the zero ring, then this is equivalent to the rank being zero.)

@@ -1237,7 +1237,7 @@

Modules, Ideals and their Elementary Properties
-multiply_ideal(other)[source]
+multiply_ideal(other)[source]

Multiply self by the ideal other.

Examples

>>> from sympy.abc import x
@@ -1252,7 +1252,7 @@ 

Modules, Ideals and their Elementary Properties
-quotient_module(submodule)[source]
+quotient_module(submodule)[source]

Return a quotient module.

Examples

>>> from sympy.abc import x
@@ -1273,13 +1273,13 @@ 

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.FreeModuleElement(module, data)[source]
+class sympy.polys.agca.modules.FreeModuleElement(module, data)[source]

Element of a free module. Data stored as a tuple.

-class sympy.polys.agca.modules.SubModule(gens, container)[source]
+class sympy.polys.agca.modules.SubModule(gens, container)[source]

Base class for submodules.

Attributes:

    @@ -1301,7 +1301,7 @@

    Modules, Ideals and their Elementary Properties
    -convert(elem, M=None)[source]
    +convert(elem, M=None)[source]

    Convert elem into the internal represantition.

    Mostly called implicitly.

    Examples

    @@ -1316,7 +1316,7 @@

    Modules, Ideals and their Elementary Properties
    -identity_hom()[source]
    +identity_hom()[source]

    Return the identity homomorphism on self.

    Examples

    >>> from sympy.abc import x
    @@ -1331,7 +1331,7 @@ 

    Modules, Ideals and their Elementary Properties
    -in_terms_of_generators(e)[source]
    +in_terms_of_generators(e)[source]

    Express element e of self in terms of the generators.

    Examples

    >>> from sympy.abc import x
    @@ -1346,7 +1346,7 @@ 

    Modules, Ideals and their Elementary Properties
    -inclusion_hom()[source]
    +inclusion_hom()[source]

    Return a homomorphism representing the inclusion map of self.

    That is, the natural map from self to self.container.

    Examples

    @@ -1362,7 +1362,7 @@

    Modules, Ideals and their Elementary Properties
    -intersect(other, **options)[source]
    +intersect(other, **options)[source]

    Returns the intersection of self with submodule other.

    Examples

    >>> from sympy.abc import x, y
    @@ -1390,7 +1390,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_full_module()[source]
    +is_full_module()[source]

    Return True if self is the entire free module.

    Examples

    >>> from sympy.abc import x
    @@ -1406,7 +1406,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_submodule(other)[source]
    +is_submodule(other)[source]

    Returns True if other is a submodule of self.

    >>> from sympy.abc import x
     >>> from sympy import QQ
    @@ -1425,7 +1425,7 @@ 

    Modules, Ideals and their Elementary Properties
    -is_zero()[source]
    +is_zero()[source]

    Return True if self is a zero module.

    Examples

    >>> from sympy.abc import x
    @@ -1441,7 +1441,7 @@ 

    Modules, Ideals and their Elementary Properties
    -module_quotient(other, **options)[source]
    +module_quotient(other, **options)[source]

    Returns the module quotient of self by submodule other.

    That is, if self is the module \(M\) and other is \(N\), then return the ideal \(\{f \in R | fN \subset M\}\).

    @@ -1473,7 +1473,7 @@

    Modules, Ideals and their Elementary Properties
    -multiply_ideal(I)[source]
    +multiply_ideal(I)[source]

    Multiply self by the ideal I.

    Examples

    >>> from sympy.abc import x
    @@ -1488,7 +1488,7 @@ 

    Modules, Ideals and their Elementary Properties
    -quotient_module(other, **opts)[source]
    +quotient_module(other, **opts)[source]

    Return a quotient module.

    This is the same as taking a submodule of a quotient of the containing module.

    @@ -1511,7 +1511,7 @@

    Modules, Ideals and their Elementary Properties
    -reduce_element(x)[source]
    +reduce_element(x)[source]

    Reduce the element x of our ring modulo the ideal self.

    Here “reduce” has no specific meaning, it could return a unique normal form, simplify the expression a bit, or just do nothing.

    @@ -1519,7 +1519,7 @@

    Modules, Ideals and their Elementary Properties
    -submodule(*gens)[source]
    +submodule(*gens)[source]

    Generate a submodule.

    Examples

    >>> from sympy.abc import x
    @@ -1533,7 +1533,7 @@ 

    Modules, Ideals and their Elementary Properties
    -syzygy_module(**opts)[source]
    +syzygy_module(**opts)[source]

    Compute the syzygy module of the generators of self.

    Suppose \(M\) is generated by \(f_1, \ldots, f_n\) over the ring \(R\). Consider the homomorphism \(\phi: R^n \to M\), given by @@ -1559,7 +1559,7 @@

    Modules, Ideals and their Elementary Properties
    -union(other)[source]
    +union(other)[source]

    Returns the module generated by the union of self and other.

    Examples

    >>> from sympy.abc import x
    @@ -1593,7 +1593,7 @@ 

    Modules, Ideals and their Elementary Properties
    -class sympy.polys.agca.ideals.Ideal(ring)[source]
    +class sympy.polys.agca.ideals.Ideal(ring)[source]

    Abstract base class for ideals.

    Do not instantiate - use explicit constructors in the ring class instead:

    >>> from sympy import QQ
    @@ -1627,7 +1627,7 @@ 

    Modules, Ideals and their Elementary Properties
    -contains(elem)[source]
    +contains(elem)[source]

    Return True if elem is an element of this ideal.

    Examples

    >>> from sympy.abc import x
    @@ -1642,19 +1642,19 @@ 

    Modules, Ideals and their Elementary Properties
    -depth()[source]
    +depth()[source]

    Compute the depth of self.

-height()[source]
+height()[source]

Compute the height of self.

-intersect(J)[source]
+intersect(J)[source]

Compute the intersection of self with ideal J.

Examples

>>> from sympy.abc import x, y
@@ -1668,49 +1668,49 @@ 

Modules, Ideals and their Elementary Properties
-is_maximal()[source]
+is_maximal()[source]

Return True if self is a maximal ideal.

-is_primary()[source]
+is_primary()[source]

Return True if self is a primary ideal.

-is_prime()[source]
+is_prime()[source]

Return True if self is a prime ideal.

-is_principal()[source]
+is_principal()[source]

Return True if self is a principal ideal.

-is_radical()[source]
+is_radical()[source]

Return True if self is a radical ideal.

-is_whole_ring()[source]
+is_whole_ring()[source]

Return True if self is the whole ring.

-is_zero()[source]
+is_zero()[source]

Return True if self is the zero ideal.

-product(J)[source]
+product(J)[source]

Compute the ideal product of self and J.

That is, compute the ideal generated by products \(xy\), for \(x\) an element of self and \(y \in J\).

@@ -1725,7 +1725,7 @@

Modules, Ideals and their Elementary Properties
-quotient(J, **opts)[source]
+quotient(J, **opts)[source]

Compute the ideal quotient of self by J.

That is, if self is the ideal \(I\), compute the set \(I : J = \{x \in R | xJ \subset I \}\).

@@ -1741,13 +1741,13 @@

Modules, Ideals and their Elementary Properties
-radical()[source]
+radical()[source]

Compute the radical of self.

-reduce_element(x)[source]
+reduce_element(x)[source]

Reduce the element x of our ring modulo the ideal self.

Here “reduce” has no specific meaning: it could return a unique normal form, simplify the expression a bit, or just do nothing.

@@ -1755,7 +1755,7 @@

Modules, Ideals and their Elementary Properties
-saturate(J)[source]
+saturate(J)[source]

Compute the ideal saturation of self by J.

That is, if self is the ideal \(I\), compute the set \(I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}\).

@@ -1763,7 +1763,7 @@

Modules, Ideals and their Elementary Properties
-subset(other)[source]
+subset(other)[source]

Returns True if other is is a subset of self.

Here other may be an ideal.

Examples

@@ -1782,7 +1782,7 @@

Modules, Ideals and their Elementary Properties
-union(J)[source]
+union(J)[source]

Compute the ideal generated by the union of self and J.

Examples

>>> from sympy.abc import x
@@ -1804,7 +1804,7 @@ 

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)[source]
+class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)[source]

Class for quotient modules.

Do not instantiate this directly. For subquotients, see the SubQuotientModule class.

@@ -1816,7 +1816,7 @@

Modules, Ideals and their Elementary Properties
-convert(elem, M=None)[source]
+convert(elem, M=None)[source]

Convert elem into the internal representation.

This method is called implicitly whenever computations involve elements not in the internal representation.

@@ -1832,13 +1832,13 @@

Modules, Ideals and their Elementary Properties
-dtype[source]
+dtype[source]

alias of QuotientModuleElement

-identity_hom()[source]
+identity_hom()[source]

Return the identity homomorphism on self.

Examples

>>> from sympy.abc import x
@@ -1854,7 +1854,7 @@ 

Modules, Ideals and their Elementary Properties
-is_submodule(other)[source]
+is_submodule(other)[source]

Return True if other is a submodule of self.

Examples

>>> from sympy.abc import x
@@ -1871,7 +1871,7 @@ 

Modules, Ideals and their Elementary Properties
-is_zero()[source]
+is_zero()[source]

Return True if self is a zero module.

This happens if and only if the base module is the same as the submodule being killed.

@@ -1889,7 +1889,7 @@

Modules, Ideals and their Elementary Properties
-quotient_hom()[source]
+quotient_hom()[source]

Return the quotient homomorphism to self.

That is, return a homomorphism representing the natural map from self.base to self.

@@ -1907,7 +1907,7 @@

Modules, Ideals and their Elementary Properties
-submodule(*gens, **opts)[source]
+submodule(*gens, **opts)[source]

Generate a submodule.

This is the same as taking a quotient of a submodule of the base module.

@@ -1925,11 +1925,11 @@

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.QuotientModuleElement(module, data)[source]
+class sympy.polys.agca.modules.QuotientModuleElement(module, data)[source]

Element of a quotient module.

-eq(d1, d2)[source]
+eq(d1, d2)[source]

Equality comparison.

@@ -1937,7 +1937,7 @@

Modules, Ideals and their Elementary Properties
-class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)[source]
+class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)[source]

Submodule of a quotient module.

Equivalently, quotient module of a submodule.

Do not instantiate this, instead use the submodule or quotient_module @@ -1958,7 +1958,7 @@

Modules, Ideals and their Elementary Properties
-is_full_module()[source]
+is_full_module()[source]

Return True if self is the entire free module.

Examples

>>> from sympy.abc import x
@@ -1974,7 +1974,7 @@ 

Modules, Ideals and their Elementary Properties
-quotient_hom()[source]
+quotient_hom()[source]

Return the quotient homomorphism to self.

That is, return the natural map from self.base to self.

Examples

@@ -2053,7 +2053,7 @@

Module Homomorphisms and Syzygies
-sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)[source]
+sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)[source]

Create a homomorphism object.

This function tries to build a homomorphism from domain to codomain via the matrix matrix.

@@ -2114,7 +2114,7 @@

Module Homomorphisms and Syzygies
-class sympy.polys.agca.homomorphisms.ModuleHomomorphism(domain, codomain)[source]
+class sympy.polys.agca.homomorphisms.ModuleHomomorphism(domain, codomain)[source]

Abstract base class for module homomoprhisms. Do not instantiate.

Instead, use the homomorphism function:

>>> from sympy import QQ
@@ -2152,7 +2152,7 @@ 

Module Homomorphisms and Syzygies
-image()[source]
+image()[source]

Compute the image of self.

That is, if self is the homomorphism \(\phi: M \to N\), then compute \(im(\phi) = \{\phi(x) | x \in M \}\). This is a submodule of \(N\).

@@ -2171,7 +2171,7 @@

Module Homomorphisms and Syzygies
-is_injective()[source]
+is_injective()[source]

Return True if self is injective.

That is, check if the elements of the domain are mapped to the same codomain element.

@@ -2193,7 +2193,7 @@

Module Homomorphisms and Syzygies
-is_isomorphism()[source]
+is_isomorphism()[source]

Return True if self is an isomorphism.

That is, check if every element of the codomain has precisely one preimage. Equivalently, self is both injective and surjective.

@@ -2216,7 +2216,7 @@

Module Homomorphisms and Syzygies
-is_surjective()[source]
+is_surjective()[source]

Return True if self is surjective.

That is, check if every element of the codomain has at least one preimage.

@@ -2238,7 +2238,7 @@

Module Homomorphisms and Syzygies
-is_zero()[source]
+is_zero()[source]

Return True if self is a zero morphism.

That is, check if every element of the domain is mapped to zero under self.

@@ -2262,7 +2262,7 @@

Module Homomorphisms and Syzygies
-kernel()[source]
+kernel()[source]

Compute the kernel of self.

That is, if self is the homomorphism \(\phi: M \to N\), then compute \(ker(\phi) = \{x \in M | \phi(x) = 0\}\). This is a submodule of \(M\).

@@ -2281,7 +2281,7 @@

Module Homomorphisms and Syzygies
-quotient_codomain(sm)[source]
+quotient_codomain(sm)[source]

Return self with codomain replaced by codomain/sm.

Here sm must be a submodule of self.codomain.

Examples

@@ -2313,7 +2313,7 @@

Module Homomorphisms and Syzygies
-quotient_domain(sm)[source]
+quotient_domain(sm)[source]

Return self with domain replaced by domain/sm.

Here sm must be a submodule of self.kernel().

Examples

@@ -2338,7 +2338,7 @@

Module Homomorphisms and Syzygies
-restrict_codomain(sm)[source]
+restrict_codomain(sm)[source]

Return self, with codomain restricted to to sm.

Here sm has to be a submodule of self.codomain containing the image.

@@ -2364,7 +2364,7 @@

Module Homomorphisms and Syzygies
-restrict_domain(sm)[source]
+restrict_domain(sm)[source]

Return self, with the domain restricted to sm.

Here sm has to be a submodule of self.domain.

Examples

@@ -2417,7 +2417,7 @@

Finite Extensions\(t\).

-class sympy.polys.agca.extensions.MonogenicFiniteExtension(mod)[source]
+class sympy.polys.agca.extensions.MonogenicFiniteExtension(mod)[source]

Finite extension generated by an integral element.

The generator is defined by a monic univariate polynomial derived from the argument mod.

@@ -2453,7 +2453,7 @@

Finite Extensions
-dtype[source]
+dtype[source]

alias of ExtensionElement

@@ -2461,7 +2461,7 @@

Finite Extensions
-class sympy.polys.agca.extensions.ExtensionElement(rep, ext)[source]
+class sympy.polys.agca.extensions.ExtensionElement(rep, ext)[source]

Element of a finite extension.

A class of univariate polynomials modulo the modulus of the extension ext. It is represented by the @@ -2470,7 +2470,7 @@

Finite Extensions
-inverse()[source]
+inverse()[source]

Multiplicative inverse.

Raises:
diff --git a/dev/modules/polys/domainmatrix.html b/dev/modules/polys/domainmatrix.html index fbb548a6e79..f6b3ed0b7dc 100644 --- a/dev/modules/polys/domainmatrix.html +++ b/dev/modules/polys/domainmatrix.html @@ -836,7 +836,7 @@

What is domainmatrix?
-sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]
+sympy.polys.matrices.domainmatrix.DM(rows, domain)[source]

Convenient alias for DomainMatrix.from_list

Examples

>>> from sympy import ZZ
@@ -853,7 +853,7 @@ 

What is domainmatrix?
-class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]
+class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)[source]

Associate Matrix with Domain

Explanation

DomainMatrix uses Domain for its internal representation @@ -890,7 +890,7 @@

What is domainmatrix?
-add(B)[source]
+add(B)[source]

Adds two DomainMatrix matrices of the same Domain

Parameters:
@@ -939,7 +939,7 @@

What is domainmatrix?
-adj_det()[source]
+adj_det()[source]

Adjugate and determinant of a square DomainMatrix.

Returns:
@@ -977,7 +977,7 @@

What is domainmatrix?
-adj_poly_det(cp=None)[source]
+adj_poly_det(cp=None)[source]

Return the polynomial \(p\) such that \(p(A) = adj(A)\) and also the determinant of \(A\).

Examples

@@ -1006,7 +1006,7 @@

What is domainmatrix?
-adjugate()[source]
+adjugate()[source]

Adjugate of a square DomainMatrix.

The adjugate matrix is the transpose of the cofactor matrix and is related to the inverse by:

@@ -1039,7 +1039,7 @@

What is domainmatrix?
-cancel_denom(denom)[source]
+cancel_denom(denom)[source]

Cancel factors between a matrix and a denominator.

Returns a matrix and denominator on lowest terms.

Requires gcd in the ground domain.

@@ -1107,7 +1107,7 @@

What is domainmatrix?
-cancel_denom_elementwise(denom)[source]
+cancel_denom_elementwise(denom)[source]

Cancel factors between the elements of a matrix and a denominator.

Returns a matrix of numerators and matrix of denominators.

Requires gcd in the ground domain.

@@ -1146,7 +1146,7 @@

What is domainmatrix?
-charpoly()[source]
+charpoly()[source]

Characteristic polynomial of a square matrix.

Computes the characteristic polynomial in a fully expanded form using division free arithmetic. If a factorization of the characteristic @@ -1186,7 +1186,7 @@

What is domainmatrix?
-charpoly_base()[source]
+charpoly_base()[source]

Base case for charpoly_factor_blocks() after block decomposition.

This method is used internally by charpoly_factor_blocks() as the base case for computing the characteristic polynomial of a block. It is @@ -1204,7 +1204,7 @@

What is domainmatrix?
-charpoly_berk()[source]
+charpoly_berk()[source]

Compute the characteristic polynomial using the Berkowitz algorithm.

This method directly calls the underlying implementation of the Berkowitz algorithm (sympy.polys.matrices.dense.ddm_berk() or @@ -1235,7 +1235,7 @@

What is domainmatrix?
-charpoly_factor_blocks()[source]
+charpoly_factor_blocks()[source]

Partial factorisation of the characteristic polynomial.

This factorisation arises from a block structure of the matrix (if any) and so the factors are not guaranteed to be irreducible. The @@ -1296,7 +1296,7 @@

What is domainmatrix?
-charpoly_factor_list()[source]
+charpoly_factor_list()[source]

Full factorization of the characteristic polynomial.

Returns:
@@ -1345,7 +1345,7 @@

What is domainmatrix?
-choose_domain(**opts)[source]
+choose_domain(**opts)[source]

Convert to a domain found by construct_domain().

Examples

>>> from sympy import ZZ
@@ -1372,7 +1372,7 @@ 

What is domainmatrix?
-clear_denoms(convert=False)[source]
+clear_denoms(convert=False)[source]

Clear denominators, but keep the domain unchanged.

Examples

>>> from sympy import QQ
@@ -1412,7 +1412,7 @@ 

What is domainmatrix?
-clear_denoms_rowwise(convert=False)[source]
+clear_denoms_rowwise(convert=False)[source]

Clear denominators from each row of the matrix.

Examples

>>> from sympy import QQ
@@ -1458,7 +1458,7 @@ 

What is domainmatrix?
-columnspace()[source]
+columnspace()[source]

Returns the columnspace for the DomainMatrix

Returns:
@@ -1482,7 +1482,7 @@

What is domainmatrix?
-content()[source]
+content()[source]

Return the gcd of the elements of the matrix.

Requires gcd in the ground domain.

Examples

@@ -1501,7 +1501,7 @@

What is domainmatrix?
-convert_to(K)[source]
+convert_to(K)[source]

Change the domain of DomainMatrix to desired domain or field

Parameters:
@@ -1534,7 +1534,7 @@

What is domainmatrix?
-det()[source]
+det()[source]

Returns the determinant of a square DomainMatrix.

Returns:
@@ -1566,7 +1566,7 @@

What is domainmatrix?
-classmethod diag(diagonal, domain, shape=None)[source]
+classmethod diag(diagonal, domain, shape=None)[source]

Return diagonal matrix with entries from diagonal.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -1579,7 +1579,7 @@ 

What is domainmatrix?
-diagonal()[source]
+diagonal()[source]

Get the diagonal entries of the matrix as a list.

Examples

>>> from sympy import ZZ
@@ -1597,7 +1597,7 @@ 

What is domainmatrix?
-eval_poly(p)[source]
+eval_poly(p)[source]

Evaluate polynomial function of a matrix \(p(A)\).

Examples

>>> from sympy import QQ
@@ -1619,7 +1619,7 @@ 

What is domainmatrix?
-eval_poly_mul(p, B)[source]
+eval_poly_mul(p, B)[source]

Evaluate polynomial matrix product \(p(A) \times B\).

Evaluate the polynomial matrix product \(p(A) \times B\) using Horner’s method without creating the matrix \(p(A)\) explicitly. If \(B\) is a @@ -1651,7 +1651,7 @@

What is domainmatrix?
-classmethod eye(shape, domain)[source]
+classmethod eye(shape, domain)[source]

Return identity matrix of size n or shape (m, n).

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -1672,7 +1672,7 @@ 

What is domainmatrix?**kwargs,

-)[source] +)[source]

Convert Matrix to DomainMatrix

Parameters:
@@ -1716,7 +1716,7 @@

What is domainmatrix?**kwargs,

-)[source] +)[source]
Parameters:

nrows: number of rows

@@ -1744,7 +1744,7 @@

What is domainmatrix?
-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Create sparse DomainMatrix from dict of dict (dod) format.

See to_dod() for explanation.

@@ -1755,7 +1755,7 @@

What is domainmatrix?
-from_dod_like(dod, domain=None)[source]
+from_dod_like(dod, domain=None)[source]

Create DomainMatrix like self from dict of dict (dod) format.

See to_dod() for explanation.

@@ -1766,7 +1766,7 @@

What is domainmatrix?
-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Create DomainMatrix from dictionary of keys (dok) format.

See to_dok() for explanation.

@@ -1777,7 +1777,7 @@

What is domainmatrix?
-from_flat_nz(elements, data, domain)[source]
+from_flat_nz(elements, data, domain)[source]

Reconstruct DomainMatrix after calling to_flat_nz().

See to_flat_nz() for explanation.

@@ -1788,7 +1788,7 @@

What is domainmatrix?
-classmethod from_list(rows, domain)[source]
+classmethod from_list(rows, domain)[source]

Convert a list of lists into a DomainMatrix

Parameters:
@@ -1833,7 +1833,7 @@

What is domainmatrix?domain,

-)[source] +)[source]

Create DomainMatrix from flat list.

Examples

>>> from sympy import ZZ
@@ -1863,7 +1863,7 @@ 

What is domainmatrix?**kwargs,

-)[source] +)[source]

Convert a list of lists of Expr into a DomainMatrix using construct_domain

Parameters:
@@ -1891,7 +1891,7 @@

What is domainmatrix?
-classmethod from_rep(rep)[source]
+classmethod from_rep(rep)[source]

Create a new DomainMatrix efficiently from DDM/SDM.

Parameters:
@@ -1939,7 +1939,7 @@

What is domainmatrix?
-hstack(*B)[source]
+hstack(*B)[source]

Horizontally stack the given matrices.

Parameters:
@@ -1979,7 +1979,7 @@

What is domainmatrix?
-inv()[source]
+inv()[source]

Finds the inverse of the DomainMatrix if exists

Returns:
@@ -2018,7 +2018,7 @@

What is domainmatrix?
-inv_den(method=None)[source]
+inv_den(method=None)[source]

Return the inverse as a DomainMatrix with denominator.

Parameters:
@@ -2112,7 +2112,7 @@

What is domainmatrix?
-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of nonzero elements of the matrix.

Examples

>>> from sympy import ZZ
@@ -2130,7 +2130,7 @@ 

What is domainmatrix?
-iter_values()[source]
+iter_values()[source]

Iterate over nonzero elements of the matrix.

Examples

>>> from sympy import ZZ
@@ -2148,7 +2148,7 @@ 

What is domainmatrix?
-lll(delta=MPQ(3, 4))[source]
+lll(delta=MPQ(3, 4))[source]

Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm. See [R780] and [R781].

@@ -2213,7 +2213,7 @@

What is domainmatrix?
-lll_transform(delta=MPQ(3, 4))[source]
+lll_transform(delta=MPQ(3, 4))[source]

Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm and returns the reduced basis and transformation matrix.

Explanation

@@ -2242,7 +2242,7 @@

What is domainmatrix?
-lu()[source]
+lu()[source]

Returns Lower and Upper decomposition of the DomainMatrix

Returns:
@@ -2283,7 +2283,7 @@

What is domainmatrix?
-lu_solve(rhs)[source]
+lu_solve(rhs)[source]

Solver for DomainMatrix x in the A*x = B

Parameters:
@@ -2329,7 +2329,7 @@

What is domainmatrix?
-matmul(B)[source]
+matmul(B)[source]

Performs matrix multiplication of two DomainMatrix matrices

Parameters:
@@ -2368,7 +2368,7 @@

What is domainmatrix?
-mul(b)[source]
+mul(b)[source]

Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication.

@@ -2407,7 +2407,7 @@

What is domainmatrix?
-neg()[source]
+neg()[source]

Returns the negative of DomainMatrix

Parameters:
@@ -2436,7 +2436,7 @@

What is domainmatrix?
-nnz()[source]
+nnz()[source]

Number of nonzero elements in the matrix.

Examples

>>> from sympy import ZZ
@@ -2450,7 +2450,7 @@ 

What is domainmatrix?
-nullspace(divide_last=False)[source]
+nullspace(divide_last=False)[source]

Returns the nullspace for the DomainMatrix

Parameters:
@@ -2542,7 +2542,7 @@

What is domainmatrix?
-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Compute nullspace from rref and pivots.

The domain of the matrix can be any domain.

The matrix must be in reduced row echelon form already. Otherwise the @@ -2556,7 +2556,7 @@

What is domainmatrix?
-classmethod ones(shape, domain)[source]
+classmethod ones(shape, domain)[source]

Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -2569,7 +2569,7 @@ 

What is domainmatrix?
-pow(n)[source]
+pow(n)[source]

Computes A**n

Parameters:
@@ -2609,7 +2609,7 @@

What is domainmatrix?
-primitive()[source]
+primitive()[source]

Factor out gcd of the elements of a matrix.

Requires gcd in the ground domain.

Examples

@@ -2635,7 +2635,7 @@

What is domainmatrix?
-rowspace()[source]
+rowspace()[source]

Returns the rowspace for the DomainMatrix

Returns:
@@ -2659,7 +2659,7 @@

What is domainmatrix?
-rref(*, method='auto')[source]
+rref(*, method='auto')[source]

Returns reduced-row echelon form (RREF) and list of pivots.

If the domain is not a field then it will be converted to a field. See rref_den() for the fraction-free version of this routine that @@ -2754,7 +2754,7 @@

What is domainmatrix?keep_domain=True,

-)[source] +)[source]

Returns reduced-row echelon form with denominator and list of pivots.

Requires exact division in the ground domain (exquo).

@@ -2859,7 +2859,7 @@

What is domainmatrix?
-scc()[source]
+scc()[source]

Compute the strongly connected components of a DomainMatrix

Returns:
@@ -2927,7 +2927,7 @@

What is domainmatrix?
-solve_den(b, method=None)[source]
+solve_den(b, method=None)[source]

Solve matrix equation \(Ax = b\) without fractions in the ground domain.

Parameters:
@@ -3061,7 +3061,7 @@

What is domainmatrix?check=True,

-)[source] +)[source]

Solve matrix equation \(Ax = b\) using the characteristic polynomial.

This method solves the square matrix equation \(Ax = b\) for \(x\) using the characteristic polynomial without any division or fractions in the @@ -3132,7 +3132,7 @@

What is domainmatrix?
-solve_den_rref(b)[source]
+solve_den_rref(b)[source]

Solve matrix equation \(Ax = b\) using fraction-free RREF

Solves the matrix equation \(Ax = b\) for \(x\) and returns the solution as a numerator/denominator pair.

@@ -3158,7 +3158,7 @@

What is domainmatrix?
-sub(B)[source]
+sub(B)[source]

Subtracts two DomainMatrix matrices of the same Domain

Parameters:
@@ -3207,7 +3207,7 @@

What is domainmatrix?
-to_Matrix()[source]
+to_Matrix()[source]

Convert DomainMatrix to Matrix

Returns:
@@ -3239,7 +3239,7 @@

What is domainmatrix?
-to_ddm()[source]
+to_ddm()[source]

Return a DDM representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3260,7 +3260,7 @@ 

What is domainmatrix?
-to_dense()[source]
+to_dense()[source]

Return a dense DomainMatrix representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3277,7 +3277,7 @@ 

What is domainmatrix?
-to_dfm()[source]
+to_dfm()[source]

Return a DFM representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3298,7 +3298,7 @@ 

What is domainmatrix?
-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Return a DFM or DDM representation of self.

Explanation

The DFM representation can only be used if the ground types @@ -3335,7 +3335,7 @@

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert DomainMatrix to dictionary of dictionaries (dod) format.

Explanation

Returns a dictionary of dictionaries representing the matrix.

@@ -3359,7 +3359,7 @@

What is domainmatrix?
-to_dok()[source]
+to_dok()[source]

Convert DomainMatrix to dictionary of keys (dok) format.

Examples

>>> from sympy import ZZ
@@ -3385,7 +3385,7 @@ 

What is domainmatrix?
-to_field()[source]
+to_field()[source]

Returns a DomainMatrix with the appropriate field

Returns:
@@ -3411,7 +3411,7 @@

What is domainmatrix?
-to_flat_nz()[source]
+to_flat_nz()[source]

Convert DomainMatrix to list of nonzero elements and data.

Explanation

Returns a tuple (elements, data) where elements is a list of @@ -3454,7 +3454,7 @@

What is domainmatrix?
-to_list()[source]
+to_list()[source]

Convert DomainMatrix to list of lists.

See also

@@ -3464,7 +3464,7 @@

What is domainmatrix?
-to_list_flat()[source]
+to_list_flat()[source]

Convert DomainMatrix to flat list.

Examples

>>> from sympy import ZZ
@@ -3482,7 +3482,7 @@ 

What is domainmatrix?
-to_sdm()[source]
+to_sdm()[source]

Return a SDM representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3503,7 +3503,7 @@ 

What is domainmatrix?
-to_sparse()[source]
+to_sparse()[source]

Return a sparse DomainMatrix representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3520,13 +3520,13 @@ 

What is domainmatrix?
-transpose()[source]
+transpose()[source]

Matrix transpose of self

-unify(*others, fmt=None)[source]
+unify(*others, fmt=None)[source]

Unifies the domains and the format of self and other matrices.

@@ -3579,7 +3579,7 @@

What is domainmatrix?
-vstack(*B)[source]
+vstack(*B)[source]

Vertically stack the given matrices.

Parameters:
@@ -3619,7 +3619,7 @@

What is domainmatrix?
-classmethod zeros(shape, domain, *, fmt='sparse')[source]
+classmethod zeros(shape, domain, *, fmt='sparse')[source]

Returns a zero DomainMatrix of size shape, belonging to the specified domain

Examples

>>> from sympy.polys.matrices import DomainMatrix
@@ -3689,31 +3689,31 @@ 

What is domainmatrix?
-class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]
+class sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)[source]

Dense matrix based on polys domain elements

This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, , *.

-add(b)[source]
+add(b)[source]

a + b

-charpoly()[source]
+charpoly()[source]

Coefficients of characteristic polynomial of a

-det()[source]
+det()[source]

Determinant of a

-classmethod diag(values, domain)[source]
+classmethod diag(values, domain)[source]

Returns a square diagonal matrix with values on the diagonal.

Examples

>>> from sympy import ZZ
@@ -3730,13 +3730,13 @@ 

What is domainmatrix?
-diagonal()[source]
+diagonal()[source]

Returns a list of the elements from the diagonal of the matrix.

-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Create a DDM from a dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3755,7 +3755,7 @@ 

What is domainmatrix?
-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Create a DDM from a dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3774,7 +3774,7 @@ 

What is domainmatrix?
-classmethod from_flat_nz(elements, data, domain)[source]
+classmethod from_flat_nz(elements, data, domain)[source]

Reconstruct a DDM after calling to_flat_nz().

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3795,7 +3795,7 @@ 

What is domainmatrix?
-classmethod from_list(rowslist, shape, domain)[source]
+classmethod from_list(rowslist, shape, domain)[source]

Create a DDM from a list of lists.

Examples

>>> from sympy import ZZ
@@ -3815,7 +3815,7 @@ 

What is domainmatrix?
-classmethod from_list_flat(flat, shape, domain)[source]
+classmethod from_list_flat(flat, shape, domain)[source]

Create a DDM from a flat list of elements.

Examples

>>> from sympy import QQ
@@ -3835,7 +3835,7 @@ 

What is domainmatrix?
-hstack(*B)[source]
+hstack(*B)[source]

Horizontally stacks DDM matrices.

Examples

>>> from sympy import ZZ
@@ -3857,40 +3857,40 @@ 

What is domainmatrix?
-inv()[source]
+inv()[source]

Inverse of a

-is_diagonal()[source]
+is_diagonal()[source]

Says whether this matrix is diagonal. True can be returned even if the matrix is not square.

-is_lower()[source]
+is_lower()[source]

Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

-is_upper()[source]
+is_upper()[source]

Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

-is_zero_matrix()[source]
+is_zero_matrix()[source]

Says whether this matrix has all zero entries.

-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of nonzero elements of the matrix.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3908,7 +3908,7 @@ 

What is domainmatrix?
-iter_values()[source]
+iter_values()[source]

Iterater over the non-zero values of the matrix.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -3926,31 +3926,31 @@ 

What is domainmatrix?
-lu()[source]
+lu()[source]

L, U decomposition of a

-lu_solve(b)[source]
+lu_solve(b)[source]

x where a*x = b

-matmul(b)[source]
+matmul(b)[source]

a @ b (matrix product)

-neg()[source]
+neg()[source]

-a

-nnz()[source]
+nnz()[source]

Number of non-zero entries in DDM matrix.

See also

@@ -3960,7 +3960,7 @@

What is domainmatrix?
-nullspace()[source]
+nullspace()[source]

Returns a basis for the nullspace of a.

The domain of the matrix must be a field.

@@ -3971,7 +3971,7 @@

What is domainmatrix?
-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Compute the nullspace of a matrix from its rref.

The domain of the matrix can be any domain.

Returns a tuple (basis, nonpivots).

@@ -3986,7 +3986,7 @@

What is domainmatrix?
-rref()[source]
+rref()[source]

Reduced-row echelon form of a and list of pivots.

See also

@@ -4001,7 +4001,7 @@

What is domainmatrix?
-rref_den()[source]
+rref_den()[source]

Reduced-row echelon form of a with denominator and list of pivots

See also

@@ -4016,7 +4016,7 @@

What is domainmatrix?
-scc()[source]
+scc()[source]

Strongly connected components of a square matrix a.

Examples

>>> from sympy import ZZ
@@ -4034,13 +4034,13 @@ 

What is domainmatrix?
-sub(b)[source]
+sub(b)[source]

a - b

-to_ddm()[source]
+to_ddm()[source]

Convert to a DDM.

This just returns self but exists to parallel the corresponding method in other matrix types like SDM.

@@ -4052,7 +4052,7 @@

What is domainmatrix?
-to_dfm()[source]
+to_dfm()[source]

Convert to DDM to DFM.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4072,7 +4072,7 @@ 

What is domainmatrix?
-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Convert to DFM if possible or otherwise return self.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4092,7 +4092,7 @@ 

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert to a dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4110,7 +4110,7 @@ 

What is domainmatrix?
-to_dok()[source]
+to_dok()[source]

Convert DDM to dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4128,7 +4128,7 @@ 

What is domainmatrix?
-to_flat_nz()[source]
+to_flat_nz()[source]

Convert to a flat list of nonzero elements and data.

Explanation

This is used to operate on a list of the elements of a matrix and then @@ -4153,7 +4153,7 @@

What is domainmatrix?
-to_list()[source]
+to_list()[source]

Convert to a list of lists.

Examples

>>> from sympy import QQ
@@ -4171,7 +4171,7 @@ 

What is domainmatrix?
-to_list_flat()[source]
+to_list_flat()[source]

Convert to a flat list of elements.

Examples

>>> from sympy import QQ
@@ -4191,7 +4191,7 @@ 

What is domainmatrix?
-to_sdm()[source]
+to_sdm()[source]

Convert to a SDM.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4211,7 +4211,7 @@ 

What is domainmatrix?
-vstack(*B)[source]
+vstack(*B)[source]

Vertically stacks DDM matrices.

Examples

>>> from sympy import ZZ
@@ -4280,7 +4280,7 @@ 

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_berk(M, K)[source]
+sympy.polys.matrices.dense.ddm_berk(M, K)[source]

Berkowitz algorithm for computing the characteristic polynomial.

Explanation

The Berkowitz algorithm is a division-free algorithm for computing the @@ -4322,13 +4322,13 @@

What is domainmatrix?b: Sequence[Sequence[R]],

-) None[source] +) None[source]

a += b

-sympy.polys.matrices.dense.ddm_idet(a, K)[source]
+sympy.polys.matrices.dense.ddm_idet(a, K)[source]

a <– echelon(a); return det

Explanation

Compute the determinant of \(a\) using the Bareiss fraction-free algorithm. @@ -4371,7 +4371,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]
+sympy.polys.matrices.dense.ddm_iinv(ainv, a, K)[source]

ainv <– inv(a)

Compute the inverse of a matrix \(a\) over a field \(K\) using Gauss-Jordan elimination. The result is stored in \(ainv\).

@@ -4401,7 +4401,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_ilu(a)[source]
+sympy.polys.matrices.dense.ddm_ilu(a)[source]

a <– LU(a)

Computes the LU decomposition of a matrix in place. Returns a list of row swaps that were performed.

@@ -4446,7 +4446,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]
+sympy.polys.matrices.dense.ddm_ilu_solve(x, L, U, swaps, b)[source]

x <– solve(L*U*x = swaps(b))

Solve a linear system, \(A*x = b\), given an LU factorization of \(A\).

Uses division in the ground domain which must be a field.

@@ -4485,7 +4485,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]
+sympy.polys.matrices.dense.ddm_ilu_split(L, U, K)[source]

L, U <– LU(U)

Compute the LU decomposition of a matrix \(L\) in place and store the lower and upper triangular matrices in \(L\) and \(U\), respectively. Returns a list @@ -4521,7 +4521,7 @@

What is domainmatrix?c: Sequence[Sequence[R]],

-) None[source] +) None[source]

a += b @ c

@@ -4534,7 +4534,7 @@

What is domainmatrix?b: R,

-) None[source] +) None[source]

a <– a*b

@@ -4546,7 +4546,7 @@

What is domainmatrix?a: list[list[R]],

-) None[source] +) None[source]

a <– -a

@@ -4559,13 +4559,13 @@

What is domainmatrix?b: R,

-) None[source] +) None[source]

a <– b*a

-sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]
+sympy.polys.matrices.dense.ddm_irref(a, _partial_pivot=False)[source]

In-place reduced row echelon form of a matrix.

Compute the reduced row echelon form of \(a\). Modifies \(a\) in place and returns a list of the pivot columns.

@@ -4614,7 +4614,7 @@

What is domainmatrix?
-sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]
+sympy.polys.matrices.dense.ddm_irref_den(a, K)[source]

a <– rref(a); return (den, pivots)

Compute the fraction-free reduced row echelon form (RREF) of \(a\). Modifies \(a\) in place and returns a tuple containing the denominator of the RREF and @@ -4680,7 +4680,7 @@

What is domainmatrix?b: Sequence[Sequence[R]],

-) None[source] +) None[source]

a -= b

@@ -4692,13 +4692,13 @@

What is domainmatrix?matrix: Sequence[Sequence[T]],

-) list[list[T]][source] +) list[list[T]][source]

matrix transpose

-class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]
+class sympy.polys.matrices._typing.RingElement(*args, **kwargs)[source]

A ring element.

Must support +, -, *, ** and -.

@@ -4706,7 +4706,7 @@

What is domainmatrix?Module for the SDM class.

-class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]
+class sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)[source]

Sparse matrix based on polys domain elements

This is a dict subclass and is a wrapper for a dict of dicts that supports basic matrix arithmetic +, -, , *.

@@ -4750,7 +4750,7 @@

What is domainmatrix?
-add(B)[source]
+add(B)[source]

Adds two SDM matrices

Examples

>>> from sympy import ZZ
@@ -4765,7 +4765,7 @@ 

What is domainmatrix?
-charpoly()[source]
+charpoly()[source]

Returns the coefficients of the characteristic polynomial of the SDM matrix. These elements will be domain elements. The domain of the elements will be same as domain of the SDM.

@@ -4790,7 +4790,7 @@

What is domainmatrix?
-convert_to(K)[source]
+convert_to(K)[source]

Converts the Domain of a SDM matrix to K

Examples

>>> from sympy import ZZ, QQ
@@ -4804,7 +4804,7 @@ 

What is domainmatrix?
-copy()[source]
+copy()[source]

Returns the copy of a SDM object

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4820,7 +4820,7 @@ 

What is domainmatrix?
-det()[source]
+det()[source]

Returns determinant of A

Examples

>>> from sympy import QQ
@@ -4834,13 +4834,13 @@ 

What is domainmatrix?
-diagonal()[source]
+diagonal()[source]

Returns the diagonal of the matrix as a list.

-classmethod eye(shape, domain)[source]
+classmethod eye(shape, domain)[source]

Returns a identity SDM matrix of dimensions size x size, belonging to the specified domain

Examples

@@ -4855,7 +4855,7 @@

What is domainmatrix?
-classmethod from_ddm(ddm)[source]
+classmethod from_ddm(ddm)[source]

Create SDM from a DDM.

Examples

>>> from sympy.polys.matrices.ddm import DDM
@@ -4877,7 +4877,7 @@ 

What is domainmatrix?
-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Create SDM from dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4898,7 +4898,7 @@ 

What is domainmatrix?
-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Create SDM from dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4919,7 +4919,7 @@ 

What is domainmatrix?
-classmethod from_flat_nz(elements, data, domain)[source]
+classmethod from_flat_nz(elements, data, domain)[source]

Reconstruct a SDM after calling to_flat_nz().

See to_flat_nz() for explanation.

@@ -4930,7 +4930,7 @@

What is domainmatrix?
-classmethod from_list(ddm, shape, domain)[source]
+classmethod from_list(ddm, shape, domain)[source]

Create SDM object from a list of lists.

Parameters:
@@ -4968,7 +4968,7 @@

What is domainmatrix?
-classmethod from_list_flat(elements, shape, domain)[source]
+classmethod from_list_flat(elements, shape, domain)[source]

Create SDM from a flat list of elements.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -4988,7 +4988,7 @@ 

What is domainmatrix?
-hstack(*B)[source]
+hstack(*B)[source]

Horizontally stacks SDM matrices.

Examples

>>> from sympy import ZZ
@@ -5010,7 +5010,7 @@ 

What is domainmatrix?
-inv()[source]
+inv()[source]

Returns inverse of a matrix A

Examples

>>> from sympy import QQ
@@ -5024,34 +5024,34 @@ 

What is domainmatrix?
-is_diagonal()[source]
+is_diagonal()[source]

Says whether this matrix is diagonal. True can be returned even if the matrix is not square.

-is_lower()[source]
+is_lower()[source]

Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

-is_upper()[source]
+is_upper()[source]

Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

-is_zero_matrix()[source]
+is_zero_matrix()[source]

Says whether this matrix has all zero entries.

-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of the nonzero elements.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5069,7 +5069,7 @@ 

What is domainmatrix?
-iter_values()[source]
+iter_values()[source]

Iterate over the nonzero values of a SDM matrix.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5083,19 +5083,19 @@ 

What is domainmatrix?
-lll(delta=MPQ(3, 4))[source]
+lll(delta=MPQ(3, 4))[source]

Returns the LLL-reduced basis for the SDM matrix.

-lll_transform(delta=MPQ(3, 4))[source]
+lll_transform(delta=MPQ(3, 4))[source]

Returns the LLL-reduced basis and transformation matrix.

-lu()[source]
+lu()[source]

Returns LU decomposition for a matrix A

Examples

>>> from sympy import QQ
@@ -5109,7 +5109,7 @@ 

What is domainmatrix?
-lu_solve(b)[source]
+lu_solve(b)[source]

Uses LU decomposition to solve Ax = b,

Examples

>>> from sympy import QQ
@@ -5124,7 +5124,7 @@ 

What is domainmatrix?
-matmul(B)[source]
+matmul(B)[source]

Performs matrix multiplication of two SDM matrices

Parameters:
@@ -5157,7 +5157,7 @@

What is domainmatrix?
-mul(b)[source]
+mul(b)[source]

Multiplies each element of A with a scalar b

Examples

>>> from sympy import ZZ
@@ -5171,7 +5171,7 @@ 

What is domainmatrix?
-neg()[source]
+neg()[source]

Returns the negative of a SDM matrix

Examples

>>> from sympy import ZZ
@@ -5185,7 +5185,7 @@ 

What is domainmatrix?
-classmethod new(sdm, shape, domain)[source]
+classmethod new(sdm, shape, domain)[source]
Parameters:

sdm: A dict of dicts for non-zero elements in SDM

@@ -5209,7 +5209,7 @@

What is domainmatrix?
-nnz()[source]
+nnz()[source]

Number of non-zero elements in the SDM matrix.

Examples

>>> from sympy import ZZ
@@ -5227,7 +5227,7 @@ 

What is domainmatrix?
-nullspace()[source]
+nullspace()[source]

Nullspace of a SDM matrix A.

The domain of the matrix must be a field.

It is better to use the nullspace() method rather @@ -5251,7 +5251,7 @@

What is domainmatrix?
-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Returns nullspace for a SDM matrix A in RREF.

The domain of the matrix can be any domain.

The matrix must already be in reduced row echelon form (RREF).

@@ -5284,7 +5284,7 @@

What is domainmatrix?
-rref()[source]
+rref()[source]

Returns reduced-row echelon form and list of pivots for the SDM

Examples

>>> from sympy import QQ
@@ -5298,7 +5298,7 @@ 

What is domainmatrix?
-rref_den()[source]
+rref_den()[source]

Returns reduced-row echelon form (RREF) with denominator and pivots.

Examples

>>> from sympy import QQ
@@ -5312,7 +5312,7 @@ 

What is domainmatrix?
-scc()[source]
+scc()[source]

Strongly connected components of a square matrix A.

Examples

>>> from sympy import ZZ
@@ -5330,7 +5330,7 @@ 

What is domainmatrix?
-sub(B)[source]
+sub(B)[source]

Subtracts two SDM matrices

Examples

>>> from sympy import ZZ
@@ -5345,7 +5345,7 @@ 

What is domainmatrix?
-to_ddm()[source]
+to_ddm()[source]

Convert a SDM object to a DDM object

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5359,7 +5359,7 @@ 

What is domainmatrix?
-to_dfm()[source]
+to_dfm()[source]

Convert a SDM object to a DFM object

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5377,7 +5377,7 @@ 

What is domainmatrix?
-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Convert to DFM if possible, else DDM.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5397,7 +5397,7 @@ 

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert to dictionary of dictionaries (dod) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5415,7 +5415,7 @@ 

What is domainmatrix?
-to_dok()[source]
+to_dok()[source]

Convert to dictionary of keys (dok) format.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5433,7 +5433,7 @@ 

What is domainmatrix?
-to_flat_nz()[source]
+to_flat_nz()[source]

Convert SDM to a flat list of nonzero elements and data.

Explanation

This is used to operate on a list of the elements of a matrix and then @@ -5458,7 +5458,7 @@

What is domainmatrix?
-to_list()[source]
+to_list()[source]

Convert a SDM object to a list of lists.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5473,7 +5473,7 @@ 

What is domainmatrix?
-to_list_flat()[source]
+to_list_flat()[source]

Convert SDM to a flat list.

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5493,13 +5493,13 @@ 

What is domainmatrix?
-to_sdm()[source]
+to_sdm()[source]

Convert to SDM format (returns self).

-transpose()[source]
+transpose()[source]

Returns the transpose of a SDM matrix

Examples

>>> from sympy.polys.matrices.sdm import SDM
@@ -5513,7 +5513,7 @@ 

What is domainmatrix?
-vstack(*B)[source]
+vstack(*B)[source]

Vertically stacks SDM matrices.

Examples

>>> from sympy import ZZ
@@ -5535,7 +5535,7 @@ 

What is domainmatrix?
-classmethod zeros(shape, domain)[source]
+classmethod zeros(shape, domain)[source]

Returns a SDM of size shape, belonging to the specified domain

In the example below we declare a matrix A where,

@@ -5558,7 +5558,7 @@

What is domainmatrix?
-sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]
+sympy.polys.matrices.sdm.sdm_berk(M, n, K)[source]

Berkowitz algorithm for computing the characteristic polynomial.

Explanation

The Berkowitz algorithm is a division-free algorithm for computing the @@ -5596,7 +5596,7 @@

What is domainmatrix?
-sympy.polys.matrices.sdm.sdm_irref(A)[source]
+sympy.polys.matrices.sdm.sdm_irref(A)[source]

RREF and pivots of a sparse matrix A.

Compute the reduced row echelon form (RREF) of the matrix A and return a list of the pivot columns. This routine does not work in place and leaves @@ -5663,19 +5663,19 @@

What is domainmatrix?nonzero_cols,

-)[source] +)[source]

Get nullspace from A which is in RREF

-sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]
+sympy.polys.matrices.sdm.sdm_particular_from_rref(A, ncols, pivots)[source]

Get a particular solution from A which is in RREF

-sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]
+sympy.polys.matrices.sdm.sdm_rref_den(A, K)[source]

Return the reduced row echelon form (RREF) of A with denominator.

The RREF is computed using fraction-free Gauss-Jordan elimination.

Explanation

@@ -5729,7 +5729,7 @@

What is domainmatrix?
-class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]
+class sympy.polys.matrices._dfm.DFM(rowslist, shape, domain)[source]

Dense FLINT matrix. This class is a wrapper for matrices from python-flint.

>>> from sympy.polys.domains import ZZ
 >>> from sympy.polys.matrices.dfm import DFM
@@ -5763,19 +5763,19 @@ 

What is domainmatrix?
-add(other)[source]
+add(other)[source]

Add two DFM matrices.

-applyfunc(func, domain)[source]
+applyfunc(func, domain)[source]

Apply a function to each entry of a DFM matrix.

-charpoly()[source]
+charpoly()[source]

Compute the characteristic polynomial of the matrix using FLINT.

Examples

>>> from sympy import Matrix
@@ -5810,19 +5810,19 @@ 

What is domainmatrix?
-convert_to(domain)[source]
+convert_to(domain)[source]

Convert to a new domain.

-copy()[source]
+copy()[source]

Return a copy of self.

-det()[source]
+det()[source]

Compute the determinant of the matrix using FLINT.

Examples

>>> from sympy import Matrix
@@ -5863,85 +5863,85 @@ 

What is domainmatrix?
-classmethod diag(elements, domain)[source]
+classmethod diag(elements, domain)[source]

Return a diagonal matrix.

-diagonal()[source]
+diagonal()[source]

Return the diagonal of a DFM matrix.

-extract(rowslist, colslist)[source]
+extract(rowslist, colslist)[source]

Extract a submatrix.

-extract_slice(rowslice, colslice)[source]
+extract_slice(rowslice, colslice)[source]

Slice a DFM.

-classmethod eye(n, domain)[source]
+classmethod eye(n, domain)[source]

Return the identity matrix of size n.

-classmethod from_ddm(ddm)[source]
+classmethod from_ddm(ddm)[source]

Convert from a DDM.

-classmethod from_dod(dod, shape, domain)[source]
+classmethod from_dod(dod, shape, domain)[source]

Inverse of to_dod().

-classmethod from_dok(dok, shape, domain)[source]
+classmethod from_dok(dok, shape, domain)[source]

Inverse of \(to_dod\).

-classmethod from_flat_nz(elements, data, domain)[source]
+classmethod from_flat_nz(elements, data, domain)[source]

Inverse of to_flat_nz().

-classmethod from_list(rowslist, shape, domain)[source]
+classmethod from_list(rowslist, shape, domain)[source]

Construct from a nested list.

-classmethod from_list_flat(elements, shape, domain)[source]
+classmethod from_list_flat(elements, shape, domain)[source]

Inverse of to_list_flat().

-getitem(i, j)[source]
+getitem(i, j)[source]

Get the (i, j)-th entry.

-hstack(*others)[source]
+hstack(*others)[source]

Horizontally stack matrices.

-inv()[source]
+inv()[source]

Compute the inverse of a matrix using FLINT.

Examples

>>> from sympy import Matrix, QQ
@@ -5977,43 +5977,43 @@ 

What is domainmatrix?
-is_diagonal()[source]
+is_diagonal()[source]

Return True if the matrix is diagonal.

-is_lower()[source]
+is_lower()[source]

Return True if the matrix is lower triangular.

-is_upper()[source]
+is_upper()[source]

Return True if the matrix is upper triangular.

-is_zero_matrix()[source]
+is_zero_matrix()[source]

Return True if the matrix is the zero matrix.

-iter_items()[source]
+iter_items()[source]

Iterate over indices and values of nonzero elements of the matrix.

-iter_values()[source]
+iter_values()[source]

Iterater over the non-zero values of the matrix.

-lll(delta=0.75)[source]
+lll(delta=0.75)[source]

Compute LLL-reduced basis using FLINT.

See lll_transform() for more information.

Examples

@@ -6036,7 +6036,7 @@

What is domainmatrix?
-lll_transform(delta=0.75)[source]
+lll_transform(delta=0.75)[source]

Compute LLL-reduced basis and transform using FLINT.

Examples

>>> from sympy import Matrix
@@ -6063,13 +6063,13 @@ 

What is domainmatrix?
-lu()[source]
+lu()[source]

Return the LU decomposition of the matrix.

-lu_solve(rhs)[source]
+lu_solve(rhs)[source]

Solve a matrix equation using FLINT.

Examples

>>> from sympy import Matrix, QQ
@@ -6112,97 +6112,97 @@ 

What is domainmatrix?
-matmul(other)[source]
+matmul(other)[source]

Multiply two DFM matrices.

-mul(other)[source]
+mul(other)[source]

Multiply a DFM matrix from the right by a scalar.

-mul_elementwise(other)[source]
+mul_elementwise(other)[source]

Elementwise multiplication of two DFM matrices.

-neg()[source]
+neg()[source]

Negate a DFM matrix.

-nnz()[source]
+nnz()[source]

Return the number of non-zero elements in the matrix.

-nullspace()[source]
+nullspace()[source]

Return a basis for the nullspace of the matrix.

-nullspace_from_rref(pivots=None)[source]
+nullspace_from_rref(pivots=None)[source]

Return a basis for the nullspace of the matrix.

-classmethod ones(shape, domain)[source]
+classmethod ones(shape, domain)[source]

Return a one DFM matrix.

-particular()[source]
+particular()[source]

Return a particular solution to the system.

-rmul(other)[source]
+rmul(other)[source]

Multiply a DFM matrix from the left by a scalar.

-scc()[source]
+scc()[source]

Return the strongly connected components of the matrix.

-setitem(i, j, value)[source]
+setitem(i, j, value)[source]

Set the (i, j)-th entry.

-sub(other)[source]
+sub(other)[source]

Subtract two DFM matrices.

-to_ddm()[source]
+to_ddm()[source]

Convert to a DDM.

-to_dfm()[source]
+to_dfm()[source]

Return self.

-to_dfm_or_ddm()[source]
+to_dfm_or_ddm()[source]

Convert to a DFM.

This DFM method exists to parallel the DDM and SDM methods. For DFM it will always return self.

@@ -6214,55 +6214,55 @@

What is domainmatrix?
-to_dod()[source]
+to_dod()[source]

Convert to a DOD.

-to_dok()[source]
+to_dok()[source]

Convert to a DOK.

-to_flat_nz()[source]
+to_flat_nz()[source]

Convert to a flat list of non-zeros.

-to_list()[source]
+to_list()[source]

Convert to a nested list.

-to_list_flat()[source]
+to_list_flat()[source]

Convert to a flat list.

-to_sdm()[source]
+to_sdm()[source]

Convert to a SDM.

-transpose()[source]
+transpose()[source]

Transpose a DFM matrix.

-vstack(*others)[source]
+vstack(*others)[source]

Vertically stack matrices.

-classmethod zeros(shape, domain)[source]
+classmethod zeros(shape, domain)[source]

Return a zero DFM matrix.

@@ -6270,7 +6270,7 @@

What is domainmatrix?
-sympy.polys.matrices.normalforms.smith_normal_form(m)[source]
+sympy.polys.matrices.normalforms.smith_normal_form(m)[source]

Return the Smith Normal Form of a matrix \(m\) over the ring \(domain\). This will only work if the ring is a principal ideal domain.

Examples

@@ -6297,7 +6297,7 @@

What is domainmatrix?check_rank=False,

-)[source] +)[source]

Compute the Hermite Normal Form of DomainMatrix A over ZZ.

diff --git a/dev/modules/polys/domainsref.html b/dev/modules/polys/domainsref.html index ca0aa4f6bd5..a36f46abd6d 100644 --- a/dev/modules/polys/domainsref.html +++ b/dev/modules/polys/domainsref.html @@ -830,7 +830,7 @@

Domains

Abstract Domains

-class sympy.polys.domains.domain.Domain[source]
+class sympy.polys.domains.domain.Domain[source]

Superclass for all domains in the polys domains system.

See Introducing the Domains of the poly module for an introductory explanation of the domains system.

@@ -1001,13 +1001,13 @@

Abstract Domains
-abs(a)[source]
+abs(a)[source]

Absolute value of a, implies __abs__.

-add(a, b)[source]
+add(a, b)[source]

Sum of a and b, implies __add__.

@@ -1021,7 +1021,7 @@

Abstract Domainsroot_index=-1,

-)[source] +)[source]

Convenience method to construct an algebraic extension on a root of a polynomial, chosen by root index.

@@ -1064,37 +1064,37 @@

Abstract Domains
-algebraic_field(*extension, alias=None)[source]
+algebraic_field(*extension, alias=None)[source]

Returns an algebraic field, i.e. \(K(\alpha, \ldots)\).

-almosteq(a, b, tolerance=None)[source]
+almosteq(a, b, tolerance=None)[source]

Check if a and b are almost equal.

-characteristic()[source]
+characteristic()[source]

Return the characteristic of this domain.

-cofactors(a, b)[source]
+cofactors(a, b)[source]

Returns GCD and cofactors of a and b.

-convert(element, base=None)[source]
+convert(element, base=None)[source]

Convert element to self.dtype.

-convert_from(element, base)[source]
+convert_from(element, base)[source]

Convert element to self.dtype given the base domain.

@@ -1110,7 +1110,7 @@

Abstract Domainsroot_index=-1,

-)[source] +)[source]

Convenience method to construct a cyclotomic field.

Parameters:
@@ -1156,13 +1156,13 @@

Abstract Domains
-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-div(a, b)[source]
+div(a, b)[source]

Quotient and remainder for a and b. Analogue of divmod(a, b)

Parameters:
@@ -1244,7 +1244,7 @@

Abstract Domains
-drop(*symbols)[source]
+drop(*symbols)[source]

Drop generators from this domain.

@@ -1274,13 +1274,13 @@

Abstract Domains
-evalf(a, prec=None, **options)[source]
+evalf(a, prec=None, **options)[source]

Returns numerical approximation of a.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b. Analogue of a / b.

Parameters:
@@ -1368,7 +1368,7 @@

Abstract Domains
-exsqrt(a)[source]
+exsqrt(a)[source]

Principal square root of a within the domain if a is square.

Explanation

The implementation of this method should return an element b in the @@ -1384,109 +1384,109 @@

Abstract Domains
-frac_field(*symbols, order=LexOrder())[source]
+frac_field(*symbols, order=LexOrder())[source]

Returns a fraction field, i.e. \(K(X)\).

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an algebraic number to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a complex element to dtype.

-from_ExpressionDomain(a, K0)[source]
+from_ExpressionDomain(a, K0)[source]

Convert a EX object to dtype.

-from_ExpressionRawDomain(a, K0)[source]
+from_ExpressionRawDomain(a, K0)[source]

Convert a EX object to dtype.

-from_FF(a, K0)[source]
+from_FF(a, K0)[source]

Convert ModularInteger(int) to dtype.

-from_FF_gmpy(a, K0)[source]
+from_FF_gmpy(a, K0)[source]

Convert ModularInteger(mpz) to dtype.

-from_FF_python(a, K0)[source]
+from_FF_python(a, K0)[source]

Convert ModularInteger(int) to dtype.

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a rational function to dtype.

-from_GlobalPolynomialRing(a, K0)[source]
+from_GlobalPolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_MonogenicFiniteExtension(a, K0)[source]
+from_MonogenicFiniteExtension(a, K0)[source]

Convert an ExtensionElement to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a real element object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert a SymPy expression to an element of this domain.

Parameters:
@@ -1512,37 +1512,37 @@

Abstract Domains
-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Extended GCD of a and b.

-get_exact()[source]
+get_exact()[source]

Returns an exact domain associated with self.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-half_gcdex(a, b)[source]
+half_gcdex(a, b)[source]

Half extended GCD of a and b.

@@ -1584,13 +1584,13 @@

Abstract Domains
-inject(*symbols)[source]
+inject(*symbols)[source]

Inject generators into this domain.

-invert(a, b)[source]
+invert(a, b)[source]

Returns inversion of a mod b, implies something.

@@ -1647,37 +1647,37 @@

Abstract Domains
-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_one(a)[source]
+is_one(a)[source]

Returns True if a is one.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-is_square(a)[source]
+is_square(a)[source]

Returns whether a is a square in the domain.

Explanation

Returns True if there is an element b in the domain such that @@ -1692,67 +1692,67 @@

Abstract Domains
-is_zero(a)[source]
+is_zero(a)[source]

Returns True if a is zero.

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

-log(a, b)[source]
+log(a, b)[source]

Returns b-base logarithm of a.

-map(seq)[source]
+map(seq)[source]

Rersively apply self to all elements of seq.

-mul(a, b)[source]
+mul(a, b)[source]

Product of a and b, implies __mul__.

-n(a, prec=None, **options)[source]
+n(a, prec=None, **options)[source]

Returns numerical approximation of a.

-neg(a)[source]
+neg(a)[source]

Returns a negated, implies __neg__.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-of_type(element)[source]
+of_type(element)[source]

Check if a is of type dtype.

-old_frac_field(*symbols, **kwargs)[source]
+old_frac_field(*symbols, **kwargs)[source]

Returns a fraction field, i.e. \(K(X)\).

-old_poly_ring(*symbols, **kwargs)[source]
+old_poly_ring(*symbols, **kwargs)[source]

Returns a polynomial ring, i.e. \(K[X]\).

@@ -1775,25 +1775,25 @@

Abstract Domains
-poly_ring(*symbols, order=LexOrder())[source]
+poly_ring(*symbols, order=LexOrder())[source]

Returns a polynomial ring, i.e. \(K[X]\).

-pos(a)[source]
+pos(a)[source]

Returns a positive, implies __pos__.

-pow(a, b)[source]
+pow(a, b)[source]

Raise a to power b, implies __pow__.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b. Analogue of a // b.

K.quo(a, b) is equivalent to K.div(a, b)[0]. See div() for more explanation.

@@ -1812,7 +1812,7 @@

Abstract Domains
-rem(a, b)[source]
+rem(a, b)[source]

Modulo division of a and b. Analogue of a % b.

K.rem(a, b) is equivalent to K.div(a, b)[1]. See div() for more explanation.

@@ -1831,13 +1831,13 @@

Abstract Domains
-revert(a)[source]
+revert(a)[source]

Returns a**(-1) if possible.

-sqrt(a)[source]
+sqrt(a)[source]

Returns a (possibly inexact) square root of a.

Explanation

There is no universal definition of “inexact square root” for all @@ -1851,13 +1851,13 @@

Abstract Domains
-sub(a, b)[source]
+sub(a, b)[source]

Difference of a and b, implies __sub__.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert domain element a to a SymPy expression (Expr).

Parameters:
@@ -1952,7 +1952,7 @@

Abstract Domains
-unify(K1, symbols=None)[source]
+unify(K1, symbols=None)[source]

Construct a minimal domain that contains elements of K0 and K1.

Known domains (from smallest to largest):

@@ -1995,13 +1995,13 @@

Abstract Domains
-class sympy.polys.domains.domainelement.DomainElement[source]
+class sympy.polys.domains.domainelement.DomainElement[source]

Represents an element of a domain.

Mix in this trait into a class whose instances should be recognized as elements of a domain. Method parent() gives that domain.

-parent()[source]
+parent()[source]

Get the domain associated with self

Examples

>>> from sympy import ZZ, symbols
@@ -2023,23 +2023,23 @@ 

Abstract Domains
-class sympy.polys.domains.field.Field[source]
+class sympy.polys.domains.field.Field[source]

Represents a field domain.

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __truediv__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __truediv__.

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

This definition of GCD over fields allows to clear denominators in \(primitive()\).

@@ -2061,31 +2061,31 @@

Abstract Domains
-gcdex(a, b)[source]
+gcdex(a, b)[source]

Returns x, y, g such that a * x + b * y == g == gcd(a, b)

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_unit(a)[source]
+is_unit(a)[source]

Return true if a is a invertible

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

>>> from sympy.polys.domains import QQ
 >>> from sympy import S, lcm
@@ -2101,19 +2101,19 @@ 

Abstract Domains
-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __truediv__.

-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies nothing.

-revert(a)[source]
+revert(a)[source]

Returns a**(-1) if possible.

@@ -2121,29 +2121,29 @@

Abstract Domains
-class sympy.polys.domains.ring.Ring[source]
+class sympy.polys.domains.ring.Ring[source]

Represents a ring domain.

-denom(a)[source]
+denom(a)[source]

Returns denominator of \(a\).

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __divmod__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __floordiv__.

-free_module(rank)[source]
+free_module(rank)[source]

Generate a free module of rank rank over self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -2155,13 +2155,13 @@ 

Abstract Domains
-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-ideal(*gens)[source]
+ideal(*gens)[source]

Generate an ideal of self.

>>> from sympy.abc import x
 >>> from sympy import QQ
@@ -2173,25 +2173,25 @@ 

Abstract Domains
-invert(a, b)[source]
+invert(a, b)[source]

Returns inversion of a mod b.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __floordiv__.

-quotient_ring(e)[source]
+quotient_ring(e)[source]

Form a quotient ring of self.

Here e can be an ideal or an iterable.

>>> from sympy.abc import x
@@ -2211,13 +2211,13 @@ 

Abstract Domains
-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies __mod__.

-revert(a)[source]
+revert(a)[source]

Returns a**(-1) if possible.

@@ -2225,11 +2225,11 @@

Abstract Domains
-class sympy.polys.domains.simpledomain.SimpleDomain[source]
+class sympy.polys.domains.simpledomain.SimpleDomain[source]

Base class for simple domains, e.g. ZZ, QQ.

-inject(*gens)[source]
+inject(*gens)[source]

Inject generators into this domain.

@@ -2237,23 +2237,23 @@

Abstract Domains
-class sympy.polys.domains.compositedomain.CompositeDomain[source]
+class sympy.polys.domains.compositedomain.CompositeDomain[source]

Base class for composite domains, e.g. ZZ[x], ZZ(X).

-drop(*symbols)[source]
+drop(*symbols)[source]

Drop generators from this domain.

-get_exact()[source]
+get_exact()[source]

Returns an exact version of this domain.

-inject(*symbols)[source]
+inject(*symbols)[source]

Inject generators into this domain.

@@ -2265,7 +2265,7 @@

Abstract Domains
-set_domain(domain)[source]
+set_domain(domain)[source]

Set the ground domain of this domain.

@@ -2276,7 +2276,7 @@

Abstract Domains

GF(p)

-class sympy.polys.domains.FiniteField(mod, symmetric=True)[source]
+class sympy.polys.domains.FiniteField(mod, symmetric=True)[source]

Finite field of prime order GF(p)

A GF(p) domain represents a finite field \(\mathbb{F}_p\) of prime order as Domain in the domain system (see @@ -2359,13 +2359,13 @@

Abstract DomainsGF(p**n)) but these are not yet implemented in SymPY.

-characteristic()[source]
+characteristic()[source]

Return the characteristic of this domain.

-exsqrt(a)[source]
+exsqrt(a)[source]

Square root modulo p of a if it is a quadratic residue.

Explanation

Always returns the square root that is no larger than p // 2.

@@ -2373,115 +2373,115 @@

Abstract Domains
-from_FF(a, K0=None)[source]
+from_FF(a, K0=None)[source]

Convert ModularInteger(int) to dtype.

-from_FF_gmpy(a, K0=None)[source]
+from_FF_gmpy(a, K0=None)[source]

Convert ModularInteger(mpz) to dtype.

-from_FF_python(a, K0=None)[source]
+from_FF_python(a, K0=None)[source]

Convert ModularInteger(int) to dtype.

-from_QQ(a, K0=None)[source]
+from_QQ(a, K0=None)[source]

Convert Python’s Fraction to dtype.

-from_QQ_gmpy(a, K0=None)[source]
+from_QQ_gmpy(a, K0=None)[source]

Convert GMPY’s mpq to dtype.

-from_QQ_python(a, K0=None)[source]
+from_QQ_python(a, K0=None)[source]

Convert Python’s Fraction to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert mpmath’s mpf to dtype.

-from_ZZ(a, K0=None)[source]
+from_ZZ(a, K0=None)[source]

Convert Python’s int to dtype.

-from_ZZ_gmpy(a, K0=None)[source]
+from_ZZ_gmpy(a, K0=None)[source]

Convert GMPY’s mpz to dtype.

-from_ZZ_python(a, K0=None)[source]
+from_ZZ_python(a, K0=None)[source]

Convert Python’s int to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to SymPy’s Integer.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-is_square(a)[source]
+is_square(a)[source]

Returns True if a is a quadratic residue modulo p.

-to_int(a)[source]
+to_int(a)[source]

Convert val to a Python int object.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -2489,13 +2489,13 @@

Abstract Domains
-class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)[source]
+class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)[source]

Finite field based on Python’s integers.

-class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)[source]
+class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)[source]

Finite field based on GMPY integers.

@@ -2551,7 +2551,7 @@

Abstract Domains
-class sympy.polys.domains.IntegerRing[source]
+class sympy.polys.domains.IntegerRing[source]

The domain ZZ representing the integers \(\mathbb{Z}\).

The IntegerRing class represents the ring of integers as a Domain in the domain system. IntegerRing is a @@ -2571,7 +2571,7 @@

Abstract Domainsalias=None,

-)[source] +)[source]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

Parameters:
@@ -2603,7 +2603,7 @@

Abstract Domains
-exsqrt(a)[source]
+exsqrt(a)[source]

Non-negative square root of a if a is a square.

See also

@@ -2613,104 +2613,104 @@

Abstract Domains
-factorial(a)[source]
+factorial(a)[source]

Compute factorial of a.

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert a ANP object to ZZ.

See convert().

-from_EX(a, K0)[source]
+from_EX(a, K0)[source]

Convert Expression to GMPY’s mpz.

-from_FF(a, K0)[source]
+from_FF(a, K0)[source]

Convert ModularInteger(int) to GMPY’s mpz.

-from_FF_gmpy(a, K0)[source]
+from_FF_gmpy(a, K0)[source]

Convert ModularInteger(mpz) to GMPY’s mpz.

-from_FF_python(a, K0)[source]
+from_FF_python(a, K0)[source]

Convert ModularInteger(int) to GMPY’s mpz.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert GMPY mpq to GMPY’s mpz.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert mpmath’s mpf to GMPY’s mpz.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert Python’s int to GMPY’s mpz.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert GMPY’s mpz to GMPY’s mpz.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert Python’s int to GMPY’s mpz.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Compute GCD of a and b.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Compute extended GCD of a and b.

-get_field()[source]
+get_field()[source]

Return the associated field of fractions QQ

Returns:
@@ -2732,7 +2732,7 @@

Abstract Domains
-is_square(a)[source]
+is_square(a)[source]

Return True if a is a square.

Explanation

An integer is a square if and only if there exists an integer @@ -2741,13 +2741,13 @@

Abstract Domains
-lcm(a, b)[source]
+lcm(a, b)[source]

Compute LCM of a and b.

-log(a, b)[source]
+log(a, b)[source]

Logarithm of a to the base b.

Parameters:
@@ -2776,13 +2776,13 @@

Abstract Domains
-sqrt(a)[source]
+sqrt(a)[source]

Compute square root of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -2790,7 +2790,7 @@

Abstract Domains
-class sympy.polys.domains.PythonIntegerRing[source]
+class sympy.polys.domains.PythonIntegerRing[source]

Integer ring based on Python’s int type.

This will be used as ZZ if gmpy and gmpy2 are not installed. Elements are instances of the standard Python int type.

@@ -2798,97 +2798,97 @@

Abstract Domains
-class sympy.polys.domains.GMPYIntegerRing[source]
+class sympy.polys.domains.GMPYIntegerRing[source]

Integer ring based on GMPY’s mpz type.

This will be the implementation of ZZ if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpz.

-factorial(a)[source]
+factorial(a)[source]

Compute factorial of a.

-from_FF_gmpy(a, K0)[source]
+from_FF_gmpy(a, K0)[source]

Convert ModularInteger(mpz) to GMPY’s mpz.

-from_FF_python(a, K0)[source]
+from_FF_python(a, K0)[source]

Convert ModularInteger(int) to GMPY’s mpz.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert GMPY mpq to GMPY’s mpz.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert Python’s Fraction to GMPY’s mpz.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert mpmath’s mpf to GMPY’s mpz.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert GMPY’s mpz to GMPY’s mpz.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert Python’s int to GMPY’s mpz.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Compute GCD of a and b.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Compute extended GCD of a and b.

-lcm(a, b)[source]
+lcm(a, b)[source]

Compute LCM of a and b.

-sqrt(a)[source]
+sqrt(a)[source]

Compute square root of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -2938,7 +2938,7 @@

Abstract Domains
-class sympy.polys.domains.RationalField[source]
+class sympy.polys.domains.RationalField[source]

Abstract base class for the domain QQ.

The RationalField class represents the field of rational numbers \(\mathbb{Q}\) as a Domain in the domain system. @@ -2959,7 +2959,7 @@

Abstract Domainsalias=None,

-)[source] +)[source]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

Parameters:
@@ -2991,25 +2991,25 @@

Abstract Domains
-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __truediv__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __truediv__.

-exsqrt(a)[source]
+exsqrt(a)[source]

Non-negative square root of a if a is a square.

See also

@@ -3019,74 +3019,74 @@

Abstract Domains
-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert a ANP object to QQ.

See convert()

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianElement object to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-get_ring()[source]
+get_ring()[source]

Returns ring associated with self.

-is_square(a)[source]
+is_square(a)[source]

Return True if a is a square.

Explanation

A rational number is a square if and only if there exists @@ -3095,25 +3095,25 @@

Abstract Domains
-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __truediv__.

-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies nothing.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -3121,7 +3121,7 @@

Abstract Domains
-class sympy.polys.domains.PythonRationalField[source]
+class sympy.polys.domains.PythonRationalField[source]

Rational field based on MPQ.

This will be used as QQ if gmpy and gmpy2 are not installed. Elements are instances of MPQ.

@@ -3129,31 +3129,31 @@

Abstract Domains
-class sympy.polys.domains.GMPYRationalField[source]
+class sympy.polys.domains.GMPYRationalField[source]

Rational field based on GMPY’s mpq type.

This will be the implementation of QQ if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpq.

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-div(a, b)[source]
+div(a, b)[source]

Division of a and b, implies __truediv__.

-exquo(a, b)[source]
+exquo(a, b)[source]

Exact quotient of a and b, implies __truediv__.

-factorial(a)[source]
+factorial(a)[source]

Returns factorial of a.

@@ -3166,73 +3166,73 @@

Abstract DomainsK0,

-)[source] +)[source]

Convert a GaussianElement object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s Integer to dtype.

-get_ring()[source]
+get_ring()[source]

Returns ring associated with self.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-quo(a, b)[source]
+quo(a, b)[source]

Quotient of a and b, implies __truediv__.

-rem(a, b)[source]
+rem(a, b)[source]

Remainder of a and b, implies nothing.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -3240,7 +3240,7 @@

Abstract Domains
-class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)[source]
+class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)[source]

Rational number implementation that is intended to be compatible with gmpy2’s mpq.

Also slightly faster than fractions.Fraction.

@@ -3261,89 +3261,89 @@

Gaussian domainsGaussianDomain for the domains themselves.

-class sympy.polys.domains.gaussiandomains.GaussianDomain[source]
+class sympy.polys.domains.gaussiandomains.GaussianDomain[source]

Base class for Gaussian domains.

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an element from ZZ<I> or QQ<I> to self.dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a GMPY mpq to self.dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq to self.dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a QQ_python element to self.dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a ZZ_python element to self.dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz to self.dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a ZZ_python element to self.dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert a SymPy object to self.dtype.

-inject(*gens)[source]
+inject(*gens)[source]

Inject generators into this domain.

-is_negative(element)[source]
+is_negative(element)[source]

Returns False for any GaussianElement.

-is_nonnegative(element)[source]
+is_nonnegative(element)[source]

Returns False for any GaussianElement.

-is_nonpositive(element)[source]
+is_nonpositive(element)[source]

Returns False for any GaussianElement.

-is_positive(element)[source]
+is_positive(element)[source]

Returns False for any GaussianElement.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -3351,23 +3351,23 @@

Gaussian domains
-class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)[source]
+class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)[source]

Base class for elements of Gaussian type domains.

-classmethod new(x, y)[source]
+classmethod new(x, y)[source]

Create a new GaussianElement of the same domain.

-parent()[source]
+parent()[source]

The domain that this is an element of (ZZ_I or QQ_I)

-quadrant()[source]
+quadrant()[source]

Return quadrant index 0-3.

0 is included in quadrant 0.

@@ -3379,7 +3379,7 @@

Gaussian domains

ZZ_I

-class sympy.polys.domains.gaussiandomains.GaussianIntegerRing[source]
+class sympy.polys.domains.gaussiandomains.GaussianIntegerRing[source]

Ring of Gaussian integers ZZ_I

The ZZ_I domain represents the Gaussian integers \(\mathbb{Z}[i]\) as a Domain in the domain system (see @@ -3475,7 +3475,7 @@

Gaussian domains
-dtype[source]
+dtype[source]

alias of GaussianInteger

@@ -3488,7 +3488,7 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a ZZ_I element to ZZ_I.

@@ -3501,43 +3501,43 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a QQ_I element to ZZ_I.

-gcd(a, b)[source]
+gcd(a, b)[source]

Greatest common divisor of a and b over ZZ_I.

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Return x, y, g such that x * a + y * b = g = gcd(a, b)

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-lcm(a, b)[source]
+lcm(a, b)[source]

Least common multiple of a and b over ZZ_I.

-normalize(d, *args)[source]
+normalize(d, *args)[source]

Return first quadrant element associated with d.

Also multiply the other arguments by the same power of i.

@@ -3546,7 +3546,7 @@

Gaussian domains
-class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)[source]
+class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)[source]

Gaussian integer: domain element for ZZ_I

>>> from sympy import ZZ_I
 >>> z = ZZ_I(2, 3)
@@ -3563,7 +3563,7 @@ 

Gaussian domains

QQ_I

-class sympy.polys.domains.gaussiandomains.GaussianRationalField[source]
+class sympy.polys.domains.gaussiandomains.GaussianRationalField[source]

Field of Gaussian rationals QQ_I

The QQ_I domain represents the Gaussian rationals \(\mathbb{Q}(i)\) as a Domain in the domain system (see @@ -3678,25 +3678,25 @@

Gaussian domains
-as_AlgebraicField()[source]
+as_AlgebraicField()[source]

Get equivalent domain as an AlgebraicField.

-denom(a)[source]
+denom(a)[source]

Get the denominator of a.

-dtype[source]
+dtype[source]

alias of GaussianRational

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a ComplexField element to QQ_I.

@@ -3709,7 +3709,7 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a ZZ_I element to QQ_I.

@@ -3722,25 +3722,25 @@

Gaussian domainsK0,

-)[source] +)[source]

Convert a QQ_I element to QQ_I.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-numer(a)[source]
+numer(a)[source]

Get the numerator of a.

@@ -3748,7 +3748,7 @@

Gaussian domains
-class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)[source]
+class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)[source]

Gaussian rational: domain element for QQ_I

>>> from sympy import QQ_I, QQ
 >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
@@ -3765,7 +3765,7 @@ 

Gaussian domains

QQ<a>

-class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)[source]
+class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)[source]

Algebraic number field QQ<a>

A QQ<a> domain represents an algebraic number field \(\mathbb{Q}(a)\) as a Domain in the domain system (see @@ -3990,25 +3990,25 @@

Gaussian domainsalias=None,

-)[source] +)[source]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots)\).

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-discriminant()[source]
+discriminant()[source]

Get the discriminant of the field.

-dtype[source]
+dtype[source]

alias of ANP

@@ -4026,67 +4026,67 @@

Gaussian domains
-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert AlgebraicField element ‘a’ to another AlgebraicField

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a GaussianInteger element ‘a’ to dtype.

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianRational element ‘a’ to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to dtype.

@@ -4100,7 +4100,7 @@

Gaussian domainsrandomize=False,

-)[source] +)[source]

Compute the Galois group of the Galois closure of this field.

Examples

If the field is Galois, the order of the group will equal the degree @@ -4130,13 +4130,13 @@

Gaussian domains
-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-integral_basis(fmt=None)[source]
+integral_basis(fmt=None)[source]

Get an integral basis for the field.

Parameters:
@@ -4181,31 +4181,31 @@

Gaussian domains
-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-maximal_order()[source]
+maximal_order()[source]

Compute the maximal order, or ring of integers, of the field.

Returns:
@@ -4232,7 +4232,7 @@

Gaussian domains
-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

@@ -4250,19 +4250,19 @@

Gaussian domains
-primes_above(p)[source]
+primes_above(p)[source]

Compute the prime ideals lying above a given rational prime p.

-to_alg_num(a)[source]
+to_alg_num(a)[source]

Convert a of dtype to an AlgebraicNumber.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a of dtype to a SymPy object.

@@ -4273,17 +4273,17 @@

Gaussian domains

RR

-class sympy.polys.domains.RealField(prec=None, dps=None, tol=None)[source]
+class sympy.polys.domains.RealField(prec=None, dps=None, tol=None)[source]

Real numbers up to the given precision.

-almosteq(a, b, tolerance=None)[source]
+almosteq(a, b, tolerance=None)[source]

Check if a and b are almost equal.

-exsqrt(a)[source]
+exsqrt(a)[source]

Non-negative square root for a >= 0 and None otherwise.

Explanation

The square root may be slightly inaccurate due to floating point @@ -4292,49 +4292,49 @@

Gaussian domains
-from_sympy(expr)[source]
+from_sympy(expr)[source]

Convert SymPy’s number to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

-get_exact()[source]
+get_exact()[source]

Returns an exact domain associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_square(a)[source]
+is_square(a)[source]

Returns True if a >= 0 and False otherwise.

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

-to_rational(element, limit=True)[source]
+to_rational(element, limit=True)[source]

Convert a real number to rational number.

-to_sympy(element)[source]
+to_sympy(element)[source]

Convert element to SymPy number.

@@ -4345,17 +4345,17 @@

Gaussian domains

CC

-class sympy.polys.domains.ComplexField(prec=None, dps=None, tol=None)[source]
+class sympy.polys.domains.ComplexField(prec=None, dps=None, tol=None)[source]

Complex numbers up to the given precision.

-almosteq(a, b, tolerance=None)[source]
+almosteq(a, b, tolerance=None)[source]

Check if a and b are almost equal.

-exsqrt(a)[source]
+exsqrt(a)[source]

Returns the principal complex square root of a.

Explanation

The argument of the principal square root is always within @@ -4365,67 +4365,67 @@

Gaussian domains
-from_sympy(expr)[source]
+from_sympy(expr)[source]

Convert SymPy’s number to dtype.

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of a and b.

-get_exact()[source]
+get_exact()[source]

Returns an exact domain associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_negative(element)[source]
+is_negative(element)[source]

Returns False for any ComplexElement.

-is_nonnegative(element)[source]
+is_nonnegative(element)[source]

Returns False for any ComplexElement.

-is_nonpositive(element)[source]
+is_nonpositive(element)[source]

Returns False for any ComplexElement.

-is_positive(element)[source]
+is_positive(element)[source]

Returns False for any ComplexElement.

-is_square(a)[source]
+is_square(a)[source]

Returns True. Every complex number has a complex square root.

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of a and b.

-to_sympy(element)[source]
+to_sympy(element)[source]

Convert element to SymPy number.

@@ -4444,161 +4444,161 @@

Gaussian domainsorder=None,

-)[source] +)[source]

A class for representing multivariate polynomial rings.

-factorial(a)[source]
+factorial(a)[source]

Returns factorial of \(a\).

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an algebraic number to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a mpmath \(mpf\) object to \(dtype\).

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a rational function to dtype.

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a \(GaussianInteger\) object to \(dtype\).

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a \(GaussianRational\) object to \(dtype\).

-from_GlobalPolynomialRing(a, K0)[source]
+from_GlobalPolynomialRing(a, K0)[source]

Convert from old poly ring to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python \(Fraction\) object to \(dtype\).

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY \(mpq\) object to \(dtype\).

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python \(Fraction\) object to \(dtype\).

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath \(mpf\) object to \(dtype\).

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python \(int\) object to \(dtype\).

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY \(mpz\) object to \(dtype\).

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python \(int\) object to \(dtype\).

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to \(dtype\).

-gcd(a, b)[source]
+gcd(a, b)[source]

Returns GCD of \(a\) and \(b\).

-gcdex(a, b)[source]
+gcdex(a, b)[source]

Extended GCD of \(a\) and \(b\).

-get_field()[source]
+get_field()[source]

Returns a field associated with \(self\).

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if \(LC(a)\) is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if \(LC(a)\) is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if \(LC(a)\) is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if \(LC(a)\) is positive.

-is_unit(a)[source]
+is_unit(a)[source]

Returns True if a is a unit of self

-lcm(a, b)[source]
+lcm(a, b)[source]

Returns LCM of \(a\) and \(b\).

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert \(a\) to a SymPy object.

@@ -4617,143 +4617,143 @@

Gaussian domainsorder=None,

-)[source] +)[source]

A class for representing multivariate rational function fields.

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-factorial(a)[source]
+factorial(a)[source]

Returns factorial of a.

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an algebraic number to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a rational function to dtype.

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a GaussianInteger object to dtype.

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianRational object to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a polynomial to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to dtype.

-get_ring()[source]
+get_ring()[source]

Returns a field associated with self.

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if LC(a) is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if LC(a) is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if LC(a) is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if LC(a) is positive.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -4764,161 +4764,161 @@

Gaussian domains

EX

-class sympy.polys.domains.ExpressionDomain[source]
+class sympy.polys.domains.ExpressionDomain[source]

A class for arbitrary expressions.

-class Expression(ex)[source]
+class Expression(ex)[source]

An arbitrary expression.

-denom(a)[source]
+denom(a)[source]

Returns denominator of a.

-dtype[source]
+dtype[source]

alias of Expression

-from_AlgebraicField(a, K0)[source]
+from_AlgebraicField(a, K0)[source]

Convert an ANP object to dtype.

-from_ComplexField(a, K0)[source]
+from_ComplexField(a, K0)[source]

Convert a mpmath mpc object to dtype.

-from_ExpressionDomain(a, K0)[source]
+from_ExpressionDomain(a, K0)[source]

Convert a EX object to dtype.

-from_FractionField(a, K0)[source]
+from_FractionField(a, K0)[source]

Convert a DMF object to dtype.

-from_GaussianIntegerRing(a, K0)[source]
+from_GaussianIntegerRing(a, K0)[source]

Convert a GaussianRational object to dtype.

-from_GaussianRationalField(a, K0)[source]
+from_GaussianRationalField(a, K0)[source]

Convert a GaussianRational object to dtype.

-from_PolynomialRing(a, K0)[source]
+from_PolynomialRing(a, K0)[source]

Convert a DMP object to dtype.

-from_QQ(a, K0)[source]
+from_QQ(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_QQ_gmpy(a, K0)[source]
+from_QQ_gmpy(a, K0)[source]

Convert a GMPY mpq object to dtype.

-from_QQ_python(a, K0)[source]
+from_QQ_python(a, K0)[source]

Convert a Python Fraction object to dtype.

-from_RealField(a, K0)[source]
+from_RealField(a, K0)[source]

Convert a mpmath mpf object to dtype.

-from_ZZ(a, K0)[source]
+from_ZZ(a, K0)[source]

Convert a Python int object to dtype.

-from_ZZ_gmpy(a, K0)[source]
+from_ZZ_gmpy(a, K0)[source]

Convert a GMPY mpz object to dtype.

-from_ZZ_python(a, K0)[source]
+from_ZZ_python(a, K0)[source]

Convert a Python int object to dtype.

-from_sympy(a)[source]
+from_sympy(a)[source]

Convert SymPy’s expression to dtype.

-get_field()[source]
+get_field()[source]

Returns a field associated with self.

-get_ring()[source]
+get_ring()[source]

Returns a ring associated with self.

-is_negative(a)[source]
+is_negative(a)[source]

Returns True if a is negative.

-is_nonnegative(a)[source]
+is_nonnegative(a)[source]

Returns True if a is non-negative.

-is_nonpositive(a)[source]
+is_nonpositive(a)[source]

Returns True if a is non-positive.

-is_positive(a)[source]
+is_positive(a)[source]

Returns True if a is positive.

-numer(a)[source]
+numer(a)[source]

Returns numerator of a.

-to_sympy(a)[source]
+to_sympy(a)[source]

Convert a to a SymPy object.

@@ -4926,7 +4926,7 @@

Gaussian domains
-class ExpressionDomain.Expression(ex)[source]
+class ExpressionDomain.Expression(ex)[source]

An arbitrary expression.

@@ -4935,7 +4935,7 @@

Gaussian domains

-class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]
+class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)[source]

Class representing (commutative) quotient rings.

You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

@@ -4976,7 +4976,7 @@

Sparse polynomialsorder: MonomialOrder | str = LexOrder(),

-)[source] +)[source]

Construct a polynomial ring returning (ring, x_1, ..., x_n).

Parameters:
@@ -5007,7 +5007,7 @@

Sparse polynomials
-sympy.polys.rings.xring(symbols, domain, order=LexOrder())[source]
+sympy.polys.rings.xring(symbols, domain, order=LexOrder())[source]

Construct a polynomial ring returning (ring, (x_1, ..., x_n)).

Parameters:
@@ -5038,7 +5038,7 @@

Sparse polynomials
-sympy.polys.rings.vring(symbols, domain, order=LexOrder())[source]
+sympy.polys.rings.vring(symbols, domain, order=LexOrder())[source]

Construct a polynomial ring and inject x_1, ..., x_n into the global namespace.

Parameters:
@@ -5068,7 +5068,7 @@

Sparse polynomials
-sympy.polys.rings.sring(exprs, *symbols, **options)[source]
+sympy.polys.rings.sring(exprs, *symbols, **options)[source]

Construct a ring deriving generators and domain from options and input expressions.

Parameters:
@@ -5095,11 +5095,11 @@

Sparse polynomials
-class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())[source]
+class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())[source]

Multivariate distributed polynomial ring.

-add(*objs)[source]
+add(*objs)[source]

Add a sequence of polynomials or containers of polynomials.

Examples

>>> from sympy.polys.rings import ring
@@ -5117,44 +5117,44 @@ 

Sparse polynomials
-add_gens(symbols)[source]
+add_gens(symbols)[source]

Add the elements of symbols as generators to self

-compose(other)[source]
+compose(other)[source]

Add the generators of other to self

-drop(*gens)[source]
+drop(*gens)[source]

Remove specified generators from this ring.

-drop_to_ground(*gens)[source]
+drop_to_ground(*gens)[source]

Remove specified generators from the ring and inject them into its domain.

-index(gen)[source]
+index(gen)[source]

Compute index of gen in self.gens.

-monomial_basis(i)[source]
+monomial_basis(i)[source]

Return the ith-basis element.

-mul(*objs)[source]
+mul(*objs)[source]

Multiply a sequence of polynomials or containers of polynomials.

Examples

>>> from sympy.polys.rings import ring
@@ -5172,7 +5172,7 @@ 

Sparse polynomials
-symmetric_poly(n)[source]
+symmetric_poly(n)[source]

Return the elementary symmetric polynomial of degree n over this ring’s generators.

@@ -5181,17 +5181,17 @@

Sparse polynomials
-class sympy.polys.rings.PolyElement[source]
+class sympy.polys.rings.PolyElement[source]

Element of multivariate distributed polynomial ring.

-almosteq(p2, tolerance=None)[source]
+almosteq(p2, tolerance=None)[source]

Approximate equality test for polynomials.

-cancel(g)[source]
+cancel(g)[source]

Cancel common factors in a rational function f/g.

Examples

>>> from sympy.polys import ring, ZZ
@@ -5206,7 +5206,7 @@ 

Sparse polynomials
-coeff(element)[source]
+coeff(element)[source]

Returns the coefficient that stands next to the given monomial.

Parameters:
@@ -5234,7 +5234,7 @@

Sparse polynomials
-coeff_wrt(x, deg)[source]
+coeff_wrt(x, deg)[source]

Coefficient of self with respect to x**deg.

Treating self as a univariate polynomial in x this finds the coefficient of x**deg as a polynomial in the other generators.

@@ -5279,7 +5279,7 @@

Sparse polynomials
-coeffs(order=None)[source]
+coeffs(order=None)[source]

Ordered list of polynomial coefficients.

Parameters:
@@ -5306,19 +5306,19 @@

Sparse polynomials
-const()[source]
+const()[source]

Returns the constant coefficient.

-content()[source]
+content()[source]

Returns GCD of polynomial’s coefficients.

-copy()[source]
+copy()[source]

Return a copy of polynomial self.

Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one @@ -5345,21 +5345,21 @@

Sparse polynomials
-degree(x=None)[source]
+degree(x=None)[source]

The leading degree in x or the main variable.

Note that the degree of 0 is negative infinity (float('-inf'))

-degrees()[source]
+degrees()[source]

A tuple containing leading degrees in all variables.

Note that the degree of 0 is negative infinity (float('-inf'))

-diff(x)[source]
+diff(x)[source]

Computes partial derivative in x.

Examples

>>> from sympy.polys.rings import ring
@@ -5376,7 +5376,7 @@ 

Sparse polynomials
-div(fv)[source]
+div(fv)[source]

Division algorithm, see [CLO] p64.

fv array of polynomials

return qv, r such that @@ -5406,7 +5406,7 @@

Sparse polynomials
-imul_num(c)[source]
+imul_num(c)[source]

multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace

@@ -5434,25 +5434,25 @@

Sparse polynomials
-itercoeffs()[source]
+itercoeffs()[source]

Iterator over coefficients of a polynomial.

-itermonoms()[source]
+itermonoms()[source]

Iterator over monomials of a polynomial.

-iterterms()[source]
+iterterms()[source]

Iterator over terms of a polynomial.

-leading_expv()[source]
+leading_expv()[source]

Leading monomial tuple according to the monomial ordering.

Examples

>>> from sympy.polys.rings import ring
@@ -5469,7 +5469,7 @@ 

Sparse polynomials
-leading_monom()[source]
+leading_monom()[source]

Leading monomial as a polynomial element.

Examples

>>> from sympy.polys.rings import ring
@@ -5485,7 +5485,7 @@ 

Sparse polynomials
-leading_term()[source]
+leading_term()[source]

Leading term as a polynomial element.

Examples

>>> from sympy.polys.rings import ring
@@ -5501,31 +5501,31 @@ 

Sparse polynomials
-listcoeffs()[source]
+listcoeffs()[source]

Unordered list of polynomial coefficients.

-listmonoms()[source]
+listmonoms()[source]

Unordered list of polynomial monomials.

-listterms()[source]
+listterms()[source]

Unordered list of polynomial terms.

-monic()[source]
+monic()[source]

Divides all coefficients by the leading coefficient.

-monoms(order=None)[source]
+monoms(order=None)[source]

Ordered list of polynomial monomials.

Parameters:
@@ -5552,7 +5552,7 @@

Sparse polynomials
-pdiv(g, x=None)[source]
+pdiv(g, x=None)[source]

Computes the pseudo-division of the polynomial self with respect to g.

The pseudo-division algorithm is used to find the pseudo-quotient q and pseudo-remainder r such that m*f = g*q + r, where m @@ -5629,7 +5629,7 @@

Sparse polynomials
-pexquo(g, x=None)[source]
+pexquo(g, x=None)[source]

Polynomial exact pseudo-quotient in multivariate polynomial ring.

Examples

>>> from sympy.polys import ring, ZZ
@@ -5659,7 +5659,7 @@ 

Sparse polynomials
-pquo(g, x=None)[source]
+pquo(g, x=None)[source]

Polynomial pseudo-quotient in multivariate polynomial ring.

Examples

>>> from sympy.polys import ring, ZZ
@@ -5687,7 +5687,7 @@ 

Sparse polynomials
-prem(g, x=None)[source]
+prem(g, x=None)[source]

Pseudo-remainder of the polynomial self with respect to g.

The pseudo-quotient q and pseudo-remainder r with respect to z when dividing f by g satisfy m*f = g*q + r, @@ -5740,13 +5740,13 @@

Sparse polynomials
-primitive()[source]
+primitive()[source]

Returns content and a primitive polynomial.

-square()[source]
+square()[source]

square of a polynomial

Examples

>>> from sympy.polys.rings import ring
@@ -5763,13 +5763,13 @@ 

Sparse polynomials
-strip_zero()[source]
+strip_zero()[source]

Eliminate monomials with zero coefficient.

-subresultants(g, x=None)[source]
+subresultants(g, x=None)[source]

Computes the subresultant PRS of two polynomials self and g.

Parameters:
@@ -5808,7 +5808,7 @@

Sparse polynomials
-symmetrize()[source]
+symmetrize()[source]

Rewrite self in terms of elementary symmetric polynomials.

Returns:
@@ -5866,21 +5866,21 @@

Sparse polynomials
-tail_degree(x=None)[source]
+tail_degree(x=None)[source]

The tail degree in x or the main variable.

Note that the degree of 0 is negative infinity (float('-inf'))

-tail_degrees()[source]
+tail_degrees()[source]

A tuple containing tail degrees in all variables.

Note that the degree of 0 is negative infinity (float('-inf'))

-terms(order=None)[source]
+terms(order=None)[source]

Ordered list of polynomial terms.

Parameters:
@@ -5913,25 +5913,25 @@

Sparse rational functions
-sympy.polys.fields.field(symbols, domain, order=LexOrder())[source]
+sympy.polys.fields.field(symbols, domain, order=LexOrder())[source]

Construct new rational function field returning (field, x1, …, xn).

-sympy.polys.fields.xfield(symbols, domain, order=LexOrder())[source]
+sympy.polys.fields.xfield(symbols, domain, order=LexOrder())[source]

Construct new rational function field returning (field, (x1, …, xn)).

-sympy.polys.fields.vfield(symbols, domain, order=LexOrder())[source]
+sympy.polys.fields.vfield(symbols, domain, order=LexOrder())[source]

Construct new rational function field and inject generators into global namespace.

-sympy.polys.fields.sfield(exprs, *symbols, **options)[source]
+sympy.polys.fields.sfield(exprs, *symbols, **options)[source]

Construct a field deriving generators and domain from options and input expressions.

@@ -5957,17 +5957,17 @@

Sparse rational functions
-class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())[source]
+class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())[source]

Multivariate distributed rational function field.

-class sympy.polys.fields.FracElement(numer, denom=None)[source]
+class sympy.polys.fields.FracElement(numer, denom=None)[source]

Element of multivariate distributed rational function field.

-diff(x)[source]
+diff(x)[source]

Computes partial derivative in x.

Examples

>>> from sympy.polys.fields import field
@@ -5988,179 +5988,179 @@ 

Sparse rational functions

-class sympy.polys.polyclasses.DMP(rep, dom, lev=None)[source]
+class sympy.polys.polyclasses.DMP(rep, dom, lev=None)[source]

Dense Multivariate Polynomials over \(K\).

-LC()[source]
+LC()[source]

Returns the leading coefficient of f.

-TC()[source]
+TC()[source]

Returns the trailing coefficient of f.

-abs()[source]
+abs()[source]

Make all coefficients in f positive.

-add(g)[source]
+add(g)[source]

Add two multivariate polynomials f and g.

-add_ground(c)[source]
+add_ground(c)[source]

Add an element of the ground domain to f.

-all_coeffs()[source]
+all_coeffs()[source]

Returns all coefficients from f.

-all_monoms()[source]
+all_monoms()[source]

Returns all monomials from f.

-all_terms()[source]
+all_terms()[source]

Returns all terms from a f.

-cancel(g, include=True)[source]
+cancel(g, include=True)[source]

Cancel common factors in a rational function f/g.

-cauchy_lower_bound()[source]
+cauchy_lower_bound()[source]

Computes the Cauchy lower bound on the nonzero roots of f.

-cauchy_upper_bound()[source]
+cauchy_upper_bound()[source]

Computes the Cauchy upper bound on the roots of f.

-clear_denoms()[source]
+clear_denoms()[source]

Clear denominators, but keep the ground domain.

-coeffs(order=None)[source]
+coeffs(order=None)[source]

Returns all non-zero coefficients from f in lex order.

-cofactors(g)[source]
+cofactors(g)[source]

Returns GCD of f and g and their cofactors.

-compose(g)[source]
+compose(g)[source]

Computes functional composition of f and g.

-content()[source]
+content()[source]

Returns GCD of polynomial coefficients.

-convert(dom)[source]
+convert(dom)[source]

Convert f to a DMP over the new domain.

-count_complex_roots(inf=None, sup=None)[source]
+count_complex_roots(inf=None, sup=None)[source]

Return the number of complex roots of f in [inf, sup].

-count_real_roots(inf=None, sup=None)[source]
+count_real_roots(inf=None, sup=None)[source]

Return the number of real roots of f in [inf, sup].

-decompose()[source]
+decompose()[source]

Computes functional decomposition of f.

-deflate()[source]
+deflate()[source]

Reduce degree of \(f\) by mapping \(x_i^m\) to \(y_i\).

-degree(j=0)[source]
+degree(j=0)[source]

Returns the leading degree of f in x_j.

-degree_list()[source]
+degree_list()[source]

Returns a list of degrees of f.

-diff(m=1, j=0)[source]
+diff(m=1, j=0)[source]

Computes the m-th order derivative of f in x_j.

-discriminant()[source]
+discriminant()[source]

Computes discriminant of f.

-div(g)[source]
+div(g)[source]

Polynomial division with remainder of f and g.

-eject(dom, front=False)[source]
+eject(dom, front=False)[source]

Eject selected generators into the ground domain.

-eval(a, j=0)[source]
+eval(a, j=0)[source]

Evaluates f at the given point a in x_j.

-exclude()[source]
+exclude()[source]

Remove useless generators from f.

Returns the removed generators and the new excluded f.

Examples

@@ -6176,91 +6176,91 @@

Dense polynomials
-exquo(g)[source]
+exquo(g)[source]

Computes polynomial exact quotient of f and g.

-exquo_ground(c)[source]
+exquo_ground(c)[source]

Exact quotient of f by a an element of the ground domain.

-factor_list()[source]
+factor_list()[source]

Returns a list of irreducible factors of f.

-factor_list_include()[source]
+factor_list_include()[source]

Returns a list of irreducible factors of f.

-classmethod from_list(rep, lev, dom)[source]
+classmethod from_list(rep, lev, dom)[source]

Create an instance of cls given a list of native coefficients.

-classmethod from_sympy_list(rep, lev, dom)[source]
+classmethod from_sympy_list(rep, lev, dom)[source]

Create an instance of cls given a list of SymPy coefficients.

-gcd(g)[source]
+gcd(g)[source]

Returns polynomial GCD of f and g.

-gcdex(g)[source]
+gcdex(g)[source]

Extended Euclidean algorithm, if univariate.

-gff_list()[source]
+gff_list()[source]

Computes greatest factorial factorization of f.

-ground_new(coeff)[source]
+ground_new(coeff)[source]

Construct a new ground instance of f.

-half_gcdex(g)[source]
+half_gcdex(g)[source]

Half extended Euclidean algorithm, if univariate.

-homogeneous_order()[source]
+homogeneous_order()[source]

Returns the homogeneous order of f.

-homogenize(s)[source]
+homogenize(s)[source]

Return homogeneous polynomial of f

-inject(front=False)[source]
+inject(front=False)[source]

Inject ground domain generators into f.

-integrate(m=1, j=0)[source]
+integrate(m=1, j=0)[source]

Computes the m-th order indefinite integral of f in x_j.

@@ -6277,13 +6277,13 @@

Dense polynomialssqf=False,

-)[source] +)[source]

Compute isolating intervals for roots of f.

-invert(g)[source]
+invert(g)[source]

Invert f modulo g, if possible.

@@ -6361,91 +6361,91 @@

Dense polynomials
-l1_norm()[source]
+l1_norm()[source]

Returns l1 norm of f.

-l2_norm_squared()[source]
+l2_norm_squared()[source]

Return squared l2 norm of f.

-lcm(g)[source]
+lcm(g)[source]

Returns polynomial LCM of f and g.

-lift()[source]
+lift()[source]

Convert algebraic coefficients to rationals.

-max_norm()[source]
+max_norm()[source]

Returns maximum norm of f.

-mignotte_sep_bound_squared()[source]
+mignotte_sep_bound_squared()[source]

Computes the squared Mignotte bound on root separations of f.

-monic()[source]
+monic()[source]

Divides all coefficients by LC(f).

-monoms(order=None)[source]
+monoms(order=None)[source]

Returns all non-zero monomials from f in lex order.

-mul(g)[source]
+mul(g)[source]

Multiply two multivariate polynomials f and g.

-mul_ground(c)[source]
+mul_ground(c)[source]

Multiply f by a an element of the ground domain.

-neg()[source]
+neg()[source]

Negate all coefficients in f.

-norm()[source]
+norm()[source]

Computes Norm(f).

-nth(*N)[source]
+nth(*N)[source]

Returns the n-th coefficient of f.

-pdiv(g)[source]
+pdiv(g)[source]

Polynomial pseudo-division of f and g.

-permute(P)[source]
+permute(P)[source]

Returns a polynomial in \(K[x_{P(1)}, ..., x_{P(n)}]\).

Examples

>>> from sympy.polys.polyclasses import DMP
@@ -6464,43 +6464,43 @@ 

Dense polynomials
-pexquo(g)[source]
+pexquo(g)[source]

Polynomial exact pseudo-quotient of f and g.

-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

-pquo(g)[source]
+pquo(g)[source]

Polynomial pseudo-quotient of f and g.

-prem(g)[source]
+prem(g)[source]

Polynomial pseudo-remainder of f and g.

-primitive()[source]
+primitive()[source]

Returns content and a primitive form of f.

-quo(g)[source]
+quo(g)[source]

Computes polynomial quotient of f and g.

-quo_ground(c)[source]
+quo_ground(c)[source]

Quotient of f by a an element of the ground domain.

@@ -6516,14 +6516,14 @@

Dense polynomialsfast=False,

-)[source] +)[source]

Refine an isolating interval to the given precision.

eps should be a rational number.

-rem(g)[source]
+rem(g)[source]

Computes polynomial remainder of f and g.

@@ -6535,103 +6535,103 @@

Dense polynomials
-resultant(g, includePRS=False)[source]
+resultant(g, includePRS=False)[source]

Computes resultant of f and g via PRS.

-revert(n)[source]
+revert(n)[source]

Compute f**(-1) mod x**n.

-shift(a)[source]
+shift(a)[source]

Efficiently compute Taylor shift f(x + a).

-shift_list(a)[source]
+shift_list(a)[source]

Efficiently compute Taylor shift f(X + A).

-slice(m, n, j=0)[source]
+slice(m, n, j=0)[source]

Take a continuous subsequence of terms of f.

-sqf_list(all=False)[source]
+sqf_list(all=False)[source]

Returns a list of square-free factors of f.

-sqf_list_include(all=False)[source]
+sqf_list_include(all=False)[source]

Returns a list of square-free factors of f.

-sqf_norm()[source]
+sqf_norm()[source]

Computes square-free norm of f.

-sqf_part()[source]
+sqf_part()[source]

Computes square-free part of f.

-sqr()[source]
+sqr()[source]

Square a multivariate polynomial f.

-sturm()[source]
+sturm()[source]

Computes the Sturm sequence of f.

-sub(g)[source]
+sub(g)[source]

Subtract two multivariate polynomials f and g.

-sub_ground(c)[source]
+sub_ground(c)[source]

Subtract an element of the ground domain from f.

-subresultants(g)[source]
+subresultants(g)[source]

Computes subresultant PRS sequence of f and g.

-terms(order=None)[source]
+terms(order=None)[source]

Returns all non-zero terms from f in lex order.

-terms_gcd()[source]
+terms_gcd()[source]

Remove GCD of terms from the polynomial f.

-to_best()[source]
+to_best()[source]

Convert to DUP_Flint if possible.

This method should be used when the domain or level is changed and it potentially becomes possible to convert from DMP_Python to DUP_Flint.

@@ -6639,74 +6639,74 @@

Dense polynomials
-to_dict(zero=False)[source]
+to_dict(zero=False)[source]

Convert f to a dict representation with native coefficients.

-to_exact()[source]
+to_exact()[source]

Make the ground domain exact.

-to_field()[source]
+to_field()[source]

Make the ground domain a field.

-to_list()[source]
+to_list()[source]

Convert f to a list representation with native coefficients.

-to_ring()[source]
+to_ring()[source]

Make the ground domain a ring.

-to_sympy_dict(zero=False)[source]
+to_sympy_dict(zero=False)[source]

Convert f to a dict representation with SymPy coefficients.

-to_sympy_list()[source]
+to_sympy_list()[source]

Convert f to a list representation with SymPy coefficients.

-to_tuple()[source]
+to_tuple()[source]

Convert f to a tuple representation with native coefficients.

This is needed for hashing.

-total_degree()[source]
+total_degree()[source]

Returns the total degree of f.

-transform(p, q)[source]
+transform(p, q)[source]

Evaluate functional transformation q**n * f(p/q).

-trunc(p)[source]
+trunc(p)[source]

Reduce f modulo a constant p.

-unify_DMP(g)[source]
+unify_DMP(g)[source]

Unify and return DMP instances of f and g.

@@ -6714,53 +6714,53 @@

Dense polynomials
-class sympy.polys.polyclasses.DMF(rep, dom, lev=None)[source]
+class sympy.polys.polyclasses.DMF(rep, dom, lev=None)[source]

Dense Multivariate Fractions over \(K\).

-add(g)[source]
+add(g)[source]

Add two multivariate fractions f and g.

-add_ground(c)[source]
+add_ground(c)[source]

Add an element of the ground domain to f.

-cancel()[source]
+cancel()[source]

Remove common factors from f.num and f.den.

-denom()[source]
+denom()[source]

Returns the denominator of f.

-exquo(g)[source]
+exquo(g)[source]

Computes quotient of fractions f and g.

-frac_unify(g)[source]
+frac_unify(g)[source]

Unify representations of two multivariate fractions.

-half_per(rep, kill=False)[source]
+half_per(rep, kill=False)[source]

Create a DMP out of the given representation.

-invert(check=True)[source]
+invert(check=True)[source]

Computes inverse of a fraction f.

@@ -6778,49 +6778,49 @@

Dense polynomials
-mul(g)[source]
+mul(g)[source]

Multiply two multivariate fractions f and g.

-neg()[source]
+neg()[source]

Negate all coefficients in f.

-numer()[source]
+numer()[source]

Returns the numerator of f.

-per(num, den, cancel=True, kill=False)[source]
+per(num, den, cancel=True, kill=False)[source]

Create a DMF out of the given representation.

-poly_unify(g)[source]
+poly_unify(g)[source]

Unify a multivariate fraction and a polynomial.

-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

-quo(g)[source]
+quo(g)[source]

Computes quotient of fractions f and g.

-sub(g)[source]
+sub(g)[source]

Subtract two multivariate fractions f and g.

@@ -6828,29 +6828,29 @@

Dense polynomials
-class sympy.polys.polyclasses.ANP(rep, mod, dom)[source]
+class sympy.polys.polyclasses.ANP(rep, mod, dom)[source]

Dense Algebraic Number Polynomials over a field.

-LC()[source]
+LC()[source]

Returns the leading coefficient of f.

-TC()[source]
+TC()[source]

Returns the trailing coefficient of f.

-add_ground(c)[source]
+add_ground(c)[source]

Add an element of the ground domain to f.

-convert(dom)[source]
+convert(dom)[source]

Convert f to a ANP over a new domain.

@@ -6874,74 +6874,74 @@

Dense polynomials
-mod_to_list()[source]
+mod_to_list()[source]

Return f.mod as a list with native coefficients.

-mul_ground(c)[source]
+mul_ground(c)[source]

Multiply f by an element of the ground domain.

-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

-quo_ground(c)[source]
+quo_ground(c)[source]

Quotient of f by an element of the ground domain.

-sub_ground(c)[source]
+sub_ground(c)[source]

Subtract an element of the ground domain from f.

-to_dict()[source]
+to_dict()[source]

Convert f to a dict representation with native coefficients.

-to_list()[source]
+to_list()[source]

Convert f to a list representation with native coefficients.

-to_sympy_dict()[source]
+to_sympy_dict()[source]

Convert f to a dict representation with SymPy coefficients.

-to_sympy_list()[source]
+to_sympy_list()[source]

Convert f to a list representation with SymPy coefficients.

-to_tuple()[source]
+to_tuple()[source]

Convert f to a tuple representation with native coefficients.

This is needed for hashing.

-unify(g)[source]
+unify(g)[source]

Unify representations of two algebraic numbers.

-unify_ANP(g)[source]
+unify_ANP(g)[source]

Unify and return DMP instances of f and g.

diff --git a/dev/modules/polys/internals.html b/dev/modules/polys/internals.html index 9010e806bbf..d970d03cf72 100644 --- a/dev/modules/polys/internals.html +++ b/dev/modules/polys/internals.html @@ -853,7 +853,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_LC(f, K)[source]
+sympy.polys.densebasic.dmp_LC(f, K)[source]

Return leading coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -870,7 +870,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_TC(f, K)[source]
+sympy.polys.densebasic.dmp_TC(f, K)[source]

Return trailing coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -887,7 +887,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_LC(f, u, K)[source]
+sympy.polys.densebasic.dmp_ground_LC(f, u, K)[source]

Return the ground leading coefficient.

Examples

>>> from sympy.polys.domains import ZZ
@@ -905,7 +905,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_TC(f, u, K)[source]
+sympy.polys.densebasic.dmp_ground_TC(f, u, K)[source]

Return the ground trailing coefficient.

Examples

>>> from sympy.polys.domains import ZZ
@@ -923,7 +923,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_true_LT(f, u, K)[source]
+sympy.polys.densebasic.dmp_true_LT(f, u, K)[source]

Return the leading term c * x_1**n_1 ... x_k**n_k.

Examples

>>> from sympy.polys.domains import ZZ
@@ -941,7 +941,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_degree(f, u)[source]
+sympy.polys.densebasic.dmp_degree(f, u)[source]

Return the leading degree of f in x_0 in K[X].

Note that the degree of 0 is negative infinity (float('-inf')).

Examples

@@ -964,7 +964,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_degree_in(f, j, u)[source]
+sympy.polys.densebasic.dmp_degree_in(f, j, u)[source]

Return the leading degree of f in x_j in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -984,7 +984,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_degree_list(f, u)[source]
+sympy.polys.densebasic.dmp_degree_list(f, u)[source]

Return a list of degrees of f in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1002,7 +1002,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_strip(f, u)[source]
+sympy.polys.densebasic.dmp_strip(f, u)[source]

Remove leading zeros from f in K[X].

Examples

>>> from sympy.polys.densebasic import dmp_strip
@@ -1016,7 +1016,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_validate(f, K=None)[source]
+sympy.polys.densebasic.dmp_validate(f, K=None)[source]

Return the number of levels in f and recursively strip it.

Examples

>>> from sympy.polys.densebasic import dmp_validate
@@ -1036,7 +1036,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dup_reverse(f)[source]
+sympy.polys.densebasic.dup_reverse(f)[source]

Compute x**n * f(1/x), i.e.: reverse f in K[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1054,7 +1054,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_copy(f, u)[source]
+sympy.polys.densebasic.dmp_copy(f, u)[source]

Create a new copy of a polynomial f in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1072,7 +1072,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_to_tuple(f, u)[source]
+sympy.polys.densebasic.dmp_to_tuple(f, u)[source]

Convert \(f\) into a nested tuple of tuples.

This is needed for hashing. This is similar to dmp_copy().

Examples

@@ -1091,7 +1091,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_normal(f, u, K)[source]
+sympy.polys.densebasic.dmp_normal(f, u, K)[source]

Normalize a multivariate polynomial in the given domain.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1106,7 +1106,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_convert(f, u, K0, K1)[source]
+sympy.polys.densebasic.dmp_convert(f, u, K0, K1)[source]

Convert the ground domain of f from K0 to K1.

Examples

>>> from sympy.polys.rings import ring
@@ -1127,7 +1127,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_from_sympy(f, u, K)[source]
+sympy.polys.densebasic.dmp_from_sympy(f, u, K)[source]

Convert the ground domain of f from SymPy to K.

Examples

>>> from sympy import S
@@ -1143,7 +1143,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_nth(f, n, u, K)[source]
+sympy.polys.densebasic.dmp_nth(f, n, u, K)[source]

Return the n-th coefficient of f in K[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1163,7 +1163,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_nth(f, N, u, K)[source]
+sympy.polys.densebasic.dmp_ground_nth(f, N, u, K)[source]

Return the ground n-th coefficient of f in K[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1181,7 +1181,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_zero_p(f, u)[source]
+sympy.polys.densebasic.dmp_zero_p(f, u)[source]

Return True if f is zero in K[X].

Examples

>>> from sympy.polys.densebasic import dmp_zero_p
@@ -1197,7 +1197,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_zero(u)[source]
+sympy.polys.densebasic.dmp_zero(u)[source]

Return a multivariate zero.

Examples

>>> from sympy.polys.densebasic import dmp_zero
@@ -1211,7 +1211,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_one_p(f, u, K)[source]
+sympy.polys.densebasic.dmp_one_p(f, u, K)[source]

Return True if f is one in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1226,7 +1226,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_one(u, K)[source]
+sympy.polys.densebasic.dmp_one(u, K)[source]

Return a multivariate one over K.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1241,7 +1241,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground_p(f, c, u)[source]
+sympy.polys.densebasic.dmp_ground_p(f, c, u)[source]

Return True if f is constant in K[X].

Examples

>>> from sympy.polys.densebasic import dmp_ground_p
@@ -1257,7 +1257,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_ground(c, u)[source]
+sympy.polys.densebasic.dmp_ground(c, u)[source]

Return a multivariate constant.

Examples

>>> from sympy.polys.densebasic import dmp_ground
@@ -1273,7 +1273,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_zeros(n, u, K)[source]
+sympy.polys.densebasic.dmp_zeros(n, u, K)[source]

Return a list of multivariate zeros.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1290,7 +1290,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_grounds(c, n, u)[source]
+sympy.polys.densebasic.dmp_grounds(c, n, u)[source]

Return a list of multivariate constants.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1307,7 +1307,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_negative_p(f, u, K)[source]
+sympy.polys.densebasic.dmp_negative_p(f, u, K)[source]

Return True if LC(f) is negative.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1324,7 +1324,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_positive_p(f, u, K)[source]
+sympy.polys.densebasic.dmp_positive_p(f, u, K)[source]

Return True if LC(f) is positive.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1341,7 +1341,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_from_dict(f, u, K)[source]
+sympy.polys.densebasic.dmp_from_dict(f, u, K)[source]

Create a K[X] polynomial from a dict.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1358,7 +1358,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)[source]
+sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)[source]

Convert a K[X] polynomial to a dict``.

Examples

>>> from sympy.polys.densebasic import dmp_to_dict
@@ -1374,7 +1374,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_swap(f, i, j, u, K)[source]
+sympy.polys.densebasic.dmp_swap(f, i, j, u, K)[source]

Transform K[..x_i..x_j..] to K[..x_j..x_i..].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1396,7 +1396,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_permute(f, P, u, K)[source]
+sympy.polys.densebasic.dmp_permute(f, P, u, K)[source]

Return a polynomial in K[x_{P(1)},..,x_{P(n)}].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1416,7 +1416,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_nest(f, l, K)[source]
+sympy.polys.densebasic.dmp_nest(f, l, K)[source]

Return a multivariate value nested l-levels.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1431,7 +1431,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_raise(f, l, u, K)[source]
+sympy.polys.densebasic.dmp_raise(f, l, u, K)[source]

Return a multivariate polynomial raised l-levels.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1449,7 +1449,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_deflate(f, u, K)[source]
+sympy.polys.densebasic.dmp_deflate(f, u, K)[source]

Map x_i**m_i to y_i in a polynomial in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1467,7 +1467,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)[source]
+sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)[source]

Map x_i**m_i to y_i in a set of polynomials in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1486,7 +1486,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_inflate(f, M, u, K)[source]
+sympy.polys.densebasic.dmp_inflate(f, M, u, K)[source]

Map y_i to x_i**k_i in a polynomial in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1504,7 +1504,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_exclude(f, u, K)[source]
+sympy.polys.densebasic.dmp_exclude(f, u, K)[source]

Exclude useless levels from f.

Return the levels excluded, the new excluded f, and the new u.

Examples

@@ -1523,7 +1523,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_include(f, J, u, K)[source]
+sympy.polys.densebasic.dmp_include(f, J, u, K)[source]

Include useless levels in f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1541,7 +1541,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_inject(f, u, K, front=False)[source]
+sympy.polys.densebasic.dmp_inject(f, u, K, front=False)[source]

Convert f from K[X][Y] to K[X,Y].

Examples

>>> from sympy.polys.rings import ring
@@ -1562,7 +1562,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_eject(f, u, K, front=False)[source]
+sympy.polys.densebasic.dmp_eject(f, u, K, front=False)[source]

Convert f from K[X,Y] to K[X][Y].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1577,7 +1577,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_terms_gcd(f, u, K)[source]
+sympy.polys.densebasic.dmp_terms_gcd(f, u, K)[source]

Remove GCD of terms from f in K[X].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1595,7 +1595,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)[source]
+sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)[source]

List all non-zero terms from f in the given order order.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1615,7 +1615,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)[source]
+sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)[source]

Apply h to pairs of coefficients of f and g.

Examples

>>> from sympy.polys.domains import ZZ
@@ -1633,13 +1633,13 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densebasic.dmp_slice(f, m, n, u, K)[source]
+sympy.polys.densebasic.dmp_slice(f, m, n, u, K)[source]

Take a continuous subsequence of terms of f in K[X].

-sympy.polys.densebasic.dup_random(n, a, b, K)[source]
+sympy.polys.densebasic.dup_random(n, a, b, K)[source]

Return a polynomial of degree n with coefficients in [a, b].

Examples

>>> from sympy.polys.domains import ZZ
@@ -1655,7 +1655,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add_term(f, c, i, u, K)[source]
+sympy.polys.densearith.dmp_add_term(f, c, i, u, K)[source]

Add c(x_2..x_u)*x_0**i to f in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1670,7 +1670,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub_term(f, c, i, u, K)[source]
+sympy.polys.densearith.dmp_sub_term(f, c, i, u, K)[source]

Subtract c(x_2..x_u)*x_0**i from f in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1685,7 +1685,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_mul_term(f, c, i, u, K)[source]
+sympy.polys.densearith.dmp_mul_term(f, c, i, u, K)[source]

Multiply f by c(x_2..x_u)*x_0**i in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1700,7 +1700,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_add_ground(f, c, u, K)[source]

Add an element of the ground domain to f.

Examples

>>> from sympy.polys import ring, ZZ
@@ -1715,7 +1715,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_sub_ground(f, c, u, K)[source]

Subtract an element of the ground domain from f.

Examples

>>> from sympy.polys import ring, ZZ
@@ -1730,7 +1730,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_mul_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_mul_ground(f, c, u, K)[source]

Multiply f by a constant value in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1745,7 +1745,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_quo_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_quo_ground(f, c, u, K)[source]

Quotient by a constant in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -1765,7 +1765,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)[source]
+sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)[source]

Exact quotient by a constant in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -1780,7 +1780,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dup_lshift(f, n, K)[source]
+sympy.polys.densearith.dup_lshift(f, n, K)[source]

Efficiently multiply f by x**n in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1795,7 +1795,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dup_rshift(f, n, K)[source]
+sympy.polys.densearith.dup_rshift(f, n, K)[source]

Efficiently divide f by x**n in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1812,7 +1812,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_abs(f, u, K)[source]
+sympy.polys.densearith.dmp_abs(f, u, K)[source]

Make all coefficients positive in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1827,7 +1827,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_neg(f, u, K)[source]
+sympy.polys.densearith.dmp_neg(f, u, K)[source]

Negate a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1842,7 +1842,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add(f, g, u, K)[source]
+sympy.polys.densearith.dmp_add(f, g, u, K)[source]

Add dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1857,7 +1857,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub(f, g, u, K)[source]
+sympy.polys.densearith.dmp_sub(f, g, u, K)[source]

Subtract dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1872,7 +1872,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)[source]
+sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)[source]

Returns f + g*h where f, g, h are in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1887,7 +1887,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)[source]
+sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)[source]

Returns f - g*h where f, g, h are in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1902,7 +1902,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_mul(f, g, u, K)[source]
+sympy.polys.densearith.dmp_mul(f, g, u, K)[source]

Multiply dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1917,7 +1917,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_sqr(f, u, K)[source]
+sympy.polys.densearith.dmp_sqr(f, u, K)[source]

Square dense polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1932,7 +1932,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pow(f, n, u, K)[source]
+sympy.polys.densearith.dmp_pow(f, n, u, K)[source]

Raise f to the n-th power in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1947,7 +1947,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pdiv(f, g, u, K)[source]
+sympy.polys.densearith.dmp_pdiv(f, g, u, K)[source]

Polynomial pseudo-division in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1962,7 +1962,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_prem(f, g, u, K)[source]
+sympy.polys.densearith.dmp_prem(f, g, u, K)[source]

Polynomial pseudo-remainder in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -1977,7 +1977,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pquo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_pquo(f, g, u, K)[source]

Polynomial exact pseudo-quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2001,7 +2001,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_pexquo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_pexquo(f, g, u, K)[source]

Polynomial pseudo-quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2027,7 +2027,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_rr_div(f, g, u, K)[source]
+sympy.polys.densearith.dmp_rr_div(f, g, u, K)[source]

Multivariate division with remainder over a ring.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2042,7 +2042,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_ff_div(f, g, u, K)[source]
+sympy.polys.densearith.dmp_ff_div(f, g, u, K)[source]

Polynomial division with remainder over a field.

Examples

>>> from sympy.polys import ring, QQ
@@ -2057,7 +2057,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_div(f, g, u, K)[source]
+sympy.polys.densearith.dmp_div(f, g, u, K)[source]

Polynomial division with remainder in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2077,7 +2077,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_rem(f, g, u, K)[source]
+sympy.polys.densearith.dmp_rem(f, g, u, K)[source]

Returns polynomial remainder in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2097,7 +2097,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_quo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_quo(f, g, u, K)[source]

Returns exact polynomial quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2117,7 +2117,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_exquo(f, g, u, K)[source]
+sympy.polys.densearith.dmp_exquo(f, g, u, K)[source]

Returns polynomial quotient in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2143,7 +2143,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_max_norm(f, u, K)[source]
+sympy.polys.densearith.dmp_max_norm(f, u, K)[source]

Returns maximum norm of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2158,7 +2158,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_l1_norm(f, u, K)[source]
+sympy.polys.densearith.dmp_l1_norm(f, u, K)[source]

Returns l1 norm of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2173,7 +2173,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densearith.dmp_expand(polys, u, K)[source]
+sympy.polys.densearith.dmp_expand(polys, u, K)[source]

Multiply together several polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2189,7 +2189,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_integrate(f, m, u, K)[source]
+sympy.polys.densetools.dmp_integrate(f, m, u, K)[source]

Computes the indefinite integral of f in x_0 in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -2206,7 +2206,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_integrate_in(f, m, j, u, K)[source]
+sympy.polys.densetools.dmp_integrate_in(f, m, j, u, K)[source]

Computes the indefinite integral of f in x_j in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -2223,7 +2223,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_diff(f, m, u, K)[source]
+sympy.polys.densetools.dmp_diff(f, m, u, K)[source]

m-th order derivative in x_0 of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2243,7 +2243,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)[source]
+sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)[source]

m-th order derivative in x_j of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2263,7 +2263,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_eval(f, a, u, K)[source]
+sympy.polys.densetools.dmp_eval(f, a, u, K)[source]

Evaluate a polynomial at x_0 = a in K[X] using the Horner scheme.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2278,7 +2278,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)[source]
+sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)[source]

Evaluate a polynomial at x_j = a in K[X] using the Horner scheme.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2298,7 +2298,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_eval_tail(f, A, u, K)[source]
+sympy.polys.densetools.dmp_eval_tail(f, A, u, K)[source]

Evaluate a polynomial at x_j = a_j, ... in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2318,7 +2318,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)[source]
+sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)[source]

Differentiate and evaluate a polynomial in x_j at a in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2338,7 +2338,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_trunc(f, p, u, K)[source]
+sympy.polys.densetools.dmp_trunc(f, p, u, K)[source]

Reduce a K[X] polynomial modulo a polynomial p in K[Y].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2357,7 +2357,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)[source]
+sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)[source]

Reduce a K[X] polynomial modulo a constant p in K.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2375,7 +2375,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_monic(f, K)[source]
+sympy.polys.densetools.dup_monic(f, K)[source]

Divide all coefficients by LC(f) in K[x].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2395,7 +2395,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_monic(f, u, K)[source]
+sympy.polys.densetools.dmp_ground_monic(f, u, K)[source]

Divide all coefficients by LC(f) in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2421,7 +2421,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_content(f, K)[source]
+sympy.polys.densetools.dup_content(f, K)[source]

Compute the GCD of coefficients of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2447,7 +2447,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_content(f, u, K)[source]
+sympy.polys.densetools.dmp_ground_content(f, u, K)[source]

Compute the GCD of coefficients of f in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2473,7 +2473,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_primitive(f, K)[source]
+sympy.polys.densetools.dup_primitive(f, K)[source]

Compute content and the primitive form of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2499,7 +2499,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_primitive(f, u, K)[source]
+sympy.polys.densetools.dmp_ground_primitive(f, u, K)[source]

Compute content and the primitive form of f in K[X].

Examples

>>> from sympy.polys import ring, ZZ, QQ
@@ -2525,7 +2525,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_extract(f, g, K)[source]
+sympy.polys.densetools.dup_extract(f, g, K)[source]

Extract common content from a pair of polynomials in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2540,7 +2540,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_ground_extract(f, g, u, K)[source]
+sympy.polys.densetools.dmp_ground_extract(f, g, u, K)[source]

Extract common content from a pair of polynomials in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2555,7 +2555,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_real_imag(f, K)[source]
+sympy.polys.densetools.dup_real_imag(f, K)[source]

Find f1 and f2, such that f(x+I*y) = f1(x,y) + f2(x,y)*I.

Examples

>>> from sympy.polys import ring, ZZ
@@ -2576,7 +2576,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_mirror(f, K)[source]
+sympy.polys.densetools.dup_mirror(f, K)[source]

Evaluate efficiently the composition f(-x) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2591,7 +2591,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_scale(f, a, K)[source]
+sympy.polys.densetools.dup_scale(f, a, K)[source]

Evaluate efficiently composition f(a*x) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2606,7 +2606,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_shift(f, a, K)[source]
+sympy.polys.densetools.dup_shift(f, a, K)[source]

Evaluate efficiently Taylor shift f(x + a) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2621,7 +2621,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_transform(f, p, q, K)[source]
+sympy.polys.densetools.dup_transform(f, p, q, K)[source]

Evaluate functional transformation q**n * f(p/q) in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2636,7 +2636,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_compose(f, g, u, K)[source]
+sympy.polys.densetools.dmp_compose(f, g, u, K)[source]

Evaluate functional composition f(g) in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2651,7 +2651,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_decompose(f, K)[source]
+sympy.polys.densetools.dup_decompose(f, K)[source]

Computes functional decomposition of f in K[x].

Given a univariate polynomial f with coefficients in a field of characteristic zero, returns list [f_1, f_2, ..., f_n], where:

@@ -2688,7 +2688,7 @@

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_lift(f, u, K)[source]
+sympy.polys.densetools.dmp_lift(f, u, K)[source]

Convert algebraic coefficients to integers in K[X].

Examples

>>> from sympy.polys import ring, QQ
@@ -2710,7 +2710,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dup_sign_variations(f, K)[source]
+sympy.polys.densetools.dup_sign_variations(f, K)[source]

Compute the number of sign variations of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -2725,7 +2725,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)[source]
+sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)[source]

Clear denominators, i.e. transform K_0 to K_1.

Examples

>>> from sympy.polys import ring, QQ
@@ -2745,7 +2745,7 @@ 

Manipulation of dense, multivariate polynomials
-sympy.polys.densetools.dmp_revert(f, g, u, K)[source]
+sympy.polys.densetools.dmp_revert(f, g, u, K)[source]

Compute f**(-1) mod x**n using Newton iteration.

Examples

>>> from sympy.polys import ring, QQ
@@ -2765,7 +2765,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients fields.

-sympy.polys.galoistools.gf_crt(U, M, K=None)[source]
+sympy.polys.galoistools.gf_crt(U, M, K=None)[source]

Chinese Remainder Theorem.

Given a set of integer residues u_0,...,u_n and a set of co-prime integer moduli m_0,...,m_n, returns an integer @@ -2798,7 +2798,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_crt1(M, K)[source]
+sympy.polys.galoistools.gf_crt1(M, K)[source]

First part of the Chinese Remainder Theorem.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2839,7 +2839,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)[source]
+sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)[source]

Second part of the Chinese Remainder Theorem.

See gf_crt1 for usage.

Examples

@@ -2870,7 +2870,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_int(a, p)[source]
+sympy.polys.galoistools.gf_int(a, p)[source]

Coerce a mod p to an integer in the range [-p/2, p/2].

Examples

>>> from sympy.polys.galoistools import gf_int
@@ -2886,7 +2886,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_degree(f)[source]
+sympy.polys.galoistools.gf_degree(f)[source]

Return the leading degree of f.

Examples

>>> from sympy.polys.galoistools import gf_degree
@@ -2902,7 +2902,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_LC(f, K)[source]
+sympy.polys.galoistools.gf_LC(f, K)[source]

Return the leading coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2917,7 +2917,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_TC(f, K)[source]
+sympy.polys.galoistools.gf_TC(f, K)[source]

Return the trailing coefficient of f.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2932,7 +2932,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_strip(f)[source]
+sympy.polys.galoistools.gf_strip(f)[source]

Remove leading zeros from f.

Examples

>>> from sympy.polys.galoistools import gf_strip
@@ -2946,7 +2946,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_trunc(f, p)[source]
+sympy.polys.galoistools.gf_trunc(f, p)[source]

Reduce all coefficients modulo p.

Examples

>>> from sympy.polys.galoistools import gf_trunc
@@ -2960,7 +2960,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_normal(f, p, K)[source]
+sympy.polys.galoistools.gf_normal(f, p, K)[source]

Normalize all coefficients in K.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2975,7 +2975,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_from_dict(f, p, K)[source]
+sympy.polys.galoistools.gf_from_dict(f, p, K)[source]

Create a GF(p)[x] polynomial from a dict.

Examples

>>> from sympy.polys.domains import ZZ
@@ -2990,7 +2990,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)[source]
+sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)[source]

Convert a GF(p)[x] polynomial to a dict.

Examples

>>> from sympy.polys.galoistools import gf_to_dict
@@ -3006,7 +3006,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_from_int_poly(f, p)[source]
+sympy.polys.galoistools.gf_from_int_poly(f, p)[source]

Create a GF(p)[x] polynomial from Z[x].

Examples

>>> from sympy.polys.galoistools import gf_from_int_poly
@@ -3020,7 +3020,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)[source]
+sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)[source]

Convert a GF(p)[x] polynomial to Z[x].

Examples

>>> from sympy.polys.galoistools import gf_to_int_poly
@@ -3036,7 +3036,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_neg(f, p, K)[source]
+sympy.polys.galoistools.gf_neg(f, p, K)[source]

Negate a polynomial in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3051,7 +3051,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_add_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_add_ground(f, a, p, K)[source]

Compute f + a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3066,7 +3066,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sub_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_sub_ground(f, a, p, K)[source]

Compute f - a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3081,7 +3081,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_mul_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_mul_ground(f, a, p, K)[source]

Compute f * a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3096,7 +3096,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_quo_ground(f, a, p, K)[source]
+sympy.polys.galoistools.gf_quo_ground(f, a, p, K)[source]

Compute f/a where f in GF(p)[x] and a in GF(p).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3111,7 +3111,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_add(f, g, p, K)[source]
+sympy.polys.galoistools.gf_add(f, g, p, K)[source]

Add polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3126,7 +3126,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sub(f, g, p, K)[source]
+sympy.polys.galoistools.gf_sub(f, g, p, K)[source]

Subtract polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3141,7 +3141,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_mul(f, g, p, K)[source]
+sympy.polys.galoistools.gf_mul(f, g, p, K)[source]

Multiply polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3156,7 +3156,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqr(f, p, K)[source]
+sympy.polys.galoistools.gf_sqr(f, p, K)[source]

Square polynomials in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3171,7 +3171,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)[source]
+sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)[source]

Returns f + g*h where f, g, h in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3184,7 +3184,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)[source]
+sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)[source]

Compute f - g*h where f, g, h in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3199,7 +3199,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_expand(F, p, K)[source]
+sympy.polys.galoistools.gf_expand(F, p, K)[source]

Expand results of factor() in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3214,7 +3214,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_div(f, g, p, K)[source]
+sympy.polys.galoistools.gf_div(f, g, p, K)[source]

Division with remainder in GF(p)[x].

Given univariate polynomials f and g with coefficients in a finite field with p elements, returns polynomials q and r @@ -3247,7 +3247,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_rem(f, g, p, K)[source]
+sympy.polys.galoistools.gf_rem(f, g, p, K)[source]

Compute polynomial remainder in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3262,7 +3262,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_quo(f, g, p, K)[source]
+sympy.polys.galoistools.gf_quo(f, g, p, K)[source]

Compute exact quotient in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3279,7 +3279,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_exquo(f, g, p, K)[source]
+sympy.polys.galoistools.gf_exquo(f, g, p, K)[source]

Compute polynomial quotient in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3300,7 +3300,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_lshift(f, n, K)[source]
+sympy.polys.galoistools.gf_lshift(f, n, K)[source]

Efficiently multiply f by x**n.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3315,7 +3315,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_rshift(f, n, K)[source]
+sympy.polys.galoistools.gf_rshift(f, n, K)[source]

Efficiently divide f by x**n.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3330,7 +3330,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_pow(f, n, p, K)[source]
+sympy.polys.galoistools.gf_pow(f, n, p, K)[source]

Compute f**n in GF(p)[x] using repeated squaring.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3345,7 +3345,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)[source]
+sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)[source]

Compute f**n in GF(p)[x]/(g) using repeated squaring.

Given polynomials f and g in GF(p)[x] and a non-negative integer n, efficiently computes f**n (mod g) i.e. the remainder @@ -3370,7 +3370,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_gcd(f, g, p, K)[source]
+sympy.polys.galoistools.gf_gcd(f, g, p, K)[source]

Euclidean Algorithm in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3385,7 +3385,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_lcm(f, g, p, K)[source]
+sympy.polys.galoistools.gf_lcm(f, g, p, K)[source]

Compute polynomial LCM in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3400,7 +3400,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_cofactors(f, g, p, K)[source]
+sympy.polys.galoistools.gf_cofactors(f, g, p, K)[source]

Compute polynomial GCD and cofactors in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3415,7 +3415,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_gcdex(f, g, p, K)[source]
+sympy.polys.galoistools.gf_gcdex(f, g, p, K)[source]

Extended Euclidean Algorithm in GF(p)[x].

Given polynomials f and g in GF(p)[x], computes polynomials s, t and h, such that h = gcd(f, g) and s*f + t*g = h. @@ -3450,7 +3450,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_monic(f, p, K)[source]
+sympy.polys.galoistools.gf_monic(f, p, K)[source]

Compute LC and a monic polynomial in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3465,7 +3465,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_diff(f, p, K)[source]
+sympy.polys.galoistools.gf_diff(f, p, K)[source]

Differentiate polynomial in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3480,7 +3480,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_eval(f, a, p, K)[source]
+sympy.polys.galoistools.gf_eval(f, a, p, K)[source]

Evaluate f(a) in GF(p) using Horner scheme.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3495,7 +3495,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_multi_eval(f, A, p, K)[source]
+sympy.polys.galoistools.gf_multi_eval(f, A, p, K)[source]

Evaluate f(a) for a in [a_1, ..., a_n].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3510,7 +3510,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_compose(f, g, p, K)[source]
+sympy.polys.galoistools.gf_compose(f, g, p, K)[source]

Compute polynomial composition f(g) in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3525,7 +3525,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)[source]
+sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)[source]

Compute polynomial composition g(h) in GF(p)[x]/(f).

Examples

>>> from sympy.polys.domains import ZZ
@@ -3540,7 +3540,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)[source]
+sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)[source]

Compute polynomial trace map in GF(p)[x]/(f).

Given a polynomial f in GF(p)[x], polynomials a, b, c in the quotient ring GF(p)[x]/(f) such that b = c**t @@ -3573,7 +3573,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_random(n, p, K)[source]
+sympy.polys.galoistools.gf_random(n, p, K)[source]

Generate a random polynomial in GF(p)[x] of degree n.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3586,7 +3586,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_irreducible(n, p, K)[source]
+sympy.polys.galoistools.gf_irreducible(n, p, K)[source]

Generate random irreducible polynomial of degree n in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3599,7 +3599,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_irreducible_p(f, p, K)[source]
+sympy.polys.galoistools.gf_irreducible_p(f, p, K)[source]

Test irreducibility of a polynomial f in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3616,7 +3616,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqf_p(f, p, K)[source]
+sympy.polys.galoistools.gf_sqf_p(f, p, K)[source]

Return True if f is square-free in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3633,7 +3633,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqf_part(f, p, K)[source]
+sympy.polys.galoistools.gf_sqf_part(f, p, K)[source]

Return square-free part of a GF(p)[x] polynomial.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3648,7 +3648,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)[source]
+sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)[source]

Return the square-free decomposition of a GF(p)[x] polynomial.

Given a polynomial f in GF(p)[x], returns the leading coefficient of f and a square-free decomposition f_1**e_1 f_2**e_2 ... f_k**e_k @@ -3693,7 +3693,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_Qmatrix(f, p, K)[source]
+sympy.polys.galoistools.gf_Qmatrix(f, p, K)[source]

Calculate Berlekamp’s Q matrix.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3716,7 +3716,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_Qbasis(Q, p, K)[source]
+sympy.polys.galoistools.gf_Qbasis(Q, p, K)[source]

Compute a basis of the kernel of Q.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3735,7 +3735,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_berlekamp(f, p, K)[source]
+sympy.polys.galoistools.gf_berlekamp(f, p, K)[source]

Factor a square-free f in GF(p)[x] for small p.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3750,7 +3750,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_zassenhaus(f, p, K)[source]
+sympy.polys.galoistools.gf_zassenhaus(f, p, K)[source]

Factor a square-free f in GF(p)[x] for medium p.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3765,7 +3765,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_shoup(f, p, K)[source]
+sympy.polys.galoistools.gf_shoup(f, p, K)[source]

Factor a square-free f in GF(p)[x] for large p.

Examples

>>> from sympy.polys.domains import ZZ
@@ -3780,7 +3780,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)[source]
+sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)[source]

Factor a square-free polynomial f in GF(p)[x].

Examples

>>> from sympy.polys.domains import ZZ
@@ -3795,7 +3795,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_factor(f, p, K)[source]
+sympy.polys.galoistools.gf_factor(f, p, K)[source]

Factor (non square-free) polynomials in GF(p)[x].

Given a possibly non square-free polynomial f in GF(p)[x], returns its complete factorization into irreducibles:

@@ -3844,7 +3844,7 @@

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_value(f, a)[source]
+sympy.polys.galoistools.gf_value(f, a)[source]

Value of polynomial ‘f’ at ‘a’ in field R.

Examples

>>> from sympy.polys.galoistools import gf_value
@@ -3858,7 +3858,7 @@ 

Manipulation of dense, univariate polynomials with finite field coefficients
-sympy.polys.galoistools.gf_csolve(f, n)[source]
+sympy.polys.galoistools.gf_csolve(f, n)[source]

To solve f(x) congruent 0 mod(n).

n is divided into canonical factors and f(x) cong 0 mod(p**e) will be solved for each factor. Applying the Chinese Remainder Theorem to the @@ -3904,7 +3904,7 @@

Manipulation of sparse, distributed polynomials and vectors\(f_1, f_2, \ldots\).

-sympy.polys.distributedmodules.sdm_monomial_mul(M, X)[source]
+sympy.polys.distributedmodules.sdm_monomial_mul(M, X)[source]

Multiply tuple X representing a monomial of \(K[X]\) into the tuple M representing a monomial of \(F\).

Examples

@@ -3918,7 +3918,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_monomial_deg(M)[source]
+sympy.polys.distributedmodules.sdm_monomial_deg(M)[source]

Return the total degree of M.

Examples

For example, the total degree of \(x^2 y f_5\) is 3:

@@ -3931,7 +3931,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_monomial_divides(A, B)[source]
+sympy.polys.distributedmodules.sdm_monomial_divides(A, B)[source]

Does there exist a (polynomial) monomial X such that XA = B?

Examples

Positive examples:

@@ -3977,19 +3977,19 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_LC(f, K)[source]
+sympy.polys.distributedmodules.sdm_LC(f, K)[source]

Returns the leading coefficient of f.

-sympy.polys.distributedmodules.sdm_to_dict(f)[source]
+sympy.polys.distributedmodules.sdm_to_dict(f)[source]

Make a dictionary from a distributed polynomial.

-sympy.polys.distributedmodules.sdm_from_dict(d, O)[source]
+sympy.polys.distributedmodules.sdm_from_dict(d, O)[source]

Create an sdm from a dictionary.

Here O is the monomial order to use.

Examples

@@ -4004,7 +4004,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_add(f, g, O, K)[source]
+sympy.polys.distributedmodules.sdm_add(f, g, O, K)[source]

Add two module elements f, g.

Addition is done over the ground field K, monomials are ordered according to O.

@@ -4036,7 +4036,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_LM(f)[source]
+sympy.polys.distributedmodules.sdm_LM(f)[source]

Returns the leading monomial of f.

Only valid if \(f \ne 0\).

Examples

@@ -4051,7 +4051,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_LT(f)[source]
+sympy.polys.distributedmodules.sdm_LT(f)[source]

Returns the leading term of f.

Only valid if \(f \ne 0\).

Examples

@@ -4066,7 +4066,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)[source]
+sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)[source]

Multiply a distributed module element f by a (polynomial) term term.

Multiplication of coefficients is done over the ground field K, and monomials are ordered according to O.

@@ -4098,13 +4098,13 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_zero()[source]
+sympy.polys.distributedmodules.sdm_zero()[source]

Return the zero module element.

-sympy.polys.distributedmodules.sdm_deg(f)[source]
+sympy.polys.distributedmodules.sdm_deg(f)[source]

Degree of f.

This is the maximum of the degrees of all its monomials. Invalid if f is zero.

@@ -4118,7 +4118,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)[source]
+sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)[source]

Create an sdm from an iterable of expressions.

Coefficients are created in the ground field K, and terms are ordered according to monomial order O. Named arguments are passed on to the @@ -4135,7 +4135,7 @@

Manipulation of sparse, distributed polynomials and vectors
-sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)[source]
+sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)[source]

Convert sdm f into a list of polynomial expressions.

The generators for the polynomial ring are specified via gens. The rank of the module is guessed, or passed via n. The ground field is assumed @@ -4209,7 +4209,7 @@

Classical remainder sequence
-sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)[source]

Half extended Euclidean algorithm in \(F[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4220,7 +4220,7 @@ 

Classical remainder sequence
-sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)[source]

Extended Euclidean algorithm in \(F[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4231,7 +4231,7 @@ 

Classical remainder sequence
-sympy.polys.euclidtools.dmp_invert(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_invert(f, g, u, K)[source]

Compute multiplicative inverse of \(f\) modulo \(g\) in \(F[X]\).

Examples

>>> from sympy.polys import ring, QQ
@@ -4242,7 +4242,7 @@ 

Classical remainder sequence
-sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)[source]

Euclidean polynomial remainder sequence (PRS) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4282,7 +4282,7 @@ 

Simplified remainder sequences
-sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)[source]

Primitive polynomial remainder sequence (PRS) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4400,7 +4400,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)[source]

Subresultant PRS algorithm in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4427,7 +4427,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)[source]

Computes subresultant PRS of two polynomials in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4450,7 +4450,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)[source]

Resultant algorithm in \(K[X]\) using subresultant PRS.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4480,7 +4480,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_zz_modular_resultant(f, g, p, u, K)[source]
+sympy.polys.euclidtools.dmp_zz_modular_resultant(f, g, p, u, K)[source]

Compute resultant of \(f\) and \(g\) modulo a prime \(p\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4499,7 +4499,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_zz_collins_resultant(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_zz_collins_resultant(f, g, u, K)[source]

Collins’s modular resultant algorithm in \(Z[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4518,7 +4518,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_qq_collins_resultant(f, g, u, K0)[source]
+sympy.polys.euclidtools.dmp_qq_collins_resultant(f, g, u, K0)[source]

Collins’s modular resultant algorithm in \(Q[X]\).

Examples

>>> from sympy.polys import ring, QQ
@@ -4537,7 +4537,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_resultant(f, g, u, K, includePRS=False)[source]
+sympy.polys.euclidtools.dmp_resultant(f, g, u, K, includePRS=False)[source]

Computes resultant of two polynomials in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4556,7 +4556,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_discriminant(f, u, K)[source]
+sympy.polys.euclidtools.dmp_discriminant(f, u, K)[source]

Computes discriminant of a polynomial in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4571,7 +4571,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_rr_prs_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_rr_prs_gcd(f, g, u, K)[source]

Computes polynomial GCD using subresultants over a ring.

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4592,7 +4592,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)[source]

Computes polynomial GCD using subresultants over a field.

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4613,7 +4613,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)[source]

Heuristic polynomial GCD in \(Z[X]\).

Given univariate polynomials \(f\) and \(g\) in \(Z[X]\), returns their GCD and cofactors, i.e. polynomials h, cff and cfg @@ -4655,7 +4655,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)[source]
+sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)[source]

Heuristic polynomial GCD in \(Q[X]\).

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4676,7 +4676,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)[source]

Computes polynomial GCD and cofactors of \(f\) and \(g\) in \(K[X]\).

Returns (h, cff, cfg) such that a = gcd(f, g), cff = quo(f, h), and cfg = quo(g, h).

@@ -4697,7 +4697,7 @@

Subresultant sequence
-sympy.polys.euclidtools.dmp_gcd(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_gcd(f, g, u, K)[source]

Computes polynomial GCD of \(f\) and \(g\) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4716,7 +4716,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_lcm(f, g, u, K)[source]
+sympy.polys.euclidtools.dmp_lcm(f, g, u, K)[source]

Computes polynomial LCM of \(f\) and \(g\) in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4735,7 +4735,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_content(f, u, K)[source]
+sympy.polys.euclidtools.dmp_content(f, u, K)[source]

Returns GCD of multivariate coefficients.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4750,7 +4750,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_primitive(f, u, K)[source]
+sympy.polys.euclidtools.dmp_primitive(f, u, K)[source]

Returns multivariate content and a primitive polynomial.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4765,7 +4765,7 @@ 

Subresultant sequence
-sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)[source]
+sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)[source]

Cancel common factors in a rational function \(f/g\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -4781,7 +4781,7 @@ 

Subresultant sequencePolynomial factorization in characteristic zero:

-sympy.polys.factortools.dup_trial_division(f, factors, K)[source]
+sympy.polys.factortools.dup_trial_division(f, factors, K)[source]

Determine multiplicities of factors for a univariate polynomial using trial division.

An error will be raised if any factor does not divide f.

@@ -4789,7 +4789,7 @@

Subresultant sequence
-sympy.polys.factortools.dmp_trial_division(f, factors, u, K)[source]
+sympy.polys.factortools.dmp_trial_division(f, factors, u, K)[source]

Determine multiplicities of factors for a multivariate polynomial using trial division.

An error will be raised if any factor does not divide f.

@@ -4797,7 +4797,7 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_mignotte_bound(f, K)[source]
+sympy.polys.factortools.dup_zz_mignotte_bound(f, K)[source]

The Knuth-Cohen variant of Mignotte bound for univariate polynomials in K[x].

Examples

@@ -4833,13 +4833,13 @@

Subresultant sequence
-sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)[source]
+sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)[source]

Mignotte bound for multivariate polynomials in \(K[X]\).

-sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)[source]
+sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)[source]

One step in Hensel lifting in \(Z[x]\).

Given positive integer \(m\) and \(Z[x]\) polynomials \(f\), \(g\), \(h\), \(s\) and \(t\) such that:

@@ -4870,7 +4870,7 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)[source]
+sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)[source]

Multifactor Hensel lifting in \(Z[x]\).

Given a prime \(p\), polynomial \(f\) over \(Z[x]\) such that \(lc(f)\) is a unit modulo \(p\), monic pair-wise coprime polynomials \(f_i\) @@ -4896,19 +4896,19 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_zassenhaus(f, K)[source]
+sympy.polys.factortools.dup_zz_zassenhaus(f, K)[source]

Factor primitive square-free polynomials in \(Z[x]\).

-sympy.polys.factortools.dup_zz_irreducible_p(f, K)[source]
+sympy.polys.factortools.dup_zz_irreducible_p(f, K)[source]

Test irreducibility using Eisenstein’s criterion.

-sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)[source]
+sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)[source]

Efficiently test if f is a cyclotomic polynomial.

Examples

>>> from sympy.polys import ring, ZZ
@@ -4933,13 +4933,13 @@ 

Subresultant sequence
-sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)[source]
+sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)[source]

Efficiently generate n-th cyclotomic polynomial.

-sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)[source]
+sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)[source]

Efficiently factor polynomials \(x**n - 1\) and \(x**n + 1\) in \(Z[x]\).

Given a univariate polynomial \(f\) in \(Z[x]\) returns a list of factors of \(f\), provided that \(f\) is in the form \(x**n - 1\) or \(x**n + 1\) for @@ -4958,13 +4958,13 @@

Subresultant sequence
-sympy.polys.factortools.dup_zz_factor_sqf(f, K)[source]
+sympy.polys.factortools.dup_zz_factor_sqf(f, K)[source]

Factor square-free (non-primitive) polynomials in \(Z[x]\).

-sympy.polys.factortools.dup_zz_factor(f, K)[source]
+sympy.polys.factortools.dup_zz_factor(f, K)[source]

Factor (non square-free) polynomials in \(Z[x]\).

Given a univariate polynomial \(f\) in \(Z[x]\) computes its complete factorization \(f_1, ..., f_n\) into irreducibles over integers:

@@ -5008,43 +5008,43 @@

Subresultant sequence
-sympy.polys.factortools.dmp_zz_wang_non_divisors(E, cs, ct, K)[source]
+sympy.polys.factortools.dmp_zz_wang_non_divisors(E, cs, ct, K)[source]

Wang/EEZ: Compute a set of valid divisors.

-sympy.polys.factortools.dmp_zz_wang_test_points(f, T, ct, A, u, K)[source]
+sympy.polys.factortools.dmp_zz_wang_test_points(f, T, ct, A, u, K)[source]

Wang/EEZ: Test evaluation points for suitability.

-sympy.polys.factortools.dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)[source]
+sympy.polys.factortools.dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)[source]

Wang/EEZ: Compute correct leading coefficients.

-sympy.polys.factortools.dup_zz_diophantine(F, m, p, K)[source]
+sympy.polys.factortools.dup_zz_diophantine(F, m, p, K)[source]

Wang/EEZ: Solve univariate Diophantine equations.

-sympy.polys.factortools.dmp_zz_diophantine(F, c, A, d, p, u, K)[source]
+sympy.polys.factortools.dmp_zz_diophantine(F, c, A, d, p, u, K)[source]

Wang/EEZ: Solve multivariate Diophantine equations.

-sympy.polys.factortools.dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)[source]
+sympy.polys.factortools.dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)[source]

Wang/EEZ: Parallel Hensel lifting algorithm.

-sympy.polys.factortools.dmp_zz_wang(f, u, K, mod=None, seed=None)[source]
+sympy.polys.factortools.dmp_zz_wang(f, u, K, mod=None, seed=None)[source]

Factor primitive square-free polynomials in \(Z[X]\).

Given a multivariate polynomial \(f\) in \(Z[x_1,...,x_n]\), which is primitive and square-free in \(x_1\), computes factorization of \(f\) into @@ -5077,7 +5077,7 @@

Subresultant sequence
-sympy.polys.factortools.dmp_zz_factor(f, u, K)[source]
+sympy.polys.factortools.dmp_zz_factor(f, u, K)[source]

Factor (non square-free) polynomials in \(Z[X]\).

Given a multivariate polynomial \(f\) in \(Z[x]\) computes its complete factorization \(f_1, \dots, f_n\) into irreducibles over integers:

@@ -5115,31 +5115,31 @@

Subresultant sequence
-sympy.polys.factortools.dup_qq_i_factor(f, K0)[source]
+sympy.polys.factortools.dup_qq_i_factor(f, K0)[source]

Factor univariate polynomials into irreducibles in \(QQ_I[x]\).

-sympy.polys.factortools.dup_zz_i_factor(f, K0)[source]
+sympy.polys.factortools.dup_zz_i_factor(f, K0)[source]

Factor univariate polynomials into irreducibles in \(ZZ_I[x]\).

-sympy.polys.factortools.dmp_qq_i_factor(f, u, K0)[source]
+sympy.polys.factortools.dmp_qq_i_factor(f, u, K0)[source]

Factor multivariate polynomials into irreducibles in \(QQ_I[X]\).

-sympy.polys.factortools.dmp_zz_i_factor(f, u, K0)[source]
+sympy.polys.factortools.dmp_zz_i_factor(f, u, K0)[source]

Factor multivariate polynomials into irreducibles in \(ZZ_I[X]\).

-sympy.polys.factortools.dup_ext_factor(f, K)[source]
+sympy.polys.factortools.dup_ext_factor(f, K)[source]

Factor univariate polynomials over algebraic number fields.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Examples

@@ -5199,7 +5199,7 @@

Subresultant sequence
-sympy.polys.factortools.dmp_ext_factor(f, u, K)[source]
+sympy.polys.factortools.dmp_ext_factor(f, u, K)[source]

Factor multivariate polynomials over algebraic number fields.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Examples

@@ -5243,50 +5243,50 @@

Subresultant sequence
-sympy.polys.factortools.dup_gf_factor(f, K)[source]
+sympy.polys.factortools.dup_gf_factor(f, K)[source]

Factor univariate polynomials over finite fields.

-sympy.polys.factortools.dmp_gf_factor(f, u, K)[source]
+sympy.polys.factortools.dmp_gf_factor(f, u, K)[source]

Factor multivariate polynomials over finite fields.

-sympy.polys.factortools.dup_factor_list(f, K0)[source]
+sympy.polys.factortools.dup_factor_list(f, K0)[source]

Factor univariate polynomials into irreducibles in \(K[x]\).

-sympy.polys.factortools.dup_factor_list_include(f, K)[source]
+sympy.polys.factortools.dup_factor_list_include(f, K)[source]

Factor univariate polynomials into irreducibles in \(K[x]\).

-sympy.polys.factortools.dmp_factor_list(f, u, K0)[source]
+sympy.polys.factortools.dmp_factor_list(f, u, K0)[source]

Factor multivariate polynomials into irreducibles in \(K[X]\).

-sympy.polys.factortools.dmp_factor_list_include(f, u, K)[source]
+sympy.polys.factortools.dmp_factor_list_include(f, u, K)[source]

Factor multivariate polynomials into irreducibles in \(K[X]\).

-sympy.polys.factortools.dup_irreducible_p(f, K)[source]
+sympy.polys.factortools.dup_irreducible_p(f, K)[source]

Returns True if a univariate polynomial f has no factors over its domain.

-sympy.polys.factortools.dmp_irreducible_p(f, u, K)[source]
+sympy.polys.factortools.dmp_irreducible_p(f, u, K)[source]

Returns True if a multivariate polynomial f has no factors over its domain.

@@ -5294,7 +5294,7 @@

Subresultant sequenceSquare-free factorization:

-sympy.polys.sqfreetools.dup_sqf_p(f, K)[source]
+sympy.polys.sqfreetools.dup_sqf_p(f, K)[source]

Return True if f is a square-free polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5311,7 +5311,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_p(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_sqf_p(f, u, K)[source]

Return True if f is a square-free polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5328,7 +5328,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dup_sqf_norm(f, K)[source]
+sympy.polys.sqfreetools.dup_sqf_norm(f, K)[source]

Find a shift of \(f\) in \(K[x]\) that has square-free norm.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Returns \((s,g,r)\), such that \(g(x)=f(x-sa)\), \(r(x)=\text{Norm}(g(x))\) and @@ -5390,7 +5390,7 @@

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_norm(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_sqf_norm(f, u, K)[source]

Find a shift of f in K[X] that has square-free norm.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Returns \((s,g,r)\), such that \(g(x_1,x_2,\cdots)=f(x_1-s_1 a, x_2 - s_2 a, @@ -5453,7 +5453,7 @@

Subresultant sequence
-sympy.polys.sqfreetools.dmp_norm(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_norm(f, u, K)[source]

Norm of f in K[X], often not square-free.

The domain \(K\) must be an algebraic number field \(k(a)\) (see QQ<a>).

Examples

@@ -5521,19 +5521,19 @@

Subresultant sequence
-sympy.polys.sqfreetools.dup_gf_sqf_part(f, K)[source]
+sympy.polys.sqfreetools.dup_gf_sqf_part(f, K)[source]

Compute square-free part of f in GF(p)[x].

-sympy.polys.sqfreetools.dmp_gf_sqf_part(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_gf_sqf_part(f, u, K)[source]

Compute square-free part of f in GF(p)[X].

-sympy.polys.sqfreetools.dup_sqf_part(f, K)[source]
+sympy.polys.sqfreetools.dup_sqf_part(f, K)[source]

Returns square-free part of a polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5552,7 +5552,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_part(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_sqf_part(f, u, K)[source]

Returns square-free part of a polynomial in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5567,19 +5567,19 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dup_gf_sqf_list(f, K, all=False)[source]
+sympy.polys.sqfreetools.dup_gf_sqf_list(f, K, all=False)[source]

Compute square-free decomposition of f in GF(p)[x].

-sympy.polys.sqfreetools.dmp_gf_sqf_list(f, u, K, all=False)[source]
+sympy.polys.sqfreetools.dmp_gf_sqf_list(f, u, K, all=False)[source]

Compute square-free decomposition of f in GF(p)[X].

-sympy.polys.sqfreetools.dup_sqf_list(f, K, all=False)[source]
+sympy.polys.sqfreetools.dup_sqf_list(f, K, all=False)[source]

Return square-free decomposition of a polynomial in K[x].

Uses Yun’s algorithm from [Yun76].

Examples

@@ -5613,7 +5613,7 @@

Subresultant sequence
-sympy.polys.sqfreetools.dup_sqf_list_include(f, K, all=False)[source]
+sympy.polys.sqfreetools.dup_sqf_list_include(f, K, all=False)[source]

Return square-free decomposition of a polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5633,7 +5633,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_list(f, u, K, all=False)[source]
+sympy.polys.sqfreetools.dmp_sqf_list(f, u, K, all=False)[source]

Return square-free decomposition of a polynomial in \(K[X]\).

Examples

>>> from sympy.polys import ring, ZZ
@@ -5671,7 +5671,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_sqf_list_include(f, u, K, all=False)[source]
+sympy.polys.sqfreetools.dmp_sqf_list_include(f, u, K, all=False)[source]

Return square-free decomposition of a polynomial in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5691,7 +5691,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dup_gff_list(f, K)[source]
+sympy.polys.sqfreetools.dup_gff_list(f, K)[source]

Compute greatest factorial factorization of f in K[x].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5706,7 +5706,7 @@ 

Subresultant sequence
-sympy.polys.sqfreetools.dmp_gff_list(f, u, K)[source]
+sympy.polys.sqfreetools.dmp_gff_list(f, u, K)[source]

Compute greatest factorial factorization of f in K[X].

Examples

>>> from sympy.polys import ring, ZZ
@@ -5726,7 +5726,7 @@ 

Groebner basis algorithms
-sympy.polys.groebnertools.groebner(seq, ring, method=None)[source]
+sympy.polys.groebnertools.groebner(seq, ring, method=None)[source]

Computes Groebner basis for a set of polynomials in \(K[X]\).

Wrapper around the (default) improved Buchberger and the other algorithms for computing Groebner bases. The choice of algorithm can be changed via @@ -5736,14 +5736,14 @@

Groebner basis algorithms
-sympy.polys.groebnertools.spoly(p1, p2, ring)[source]
+sympy.polys.groebnertools.spoly(p1, p2, ring)[source]

Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 This is the S-poly provided p1 and p2 are monic

-sympy.polys.groebnertools.red_groebner(G, ring)[source]
+sympy.polys.groebnertools.red_groebner(G, ring)[source]

Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216

Selects a subset of generators, that already generate the ideal and computes a reduced Groebner basis for them.

@@ -5751,25 +5751,25 @@

Groebner basis algorithms
-sympy.polys.groebnertools.is_groebner(G, ring)[source]
+sympy.polys.groebnertools.is_groebner(G, ring)[source]

Check if G is a Groebner basis.

-sympy.polys.groebnertools.is_minimal(G, ring)[source]
+sympy.polys.groebnertools.is_minimal(G, ring)[source]

Checks if G is a minimal Groebner basis.

-sympy.polys.groebnertools.is_reduced(G, ring)[source]
+sympy.polys.groebnertools.is_reduced(G, ring)[source]

Checks if G is a reduced Groebner basis.

-sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)[source]
+sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)[source]

Converts the reduced Groebner basis F of a zero-dimensional ideal w.r.t. O_from to a reduced Groebner basis w.r.t. O_to.

@@ -5787,7 +5787,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)[source]
+sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)[source]

Compute the generalized s-polynomial of f and g.

The ground field is assumed to be K, and monomials ordered according to O.

@@ -5815,7 +5815,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_ecart(f)[source]
+sympy.polys.distributedmodules.sdm_ecart(f)[source]

Compute the ecart of f.

This is defined to be the difference of the total degree of \(f\) and the total degree of the leading monomial of \(f\) [SCA, defn 2.3.7].

@@ -5832,7 +5832,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)[source]
+sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)[source]

Compute a weak normal form of f with respect to G and order O.

The ground field is assumed to be K, and monomials ordered according to O.

@@ -5854,7 +5854,7 @@

Groebner basis algorithms
-sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)[source]
+sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)[source]

Compute a minimal standard basis of G with respect to order O.

The algorithm uses a normal form NF, for example sdm_nf_mora. The ground field is assumed to be K, and monomials ordered according @@ -5883,7 +5883,7 @@

Groebner basis algorithmsPoly and public API functions.

-class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)[source]
+class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)[source]

Options manager for polynomial manipulation module.

Examples

>>> from sympy.polys.polyoptions import Options
@@ -5931,7 +5931,7 @@ 

Groebner basis algorithms
-clone(updates={})[source]
+clone(updates={})[source]

Clone self and update specified options.

@@ -5939,7 +5939,7 @@

Groebner basis algorithms
-sympy.polys.polyoptions.build_options(gens, args=None)[source]
+sympy.polys.polyoptions.build_options(gens, args=None)[source]

Construct options from keyword arguments or … options.

@@ -5949,7 +5949,7 @@

Groebner basis algorithms
-sympy.polys.polyconfig.setup(key, value=None)[source]
+sympy.polys.polyconfig.setup(key, value=None)[source]

Assign a value to (or reset) a configuration item.

@@ -5960,123 +5960,123 @@

Exceptions
-class sympy.polys.polyerrors.BasePolynomialError[source]
+class sympy.polys.polyerrors.BasePolynomialError[source]

Base class for polynomial related exceptions.

-class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)[source]
+class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)[source]
-class sympy.polys.polyerrors.OperationNotSupported(poly, func)[source]
+class sympy.polys.polyerrors.OperationNotSupported(poly, func)[source]
-class sympy.polys.polyerrors.HeuristicGCDFailed[source]
+class sympy.polys.polyerrors.HeuristicGCDFailed[source]
-class sympy.polys.polyerrors.HomomorphismFailed[source]
+class sympy.polys.polyerrors.HomomorphismFailed[source]
-class sympy.polys.polyerrors.IsomorphismFailed[source]
+class sympy.polys.polyerrors.IsomorphismFailed[source]
-class sympy.polys.polyerrors.ExtraneousFactors[source]
+class sympy.polys.polyerrors.ExtraneousFactors[source]
-class sympy.polys.polyerrors.EvaluationFailed[source]
+class sympy.polys.polyerrors.EvaluationFailed[source]
-class sympy.polys.polyerrors.RefinementFailed[source]
+class sympy.polys.polyerrors.RefinementFailed[source]
-class sympy.polys.polyerrors.CoercionFailed[source]
+class sympy.polys.polyerrors.CoercionFailed[source]
-class sympy.polys.polyerrors.NotInvertible[source]
+class sympy.polys.polyerrors.NotInvertible[source]
-class sympy.polys.polyerrors.NotReversible[source]
+class sympy.polys.polyerrors.NotReversible[source]
-class sympy.polys.polyerrors.NotAlgebraic[source]
+class sympy.polys.polyerrors.NotAlgebraic[source]
-class sympy.polys.polyerrors.DomainError[source]
+class sympy.polys.polyerrors.DomainError[source]
-class sympy.polys.polyerrors.PolynomialError[source]
+class sympy.polys.polyerrors.PolynomialError[source]
-class sympy.polys.polyerrors.UnificationFailed[source]
+class sympy.polys.polyerrors.UnificationFailed[source]
-class sympy.polys.polyerrors.GeneratorsNeeded[source]
+class sympy.polys.polyerrors.GeneratorsNeeded[source]
-class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)[source]
+class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)[source]
-class sympy.polys.polyerrors.GeneratorsError[source]
+class sympy.polys.polyerrors.GeneratorsError[source]
-class sympy.polys.polyerrors.UnivariatePolynomialError[source]
+class sympy.polys.polyerrors.UnivariatePolynomialError[source]
-class sympy.polys.polyerrors.MultivariatePolynomialError[source]
+class sympy.polys.polyerrors.MultivariatePolynomialError[source]
-class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)[source]
+class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)[source]
-class sympy.polys.polyerrors.OptionError[source]
+class sympy.polys.polyerrors.OptionError[source]
-class sympy.polys.polyerrors.FlagError[source]
+class sympy.polys.polyerrors.FlagError[source]
@@ -6086,7 +6086,7 @@

Reference

-sympy.polys.modulargcd.modgcd_univariate(f, g)[source]
+sympy.polys.modulargcd.modgcd_univariate(f, g)[source]

Computes the GCD of two polynomials in \(\mathbb{Z}[x]\) using a modular algorithm.

The algorithm computes the GCD of two univariate integer polynomials @@ -6166,7 +6166,7 @@

Modular GCD
-sympy.polys.modulargcd.modgcd_bivariate(f, g)[source]
+sympy.polys.modulargcd.modgcd_bivariate(f, g)[source]

Computes the GCD of two polynomials in \(\mathbb{Z}[x, y]\) using a modular algorithm.

The algorithm computes the GCD of two bivariate integer polynomials @@ -6252,7 +6252,7 @@

Modular GCD
-sympy.polys.modulargcd.modgcd_multivariate(f, g)[source]
+sympy.polys.modulargcd.modgcd_multivariate(f, g)[source]

Compute the GCD of two polynomials in \(\mathbb{Z}[x_0, \ldots, x_{k-1}]\) using a modular algorithm.

The algorithm computes the GCD of two multivariate integer polynomials @@ -6353,7 +6353,7 @@

Modular GCDcontbound,

-)[source] +)[source]

Compute the GCD of two polynomials in \(\mathbb{Z}_p[x_0, \ldots, x_{k-1}]\).

The algorithm reduces the problem step by step by evaluating the @@ -6410,7 +6410,7 @@

Modular GCD
-sympy.polys.modulargcd.func_field_modgcd(f, g)[source]
+sympy.polys.modulargcd.func_field_modgcd(f, g)[source]

Compute the GCD of two polynomials \(f\) and \(g\) in \(\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]\) using a modular algorithm.

The algorithm first computes the primitive associate diff --git a/dev/modules/polys/numberfields.html b/dev/modules/polys/numberfields.html index 4bcba516d56..cf41f465042 100644 --- a/dev/modules/polys/numberfields.html +++ b/dev/modules/polys/numberfields.html @@ -926,7 +926,7 @@

Solving the Main Problems

-sympy.polys.numberfields.basis.round_two(T, radicals=None)[source]
+sympy.polys.numberfields.basis.round_two(T, radicals=None)[source]

Zassenhaus’s “Round 2” algorithm.

Parameters:
@@ -1028,7 +1028,7 @@

Prime Decompositionradical=None,

-)[source] +)[source]

Compute the decomposition of rational prime p in a number field.

Parameters:
@@ -1085,11 +1085,11 @@

Prime Decomposition
-class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)[source]
+class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)[source]

A prime ideal in a ring of algebraic integers.

-__init__(ZK, p, alpha, f, e=None)[source]
+__init__(ZK, p, alpha, f, e=None)[source]
Parameters:

ZK : Submodule

@@ -1119,7 +1119,7 @@

Prime Decomposition
-__add__(other)[source]
+__add__(other)[source]

Convert to a Submodule and add to another Submodule.

@@ -1130,7 +1130,7 @@

Prime Decomposition
-__mul__(other)[source]
+__mul__(other)[source]

Convert to a Submodule and multiply by another Submodule or a rational number.

@@ -1141,7 +1141,7 @@

Prime Decomposition
-as_submodule()[source]
+as_submodule()[source]

Represent this prime ideal as a Submodule.

Returns:
@@ -1197,7 +1197,7 @@

Prime Decomposition
-reduce_ANP(a)[source]
+reduce_ANP(a)[source]

Reduce an ANP to a “small representative” modulo this prime ideal.

@@ -1222,7 +1222,7 @@

Prime Decomposition
-reduce_alg_num(a)[source]
+reduce_alg_num(a)[source]

Reduce an AlgebraicNumber to a “small representative” modulo this prime ideal.

@@ -1247,7 +1247,7 @@

Prime Decomposition
-reduce_element(elt)[source]
+reduce_element(elt)[source]

Reduce a PowerBasisElement to a “small representative” modulo this prime ideal.

@@ -1272,7 +1272,7 @@

Prime Decomposition
-repr(field_gen=None, just_gens=False)[source]
+repr(field_gen=None, just_gens=False)[source]

Print a representation of this prime ideal.

Parameters:
@@ -1309,7 +1309,7 @@

Prime Decomposition
-test_factor()[source]
+test_factor()[source]

Compute a test factor for this prime ideal.

Explanation

Write \(\mathfrak{p}\) for this prime ideal, \(p\) for the rational prime @@ -1323,7 +1323,7 @@

Prime Decomposition
-valuation(I)[source]
+valuation(I)[source]

Compute the \(\mathfrak{p}\)-adic valuation of integral ideal I at this prime ideal.

@@ -1344,7 +1344,7 @@

Prime Decomposition

-sympy.polys.numberfields.primes.prime_valuation(I, P)[source]
+sympy.polys.numberfields.primes.prime_valuation(I, P)[source]

Compute the P-adic valuation for an integral ideal I.

Parameters:
@@ -1401,7 +1401,7 @@

Galois Groups**args,

-)[source] +)[source]

Compute the Galois group for polynomials f up to degree 6.

Parameters:
@@ -1521,7 +1521,7 @@

Finding Minimal Polynomialsdomain=None,

-)[source] +)[source]

Computes the minimal polynomial of an algebraic element.

Parameters:
@@ -1587,7 +1587,7 @@

Finding Minimal Polynomialsdomain=None,

-)[source] +)[source]

This is a synonym for minimal_polynomial().

@@ -1625,7 +1625,7 @@

The Subfield Problem
-sympy.polys.numberfields.subfield.field_isomorphism(a, b, *, fast=True)[source]
+sympy.polys.numberfields.subfield.field_isomorphism(a, b, *, fast=True)[source]

Find an embedding of one number field into another.

Parameters:
@@ -1682,7 +1682,7 @@

The Subfield Problempolys=False,

-)[source] +)[source]

Find a single generator for a number field given by several generators.

Parameters:
@@ -1777,7 +1777,7 @@

The Subfield Problemalias=None,

-)[source] +)[source]

Express one algebraic number in the field generated by another.

Parameters:
@@ -2062,7 +2062,7 @@

Module HomomorphismsClass Reference

-class sympy.polys.numberfields.modules.Module[source]
+class sympy.polys.numberfields.modules.Module[source]

Generic finitely-generated module.

This is an abstract base class, and should not be instantiated directly. The two concrete subclasses are PowerBasis and @@ -2075,7 +2075,7 @@

Class ReferencePowerBasis.

-__call__(spec, denom=1)[source]
+__call__(spec, denom=1)[source]

Generate a ModuleElement belonging to this module.

Parameters:
@@ -2119,7 +2119,7 @@

Class Reference
-ancestors(include_self=False)[source]
+ancestors(include_self=False)[source]

Return the list of ancestor modules of this module, from the foundational PowerBasis downward, optionally including self.

@@ -2131,14 +2131,14 @@

Class Reference
-basis_elements()[source]
+basis_elements()[source]

Get list of ModuleElement being the generators of this module.

-element_from_rational(a)[source]
+element_from_rational(a)[source]

Return a ModuleElement representing a rational number.

Parameters:
@@ -2166,19 +2166,19 @@

Class Reference
-endomorphism_ring()[source]
+endomorphism_ring()[source]

Form the EndomorphismRing for this module.

-is_compat_col(col)[source]
+is_compat_col(col)[source]

Say whether col is a suitable column vector for this module.

-mult_tab()[source]
+mult_tab()[source]

Get the multiplication table for this module (if closed under mult).

Returns:
@@ -2221,7 +2221,7 @@

Class Reference
-nearest_common_ancestor(other)[source]
+nearest_common_ancestor(other)[source]

Locate the nearest common ancestor of this module and another.

Returns:
@@ -2253,7 +2253,7 @@

Class Reference
-one()[source]
+one()[source]

Return a ModuleElement representing unity, and belonging to the first ancestor of this module (including itself) that starts with unity.

@@ -2279,7 +2279,7 @@

Class Reference
-power_basis_ancestor()[source]
+power_basis_ancestor()[source]

Return the PowerBasis that is an ancestor of this module.

See also

@@ -2289,7 +2289,7 @@

Class Reference
-represent(elt)[source]
+represent(elt)[source]

Represent a module element as an integer-linear combination over the generators of this module.

@@ -2370,7 +2370,7 @@

Class Reference
-starts_with_unity()[source]
+starts_with_unity()[source]

Say whether the module’s first generator equals unity.

@@ -2384,7 +2384,7 @@

Class Referencehnf_modulus=None,

-)[source] +)[source]

Form the submodule generated by a list of ModuleElement belonging to this module.

@@ -2424,7 +2424,7 @@

Class Reference
-submodule_from_matrix(B, denom=1)[source]
+submodule_from_matrix(B, denom=1)[source]

Form the submodule generated by the elements of this module indicated by the columns of a matrix, with an optional denominator.

@@ -2473,7 +2473,7 @@

Class Reference
-whole_submodule()[source]
+whole_submodule()[source]

Return a submodule equal to this entire module.

Explanation

This is useful when you have a PowerBasis and want to @@ -2483,7 +2483,7 @@

Class Reference
-zero()[source]
+zero()[source]

Return a ModuleElement representing zero.

@@ -2491,11 +2491,11 @@

Class Reference
-class sympy.polys.numberfields.modules.PowerBasis(T)[source]
+class sympy.polys.numberfields.modules.PowerBasis(T)[source]

The module generated by the powers of an algebraic integer.

-__init__(T)[source]
+__init__(T)[source]
Parameters:

T : Poly, AlgebraicField

@@ -2511,19 +2511,19 @@

Class Reference
-element_from_ANP(a)[source]
+element_from_ANP(a)[source]

Convert an ANP into a PowerBasisElement.

-element_from_alg_num(a)[source]
+element_from_alg_num(a)[source]

Convert an AlgebraicNumber into a PowerBasisElement.

-element_from_poly(f)[source]
+element_from_poly(f)[source]

Produce an element of this module, representing f after reduction mod our defining minimal polynomial.

@@ -2538,7 +2538,7 @@

Class Reference
-represent(elt)[source]
+represent(elt)[source]

Represent a module element as an integer-linear combination over the generators of this module.

@@ -2551,7 +2551,7 @@

Class Reference
-class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)[source]
+class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)[source]

A submodule of another module.

@@ -2564,7 +2564,7 @@

Class Referencemult_tab=None,

-)[source] +)[source]
Parameters:

parent : Module

@@ -2621,7 +2621,7 @@

Class Reference
-add(other, hnf=True, hnf_modulus=None)[source]
+add(other, hnf=True, hnf_modulus=None)[source]

Add this Submodule to another.

Parameters:
@@ -2649,21 +2649,21 @@

Class Reference
-basis_element_pullbacks()[source]
+basis_element_pullbacks()[source]

Return list of this submodule’s basis elements as elements of the submodule’s parent module.

-discard_before(r)[source]
+discard_before(r)[source]

Produce a new module by discarding all generators before a given index r.

-mul(other, hnf=True, hnf_modulus=None)[source]
+mul(other, hnf=True, hnf_modulus=None)[source]

Multiply this Submodule by a rational number, a ModuleElement, or another Submodule.

@@ -2696,7 +2696,7 @@

Class Reference
-reduce_element(elt)[source]
+reduce_element(elt)[source]

If this submodule \(B\) has defining matrix \(W\) in square, maximal-rank Hermite normal form, then, given an element \(x\) of the parent module \(A\), we produce an element \(y \in A\) such that \(x - y \in B\), and the @@ -2759,7 +2759,7 @@

Class Reference
-reduced()[source]
+reduced()[source]

Produce a reduced version of this submodule.

Returns:
@@ -2774,7 +2774,7 @@

Class Reference
-represent(elt)[source]
+represent(elt)[source]

Represent a module element as an integer-linear combination over the generators of this module.

@@ -2787,14 +2787,14 @@

Class Reference
-class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)[source]
+class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)[source]

Represents an element of a Module.

NOTE: Should not be constructed directly. Use the __call__() method or the make_mod_elt() factory function instead.

-__init__(module, col, denom=1)[source]
+__init__(module, col, denom=1)[source]
Parameters:

module : Module

@@ -2816,7 +2816,7 @@

Class Reference
-__add__(other)[source]
+__add__(other)[source]

A ModuleElement can be added to a rational number, or to another ModuleElement.

Explanation

@@ -2830,7 +2830,7 @@

Class Reference
-__mul__(other)[source]
+__mul__(other)[source]

A ModuleElement can be multiplied by a rational number, or by another ModuleElement.

Explanation

@@ -2846,7 +2846,7 @@

Class Reference
-__mod__(m)[source]
+__mod__(m)[source]

Reduce this ModuleElement mod a Submodule.

Parameters:
@@ -2877,13 +2877,13 @@

Class Reference
-column(domain=None)[source]
+column(domain=None)[source]

Get a copy of this element’s column, optionally converting to a domain.

-equiv(other)[source]
+equiv(other)[source]

A ModuleElement may test as equivalent to a rational number or another ModuleElement, if they represent the same algebraic number.

@@ -2921,14 +2921,14 @@

Class Referencedenom=1,

-)[source] +)[source]

Make a ModuleElement from a list of ints (instead of a column vector).

-is_compat(other)[source]
+is_compat(other)[source]

Test whether other is another ModuleElement with same module.

@@ -2941,28 +2941,28 @@

Class Reference
-over_power_basis()[source]
+over_power_basis()[source]

Transform into a PowerBasisElement over our PowerBasis ancestor.

-reduced()[source]
+reduced()[source]

Produce a reduced version of this ModuleElement, i.e. one in which the gcd of the denominator together with all numerator coefficients is 1.

-reduced_mod_p(p)[source]
+reduced_mod_p(p)[source]

Produce a version of this ModuleElement in which all numerator coefficients have been reduced mod p.

-to_ancestor(anc)[source]
+to_ancestor(anc)[source]

Transform into a ModuleElement belonging to a given ancestor of this element’s module.

@@ -2974,14 +2974,14 @@

Class Reference
-to_parent()[source]
+to_parent()[source]

Transform into a ModuleElement belonging to the parent of this element’s module.

-unify(other)[source]
+unify(other)[source]

Try to make a compatible pair of ModuleElement, one equivalent to this one, and one equivalent to the other.

@@ -3009,7 +3009,7 @@

Class Reference
-class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)[source]
+class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)[source]

Subclass for ModuleElement instances whose module is a PowerBasis.

@@ -3020,7 +3020,7 @@

Class Reference
-as_expr(x=None)[source]
+as_expr(x=None)[source]

Create a Basic expression from self.

@@ -3042,31 +3042,31 @@

Class Reference
-norm(T=None)[source]
+norm(T=None)[source]

Compute the norm of this number.

-numerator(x=None)[source]
+numerator(x=None)[source]

Obtain the numerator as a polynomial over ZZ.

-poly(x=None)[source]
+poly(x=None)[source]

Obtain the number as a polynomial over QQ.

-to_ANP()[source]
+to_ANP()[source]

Convert to an equivalent ANP.

-to_alg_num()[source]
+to_alg_num()[source]

Try to convert to an equivalent AlgebraicNumber.

Returns:
@@ -3095,7 +3095,7 @@

Class Reference
-sympy.polys.numberfields.modules.make_mod_elt(module, col, denom=1)[source]
+sympy.polys.numberfields.modules.make_mod_elt(module, col, denom=1)[source]

Factory function which builds a ModuleElement, but ensures that it is a PowerBasisElement if the module is a PowerBasis.

@@ -3103,7 +3103,7 @@

Class Reference
-class sympy.polys.numberfields.modules.ModuleHomomorphism(domain, codomain, mapping)[source]
+class sympy.polys.numberfields.modules.ModuleHomomorphism(domain, codomain, mapping)[source]

A homomorphism from one module to another.

@@ -3115,7 +3115,7 @@

Class Referencemapping,

-)[source] +)[source]
Parameters:

domain : Module

@@ -3149,7 +3149,7 @@

Class Reference
-kernel(modulus=None)[source]
+kernel(modulus=None)[source]

Compute a Submodule representing the kernel of this homomorphism.

Parameters:
@@ -3172,7 +3172,7 @@

Class Reference
-matrix(modulus=None)[source]
+matrix(modulus=None)[source]

Compute the matrix of this homomorphism.

Parameters:
@@ -3196,11 +3196,11 @@

Class Reference
-class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)[source]
+class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)[source]

A homomorphism from one module to itself.

-__init__(domain, mapping)[source]
+__init__(domain, mapping)[source]
Parameters:

domain : Module

@@ -3221,12 +3221,12 @@

Class Reference
-class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)[source]
+class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)[source]

An inner endomorphism on a module, i.e. the endomorphism corresponding to multiplication by a fixed element.

-__init__(domain, multiplier)[source]
+__init__(domain, multiplier)[source]
Parameters:

domain : Module

@@ -3245,11 +3245,11 @@

Class Reference
-class sympy.polys.numberfields.modules.EndomorphismRing(domain)[source]
+class sympy.polys.numberfields.modules.EndomorphismRing(domain)[source]

The ring of endomorphisms on a module.

-__init__(domain)[source]
+__init__(domain)[source]
Parameters:

domain : Module

@@ -3262,7 +3262,7 @@

Class Reference
-inner_endomorphism(multiplier)[source]
+inner_endomorphism(multiplier)[source]

Form an inner endomorphism belonging to this endomorphism ring.

Parameters:
@@ -3279,7 +3279,7 @@

Class Reference
-represent(element)[source]
+represent(element)[source]

Represent an element of this endomorphism ring, as a single column vector.

@@ -3361,7 +3361,7 @@

Class Reference
-sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)[source]
+sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)[source]

Find a polynomial of least degree (not necessarily irreducible) satisfied by an element of a finitely-generated ring with unity.

@@ -3437,7 +3437,7 @@

Class Reference

-sympy.polys.numberfields.utilities.is_rat(c)[source]
+sympy.polys.numberfields.utilities.is_rat(c)[source]

Test whether an argument is of an acceptable type to be used as a rational number.

Explanation

@@ -3450,7 +3450,7 @@

Utilities
-sympy.polys.numberfields.utilities.is_int(c)[source]
+sympy.polys.numberfields.utilities.is_int(c)[source]

Test whether an argument is of an acceptable type to be used as an integer.

Explanation

Returns True on any argument of type int or ZZ.

@@ -3462,7 +3462,7 @@

Utilities
-sympy.polys.numberfields.utilities.get_num_denom(c)[source]
+sympy.polys.numberfields.utilities.get_num_denom(c)[source]

Given any argument on which is_rat() is True, return the numerator and denominator of this number.

@@ -3473,7 +3473,7 @@

Utilities
-sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)[source]
+sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)[source]

Extract a fundamental discriminant from an integer a.

Parameters:
@@ -3522,7 +3522,7 @@

Utilities
-class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)[source]
+class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)[source]

Compute the powers of an algebraic integer.

Explanation

Given an algebraic integer \(\theta\) by its monic irreducible polynomial @@ -3556,7 +3556,7 @@

Utilities
-__init__(T, modulus=None)[source]
+__init__(T, modulus=None)[source]
Parameters:

T : Poly

@@ -3576,7 +3576,7 @@

Utilities +sympy.polys.numberfields.utilities.coeff_search(m, R)[source]

Generate coefficients for searching through polynomials.

Parameters:
@@ -3613,7 +3613,7 @@

Utilities
-sympy.polys.numberfields.utilities.supplement_a_subspace(M)[source]
+sympy.polys.numberfields.utilities.supplement_a_subspace(M)[source]

Extend a basis for a subspace to a basis for the whole space.

Parameters:
@@ -3679,7 +3679,7 @@

Utilities
-sympy.polys.numberfields.utilities.isolate(alg, eps=None, fast=False)[source]
+sympy.polys.numberfields.utilities.isolate(alg, eps=None, fast=False)[source]

Find a rational isolating interval for a real algebraic number.

Parameters:
diff --git a/dev/modules/polys/reference.html b/dev/modules/polys/reference.html index 1fe5d727b5b..47deed65723 100644 --- a/dev/modules/polys/reference.html +++ b/dev/modules/polys/reference.html @@ -810,7 +810,7 @@
Documentation Version

Basic polynomial manipulation functions

-sympy.polys.polytools.poly(expr, *gens, **args)[source]
+sympy.polys.polytools.poly(expr, *gens, **args)[source]

Efficiently transform an expression into a polynomial.

Examples

>>> from sympy import poly
@@ -825,19 +825,19 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]
+sympy.polys.polytools.poly_from_expr(expr, *gens, **args)[source]

Construct a polynomial from an expression.

-sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]
+sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)[source]

Construct polynomials from expressions.

-sympy.polys.polytools.degree(f, gen=0)[source]
+sympy.polys.polytools.degree(f, gen=0)[source]

Return the degree of f in the given variable.

The degree of 0 is negative infinity.

Examples

@@ -861,7 +861,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.degree_list(f, *gens, **args)[source]
+sympy.polys.polytools.degree_list(f, *gens, **args)[source]

Return a list of degrees of f in all variables.

Examples

>>> from sympy import degree_list
@@ -876,7 +876,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.LC(f, *gens, **args)[source]
+sympy.polys.polytools.LC(f, *gens, **args)[source]

Return the leading coefficient of f.

Examples

>>> from sympy import LC
@@ -891,7 +891,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.LM(f, *gens, **args)[source]
+sympy.polys.polytools.LM(f, *gens, **args)[source]

Return the leading monomial of f.

Examples

>>> from sympy import LM
@@ -906,7 +906,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.LT(f, *gens, **args)[source]
+sympy.polys.polytools.LT(f, *gens, **args)[source]

Return the leading term of f.

Examples

>>> from sympy import LT
@@ -921,7 +921,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]
+sympy.polys.polytools.pdiv(f, g, *gens, **args)[source]

Compute polynomial pseudo-division of f and g.

Examples

>>> from sympy import pdiv
@@ -936,7 +936,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.prem(f, g, *gens, **args)[source]
+sympy.polys.polytools.prem(f, g, *gens, **args)[source]

Compute polynomial pseudo-remainder of f and g.

Examples

>>> from sympy import prem
@@ -951,7 +951,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.pquo(f, g, *gens, **args)[source]
+sympy.polys.polytools.pquo(f, g, *gens, **args)[source]

Compute polynomial pseudo-quotient of f and g.

Examples

>>> from sympy import pquo
@@ -968,7 +968,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]
+sympy.polys.polytools.pexquo(f, g, *gens, **args)[source]

Compute polynomial exact pseudo-quotient of f and g.

Examples

>>> from sympy import pexquo
@@ -989,7 +989,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.div(f, g, *gens, **args)[source]
+sympy.polys.polytools.div(f, g, *gens, **args)[source]

Compute polynomial division of f and g.

Examples

>>> from sympy import div, ZZ, QQ
@@ -1006,7 +1006,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.rem(f, g, *gens, **args)[source]
+sympy.polys.polytools.rem(f, g, *gens, **args)[source]

Compute polynomial remainder of f and g.

Examples

>>> from sympy import rem, ZZ, QQ
@@ -1023,7 +1023,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.quo(f, g, *gens, **args)[source]
+sympy.polys.polytools.quo(f, g, *gens, **args)[source]

Compute polynomial quotient of f and g.

Examples

>>> from sympy import quo
@@ -1040,7 +1040,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.exquo(f, g, *gens, **args)[source]
+sympy.polys.polytools.exquo(f, g, *gens, **args)[source]

Compute polynomial exact quotient of f and g.

Examples

>>> from sympy import exquo
@@ -1061,7 +1061,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]
+sympy.polys.polytools.half_gcdex(f, g, *gens, **args)[source]

Half extended Euclidean algorithm of f and g.

Returns (s, h) such that h = gcd(f, g) and s*f = h (mod g).

Examples

@@ -1077,7 +1077,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]
+sympy.polys.polytools.gcdex(f, g, *gens, **args)[source]

Extended Euclidean algorithm of f and g.

Returns (s, t, h) such that h = gcd(f, g) and s*f + t*g = h.

Examples

@@ -1093,7 +1093,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.invert(f, g, *gens, **args)[source]
+sympy.polys.polytools.invert(f, g, *gens, **args)[source]

Invert f modulo g when possible.

Examples

>>> from sympy import invert, S, mod_inverse
@@ -1126,7 +1126,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]
+sympy.polys.polytools.subresultants(f, g, *gens, **args)[source]

Compute subresultant PRS of f and g.

Examples

>>> from sympy import subresultants
@@ -1141,7 +1141,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]
+sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)[source]

Compute resultant of f and g.

Examples

>>> from sympy import resultant
@@ -1156,7 +1156,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.discriminant(f, *gens, **args)[source]
+sympy.polys.polytools.discriminant(f, *gens, **args)[source]

Compute discriminant of f.

Examples

>>> from sympy import discriminant
@@ -1171,7 +1171,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]
+sympy.polys.polytools.terms_gcd(f, *gens, **args)[source]

Remove GCD of terms from f.

If the deep flag is True, then the arguments of f will have terms_gcd applied to them.

@@ -1234,7 +1234,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]
+sympy.polys.polytools.cofactors(f, g, *gens, **args)[source]

Compute GCD and cofactors of f and g.

Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors @@ -1252,7 +1252,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]
+sympy.polys.polytools.gcd(f, g=None, *gens, **args)[source]

Compute GCD of f and g.

Examples

>>> from sympy import gcd
@@ -1267,7 +1267,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]
+sympy.polys.polytools.gcd_list(seq, *gens, **args)[source]

Compute GCD of a list of polynomials.

Examples

>>> from sympy import gcd_list
@@ -1282,7 +1282,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]
+sympy.polys.polytools.lcm(f, g=None, *gens, **args)[source]

Compute LCM of f and g.

Examples

>>> from sympy import lcm
@@ -1297,7 +1297,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]
+sympy.polys.polytools.lcm_list(seq, *gens, **args)[source]

Compute LCM of a list of polynomials.

Examples

>>> from sympy import lcm_list
@@ -1312,7 +1312,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.trunc(f, p, *gens, **args)[source]
+sympy.polys.polytools.trunc(f, p, *gens, **args)[source]

Reduce f modulo a constant p.

Examples

>>> from sympy import trunc
@@ -1327,7 +1327,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.monic(f, *gens, **args)[source]
+sympy.polys.polytools.monic(f, *gens, **args)[source]

Divide all coefficients of f by LC(f).

Examples

>>> from sympy import monic
@@ -1342,7 +1342,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.content(f, *gens, **args)[source]
+sympy.polys.polytools.content(f, *gens, **args)[source]

Compute GCD of coefficients of f.

Examples

>>> from sympy import content
@@ -1357,7 +1357,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.primitive(f, *gens, **args)[source]
+sympy.polys.polytools.primitive(f, *gens, **args)[source]

Compute content and the primitive form of f.

Examples

>>> from sympy.polys.polytools import primitive
@@ -1391,7 +1391,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.compose(f, g, *gens, **args)[source]
+sympy.polys.polytools.compose(f, g, *gens, **args)[source]

Compute functional composition f(g).

Examples

>>> from sympy import compose
@@ -1406,7 +1406,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.decompose(f, *gens, **args)[source]
+sympy.polys.polytools.decompose(f, *gens, **args)[source]

Compute functional decomposition of f.

Examples

>>> from sympy import decompose
@@ -1421,7 +1421,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.sturm(f, *gens, **args)[source]
+sympy.polys.polytools.sturm(f, *gens, **args)[source]

Compute Sturm sequence of f.

Examples

>>> from sympy import sturm
@@ -1436,7 +1436,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.gff_list(f, *gens, **args)[source]
+sympy.polys.polytools.gff_list(f, *gens, **args)[source]

Compute a list of greatest factorial factors of f.

Note that the input to ff() and rf() should be Poly instances to use the definitions here.

@@ -1471,13 +1471,13 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.gff(f, *gens, **args)[source]
+sympy.polys.polytools.gff(f, *gens, **args)[source]

Compute greatest factorial factorization of f.

-sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]
+sympy.polys.polytools.sqf_norm(f, *gens, **args)[source]

Compute square-free norm of f.

Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, @@ -1495,7 +1495,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.sqf_part(f, *gens, **args)[source]
+sympy.polys.polytools.sqf_part(f, *gens, **args)[source]

Compute square-free part of f.

Examples

>>> from sympy import sqf_part
@@ -1510,7 +1510,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.sqf_list(f, *gens, **args)[source]
+sympy.polys.polytools.sqf_list(f, *gens, **args)[source]

Compute a list of square-free factors of f.

Examples

>>> from sympy import sqf_list
@@ -1525,7 +1525,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.sqf(f, *gens, **args)[source]
+sympy.polys.polytools.sqf(f, *gens, **args)[source]

Compute square-free factorization of f.

Examples

>>> from sympy import sqf
@@ -1540,7 +1540,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.factor_list(f, *gens, **args)[source]
+sympy.polys.polytools.factor_list(f, *gens, **args)[source]

Compute a list of irreducible factors of f.

Examples

>>> from sympy import factor_list
@@ -1555,7 +1555,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]
+sympy.polys.polytools.factor(f, *gens, deep=False, **args)[source]

Compute the factorization of expression, f, into irreducibles. (To factor an integer into primes, use factorint.)

There two modes implemented: symbolic and formal. If f is not an @@ -1636,7 +1636,7 @@

Basic polynomial manipulation functionssqf=False,

-)[source] +)[source]

Compute isolating intervals for roots of f.

Examples

>>> from sympy import intervals
@@ -1665,7 +1665,7 @@ 

Basic polynomial manipulation functionscheck_sqf=False,

-)[source] +)[source]

Refine an isolating interval of a root to the given precision.

Examples

>>> from sympy import refine_root
@@ -1680,7 +1680,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]
+sympy.polys.polytools.count_roots(f, inf=None, sup=None)[source]

Return the number of roots of f in [inf, sup] interval.

If one of inf or sup is complex, it will return the number of roots in the complex rectangle with corners at inf and sup.

@@ -1708,7 +1708,7 @@

Basic polynomial manipulation functionsextension=False,

-)[source] +)[source]

Returns the real and complex roots of f with multiplicities.

Parameters:
@@ -1866,7 +1866,7 @@

Basic polynomial manipulation functionsextension=False,

-)[source] +)[source]

Returns the real roots of f with multiplicities.

Parameters:
@@ -2037,7 +2037,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]
+sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)[source]

Compute numerical approximations of roots of f.

Examples

>>> from sympy import nroots
@@ -2054,7 +2054,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.ground_roots(f, *gens, **args)[source]
+sympy.polys.polytools.ground_roots(f, *gens, **args)[source]

Compute roots of f by factorization in the ground domain.

Examples

>>> from sympy import ground_roots
@@ -2069,7 +2069,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]
+sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)[source]

Construct a polynomial with n-th powers of roots of f.

Examples

>>> from sympy import nth_power_roots_poly, factor, roots
@@ -2096,7 +2096,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]
+sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)[source]

Cancel common factors in a rational function f.

Examples

>>> from sympy import cancel, sqrt, Symbol, together
@@ -2122,7 +2122,7 @@ 

Basic polynomial manipulation functions
-sympy.polys.polytools.reduced(f, G, *gens, **args)[source]
+sympy.polys.polytools.reduced(f, G, *gens, **args)[source]

Reduces a polynomial f modulo a set of polynomials G.

Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r @@ -2141,7 +2141,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.groebner(F, *gens, **args)[source]
+sympy.polys.polytools.groebner(F, *gens, **args)[source]

Computes the reduced Groebner basis for a set of polynomials.

Use the order argument to set the monomial ordering that will be used to compute the basis. Allowed orders are lex, grlex and @@ -2190,7 +2190,7 @@

Basic polynomial manipulation functions
-sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]
+sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)[source]

Checks if the ideal generated by a Groebner basis is zero-dimensional.

The algorithm checks if the set of monomials not divisible by the leading monomial of any element of F is bounded.

@@ -2201,7 +2201,7 @@

Basic polynomial manipulation functions
-class sympy.polys.polytools.Poly(rep, *gens, **args)[source]
+class sympy.polys.polytools.Poly(rep, *gens, **args)[source]

Generic class for representing and operating on polynomial expressions.

See Polynomial Manipulation for general documentation.

Poly is a subclass of Basic rather than Expr but instances can be @@ -2248,7 +2248,7 @@

Basic polynomial manipulation functions
-EC(order=None)[source]
+EC(order=None)[source]

Returns the last non-zero coefficient of f.

Examples

>>> from sympy import Poly
@@ -2263,7 +2263,7 @@ 

Basic polynomial manipulation functions
-EM(order=None)[source]
+EM(order=None)[source]

Returns the last non-zero monomial of f.

Examples

>>> from sympy import Poly
@@ -2278,7 +2278,7 @@ 

Basic polynomial manipulation functions
-ET(order=None)[source]
+ET(order=None)[source]

Returns the last non-zero term of f.

Examples

>>> from sympy import Poly
@@ -2293,7 +2293,7 @@ 

Basic polynomial manipulation functions
-LC(order=None)[source]
+LC(order=None)[source]

Returns the leading coefficient of f.

Examples

>>> from sympy import Poly
@@ -2308,7 +2308,7 @@ 

Basic polynomial manipulation functions
-LM(order=None)[source]
+LM(order=None)[source]

Returns the leading monomial of f.

The Leading monomial signifies the monomial having the highest power of the principal generator in the @@ -2326,7 +2326,7 @@

Basic polynomial manipulation functions
-LT(order=None)[source]
+LT(order=None)[source]

Returns the leading term of f.

The Leading term signifies the term having the highest power of the principal generator in the @@ -2344,7 +2344,7 @@

Basic polynomial manipulation functions
-TC()[source]
+TC()[source]

Returns the trailing coefficient of f.

Examples

>>> from sympy import Poly
@@ -2359,7 +2359,7 @@ 

Basic polynomial manipulation functions
-abs()[source]
+abs()[source]

Make all coefficients in f positive.

Examples

>>> from sympy import Poly
@@ -2374,7 +2374,7 @@ 

Basic polynomial manipulation functions
-add(g)[source]
+add(g)[source]

Add two polynomials f and g.

Examples

>>> from sympy import Poly
@@ -2393,7 +2393,7 @@ 

Basic polynomial manipulation functions
-add_ground(coeff)[source]
+add_ground(coeff)[source]

Add an element of the ground domain to f.

Examples

>>> from sympy import Poly
@@ -2408,7 +2408,7 @@ 

Basic polynomial manipulation functions
-all_coeffs()[source]
+all_coeffs()[source]

Returns all coefficients from a univariate polynomial f.

Examples

>>> from sympy import Poly
@@ -2423,7 +2423,7 @@ 

Basic polynomial manipulation functions
-all_monoms()[source]
+all_monoms()[source]

Returns all monomials from a univariate polynomial f.

Examples

>>> from sympy import Poly
@@ -2442,7 +2442,7 @@ 

Basic polynomial manipulation functions
-all_roots(multiple=True, radicals=True)[source]
+all_roots(multiple=True, radicals=True)[source]

Return a list of real and complex roots with multiplicities.

See all_roots() for more explanation.

Examples

@@ -2462,7 +2462,7 @@

Basic polynomial manipulation functions
-all_terms()[source]
+all_terms()[source]

Returns all terms from a univariate polynomial f.

Examples

>>> from sympy import Poly
@@ -2477,7 +2477,7 @@ 

Basic polynomial manipulation functions
-as_dict(native=False, zero=False)[source]
+as_dict(native=False, zero=False)[source]

Switch to a dict representation.

Examples

>>> from sympy import Poly
@@ -2492,7 +2492,7 @@ 

Basic polynomial manipulation functions
-as_expr(*gens)[source]
+as_expr(*gens)[source]

Convert a Poly instance to an Expr instance.

Examples

>>> from sympy import Poly
@@ -2514,13 +2514,13 @@ 

Basic polynomial manipulation functions
-as_list(native=False)[source]
+as_list(native=False)[source]

Switch to a list representation.

-as_poly(*gens, **args)[source]
+as_poly(*gens, **args)[source]

Converts self to a polynomial or returns None.

>>> from sympy import sin
 >>> from sympy.abc import x, y
@@ -2542,7 +2542,7 @@ 

Basic polynomial manipulation functions
-cancel(g, include=False)[source]
+cancel(g, include=False)[source]

Cancel common factors in a rational function f/g.

Examples

>>> from sympy import Poly
@@ -2561,7 +2561,7 @@ 

Basic polynomial manipulation functions
-clear_denoms(convert=False)[source]
+clear_denoms(convert=False)[source]

Clear denominators, but keep the ground domain.

Examples

>>> from sympy import Poly, S, QQ
@@ -2581,7 +2581,7 @@ 

Basic polynomial manipulation functions
-coeff_monomial(monom)[source]
+coeff_monomial(monom)[source]

Returns the coefficient of monom in f if there, else None.

Examples

>>> from sympy import Poly, exp
@@ -2621,7 +2621,7 @@ 

Basic polynomial manipulation functions
-coeffs(order=None)[source]
+coeffs(order=None)[source]

Returns all non-zero coefficients from f in lex order.

Examples

>>> from sympy import Poly
@@ -2640,7 +2640,7 @@ 

Basic polynomial manipulation functions
-cofactors(g)[source]
+cofactors(g)[source]

Returns the GCD of f and g and their cofactors.

Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors @@ -2660,7 +2660,7 @@

Basic polynomial manipulation functions
-compose(g)[source]
+compose(g)[source]

Computes the functional composition of f and g.

Examples

>>> from sympy import Poly
@@ -2675,7 +2675,7 @@ 

Basic polynomial manipulation functions
-content()[source]
+content()[source]

Returns the GCD of polynomial coefficients.

Examples

>>> from sympy import Poly
@@ -2690,7 +2690,7 @@ 

Basic polynomial manipulation functions
-count_roots(inf=None, sup=None)[source]
+count_roots(inf=None, sup=None)[source]

Return the number of roots of f in [inf, sup] interval.

Examples

>>> from sympy import Poly, I
@@ -2707,7 +2707,7 @@ 

Basic polynomial manipulation functions
-decompose()[source]
+decompose()[source]

Computes a functional decomposition of f.

Examples

>>> from sympy import Poly
@@ -2722,7 +2722,7 @@ 

Basic polynomial manipulation functions
-deflate()[source]
+deflate()[source]

Reduce degree of f by mapping x_i**m to y_i.

Examples

>>> from sympy import Poly
@@ -2737,7 +2737,7 @@ 

Basic polynomial manipulation functions
-degree(gen=0)[source]
+degree(gen=0)[source]

Returns degree of f in x_j.

The degree of 0 is negative infinity.

Examples

@@ -2757,7 +2757,7 @@

Basic polynomial manipulation functions
-degree_list()[source]
+degree_list()[source]

Returns a list of degrees of f.

Examples

>>> from sympy import Poly
@@ -2772,7 +2772,7 @@ 

Basic polynomial manipulation functions
-diff(*specs, **kwargs)[source]
+diff(*specs, **kwargs)[source]

Computes partial derivative of f.

Examples

>>> from sympy import Poly
@@ -2791,7 +2791,7 @@ 

Basic polynomial manipulation functions
-discriminant()[source]
+discriminant()[source]

Computes the discriminant of f.

Examples

>>> from sympy import Poly
@@ -2806,7 +2806,7 @@ 

Basic polynomial manipulation functions
-dispersion(g=None)[source]
+dispersion(g=None)[source]

Compute the dispersion of polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:

@@ -2877,7 +2877,7 @@

Basic polynomial manipulation functions
-dispersionset(g=None)[source]
+dispersionset(g=None)[source]

Compute the dispersion set of two polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:

@@ -2948,7 +2948,7 @@

Basic polynomial manipulation functions
-div(g, auto=True)[source]
+div(g, auto=True)[source]

Polynomial division with remainder of f by g.

Examples

>>> from sympy import Poly
@@ -2991,7 +2991,7 @@ 

Basic polynomial manipulation functions
-eject(*gens)[source]
+eject(*gens)[source]

Eject selected generators into the ground domain.

Examples

>>> from sympy import Poly
@@ -3011,7 +3011,7 @@ 

Basic polynomial manipulation functions
-eval(x, a=None, auto=True)[source]
+eval(x, a=None, auto=True)[source]

Evaluate f at a in the given variable.

Examples

>>> from sympy import Poly
@@ -3047,7 +3047,7 @@ 

Basic polynomial manipulation functions
-exclude()[source]
+exclude()[source]

Remove unnecessary generators from f.

Examples

>>> from sympy import Poly
@@ -3062,7 +3062,7 @@ 

Basic polynomial manipulation functions
-exquo(g, auto=True)[source]
+exquo(g, auto=True)[source]

Computes polynomial exact quotient of f by g.

Examples

>>> from sympy import Poly
@@ -3083,7 +3083,7 @@ 

Basic polynomial manipulation functions
-exquo_ground(coeff)[source]
+exquo_ground(coeff)[source]

Exact quotient of f by a an element of the ground domain.

Examples

>>> from sympy import Poly
@@ -3104,7 +3104,7 @@ 

Basic polynomial manipulation functions
-factor_list()[source]
+factor_list()[source]

Returns a list of irreducible factors of f.

Examples

>>> from sympy import Poly
@@ -3123,7 +3123,7 @@ 

Basic polynomial manipulation functions
-factor_list_include()[source]
+factor_list_include()[source]

Returns a list of irreducible factors of f.

Examples

>>> from sympy import Poly
@@ -3182,25 +3182,25 @@ 

Basic polynomial manipulation functions
-classmethod from_dict(rep, *gens, **args)[source]
+classmethod from_dict(rep, *gens, **args)[source]

Construct a polynomial from a dict.

-classmethod from_expr(rep, *gens, **args)[source]
+classmethod from_expr(rep, *gens, **args)[source]

Construct a polynomial from an expression.

-classmethod from_list(rep, *gens, **args)[source]
+classmethod from_list(rep, *gens, **args)[source]

Construct a polynomial from a list.

-classmethod from_poly(rep, *gens, **args)[source]
+classmethod from_poly(rep, *gens, **args)[source]

Construct a polynomial from a polynomial.

@@ -3214,7 +3214,7 @@

Basic polynomial manipulation functionsrandomize=False,

-)[source] +)[source]

Compute the Galois group of this polynomial.

Examples

>>> from sympy import Poly
@@ -3233,7 +3233,7 @@ 

Basic polynomial manipulation functions
-gcd(g)[source]
+gcd(g)[source]

Returns the polynomial GCD of f and g.

Examples

>>> from sympy import Poly
@@ -3248,7 +3248,7 @@ 

Basic polynomial manipulation functions
-gcdex(g, auto=True)[source]
+gcdex(g, auto=True)[source]

Extended Euclidean algorithm of f and g.

Returns (s, t, h) such that h = gcd(f, g) and s*f + t*g = h.

Examples

@@ -3285,13 +3285,13 @@

Basic polynomial manipulation functions
-get_domain()[source]
+get_domain()[source]

Get the ground domain of f.

-get_modulus()[source]
+get_modulus()[source]

Get the modulus of f.

Examples

>>> from sympy import Poly
@@ -3306,7 +3306,7 @@ 

Basic polynomial manipulation functions
-gff_list()[source]
+gff_list()[source]

Computes greatest factorial factorization of f.

Examples

>>> from sympy import Poly
@@ -3324,7 +3324,7 @@ 

Basic polynomial manipulation functions
-ground_roots()[source]
+ground_roots()[source]

Compute roots of f by factorization in the ground domain.

Examples

>>> from sympy import Poly
@@ -3339,7 +3339,7 @@ 

Basic polynomial manipulation functions
-half_gcdex(g, auto=True)[source]
+half_gcdex(g, auto=True)[source]

Half extended Euclidean algorithm of f and g.

Returns (s, h) such that h = gcd(f, g) and s*f = h (mod g).

Examples

@@ -3359,7 +3359,7 @@

Basic polynomial manipulation functions
-has_only_gens(*gens)[source]
+has_only_gens(*gens)[source]

Return True if Poly(f, *gens) retains ground domain.

Examples

>>> from sympy import Poly
@@ -3376,7 +3376,7 @@ 

Basic polynomial manipulation functions
-homogeneous_order()[source]
+homogeneous_order()[source]

Returns the homogeneous order of f.

A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is @@ -3396,7 +3396,7 @@

Basic polynomial manipulation functions
-homogenize(s)[source]
+homogenize(s)[source]

Returns the homogeneous polynomial of f.

A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only @@ -3418,7 +3418,7 @@

Basic polynomial manipulation functions
-inject(front=False)[source]
+inject(front=False)[source]

Inject ground domain generators into f.

Examples

>>> from sympy import Poly
@@ -3438,7 +3438,7 @@ 

Basic polynomial manipulation functions
-integrate(*specs, **args)[source]
+integrate(*specs, **args)[source]

Computes indefinite integral of f.

Examples

>>> from sympy import Poly
@@ -3468,7 +3468,7 @@ 

Basic polynomial manipulation functionssqf=False,

-)[source] +)[source]

Compute isolating intervals for roots of f.

For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.

Examples

@@ -3500,7 +3500,7 @@

Basic polynomial manipulation functions
-invert(g, auto=True)[source]
+invert(g, auto=True)[source]

Invert f modulo g when possible.

Examples

>>> from sympy import Poly
@@ -3781,7 +3781,7 @@ 

Basic polynomial manipulation functions
-l1_norm()[source]
+l1_norm()[source]

Returns l1 norm of f.

Examples

>>> from sympy import Poly
@@ -3796,7 +3796,7 @@ 

Basic polynomial manipulation functions
-lcm(g)[source]
+lcm(g)[source]

Returns polynomial LCM of f and g.

Examples

>>> from sympy import Poly
@@ -3811,7 +3811,7 @@ 

Basic polynomial manipulation functions
-length()[source]
+length()[source]

Returns the number of non-zero terms in f.

Examples

>>> from sympy import Poly
@@ -3826,7 +3826,7 @@ 

Basic polynomial manipulation functions
-lift()[source]
+lift()[source]

Convert algebraic coefficients to rationals.

Examples

>>> from sympy import Poly, I
@@ -3841,7 +3841,7 @@ 

Basic polynomial manipulation functions
-ltrim(gen)[source]
+ltrim(gen)[source]

Remove dummy generators from f that are to the left of specified gen in the generators as ordered. When gen is an integer, it refers to the generator located at that @@ -3861,7 +3861,7 @@

Basic polynomial manipulation functions
-make_monic_over_integers_by_scaling_roots()[source]
+make_monic_over_integers_by_scaling_roots()[source]

Turn any univariate polynomial over QQ or ZZ into a monic polynomial over ZZ, by scaling the roots as necessary.

@@ -3889,13 +3889,13 @@

Basic polynomial manipulation functions
-match(*args, **kwargs)[source]
+match(*args, **kwargs)[source]

Match expression from Poly. See Basic.match()

-max_norm()[source]
+max_norm()[source]

Returns maximum norm of f.

Examples

>>> from sympy import Poly
@@ -3910,7 +3910,7 @@ 

Basic polynomial manipulation functions
-monic(auto=True)[source]
+monic(auto=True)[source]

Divides all coefficients by LC(f).

Examples

>>> from sympy import Poly, ZZ
@@ -3929,7 +3929,7 @@ 

Basic polynomial manipulation functions
-monoms(order=None)[source]
+monoms(order=None)[source]

Returns all non-zero monomials from f in lex order.

Examples

>>> from sympy import Poly
@@ -3948,7 +3948,7 @@ 

Basic polynomial manipulation functions
-mul(g)[source]
+mul(g)[source]

Multiply two polynomials f and g.

Examples

>>> from sympy import Poly
@@ -3967,7 +3967,7 @@ 

Basic polynomial manipulation functions
-mul_ground(coeff)[source]
+mul_ground(coeff)[source]

Multiply f by a an element of the ground domain.

Examples

>>> from sympy import Poly
@@ -3982,7 +3982,7 @@ 

Basic polynomial manipulation functions
-neg()[source]
+neg()[source]

Negate all coefficients in f.

Examples

>>> from sympy import Poly
@@ -4001,13 +4001,13 @@ 

Basic polynomial manipulation functions
-classmethod new(rep, *gens)[source]
+classmethod new(rep, *gens)[source]

Construct Poly instance from raw representation.

-norm()[source]
+norm()[source]

Computes the product, Norm(f), of the conjugates of a polynomial f defined over a number field K.

Examples

@@ -4036,7 +4036,7 @@

Basic polynomial manipulation functions
-nroots(n=15, maxsteps=50, cleanup=True)[source]
+nroots(n=15, maxsteps=50, cleanup=True)[source]

Compute numerical approximations of roots of f.

Parameters:
@@ -4061,7 +4061,7 @@

Basic polynomial manipulation functions
-nth(*N)[source]
+nth(*N)[source]

Returns the n-th coefficient of f where N are the exponents of the generators in the term of interest.

Examples

@@ -4087,7 +4087,7 @@

Basic polynomial manipulation functions
-nth_power_roots_poly(n)[source]
+nth_power_roots_poly(n)[source]

Construct a polynomial with n-th powers of roots of f.

Examples

>>> from sympy import Poly
@@ -4117,7 +4117,7 @@ 

Basic polynomial manipulation functions
-pdiv(g)[source]
+pdiv(g)[source]

Polynomial pseudo-division of f by g.

Examples

>>> from sympy import Poly
@@ -4132,7 +4132,7 @@ 

Basic polynomial manipulation functions
-per(rep, gens=None, remove=None)[source]
+per(rep, gens=None, remove=None)[source]

Create a Poly out of the given representation.

Examples

>>> from sympy import Poly, ZZ
@@ -4153,7 +4153,7 @@ 

Basic polynomial manipulation functions
-pexquo(g)[source]
+pexquo(g)[source]

Polynomial exact pseudo-quotient of f by g.

Examples

>>> from sympy import Poly
@@ -4174,7 +4174,7 @@ 

Basic polynomial manipulation functions
-pow(n)[source]
+pow(n)[source]

Raise f to a non-negative power n.

Examples

>>> from sympy import Poly
@@ -4193,7 +4193,7 @@ 

Basic polynomial manipulation functions
-pquo(g)[source]
+pquo(g)[source]

Polynomial pseudo-quotient of f by g.

See the Caveat note in the function prem(f, g).

Examples

@@ -4213,7 +4213,7 @@

Basic polynomial manipulation functions
-prem(g)[source]
+prem(g)[source]

Polynomial pseudo-remainder of f by g.

Caveat: The function prem(f, g, x) can be safely used to compute

in Z[x] _only_ subresultant polynomial remainder sequences (prs’s).

@@ -4242,7 +4242,7 @@

Basic polynomial manipulation functions
-primitive()[source]
+primitive()[source]

Returns the content and a primitive form of f.

Examples

>>> from sympy import Poly
@@ -4257,7 +4257,7 @@ 

Basic polynomial manipulation functions
-quo(g, auto=True)[source]
+quo(g, auto=True)[source]

Computes polynomial quotient of f by g.

Examples

>>> from sympy import Poly
@@ -4276,7 +4276,7 @@ 

Basic polynomial manipulation functions
-quo_ground(coeff)[source]
+quo_ground(coeff)[source]

Quotient of f by a an element of the ground domain.

Examples

>>> from sympy import Poly
@@ -4295,7 +4295,7 @@ 

Basic polynomial manipulation functions
-rat_clear_denoms(g)[source]
+rat_clear_denoms(g)[source]

Clear denominators in a rational function f/g.

Examples

>>> from sympy import Poly
@@ -4319,7 +4319,7 @@ 

Basic polynomial manipulation functions
-real_roots(multiple=True, radicals=True)[source]
+real_roots(multiple=True, radicals=True)[source]

Return a list of real roots with multiplicities.

See real_roots() for more explanation.

Examples

@@ -4348,7 +4348,7 @@

Basic polynomial manipulation functionscheck_sqf=False,

-)[source] +)[source]

Refine an isolating interval of a root to the given precision.

Examples

>>> from sympy import Poly
@@ -4363,7 +4363,7 @@ 

Basic polynomial manipulation functions
-rem(g, auto=True)[source]
+rem(g, auto=True)[source]

Computes the polynomial remainder of f by g.

Examples

>>> from sympy import Poly
@@ -4382,7 +4382,7 @@ 

Basic polynomial manipulation functions
-reorder(*gens, **args)[source]
+reorder(*gens, **args)[source]

Efficiently apply new order of generators.

Examples

>>> from sympy import Poly
@@ -4397,7 +4397,7 @@ 

Basic polynomial manipulation functions
-replace(x, y=None, **_ignore)[source]
+replace(x, y=None, **_ignore)[source]

Replace x with y in generators list.

Examples

>>> from sympy import Poly
@@ -4412,7 +4412,7 @@ 

Basic polynomial manipulation functions
-resultant(g, includePRS=False)[source]
+resultant(g, includePRS=False)[source]

Computes the resultant of f and g via PRS.

If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more @@ -4436,7 +4436,7 @@

Basic polynomial manipulation functions
-retract(field=None)[source]
+retract(field=None)[source]

Recalculate the ground domain of a polynomial.

Examples

>>> from sympy import Poly
@@ -4458,7 +4458,7 @@ 

Basic polynomial manipulation functions
-revert(n)[source]
+revert(n)[source]

Compute f**(-1) mod x**n.

Examples

>>> from sympy import Poly
@@ -4489,7 +4489,7 @@ 

Basic polynomial manipulation functions
-root(index, radicals=True)[source]
+root(index, radicals=True)[source]

Get an indexed root of a polynomial.

Examples

>>> from sympy import Poly
@@ -4519,7 +4519,7 @@ 

Basic polynomial manipulation functions
-same_root(a, b)[source]
+same_root(a, b)[source]

Decide whether two roots of this polynomial are equal.

Raises:
@@ -4555,13 +4555,13 @@

Basic polynomial manipulation functions
-set_domain(domain)[source]
+set_domain(domain)[source]

Set the ground domain of f.

-set_modulus(modulus)[source]
+set_modulus(modulus)[source]

Set the modulus of f.

Examples

>>> from sympy import Poly
@@ -4576,7 +4576,7 @@ 

Basic polynomial manipulation functions
-shift(a)[source]
+shift(a)[source]

Efficiently compute Taylor shift f(x + a).

Examples

>>> from sympy import Poly
@@ -4598,7 +4598,7 @@ 

Basic polynomial manipulation functions
-shift_list(a)[source]
+shift_list(a)[source]

Efficiently compute Taylor shift f(X + A).

Examples

>>> from sympy import Poly
@@ -4620,13 +4620,13 @@ 

Basic polynomial manipulation functions
-slice(x, m, n=None)[source]
+slice(x, m, n=None)[source]

Take a continuous subsequence of terms of f.

-sqf_list(all=False)[source]
+sqf_list(all=False)[source]

Returns a list of square-free factors of f.

Examples

>>> from sympy import Poly
@@ -4651,7 +4651,7 @@ 

Basic polynomial manipulation functions
-sqf_list_include(all=False)[source]
+sqf_list_include(all=False)[source]

Returns a list of square-free factors of f.

Examples

>>> from sympy import Poly, expand
@@ -4680,7 +4680,7 @@ 

Basic polynomial manipulation functions
-sqf_norm()[source]
+sqf_norm()[source]

Computes square-free norm of f.

Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, @@ -4705,7 +4705,7 @@

Basic polynomial manipulation functions
-sqf_part()[source]
+sqf_part()[source]

Computes square-free part of f.

Examples

>>> from sympy import Poly
@@ -4720,7 +4720,7 @@ 

Basic polynomial manipulation functions
-sqr()[source]
+sqr()[source]

Square a polynomial f.

Examples

>>> from sympy import Poly
@@ -4739,7 +4739,7 @@ 

Basic polynomial manipulation functions
-sturm(auto=True)[source]
+sturm(auto=True)[source]

Computes the Sturm sequence of f.

Examples

>>> from sympy import Poly
@@ -4757,7 +4757,7 @@ 

Basic polynomial manipulation functions
-sub(g)[source]
+sub(g)[source]

Subtract two polynomials f and g.

Examples

>>> from sympy import Poly
@@ -4776,7 +4776,7 @@ 

Basic polynomial manipulation functions
-sub_ground(coeff)[source]
+sub_ground(coeff)[source]

Subtract an element of the ground domain from f.

Examples

>>> from sympy import Poly
@@ -4791,7 +4791,7 @@ 

Basic polynomial manipulation functions
-subresultants(g)[source]
+subresultants(g)[source]

Computes the subresultant PRS of f and g.

Examples

>>> from sympy import Poly
@@ -4808,7 +4808,7 @@ 

Basic polynomial manipulation functions
-terms(order=None)[source]
+terms(order=None)[source]

Returns all non-zero terms from f in lex order.

Examples

>>> from sympy import Poly
@@ -4827,7 +4827,7 @@ 

Basic polynomial manipulation functions
-terms_gcd()[source]
+terms_gcd()[source]

Remove GCD of terms from the polynomial f.

Examples

>>> from sympy import Poly
@@ -4842,7 +4842,7 @@ 

Basic polynomial manipulation functions
-termwise(func, *gens, **args)[source]
+termwise(func, *gens, **args)[source]

Apply a function to all terms of f.

Examples

>>> from sympy import Poly
@@ -4862,7 +4862,7 @@ 

Basic polynomial manipulation functions
-to_exact()[source]
+to_exact()[source]

Make the ground domain exact.

Examples

>>> from sympy import Poly, RR
@@ -4877,7 +4877,7 @@ 

Basic polynomial manipulation functions
-to_field()[source]
+to_field()[source]

Make the ground domain a field.

Examples

>>> from sympy import Poly, ZZ
@@ -4892,7 +4892,7 @@ 

Basic polynomial manipulation functions
-to_ring()[source]
+to_ring()[source]

Make the ground domain a ring.

Examples

>>> from sympy import Poly, QQ
@@ -4907,7 +4907,7 @@ 

Basic polynomial manipulation functions
-total_degree()[source]
+total_degree()[source]

Returns the total degree of f.

Examples

>>> from sympy import Poly
@@ -4924,7 +4924,7 @@ 

Basic polynomial manipulation functions
-transform(p, q)[source]
+transform(p, q)[source]

Efficiently evaluate the functional transformation q**n * f(p/q).

Examples

>>> from sympy import Poly
@@ -4939,7 +4939,7 @@ 

Basic polynomial manipulation functions
-trunc(p)[source]
+trunc(p)[source]

Reduce f modulo a constant p.

Examples

>>> from sympy import Poly
@@ -4954,7 +4954,7 @@ 

Basic polynomial manipulation functions
-unify(g)[source]
+unify(g)[source]

Make f and g belong to the same domain.

Examples

>>> from sympy import Poly
@@ -4989,7 +4989,7 @@ 

Basic polynomial manipulation functions
-which_all_roots(candidates)[source]
+which_all_roots(candidates)[source]

Find roots of a square-free polynomial f from candidates.

Explanation

If f is a square-free polynomial and candidates is a superset @@ -5042,7 +5042,7 @@

Basic polynomial manipulation functions
-which_real_roots(candidates)[source]
+which_real_roots(candidates)[source]

Find roots of a square-free polynomial f from candidates.

Explanation

If f is a square-free polynomial and candidates is a superset @@ -5099,7 +5099,7 @@

Basic polynomial manipulation functions
-class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]
+class sympy.polys.polytools.PurePoly(rep, *gens, **args)[source]

Class for representing pure polynomials.

@@ -5124,11 +5124,11 @@

Basic polynomial manipulation functions
-class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]
+class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)[source]

Represents a reduced Groebner basis.

-contains(poly)[source]
+contains(poly)[source]

Check if poly belongs the ideal generated by self.

Examples

>>> from sympy import groebner
@@ -5149,7 +5149,7 @@ 

Basic polynomial manipulation functions
-fglm(order)[source]
+fglm(order)[source]

Convert a Groebner basis from one ordering to another.

The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it @@ -5194,7 +5194,7 @@

Basic polynomial manipulation functions
-reduce(expr, auto=True)[source]
+reduce(expr, auto=True)[source]

Reduces a polynomial modulo a Groebner basis.

Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r @@ -5229,7 +5229,7 @@

Basic polynomial manipulation functions

-sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]
+sympy.polys.polyfuncs.symmetrize(F, *gens, **args)[source]

Rewrite a polynomial in terms of elementary symmetric polynomials.

A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if \(f = f(x_1, x_2, \dots, x_n)\), @@ -5263,7 +5263,7 @@

Extra polynomial manipulation functions
-sympy.polys.polyfuncs.horner(f, *gens, **args)[source]
+sympy.polys.polyfuncs.horner(f, *gens, **args)[source]

Rewrite a polynomial in Horner form.

Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme ([1]).

@@ -5297,7 +5297,7 @@

Extra polynomial manipulation functions
-sympy.polys.polyfuncs.interpolate(data, x)[source]
+sympy.polys.polyfuncs.interpolate(data, x)[source]

Construct an interpolating polynomial for the data points evaluated at point x (which can be symbolic or numeric).

Examples

@@ -5339,7 +5339,7 @@

Extra polynomial manipulation functions
-sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]
+sympy.polys.polyfuncs.viete(f, roots=None, *gens, **args)[source]

Generate Viete’s formulas for f.

Examples

>>> from sympy.polys.polyfuncs import viete
@@ -5360,7 +5360,7 @@ 

Extra polynomial manipulation functions

-sympy.polys.constructor.construct_domain(obj, **args)[source]
+sympy.polys.constructor.construct_domain(obj, **args)[source]

Construct a minimal domain for a list of expressions.

Parameters:
@@ -5444,23 +5444,23 @@

Domain constructors

-class sympy.polys.monomials.Monomial(monom, gens=None)[source]
+class sympy.polys.monomials.Monomial(monom, gens=None)[source]

Class representing a monomial, i.e. a product of powers.

-as_expr(*gens)[source]
+as_expr(*gens)[source]

Convert a monomial instance to a SymPy expression.

-gcd(other)[source]
+gcd(other)[source]

Greatest common divisor of monomials.

-lcm(other)[source]
+lcm(other)[source]

Least common multiple of monomials.

@@ -5476,7 +5476,7 @@

Monomials encoded as tuplesmin_degrees=None,

-)[source] +)[source]

max_degrees and min_degrees are either both integers or both lists. Unless otherwise specified, min_degrees is either 0 or [0, ..., 0].

@@ -5547,7 +5547,7 @@

Monomials encoded as tuples
-sympy.polys.monomials.monomial_count(V, N)[source]
+sympy.polys.monomials.monomial_count(V, N)[source]

Computes the number of monomials.

The number of monomials is given by the following formula:

@@ -5581,25 +5581,25 @@

Monomials encoded as tuples

-class sympy.polys.orderings.MonomialOrder[source]
+class sympy.polys.orderings.MonomialOrder[source]

Base class for monomial orderings.

-class sympy.polys.orderings.LexOrder[source]
+class sympy.polys.orderings.LexOrder[source]

Lexicographic order of monomials.

-class sympy.polys.orderings.GradedLexOrder[source]
+class sympy.polys.orderings.GradedLexOrder[source]

Graded lexicographic order of monomials.

-class sympy.polys.orderings.ReversedGradedLexOrder[source]
+class sympy.polys.orderings.ReversedGradedLexOrder[source]

Reversed graded lexicographic order of monomials.

@@ -5618,7 +5618,7 @@

Formal manipulation of roots of polynomialsexpand=True,

-)[source] +)[source]

An indexed root of a univariate polynomial.

Returns either a ComplexRootOf object or an explicit expression involving radicals.

@@ -5657,7 +5657,7 @@

Formal manipulation of roots of polynomialsexpand=True,

-)[source] +)[source]

Represents a root of a univariate polynomial.

Base class for roots of different kinds of polynomials. Only complex roots are currently supported.

@@ -5675,7 +5675,7 @@

Formal manipulation of roots of polynomialsexpand=True,

-)[source] +)[source]

Represents an indexed complex root of a polynomial.

Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order:

@@ -5798,56 +5798,56 @@

Formal manipulation of roots of polynomials
-classmethod _all_roots(poly, use_cache=True)[source]
+classmethod _all_roots(poly, use_cache=True)[source]

Get real and complex roots of a composite polynomial.

-classmethod _complexes_index(complexes, index)[source]
+classmethod _complexes_index(complexes, index)[source]

Map initial complex root index to an index in a factor where the root belongs.

-classmethod _complexes_sorted(complexes)[source]
+classmethod _complexes_sorted(complexes)[source]

Make complex isolating intervals disjoint and sort roots.

-classmethod _count_roots(roots)[source]
+classmethod _count_roots(roots)[source]

Count the number of real or complex roots with multiplicities.

-_ensure_complexes_init()[source]
+_ensure_complexes_init()[source]

Ensure that our poly has entries in the complexes cache.

-_ensure_reals_init()[source]
+_ensure_reals_init()[source]

Ensure that our poly has entries in the reals cache.

-_eval_evalf(prec, **kwargs)[source]
+_eval_evalf(prec, **kwargs)[source]

Evaluate this complex root to the given precision.

-_eval_is_imaginary()[source]
+_eval_is_imaginary()[source]

Return True if the root is imaginary.

-_eval_is_real()[source]
+_eval_is_real()[source]

Return True if the root is real.

@@ -5860,7 +5860,7 @@

Formal manipulation of roots of polynomialsuse_cache=True,

-)[source] +)[source]

Compute complex root isolating intervals for a list of factors.

@@ -5873,19 +5873,19 @@

Formal manipulation of roots of polynomialsuse_cache=True,

-)[source] +)[source]

Get complex root isolating intervals for a square-free factor.

-_get_interval()[source]
+_get_interval()[source]

Internal function for retrieving isolation interval from cache.

-classmethod _get_reals(factors, use_cache=True)[source]
+classmethod _get_reals(factors, use_cache=True)[source]

Compute real root isolating intervals for a list of factors.

@@ -5898,13 +5898,13 @@

Formal manipulation of roots of polynomialsuse_cache=True,

-)[source] +)[source]

Get real root isolating intervals for a square-free factor.

-classmethod _get_roots(method, poly, radicals)[source]
+classmethod _get_roots(method, poly, radicals)[source]

Return postprocessed roots of specified kind.

@@ -5918,7 +5918,7 @@

Formal manipulation of roots of polynomialsradicals,

-)[source] +)[source]

Return postprocessed roots of specified kind for polynomials with algebraic coefficients. It assumes the domain is already an algebraic field. First it @@ -5937,7 +5937,7 @@

Formal manipulation of roots of polynomialsradicals,

-)[source] +)[source]

Return postprocessed roots of specified kind for polynomials with rational coefficients.

@@ -5952,50 +5952,50 @@

Formal manipulation of roots of polynomialslazy=False,

-)[source] +)[source]

Get a root of a composite polynomial by index.

-classmethod _new(poly, index)[source]
+classmethod _new(poly, index)[source]

Construct new CRootOf object from raw data.

-classmethod _postprocess_root(root, radicals)[source]
+classmethod _postprocess_root(root, radicals)[source]

Return the root if it is trivial or a CRootOf object.

-classmethod _preprocess_roots(poly)[source]
+classmethod _preprocess_roots(poly)[source]

Take heroic measures to make poly compatible with CRootOf.

-classmethod _real_roots(poly)[source]
+classmethod _real_roots(poly)[source]

Get real roots of a composite polynomial.

-classmethod _reals_index(reals, index)[source]
+classmethod _reals_index(reals, index)[source]

Map initial real root index to an index in a factor where the root belongs.

-classmethod _reals_sorted(reals)[source]
+classmethod _reals_sorted(reals)[source]

Make real isolating intervals disjoint and sort roots.

-classmethod _refine_complexes(complexes)[source]
+classmethod _refine_complexes(complexes)[source]

return complexes such that no bounding rectangles of non-conjugate roots would intersect. In addition, assure that neither ay nor by is 0 to guarantee that non-real roots are distinct from real roots in @@ -6004,31 +6004,31 @@

Formal manipulation of roots of polynomials
-_reset()[source]
+_reset()[source]

Reset all intervals

-classmethod _roots_trivial(poly, radicals)[source]
+classmethod _roots_trivial(poly, radicals)[source]

Compute roots in linear, quadratic and binomial cases.

-_set_interval(interval)[source]
+_set_interval(interval)[source]

Internal function for updating isolation interval in cache.

-classmethod all_roots(poly, radicals=True)[source]
+classmethod all_roots(poly, radicals=True)[source]

Get real and complex roots of a polynomial.

-classmethod clear_cache()[source]
+classmethod clear_cache()[source]

Reset cache for reals and complexes.

The intervals used to approximate a root instance are updated as needed. When a request is made to see the intervals, the @@ -6042,7 +6042,7 @@

Formal manipulation of roots of polynomials
-eval_approx(n, return_mpmath=False)[source]
+eval_approx(n, return_mpmath=False)[source]

Evaluate this complex root to the given precision.

This uses secant method and root bounds are used to both generate an initial guess and to check that the root @@ -6060,7 +6060,7 @@

Formal manipulation of roots of polynomialsn=15,

-)[source] +)[source]

Return a Rational approximation of self that has real and imaginary component approximations that are within dx and dy of the true values, respectively. Alternatively, @@ -6093,7 +6093,7 @@

Formal manipulation of roots of polynomials
-classmethod real_roots(poly, radicals=True)[source]
+classmethod real_roots(poly, radicals=True)[source]

Get real roots of a polynomial.

@@ -6111,11 +6111,11 @@

Formal manipulation of roots of polynomialsquadratic=False,

-)[source] +)[source]

Represents a sum of all roots of a univariate polynomial.

-classmethod new(poly, func, auto=True)[source]
+classmethod new(poly, func, auto=True)[source]

Construct new RootSum instance.

@@ -6143,7 +6143,7 @@

Symbolic root-finding algorithms**flags,

-)[source] +)[source]

Computes symbolic roots of a univariate polynomial.

Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial’s coefficients), returns a dictionary @@ -6245,7 +6245,7 @@

Symbolic root-finding algorithms

-sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]
+sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)[source]

Generates n-th Swinnerton-Dyer polynomial in \(x\).

Parameters:
@@ -6265,7 +6265,7 @@

Special polynomials
-sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]
+sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')[source]

Construct Lagrange interpolating polynomial for n data points. If a sequence of values are given for X and Y then the first n values will be used.

@@ -6273,7 +6273,7 @@

Special polynomials
-sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]
+sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)[source]

Generates cyclotomic polynomial of order \(n\) in \(x\).

Parameters:
@@ -6293,7 +6293,7 @@

Special polynomials
-sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]
+sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)[source]

Generates symmetric polynomial of order \(n\).

Parameters:
@@ -6319,7 +6319,7 @@

Special polynomialspolys=False,

-)[source] +)[source]

Generates a polynomial of degree n with coefficients in [inf, sup].

@@ -6359,7 +6359,7 @@

Special polynomials

-sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)[source]

Generates the Chebyshev polynomial of the first kind \(T_n(x)\).

Parameters:
@@ -6378,7 +6378,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)[source]

Generates the Chebyshev polynomial of the second kind \(U_n(x)\).

Parameters:
@@ -6397,7 +6397,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]
+sympy.polys.orthopolys.gegenbauer_poly(n, a, x=None, polys=False)[source]

Generates the Gegenbauer polynomial \(C_n^{(a)}(x)\).

Parameters:
@@ -6420,7 +6420,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.hermite_poly(n, x=None, polys=False)[source]

Generates the Hermite polynomial \(H_n(x)\).

Parameters:
@@ -6439,7 +6439,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.hermite_prob_poly(n, x=None, polys=False)[source]

Generates the probabilist’s Hermite polynomial \(He_n(x)\).

Parameters:
@@ -6458,7 +6458,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]
+sympy.polys.orthopolys.jacobi_poly(n, a, b, x=None, polys=False)[source]

Generates the Jacobi polynomial \(P_n^{(a,b)}(x)\).

Parameters:
@@ -6485,7 +6485,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.legendre_poly(n, x=None, polys=False)[source]

Generates the Legendre polynomial \(P_n(x)\).

Parameters:
@@ -6504,7 +6504,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]
+sympy.polys.orthopolys.laguerre_poly(n, x=None, alpha=0, polys=False)[source]

Generates the Laguerre polynomial \(L_n^{(\alpha)}(x)\).

Parameters:
@@ -6527,7 +6527,7 @@

Orthogonal polynomials
-sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]
+sympy.polys.orthopolys.spherical_bessel_fn(n, x=None, polys=False)[source]

Coefficients for the spherical Bessel functions.

These are only needed in the jn() function.

The coefficients are calculated from:

@@ -6568,7 +6568,7 @@

Orthogonal polynomialsAppell sequences

-sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.bernoulli_poly(n, x=None, polys=False)[source]

Generates the Bernoulli polynomial \(\operatorname{B}_n(x)\).

\(\operatorname{B}_n(x)\) is the unique polynomial satisfying

@@ -6636,7 +6636,7 @@

Appell sequences
-sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.bernoulli_c_poly(n, x=None, polys=False)[source]

Generates the central Bernoulli polynomial \(\operatorname{B}_n^c(x)\).

These are scaled and shifted versions of the plain Bernoulli polynomials, done in such a way that \(\operatorname{B}_n^c(x)\) is an even or odd function @@ -6663,7 +6663,7 @@

Appell sequences
-sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.genocchi_poly(n, x=None, polys=False)[source]

Generates the Genocchi polynomial \(\operatorname{G}_n(x)\).

\(\operatorname{G}_n(x)\) is twice the difference between the plain and central Bernoulli polynomials, so has degree \(n-1\):

@@ -6695,7 +6695,7 @@

Appell sequences
-sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.euler_poly(n, x=None, polys=False)[source]

Generates the Euler polynomial \(\operatorname{E}_n(x)\).

These are scaled and reindexed versions of the Genocchi polynomials:

@@ -6723,7 +6723,7 @@

Appell sequences
-sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]
+sympy.polys.appellseqs.andre_poly(n, x=None, polys=False)[source]

Generates the Andre polynomial \(\mathcal{A}_n(x)\).

This is the Appell sequence where the constant coefficients form the sequence of Euler numbers euler(n). As such they have integer coefficients @@ -6791,7 +6791,7 @@

Appell sequences

-sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]
+sympy.polys.rationaltools.together(expr, deep=False, fraction=True)[source]

Denest and combine rational expressions using symbolic methods.

This function takes an expression or a container of expressions and puts it (them) together by denesting and combining rational @@ -6849,7 +6849,7 @@

Manipulation of rational functions

-sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]
+sympy.polys.partfrac.apart(f, x=None, full=False, **options)[source]

Compute partial fraction decomposition of a rational function.

Given a rational function f, computes the partial fraction decomposition of f. Two algorithms are available: One is based on the @@ -6899,7 +6899,7 @@

Partial fraction decomposition
-sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]
+sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)[source]

Compute partial fraction decomposition of a rational function and return the result in structured form.

Given a rational function f compute the partial fraction decomposition @@ -7004,7 +7004,7 @@

Partial fraction decomposition
-sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]
+sympy.polys.partfrac.assemble_partfrac_list(partial_list)[source]

Reassemble a full partial fraction decomposition from a structured result obtained by the function apart_list.

Examples

@@ -7067,7 +7067,7 @@

Partial fraction decomposition

-sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]
+sympy.polys.dispersion.dispersionset(p, q=None, *gens, **args)[source]

Compute the dispersion set of two polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(\operatorname{J}(f, g)\) is defined as:

@@ -7150,7 +7150,7 @@

Dispersion of Polynomials
-sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]
+sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)[source]

Compute the dispersion of polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\operatorname{dis}(f, g)\) is defined as:

diff --git a/dev/modules/polys/ringseries.html b/dev/modules/polys/ringseries.html index e4848919915..e8dad08c15c 100644 --- a/dev/modules/polys/ringseries.html +++ b/dev/modules/polys/ringseries.html @@ -966,7 +966,7 @@

Reference
-sympy.polys.ring_series.rs_log(p, x, prec)[source]
+sympy.polys.ring_series.rs_log(p, x, prec)[source]

The Logarithm of p modulo O(x**prec).

Notes

Truncation of integral dx p**-1*d p/dx is used.

@@ -985,7 +985,7 @@

Reference
-sympy.polys.ring_series.rs_LambertW(p, x, prec)[source]
+sympy.polys.ring_series.rs_LambertW(p, x, prec)[source]

Calculate the series expansion of the principal branch of the Lambert W function.

Examples

@@ -1005,7 +1005,7 @@

Reference
-sympy.polys.ring_series.rs_exp(p, x, prec)[source]
+sympy.polys.ring_series.rs_exp(p, x, prec)[source]

Exponentiation of a series modulo O(x**prec)

Examples

>>> from sympy.polys.domains import QQ
@@ -1020,7 +1020,7 @@ 

Reference
-sympy.polys.ring_series.rs_atan(p, x, prec)[source]
+sympy.polys.ring_series.rs_atan(p, x, prec)[source]

The arctangent of a series

Return the series expansion of the atan of p, about 0.

Examples

@@ -1040,7 +1040,7 @@

Reference
-sympy.polys.ring_series.rs_asin(p, x, prec)[source]
+sympy.polys.ring_series.rs_asin(p, x, prec)[source]

Arcsine of a series

Return the series expansion of the asin of p, about 0.

Examples

@@ -1060,7 +1060,7 @@

Reference
-sympy.polys.ring_series.rs_tan(p, x, prec)[source]
+sympy.polys.ring_series.rs_tan(p, x, prec)[source]

Tangent of a series.

Return the series expansion of the tan of p, about 0.

@@ -1082,7 +1082,7 @@

Reference
-sympy.polys.ring_series._tan1(p, x, prec)[source]
+sympy.polys.ring_series._tan1(p, x, prec)[source]

Helper function of rs_tan().

Return the series expansion of tan of a univariate series using Newton’s method. It takes advantage of the fact that series expansion of atan is @@ -1095,7 +1095,7 @@

Reference
-sympy.polys.ring_series.rs_cot(p, x, prec)[source]
+sympy.polys.ring_series.rs_cot(p, x, prec)[source]

Cotangent of a series

Return the series expansion of the cot of p, about 0.

Examples

@@ -1115,7 +1115,7 @@

Reference
-sympy.polys.ring_series.rs_sin(p, x, prec)[source]
+sympy.polys.ring_series.rs_sin(p, x, prec)[source]

Sine of a series

Return the series expansion of the sin of p, about 0.

Examples

@@ -1137,7 +1137,7 @@

Reference
-sympy.polys.ring_series.rs_cos(p, x, prec)[source]
+sympy.polys.ring_series.rs_cos(p, x, prec)[source]

Cosine of a series

Return the series expansion of the cos of p, about 0.

Examples

@@ -1159,14 +1159,14 @@

Reference
-sympy.polys.ring_series.rs_cos_sin(p, x, prec)[source]
+sympy.polys.ring_series.rs_cos_sin(p, x, prec)[source]

Return the tuple (rs_cos(p, x, prec)`, `rs_sin(p, x, prec)).

Is faster than calling rs_cos and rs_sin separately

-sympy.polys.ring_series.rs_atanh(p, x, prec)[source]
+sympy.polys.ring_series.rs_atanh(p, x, prec)[source]

Hyperbolic arctangent of a series

Return the series expansion of the atanh of p, about 0.

Examples

@@ -1186,7 +1186,7 @@

Reference
-sympy.polys.ring_series.rs_sinh(p, x, prec)[source]
+sympy.polys.ring_series.rs_sinh(p, x, prec)[source]

Hyperbolic sine of a series

Return the series expansion of the sinh of p, about 0.

Examples

@@ -1206,7 +1206,7 @@

Reference
-sympy.polys.ring_series.rs_cosh(p, x, prec)[source]
+sympy.polys.ring_series.rs_cosh(p, x, prec)[source]

Hyperbolic cosine of a series

Return the series expansion of the cosh of p, about 0.

Examples

@@ -1226,7 +1226,7 @@

Reference
-sympy.polys.ring_series.rs_tanh(p, x, prec)[source]
+sympy.polys.ring_series.rs_tanh(p, x, prec)[source]

Hyperbolic tangent of a series

Return the series expansion of the tanh of p, about 0.

Examples

@@ -1246,7 +1246,7 @@

Reference
-sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)[source]
+sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)[source]

Return sum f_i/i!*x**i from sum f_i*x**i, where x is the first variable.

If invers=True return sum f_i*i!*x**i

@@ -1265,7 +1265,7 @@

Reference
-sympy.polys.ring_series.rs_mul(p1, p2, x, prec)[source]
+sympy.polys.ring_series.rs_mul(p1, p2, x, prec)[source]

Return the product of the given two series, modulo O(x**prec).

x is the series variable or its position in the generators.

Examples

@@ -1283,7 +1283,7 @@

Reference
-sympy.polys.ring_series.rs_square(p1, x, prec)[source]
+sympy.polys.ring_series.rs_square(p1, x, prec)[source]

Square the series modulo O(x**prec)

Examples

>>> from sympy.polys.domains import QQ
@@ -1299,7 +1299,7 @@ 

Reference
-sympy.polys.ring_series.rs_pow(p1, n, x, prec)[source]
+sympy.polys.ring_series.rs_pow(p1, n, x, prec)[source]

Return p1**n modulo O(x**prec)

Examples

>>> from sympy.polys.domains import QQ
@@ -1315,7 +1315,7 @@ 

Reference
-sympy.polys.ring_series.rs_series_inversion(p, x, prec)[source]
+sympy.polys.ring_series.rs_series_inversion(p, x, prec)[source]

Multivariate series inversion 1/p modulo O(x**prec).

Examples

>>> from sympy.polys.domains import QQ
@@ -1334,7 +1334,7 @@ 

Reference
-sympy.polys.ring_series.rs_series_reversion(p, x, n, y)[source]
+sympy.polys.ring_series.rs_series_reversion(p, x, n, y)[source]

Reversion of a series.

p is a series with O(x**n) of the form \(p = ax + f(x)\) where \(a\) is a number different from 0.

@@ -1379,7 +1379,7 @@

Reference
-sympy.polys.ring_series.rs_nth_root(p, n, x, prec)[source]
+sympy.polys.ring_series.rs_nth_root(p, n, x, prec)[source]

Multivariate series expansion of the nth root of p.

Parameters:
@@ -1419,7 +1419,7 @@

Reference
-sympy.polys.ring_series.rs_trunc(p1, x, prec)[source]
+sympy.polys.ring_series.rs_trunc(p1, x, prec)[source]

Truncate the series in the x variable with precision prec, that is, modulo O(x**prec)

Examples

@@ -1438,7 +1438,7 @@

Reference
-sympy.polys.ring_series.rs_subs(p, rules, x, prec)[source]
+sympy.polys.ring_series.rs_subs(p, rules, x, prec)[source]

Substitution with truncation according to the mapping in rules.

Return a series with precision prec in the generator x

Note that substitutions are not done one after the other

@@ -1479,7 +1479,7 @@

Reference
-sympy.polys.ring_series.rs_diff(p, x)[source]
+sympy.polys.ring_series.rs_diff(p, x)[source]

Return partial derivative of p with respect to x.

Parameters:
@@ -1500,7 +1500,7 @@

Reference
-sympy.polys.ring_series.rs_integrate(p, x)[source]
+sympy.polys.ring_series.rs_integrate(p, x)[source]

Integrate p with respect to x.

Parameters:
@@ -1521,7 +1521,7 @@

Reference
-sympy.polys.ring_series.rs_newton(p, x, prec)[source]
+sympy.polys.ring_series.rs_newton(p, x, prec)[source]

Compute the truncated Newton sum of the polynomial p

Examples

>>> from sympy.polys.domains import QQ
@@ -1537,7 +1537,7 @@ 

Reference
-sympy.polys.ring_series.rs_compose_add(p1, p2)[source]
+sympy.polys.ring_series.rs_compose_add(p1, p2)[source]

compute the composed sum prod(p2(x - beta) for beta root of p1)

Examples

>>> from sympy.polys.domains import QQ
@@ -1565,7 +1565,7 @@ 

Reference
-sympy.polys.ring_series.rs_is_puiseux(p, x)[source]
+sympy.polys.ring_series.rs_is_puiseux(p, x)[source]

Test if p is Puiseux series in x.

Raise an exception if it has a negative power in x.

Examples

@@ -1582,7 +1582,7 @@

Reference
-sympy.polys.ring_series.rs_puiseux(f, p, x, prec)[source]
+sympy.polys.ring_series.rs_puiseux(f, p, x, prec)[source]

Return the puiseux series for \(f(p, x, prec)\).

To be used when function f is implemented only for regular series.

Examples

@@ -1599,14 +1599,14 @@

Reference
-sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)[source]
+sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)[source]

Return the puiseux series for \(f(p, q, x, prec)\).

To be used when function f is implemented only for regular series.

-sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)[source]
+sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)[source]

Return a series \(sum c[n]*p**n\) modulo \(O(x**prec)\).

It reduces the number of multiplications by summing concurrently.

\(ax = [1, p, p**2, .., p**(J - 1)]\) @@ -1632,7 +1632,7 @@

Reference
-sympy.polys.ring_series.rs_fun(p, f, *args)[source]
+sympy.polys.ring_series.rs_fun(p, f, *args)[source]

Function of a multivariate series computed by substitution.

The case with f method name is used to compute \(rs\_tan\) and \(rs\_nth\_root\) of a multivariate series:

@@ -1664,14 +1664,14 @@

Reference
-sympy.polys.ring_series.mul_xin(p, i, n)[source]
+sympy.polys.ring_series.mul_xin(p, i, n)[source]

Return \(p*x_i**n\).

\(x\_i\) is the ith variable in p.

-sympy.polys.ring_series.pow_xin(p, i, n)[source]
+sympy.polys.ring_series.pow_xin(p, i, n)[source]
>>> from sympy.polys.domains import QQ
 >>> from sympy.polys.rings import ring
 >>> from sympy.polys.ring_series import pow_xin
diff --git a/dev/modules/polys/solvers.html b/dev/modules/polys/solvers.html
index fc90cfc68f0..9e3e2231595 100644
--- a/dev/modules/polys/solvers.html
+++ b/dev/modules/polys/solvers.html
@@ -808,7 +808,7 @@ 
Documentation Version

Low-level linear systems solver.

-sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)[source]
+sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)[source]

Solve a system of linear equations from a PolynomialRing

Parameters:
@@ -877,7 +877,7 @@
Documentation Version
-sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)[source]
+sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)[source]

Get matrix from linear equations in dict format.

Parameters:
@@ -930,7 +930,7 @@
Documentation Version
-sympy.polys.solvers.sympy_eqs_to_ring(eqs, symbols)[source]
+sympy.polys.solvers.sympy_eqs_to_ring(eqs, symbols)[source]

Convert a system of equations from Expr to a PolyRing

Parameters:
@@ -978,7 +978,7 @@
Documentation Version
-sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)[source]
+sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)[source]

Solve a linear system from dict of PolynomialRing coefficients

Explanation

This is an internal function used by solve_lin_sys() after the @@ -1016,7 +1016,7 @@

Documentation Version
ring,
-)[source] +)[source]

Solve a linear system from dict of PolynomialRing coefficients

Explanation

This is an internal function used by solve_lin_sys() after the diff --git a/dev/modules/printing.html b/dev/modules/printing.html index ccd008e5ba5..08daa3429a4 100644 --- a/dev/modules/printing.html +++ b/dev/modules/printing.html @@ -1015,7 +1015,7 @@

Common mistakessource code):

-class sympy.printing.printer.Printer(settings=None)[source]
+class sympy.printing.printer.Printer(settings=None)[source]

Generic printer

Its job is to provide infrastructure for implementing new printers easily.

If you want to define your custom Printer or your custom printing method @@ -1027,7 +1027,7 @@

Common mistakes
-_print(expr, **kwargs) str[source]
+_print(expr, **kwargs) str[source]

Internal dispatcher

Tries the following concepts to print an expression:
    @@ -1041,13 +1041,13 @@

    Common mistakes
    -doprint(expr)[source]
    +doprint(expr)[source]

    Returns printer’s representation for expr (as a string)

-classmethod set_global_settings(**settings)[source]
+classmethod set_global_settings(**settings)[source]

Set system-wide printing settings.

@@ -1069,7 +1069,7 @@

PrettyPrinter Class
-class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]
+class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]

Printer, which converts an expression into 2D ASCII-art figure.

@@ -1104,7 +1104,7 @@

PrettyPrinter Class
-sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]
+sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]

Prints expr in pretty form.

pprint is just a shortcut for this function.

@@ -1189,7 +1189,7 @@

PrettyPrinter Class
-class sympy.printing.c.C89CodePrinter(settings=None)[source]
+class sympy.printing.c.C89CodePrinter(settings=None)[source]

A printer to convert Python expressions to strings of C code

@@ -1198,7 +1198,7 @@

PrettyPrinter Class
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -1206,7 +1206,7 @@

PrettyPrinter Class
-class sympy.printing.c.C99CodePrinter(settings=None)[source]
+class sympy.printing.c.C99CodePrinter(settings=None)[source]
printmethod: str = '_ccode'
@@ -1225,7 +1225,7 @@

PrettyPrinter Class**settings,

-)[source] +)[source]

Converts an expr to a string of c code

Parameters:
@@ -1373,7 +1373,7 @@

PrettyPrinter Class
-sympy.printing.c.print_ccode(expr, **settings)[source]
+sympy.printing.c.print_ccode(expr, **settings)[source]

Prints C representation of the given expression.

@@ -1392,7 +1392,7 @@

PrettyPrinter Class
-class sympy.printing.cxx.CXX98CodePrinter(settings=None)[source]
+class sympy.printing.cxx.CXX98CodePrinter(settings=None)[source]
printmethod: str = '_cxxcode'
@@ -1402,7 +1402,7 @@

PrettyPrinter Class
-class sympy.printing.cxx.CXX11CodePrinter(settings=None)[source]
+class sympy.printing.cxx.CXX11CodePrinter(settings=None)[source]
printmethod: str = '_cxxcode'
@@ -1421,7 +1421,7 @@

PrettyPrinter Class**settings,

-)[source] +)[source]

C++ equivalent of ccode().

@@ -1449,7 +1449,7 @@

PrettyPrinter Class
-class sympy.printing.rcode.RCodePrinter(settings={})[source]
+class sympy.printing.rcode.RCodePrinter(settings={})[source]

A printer to convert SymPy expressions to strings of R code

@@ -1458,7 +1458,7 @@

PrettyPrinter Class
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -1466,7 +1466,7 @@

PrettyPrinter Class
-sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]
+sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]

Converts an expr to a string of r code

Parameters:
@@ -1585,7 +1585,7 @@

PrettyPrinter Class
-sympy.printing.rcode.print_rcode(expr, **settings)[source]
+sympy.printing.rcode.print_rcode(expr, **settings)[source]

Prints R representation of the given expression.

@@ -1600,7 +1600,7 @@

Fortran Printing
-sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]
+sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]

Converts an expr to a string of fortran code

Parameters:
@@ -1736,14 +1736,14 @@

Fortran Printing
-sympy.printing.fortran.print_fcode(expr, **settings)[source]
+sympy.printing.fortran.print_fcode(expr, **settings)[source]

Prints the Fortran representation of the given expression.

See fcode for the meaning of the optional arguments.

-class sympy.printing.fortran.FCodePrinter(settings=None)[source]
+class sympy.printing.fortran.FCodePrinter(settings=None)[source]

A printer to convert SymPy expressions to strings of Fortran code

@@ -1752,7 +1752,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -1886,7 +1886,7 @@

Fortran Printingsymbol_table=None,

-)[source] +)[source]
printmethod: str = '_smtlib'
@@ -1917,7 +1917,7 @@

Fortran Printinglog_warn=None,

-)[source] +)[source]

Converts expr to a string of smtlib code.

Parameters:
@@ -2032,7 +2032,7 @@

Fortran Printing
-class sympy.printing.mathematica.MCodePrinter(settings={})[source]
+class sympy.printing.mathematica.MCodePrinter(settings={})[source]

A printer to convert Python expressions to strings of the Wolfram’s Mathematica code

@@ -2044,7 +2044,7 @@

Fortran Printing
-sympy.printing.mathematica.mathematica_code(expr, **settings)[source]
+sympy.printing.mathematica.mathematica_code(expr, **settings)[source]

Converts an expr to a string of the Wolfram Mathematica code

Examples

>>> from sympy import mathematica_code as mcode, symbols, sin
@@ -2060,7 +2060,7 @@ 

Fortran Printing

Maple code printing

-class sympy.printing.maple.MapleCodePrinter(settings=None)[source]
+class sympy.printing.maple.MapleCodePrinter(settings=None)[source]

Printer which converts a SymPy expression into a maple code.

@@ -2071,7 +2071,7 @@

Fortran Printing
-sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]
+sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]

Converts expr to a string of Maple code.

Parameters:
@@ -2123,7 +2123,7 @@

Fortran Printing
-sympy.printing.maple.print_maple_code(expr, **settings)[source]
+sympy.printing.maple.print_maple_code(expr, **settings)[source]

Prints the Maple representation of the given expression.

See maple_code() for the meaning of the optional arguments.

Examples

@@ -2145,7 +2145,7 @@

Fortran Printing
-class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]
+class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]

“A Printer to convert Python expressions to strings of JavaScript code

@@ -2154,7 +2154,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2162,7 +2162,7 @@

Fortran Printing
-sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]
+sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]

Converts an expr to a string of javascript code

Parameters:
@@ -2296,7 +2296,7 @@

Fortran Printing
-class sympy.printing.julia.JuliaCodePrinter(settings={})[source]
+class sympy.printing.julia.JuliaCodePrinter(settings={})[source]

A printer to convert expressions to strings of Julia code.

@@ -2305,7 +2305,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2313,7 +2313,7 @@

Fortran Printing
-sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]
+sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]

Converts \(expr\) to a string of Julia code.

Parameters:
@@ -2480,7 +2480,7 @@

Fortran Printing
-class sympy.printing.octave.OctaveCodePrinter(settings={})[source]
+class sympy.printing.octave.OctaveCodePrinter(settings={})[source]

A printer to convert expressions to strings of Octave/Matlab code.

@@ -2489,7 +2489,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2497,7 +2497,7 @@

Fortran Printing
-sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]
+sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]

Converts \(expr\) to a string of Octave (or Matlab) code.

The string uses a subset of the Octave language for Matlab compatibility.

@@ -2657,7 +2657,7 @@

Fortran Printing
-class sympy.printing.rust.RustCodePrinter(settings={})[source]
+class sympy.printing.rust.RustCodePrinter(settings={})[source]

A printer to convert SymPy expressions to strings of Rust code

@@ -2666,7 +2666,7 @@

Fortran Printing
-indent_code(code)[source]
+indent_code(code)[source]

Accepts a string of code or a list of code lines

@@ -2674,7 +2674,7 @@

Fortran Printing
-sympy.printing.codeprinter.rust_code(expr, assign_to=None, **settings)[source]
+sympy.printing.codeprinter.rust_code(expr, assign_to=None, **settings)[source]

Converts an expr to a string of Rust code

Parameters:
@@ -2801,7 +2801,7 @@

Fortran Printing

Aesara Code printing

-class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]
+class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]

Code printer which creates Aesara symbolic expression graphs.

Parameters:
@@ -2842,7 +2842,7 @@

Fortran Printingbroadcastables=None,

-)[source] +)[source]

Convert a SymPy expression to a Aesara graph variable.

The dtypes and broadcastables arguments are used to specify the data type, dimension, and broadcasting behavior of the Aesara variables @@ -2886,7 +2886,7 @@

Fortran Printing
-sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]
+sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]

Convert a SymPy expression into a Aesara graph variable.

Parameters:
@@ -2932,7 +2932,7 @@

Fortran Printing**kwargs,

-)[source] +)[source]

Create a Aesara function from SymPy expressions.

The inputs and outputs are converted to Aesara variables using aesara_code() and then passed to aesara.function.

@@ -3036,7 +3036,7 @@

Fortran Printingbroadcastables=None,

-)[source] +)[source]

Get value of broadcastables argument to aesara_code() from keyword arguments to aesara_function().

Included for backwards compatibility.

@@ -3087,7 +3087,7 @@

Fortran Printing
-sympy.printing.gtk.print_gtk(x, start_viewer=True)[source]
+sympy.printing.gtk.print_gtk(x, start_viewer=True)[source]

Print to Gtkmathview, a gtk widget capable of rendering MathML.

Needs libgtkmathview-bin

@@ -3099,7 +3099,7 @@

Fortran Printingsympy.utilities.lambdify.lambdify() function.

-class sympy.printing.lambdarepr.LambdaPrinter(settings=None)[source]
+class sympy.printing.lambdarepr.LambdaPrinter(settings=None)[source]

This printer converts expressions into strings that can be used by lambdify.

@@ -3111,7 +3111,7 @@

Fortran Printing
-sympy.printing.lambdarepr.lambdarepr(expr, **settings)[source]
+sympy.printing.lambdarepr.lambdarepr(expr, **settings)[source]

Returns a string usable for lambdifying.

@@ -3129,7 +3129,7 @@

Fortran Printing
-class sympy.printing.latex.LatexPrinter(settings=None)[source]
+class sympy.printing.latex.LatexPrinter(settings=None)[source]
printmethod: str = '_latex'
@@ -3137,7 +3137,7 @@

Fortran Printing
-parenthesize_super(s)[source]
+parenthesize_super(s)[source]

Protect superscripts in s

If the parenthesize_super option is set, protect with parentheses, else wrap in braces.

@@ -3440,7 +3440,7 @@

Fortran Printing
-sympy.printing.latex.print_latex(expr, **settings)[source]
+sympy.printing.latex.print_latex(expr, **settings)[source]

Prints LaTeX representation of the given expression. Takes the same settings as latex().

@@ -3452,12 +3452,12 @@

Fortran Printinghttps://www.w3.org/TR/MathML2

-class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]
+class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]

Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter.

-doprint(expr)[source]
+doprint(expr)[source]

Prints the expression as MathML.

@@ -3465,7 +3465,7 @@

Fortran Printing
-class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]
+class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]

Prints an expression to the Content MathML markup language.

References: https://www.w3.org/TR/MathML2/chapter4.html

@@ -3475,7 +3475,7 @@

Fortran Printing
-mathml_tag(e)[source]
+mathml_tag(e)[source]

Returns the MathML tag for an expression.

@@ -3483,7 +3483,7 @@

Fortran Printing
-class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]
+class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]

Prints an expression to the Presentation MathML markup language.

References: https://www.w3.org/TR/MathML2/chapter3.html

@@ -3493,7 +3493,7 @@

Fortran Printing
-mathml_tag(e)[source]
+mathml_tag(e)[source]

Returns the MathML tag for an expression.

@@ -3530,7 +3530,7 @@

Fortran Printing
-sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]
+sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]

Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML.

Examples

@@ -3560,13 +3560,13 @@

Fortran Printing
-class sympy.printing.pycode.MpmathPrinter(settings=None)[source]
+class sympy.printing.pycode.MpmathPrinter(settings=None)[source]

Lambda printer for mpmath which maintains precision for floats

-sympy.printing.pycode.pycode(expr, **settings)[source]
+sympy.printing.pycode.pycode(expr, **settings)[source]

Converts an expr to a string of Python code

Parameters:
@@ -3628,7 +3628,7 @@

Fortran Printingstr() or print().

-class sympy.printing.repr.ReprPrinter(settings=None)[source]
+class sympy.printing.repr.ReprPrinter(settings=None)[source]
printmethod: str = '_sympyrepr'
@@ -3636,13 +3636,13 @@

Fortran Printing
-emptyPrinter(expr)[source]
+emptyPrinter(expr)[source]

The fallback printer.

-reprify(args, sep)[source]
+reprify(args, sep)[source]

Prints each item in \(args\) and joins them with \(sep\).

@@ -3660,7 +3660,7 @@

Fortran Printing
-class sympy.printing.str.StrPrinter(settings=None)[source]
+class sympy.printing.str.StrPrinter(settings=None)[source]
printmethod: str = '_sympystr'
@@ -3730,7 +3730,7 @@

Fortran Printing
-sympy.printing.tree.pprint_nodes(subtrees)[source]
+sympy.printing.tree.pprint_nodes(subtrees)[source]

Prettyprints systems of nodes.

Examples

>>> from sympy.printing.tree import pprint_nodes
@@ -3745,7 +3745,7 @@ 

Fortran Printing
-sympy.printing.tree.print_node(node, assumptions=True)[source]
+sympy.printing.tree.print_node(node, assumptions=True)[source]

Returns information about the “node”.

This includes class name, string representation and assumptions.

@@ -3760,7 +3760,7 @@

Fortran Printing
-sympy.printing.tree.tree(node, assumptions=True)[source]
+sympy.printing.tree.tree(node, assumptions=True)[source]

Returns a tree representation of “node” as a string.

It uses print_node() together with pprint_nodes() on node.args recursively.

@@ -3784,7 +3784,7 @@

Fortran Printing
-sympy.printing.tree.print_tree(node, assumptions=True)[source]
+sympy.printing.tree.print_tree(node, assumptions=True)[source]

Prints a tree representation of “node”.

Parameters:
@@ -3885,7 +3885,7 @@

Preview
**latex_settings,

-)[source] +)[source]

View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.

If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, @@ -3984,7 +3984,7 @@

Preview

Implementation - Helper Classes/Functions

-sympy.printing.conventions.split_super_sub(text)[source]
+sympy.printing.conventions.split_super_sub(text)[source]

Split a symbol name into a name, superscripts and subscripts

The first part of the symbol name is considered to be its actual ‘name’, followed by super- and subscripts. Each superscript is @@ -4008,7 +4008,7 @@

Preview¶ easily translated to C or Fortran.

-class sympy.printing.codeprinter.CodePrinter(settings=None)[source]
+class sympy.printing.codeprinter.CodePrinter(settings=None)[source]

The base class for code-printing subclasses.

@@ -4017,7 +4017,7 @@

Preview
-doprint(expr, assign_to=None)[source]
+doprint(expr, assign_to=None)[source]

Print the expression as code.

Parameters:
@@ -4038,7 +4038,7 @@

Preview
-exception sympy.printing.codeprinter.AssignmentError[source]
+exception sympy.printing.codeprinter.AssignmentError[source]

Raised if an assignment variable for a loop is missing.

@@ -4070,7 +4070,7 @@

Preview
-sympy.printing.precedence.precedence(item)[source]
+sympy.printing.precedence.precedence(item)[source]

Returns the precedence of a given object.

This is the precedence for StrPrinter.

@@ -4081,38 +4081,38 @@

Preview

Pretty-Printing Implementation Helpers

-sympy.printing.pretty.pretty_symbology.U(name)[source]
+sympy.printing.pretty.pretty_symbology.U(name)[source]

Get a unicode character by name or, None if not found.

This exists because older versions of Python use older unicode databases.

-sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]
+sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]

Set whether pretty-printer should use unicode by default

-sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]
+sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]

See if unicode output is available and leverage it if possible

-sympy.printing.pretty.pretty_symbology.xstr(*args)[source]
+sympy.printing.pretty.pretty_symbology.xstr(*args)[source]

The following two functions return the Unicode version of the inputted Greek letter.

-sympy.printing.pretty.pretty_symbology.g(l)[source]
+sympy.printing.pretty.pretty_symbology.g(l)[source]
-sympy.printing.pretty.pretty_symbology.G(l)[source]
+sympy.printing.pretty.pretty_symbology.G(l)[source]
@@ -4148,21 +4148,21 @@

Preview

The following functions return Unicode vertical objects.

-sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]
+sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]

Construct spatial object of given length.

return: [] of equal-length strings

-sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]
+sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]

Construct vertical object of a given height

see: xobj

-sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]
+sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]

Construct horizontal object of a given width

see: xobj

@@ -4175,7 +4175,7 @@

Preview
-sympy.printing.pretty.pretty_symbology.VF(txt)[source]
+sympy.printing.pretty.pretty_symbology.VF(txt)[source]
@@ -4186,7 +4186,7 @@

Preview

The following constants/functions are for rendering atoms and symbols.

-sympy.printing.pretty.pretty_symbology.xsym(sym)[source]
+sympy.printing.pretty.pretty_symbology.xsym(sym)[source]

get symbology for a ‘character’

@@ -4197,19 +4197,19 @@

Preview
-sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]
+sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]

return pretty representation of an atom

-sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]
+sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]

return pretty representation of a symbol

-sympy.printing.pretty.pretty_symbology.annotated(letter)[source]
+sympy.printing.pretty.pretty_symbology.annotated(letter)[source]

Return a stylised drawing of the letter letter, together with information on how to put annotations (super- and subscripts to the left and to the right) on it.

@@ -4235,12 +4235,12 @@

Preview

-class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]
+class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]

An ASCII picture. The pictures are represented as a list of equal length strings.

-above(*args)[source]
+above(*args)[source]

Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture.

@@ -4248,7 +4248,7 @@

Preview
-below(*args)[source]
+below(*args)[source]

Put pictures under this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of top picture

@@ -4265,26 +4265,26 @@

Preview
-height()[source]
+height()[source]

The height of the picture in characters.

-left(*args)[source]
+left(*args)[source]

Put pictures (left to right) at left. Returns string, baseline arguments for stringPict.

-leftslash()[source]
+leftslash()[source]

Precede object by a slash of the proper size.

-static next(*args)[source]
+static next(*args)[source]

Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict.

@@ -4299,7 +4299,7 @@

Preview
ifascii_nougly=False,

-)[source] +)[source]

Put parentheses around self. Returns string, baseline arguments for stringPict.

left or right can be None or empty string which means ‘no paren from @@ -4308,7 +4308,7 @@

Preview
-render(*args, **kwargs)[source]
+render(*args, **kwargs)[source]

Return the string form of self.

Unless the argument line_break is set to False, it will break the expression in a form that can be printed @@ -4317,7 +4317,7 @@

Preview
-right(*args)[source]
+right(*args)[source]

Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0.

@@ -4333,14 +4333,14 @@

Preview
-root(n=None)[source]
+root(n=None)[source]

Produce a nice root symbol. Produces ugly results for big n inserts.

-static stack(*args)[source]
+static stack(*args)[source]

Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. @@ -4353,13 +4353,13 @@

Preview
-terminal_width()[source]
+terminal_width()[source]

Return the terminal width if possible, otherwise return 0.

-width()[source]
+width()[source]

The width of the picture in characters.

@@ -4367,7 +4367,7 @@

Preview
-class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]
+class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]

Extension of the stringPict class that knows about basic math applications, optimizing double minus signs.

“Binding” is interpreted as follows:

@@ -4385,7 +4385,7 @@

Preview

-static apply(function, *args)[source]
+static apply(function, *args)[source]

Functions of one or more variables.

@@ -4412,7 +4412,7 @@

dotprint
**kwargs,

-)[source] +)[source]

DOT description of a SymPy expression tree

Parameters:
diff --git a/dev/modules/rewriting.html b/dev/modules/rewriting.html index 443a15d29cc..439c5c026e0 100644 --- a/dev/modules/rewriting.html +++ b/dev/modules/rewriting.html @@ -917,7 +917,7 @@

Common Subexpression Detection and Collectionlist=True,

-)[source] +)[source]

Perform common subexpression elimination on an expression.

Parameters:
diff --git a/dev/modules/series/formal.html b/dev/modules/series/formal.html index 7f7c1b79f49..9a3d24522b7 100644 --- a/dev/modules/series/formal.html +++ b/dev/modules/series/formal.html @@ -806,7 +806,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeries(*args)[source]
+class sympy.series.formal.FormalPowerSeries(*args)[source]

Represents Formal Power Series of a function.

Explanation

No computation is performed. This class should only to be used to represent @@ -818,7 +818,7 @@

Formal Power Series
-coeff_bell(n)[source]
+coeff_bell(n)[source]

self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that n should be a integer.

The second kind of Bell polynomials (are sometimes called “partial” Bell @@ -844,7 +844,7 @@

Formal Power Series
-compose(other, x=None, n=6)[source]
+compose(other, x=None, n=6)[source]

Returns the truncated terms of the formal power series of the composed function, up to specified n.

@@ -900,7 +900,7 @@

Formal Power Series
-integrate(x=None, **kwargs)[source]
+integrate(x=None, **kwargs)[source]

Integrate Formal Power Series.

Examples

>>> from sympy import fps, sin, integrate
@@ -916,7 +916,7 @@ 

Formal Power Series
-inverse(x=None, n=6)[source]
+inverse(x=None, n=6)[source]

Returns the truncated terms of the inverse of the formal power series, up to specified n.

@@ -966,7 +966,7 @@

Formal Power Series
-polynomial(n=6)[source]
+polynomial(n=6)[source]

Truncated series as polynomial.

Explanation

Returns series expansion of f upto order O(x**n) @@ -975,7 +975,7 @@

Formal Power Series
-product(other, x=None, n=6)[source]
+product(other, x=None, n=6)[source]

Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order.

@@ -1006,7 +1006,7 @@

Formal Power Series
-truncate(n=6)[source]
+truncate(n=6)[source]

Truncated series.

Explanation

Returns truncated series expansion of f upto @@ -1031,7 +1031,7 @@

Formal Power Seriesfull=False,

-)[source] +)[source]

Generates Formal Power Series of f.

Parameters:
@@ -1119,7 +1119,7 @@

Formal Power Seriesfull=False,

-)[source] +)[source]

Computes the formula for Formal Power Series of a function.

Parameters:
@@ -1189,7 +1189,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeriesCompose(*args)[source]
+class sympy.series.formal.FormalPowerSeriesCompose(*args)[source]

Represents the composed formal power series of two functions.

Explanation

No computation is performed. Terms are calculated using a term by term logic, @@ -1214,7 +1214,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeriesInverse(*args)[source]
+class sympy.series.formal.FormalPowerSeriesInverse(*args)[source]

Represents the Inverse of a formal power series.

Explanation

No computation is performed. Terms are calculated using a term by term logic, @@ -1237,7 +1237,7 @@

Formal Power Series
-class sympy.series.formal.FormalPowerSeriesProduct(*args)[source]
+class sympy.series.formal.FormalPowerSeriesProduct(*args)[source]

Represents the product of two formal power series of two functions.

Explanation

No computation is performed. Terms are calculated using a term by term logic, @@ -1260,7 +1260,7 @@

Formal Power Series
-class sympy.series.formal.FiniteFormalPowerSeries(*args)[source]
+class sympy.series.formal.FiniteFormalPowerSeries(*args)[source]

Base Class for Product, Compose and Inverse classes

@@ -1268,7 +1268,7 @@

Formal Power Series

-sympy.series.formal.rational_independent(terms, x)[source]
+sympy.series.formal.rational_independent(terms, x)[source]

Returns a list of all the rationally independent terms.

Examples

>>> from sympy import sin, cos
@@ -1286,7 +1286,7 @@ 

Rational Algorithm
-sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[source]
+sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[source]

Rational algorithm for computing formula of coefficients of Formal Power Series of a function.

@@ -1362,7 +1362,7 @@

Rational Algorithm

-sympy.series.formal.simpleDE(f, x, g, order=4)[source]
+sympy.series.formal.simpleDE(f, x, g, order=4)[source]

Generates simple DE.

Explanation

DE is of the form

@@ -1378,7 +1378,7 @@

Hypergeometric Algorithm
-sympy.series.formal.exp_re(DE, r, k)[source]
+sympy.series.formal.exp_re(DE, r, k)[source]

Converts a DE with constant coefficients (explike) into a RE.

Explanation

Performs the substitution:

@@ -1408,7 +1408,7 @@

Hypergeometric Algorithm
-sympy.series.formal.hyper_re(DE, r, k)[source]
+sympy.series.formal.hyper_re(DE, r, k)[source]

Converts a DE into a RE.

Explanation

Performs the substitution:

@@ -1438,7 +1438,7 @@

Hypergeometric Algorithm
-sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[source]
+sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[source]

Solves RE of hypergeometric type.

Returns:
@@ -1494,7 +1494,7 @@

Hypergeometric Algorithm
-sympy.series.formal.solve_de(f, x, DE, order, g, k)[source]
+sympy.series.formal.solve_de(f, x, DE, order, g, k)[source]

Solves the DE.

Returns:
@@ -1530,7 +1530,7 @@

Hypergeometric Algorithm
-sympy.series.formal.hyper_algorithm(f, x, k, order=4)[source]
+sympy.series.formal.hyper_algorithm(f, x, k, order=4)[source]

Hypergeometric algorithm for computing Formal Power Series.

Explanation

diff --git a/dev/modules/series/fourier.html b/dev/modules/series/fourier.html index db4301ca619..38a2a66f9a8 100644 --- a/dev/modules/series/fourier.html +++ b/dev/modules/series/fourier.html @@ -806,7 +806,7 @@

Fourier Series
-class sympy.series.fourier.FourierSeries(*args)[source]
+class sympy.series.fourier.FourierSeries(*args)[source]

Represents Fourier sine/cosine series.

Explanation

This class only represents a fourier series. @@ -819,7 +819,7 @@

Fourier Series
-scale(s)[source]
+scale(s)[source]

Scale the function by a term independent of x.

Explanation

f(x) -> s * f(x)

@@ -837,7 +837,7 @@

Fourier Series
-scalex(s)[source]
+scalex(s)[source]

Scale x by a term independent of x.

Explanation

f(x) -> f(s*x)

@@ -855,7 +855,7 @@

Fourier Series
-shift(s)[source]
+shift(s)[source]

Shift the function by a term independent of x.

Explanation

f(x) -> f(x) + s

@@ -873,7 +873,7 @@

Fourier Series
-shiftx(s)[source]
+shiftx(s)[source]

Shift x by a term independent of x.

Explanation

f(x) -> f(x + s)

@@ -891,7 +891,7 @@

Fourier Series
-sigma_approximation(n=3)[source]
+sigma_approximation(n=3)[source]

Return \(\sigma\)-approximation of Fourier series with respect to order n.

@@ -958,7 +958,7 @@

Fourier Series
-truncate(n=3)[source]
+truncate(n=3)[source]

Return the first n nonzero terms of the series.

If n is None return an iterator.

@@ -993,7 +993,7 @@

Fourier Series
-sympy.series.fourier.fourier_series(f, limits=None, finite=True)[source]
+sympy.series.fourier.fourier_series(f, limits=None, finite=True)[source]

Computes the Fourier trigonometric series expansion.

Parameters:
diff --git a/dev/modules/series/limitseq.html b/dev/modules/series/limitseq.html index 81fb1324806..9019a956814 100644 --- a/dev/modules/series/limitseq.html +++ b/dev/modules/series/limitseq.html @@ -806,7 +806,7 @@

Limits of Sequences
-sympy.series.limitseq.difference_delta(expr, n=None, step=1)[source]
+sympy.series.limitseq.difference_delta(expr, n=None, step=1)[source]

Difference Operator.

Explanation

Discrete analog of differential operator. Given a sequence x[n], @@ -831,7 +831,7 @@

Limits of Sequences
-sympy.series.limitseq.dominant(expr, n)[source]
+sympy.series.limitseq.dominant(expr, n)[source]

Finds the dominant term in a sum, that is a term that dominates every other term.

Explanation

@@ -857,7 +857,7 @@

Limits of Sequences
-sympy.series.limitseq.limit_seq(expr, n=None, trials=5)[source]
+sympy.series.limitseq.limit_seq(expr, n=None, trials=5)[source]

Finds the limit of a sequence as index n tends to infinity.

Parameters:
diff --git a/dev/modules/series/sequences.html b/dev/modules/series/sequences.html index e3db5b63173..cc95b58686b 100644 --- a/dev/modules/series/sequences.html +++ b/dev/modules/series/sequences.html @@ -806,7 +806,7 @@

Sequences
-sympy.series.sequences.sequence(seq, limits=None)[source]
+sympy.series.sequences.sequence(seq, limits=None)[source]

Returns appropriate sequence object.

Explanation

If seq is a SymPy sequence, returns SeqPer object @@ -830,17 +830,17 @@

Sequences

-class sympy.series.sequences.SeqBase(*args)[source]
+class sympy.series.sequences.SeqBase(*args)[source]

Base class for sequences

-coeff(pt)[source]
+coeff(pt)[source]

Returns the coefficient at point pt

-coeff_mul(other)[source]
+coeff_mul(other)[source]

Should be used when other is not a sequence. Should be defined to define custom behaviour.

Examples

@@ -864,7 +864,7 @@

Sequences Basegfvar=None,

-)[source] +)[source]

Finds the shortest linear recurrence that satisfies the first n terms of sequence of order \(\leq\) n/2 if possible. If d is specified, find shortest linear recurrence of order @@ -954,7 +954,7 @@

Sequences Base

-class sympy.series.sequences.SeqFormula(formula, limits=None)[source]
+class sympy.series.sequences.SeqFormula(formula, limits=None)[source]

Represents sequence based on a formula.

Elements are generated using a formula.

Examples

@@ -991,7 +991,7 @@

Elementary Sequences
-coeff_mul(coeff)[source]
+coeff_mul(coeff)[source]

See docstring of SeqBase.coeff_mul

@@ -999,7 +999,7 @@

Elementary Sequences
-class sympy.series.sequences.SeqPer(periodical, limits=None)[source]
+class sympy.series.sequences.SeqPer(periodical, limits=None)[source]

Represents a periodic sequence.

The elements are repeated after a given period.

Examples

@@ -1045,7 +1045,7 @@

Elementary Sequences
-coeff_mul(coeff)[source]
+coeff_mul(coeff)[source]

See docstring of SeqBase.coeff_mul

@@ -1056,7 +1056,7 @@

Elementary SequencesSingleton Sequences

-class sympy.series.sequences.EmptySequence[source]
+class sympy.series.sequences.EmptySequence[source]

Represents an empty sequence.

The empty sequence is also available as a singleton as S.EmptySequence.

@@ -1075,7 +1075,7 @@

Singleton Sequences
-coeff_mul(coeff)[source]
+coeff_mul(coeff)[source]

See docstring of SeqBase.coeff_mul

@@ -1086,7 +1086,7 @@

Singleton Sequences

-class sympy.series.sequences.SeqAdd(*args, **kwargs)[source]
+class sympy.series.sequences.SeqAdd(*args, **kwargs)[source]

Represents term-wise addition of sequences.

Rules:
-)[source] +)[source]

A finite degree recursive sequence.

Parameters:
diff --git a/dev/modules/series/series.html b/dev/modules/series/series.html index 02b57c978c4..b67ef3d9084 100644 --- a/dev/modules/series/series.html +++ b/dev/modules/series/series.html @@ -808,7 +808,7 @@

LimitsThe main purpose of this module is the computation of limits.

-sympy.series.limits.limit(e, z, z0, dir='+')[source]
+sympy.series.limits.limit(e, z, z0, dir='+')[source]

Computes the limit of e(z) at the point z0.

Parameters:
@@ -862,7 +862,7 @@

Limits
-class sympy.series.limits.Limit(e, z, z0, dir='+')[source]
+class sympy.series.limits.Limit(e, z, z0, dir='+')[source]

Represents an unevaluated limit.

Examples

>>> from sympy import Limit, sin
@@ -875,7 +875,7 @@ 

Limits
-doit(**hints)[source]
+doit(**hints)[source]

Evaluates the limit.

Parameters:
@@ -971,7 +971,7 @@

Notes

Reference

-sympy.series.gruntz.gruntz(e, z, z0, dir='+')[source]
+sympy.series.gruntz.gruntz(e, z, z0, dir='+')[source]

Compute the limit of e(z) at the point z0 using the Gruntz algorithm.

Explanation

z0 can be any expression, including oo and -oo.

@@ -985,13 +985,13 @@

Reference
-sympy.series.gruntz.compare(a, b, x)[source]
+sympy.series.gruntz.compare(a, b, x)[source]

Returns “<” if a<b, “=” for a == b, “>” for a>b

-sympy.series.gruntz.rewrite(e, Omega, x, wsym)[source]
+sympy.series.gruntz.rewrite(e, Omega, x, wsym)[source]

e(x) … the function Omega … the mrv set wsym … the symbol which is going to be used for w

@@ -1001,7 +1001,7 @@

Reference
-sympy.series.gruntz.build_expression_tree(Omega, rewrites)[source]
+sympy.series.gruntz.build_expression_tree(Omega, rewrites)[source]

Helper function for rewrite.

We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:

@@ -1017,26 +1017,26 @@

Reference
-sympy.series.gruntz.mrv_leadterm(e, x)[source]
+sympy.series.gruntz.mrv_leadterm(e, x)[source]

Returns (c0, e0) for e.

-sympy.series.gruntz.calculate_series(e, x, logx=None)[source]
+sympy.series.gruntz.calculate_series(e, x, logx=None)[source]

Calculates at least one term of the series of e in x.

This is a place that fails most often, so it is in its own function.

-sympy.series.gruntz.limitinf(e, x)[source]
+sympy.series.gruntz.limitinf(e, x)[source]

Limit e(x) for x-> oo.

-sympy.series.gruntz.sign(e, x)[source]
+sympy.series.gruntz.sign(e, x)[source]

Returns a sign of an expression e(x) for x->oo.

e >  0 for x sufficiently large ...  1
 e == 0 for x sufficiently large ...  0
@@ -1052,14 +1052,14 @@ 

Reference
-sympy.series.gruntz.mrv(e, x)[source]
+sympy.series.gruntz.mrv(e, x)[source]

Returns a SubsSet of most rapidly varying (mrv) subexpressions of ‘e’, and e rewritten in terms of these

-sympy.series.gruntz.mrv_max1(f, g, exps, x)[source]
+sympy.series.gruntz.mrv_max1(f, g, exps, x)[source]

Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. mrv_max1() compares (two elements of) f and g and returns the set, which is in the higher comparability class @@ -1069,7 +1069,7 @@

Reference
-sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)[source]
+sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)[source]

Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. max() compares (two elements of) f and g and returns either (f, expsf) [if f is larger], (g, expsg) @@ -1078,7 +1078,7 @@

Reference
-class sympy.series.gruntz.SubsSet[source]
+class sympy.series.gruntz.SubsSet[source]

Stores (expr, dummy) pairs, and how to rewrite expr-s.

Explanation

The gruntz algorithm needs to rewrite certain expressions in term of a new @@ -1122,25 +1122,25 @@

Reference
-copy()[source]
+copy()[source]

Create a shallow copy of SubsSet

-do_subs(e)[source]
+do_subs(e)[source]

Substitute the variables with expressions

-meets(s2)[source]
+meets(s2)[source]

Tell whether or not self and s2 have non-empty intersection

-union(s2, exps=None)[source]
+union(s2, exps=None)[source]

Compute the union of self and s2, adjusting exps

@@ -1167,7 +1167,7 @@

Examples

Reference

-sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')[source]
+sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')[source]

Series expansion of expr around point \(x = x0\).

Parameters:
@@ -1256,7 +1256,7 @@

ExamplesReference

-class sympy.series.order.Order(expr, *args, **kwargs)[source]
+class sympy.series.order.Order(expr, *args, **kwargs)[source]

Represents the limiting behavior of some function.

Explanation

The order of a function characterizes the function based on the limiting @@ -1364,7 +1364,7 @@

Reference
-contains(expr)[source]
+contains(expr)[source]

Return True if expr belongs to Order(self.expr, *self.variables). Return False if self belongs to expr. Return None if the inclusion relation cannot be determined @@ -1382,7 +1382,7 @@

Series Acceleration

-sympy.series.acceleration.richardson(A, k, n, N)[source]
+sympy.series.acceleration.richardson(A, k, n, N)[source]

Calculate an approximation for lim k->oo A(k) using Richardson extrapolation with the terms A(n), A(n+1), …, A(n+N+1). Choosing N ~= 2*n often gives good results.

@@ -1428,7 +1428,7 @@

Reference
-sympy.series.acceleration.shanks(A, k, n, m=1)[source]
+sympy.series.acceleration.shanks(A, k, n, m=1)[source]

Calculate an approximation for lim k->oo A(k) using the n-term Shanks transformation S(A)(n). With m > 1, calculate the m-fold recursive Shanks transformation S(S(…S(A)…))(n).

@@ -1458,7 +1458,7 @@

Residues

Reference

-sympy.series.residues.residue(expr, x, x0)[source]
+sympy.series.residues.residue(expr, x, x0)[source]

Finds the residue of expr at the point x=x0.

The residue is defined as the coefficient of 1/(x-x0) in the power series expansion about x=x0.

diff --git a/dev/modules/sets.html b/dev/modules/sets.html index d71c7c29339..3fbc10a8e21 100644 --- a/dev/modules/sets.html +++ b/dev/modules/sets.html @@ -807,7 +807,7 @@
Documentation Version

Basic Sets

-class sympy.sets.sets.Set(*args)[source]
+class sympy.sets.sets.Set(*args)[source]

The base class for any kind of set.

Explanation

This is not meant to be used directly as a container of items. It does not @@ -860,7 +860,7 @@

Documentation Version
-complement(universe)[source]
+complement(universe)[source]

The complement of ‘self’ w.r.t the given universe.

Examples

>>> from sympy import Interval, S
@@ -876,7 +876,7 @@ 
Documentation Version
-contains(other)[source]
+contains(other)[source]

Returns a SymPy value indicating whether other is contained in self: true if it is, false if it is not, else an unevaluated Contains expression (or, as in the case of @@ -943,7 +943,7 @@

Documentation Version
-intersect(other)[source]
+intersect(other)[source]

Returns the intersection of ‘self’ and ‘other’.

Examples

>>> from sympy import Interval
@@ -964,7 +964,7 @@ 
Documentation Version
-intersection(other)[source]
+intersection(other)[source]

Alias for intersect()

@@ -986,7 +986,7 @@
Documentation Version
-is_disjoint(other)[source]
+is_disjoint(other)[source]

Returns True if self and other are disjoint.

Examples

>>> from sympy import Interval
@@ -1026,7 +1026,7 @@ 
Documentation Version
-is_proper_subset(other)[source]
+is_proper_subset(other)[source]

Returns True if self is a proper subset of other.

Examples

>>> from sympy import Interval
@@ -1040,7 +1040,7 @@ 
Documentation Version
-is_proper_superset(other)[source]
+is_proper_superset(other)[source]

Returns True if self is a proper superset of other.

Examples

>>> from sympy import Interval
@@ -1054,7 +1054,7 @@ 
Documentation Version
-is_subset(other)[source]
+is_subset(other)[source]

Returns True if self is a subset of other.

Examples

>>> from sympy import Interval
@@ -1068,7 +1068,7 @@ 
Documentation Version
-is_superset(other)[source]
+is_superset(other)[source]

Returns True if self is a superset of other.

Examples

>>> from sympy import Interval
@@ -1082,19 +1082,19 @@ 
Documentation Version
-isdisjoint(other)[source]
+isdisjoint(other)[source]

Alias for is_disjoint()

-issubset(other)[source]
+issubset(other)[source]

Alias for is_subset()

-issuperset(other)[source]
+issuperset(other)[source]

Alias for is_superset()

@@ -1174,7 +1174,7 @@
Documentation Version
-powerset()[source]
+powerset()[source]

Find the Power set of self.

Examples

>>> from sympy import EmptySet, FiniteSet, Interval
@@ -1223,7 +1223,7 @@ 
Documentation Version
-symmetric_difference(other)[source]
+symmetric_difference(other)[source]

Returns symmetric difference of self and other.

Examples

>>> from sympy import Interval, S
@@ -1249,7 +1249,7 @@ 
Documentation Version
-union(other)[source]
+union(other)[source]

Returns the union of self and other.

Examples

As a shortcut it is possible to use the + operator:

@@ -1275,7 +1275,7 @@
Documentation Version
-sympy.sets.sets.imageset(*args)[source]
+sympy.sets.sets.imageset(*args)[source]

Return an image of the set under transformation f.

Explanation

If this function cannot compute the image, it returns an @@ -1335,7 +1335,7 @@

Elementary Setsright_open=False,

-)[source] +)[source]

Represents a real interval as a Set.

Usage:

Returns an interval with end points start and end.

@@ -1379,19 +1379,19 @@

Elementary Sets
-classmethod Lopen(a, b)[source]
+classmethod Lopen(a, b)[source]

Return an interval not including the left boundary.

-classmethod Ropen(a, b)[source]
+classmethod Ropen(a, b)[source]

Return an interval not including the right boundary.

-as_relational(x)[source]
+as_relational(x)[source]

Rewrite an interval in terms of inequalities and logic operators.

@@ -1436,7 +1436,7 @@

Elementary Sets
-classmethod open(a, b)[source]
+classmethod open(a, b)[source]

Return an interval including neither boundary.

@@ -1471,7 +1471,7 @@

Elementary Sets
-class sympy.sets.sets.FiniteSet(*args, **kwargs)[source]
+class sympy.sets.sets.FiniteSet(*args, **kwargs)[source]

Represents a finite set of Sympy expressions.

Examples

>>> from sympy import FiniteSet, Symbol, Interval, Naturals0
@@ -1502,7 +1502,7 @@ 

Elementary Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a FiniteSet in terms of equalities and logic operators.

@@ -1513,7 +1513,7 @@

Elementary Sets

-class sympy.sets.sets.Union(*args, **kwargs)[source]
+class sympy.sets.sets.Union(*args, **kwargs)[source]

Represents a union of sets as a Set.

Examples

>>> from sympy import Union, Interval
@@ -1540,7 +1540,7 @@ 

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a Union in terms of equalities and logic operators.

@@ -1548,7 +1548,7 @@

Compound Sets
-class sympy.sets.sets.Intersection(*args, evaluate=None)[source]
+class sympy.sets.sets.Intersection(*args, evaluate=None)[source]

Represents an intersection of sets as a Set.

Examples

>>> from sympy import Intersection, Interval
@@ -1574,7 +1574,7 @@ 

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite an Intersection in terms of equalities and logic operators

@@ -1582,7 +1582,7 @@

Compound Sets
-class sympy.sets.sets.ProductSet(*sets, **assumptions)[source]
+class sympy.sets.sets.ProductSet(*sets, **assumptions)[source]

Represents a Cartesian Product of Sets.

Explanation

Returns a Cartesian product given several sets as either an iterable @@ -1647,7 +1647,7 @@

Compound Sets
-class sympy.sets.sets.Complement(a, b, evaluate=True)[source]
+class sympy.sets.sets.Complement(a, b, evaluate=True)[source]

Represents the set difference or relative complement of a set with another set.

@@ -1674,14 +1674,14 @@

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a complement in terms of equalities and logic operators

-static reduce(A, B)[source]
+static reduce(A, B)[source]

Simplify a Complement.

@@ -1689,7 +1689,7 @@

Compound Sets
-class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)[source]
+class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)[source]

Represents the set of elements which are in either of the sets and not in their intersection.

Examples

@@ -1711,7 +1711,7 @@

Compound Sets
-as_relational(symbol)[source]
+as_relational(symbol)[source]

Rewrite a symmetric_difference in terms of equalities and logic operators

@@ -1720,7 +1720,7 @@

Compound Sets
-class sympy.sets.sets.DisjointUnion(*sets)[source]
+class sympy.sets.sets.DisjointUnion(*sets)[source]

Represents the disjoint union (also known as the external disjoint union) of a finite number of sets.

Examples

@@ -1747,7 +1747,7 @@

Compound Sets

-class sympy.sets.sets.EmptySet[source]
+class sympy.sets.sets.EmptySet[source]

Represents the empty set. The empty set is available as a singleton as S.EmptySet.

Examples

@@ -1775,7 +1775,7 @@

Singleton Sets
-class sympy.sets.sets.UniversalSet[source]
+class sympy.sets.sets.UniversalSet[source]

Represents the set of all things. The universal set is available as a singleton as S.UniversalSet.

Examples

@@ -1806,7 +1806,7 @@

Singleton Sets

Special Sets

-class sympy.sets.fancysets.Rationals[source]
+class sympy.sets.fancysets.Rationals[source]

Represents the rational numbers. This set is also available as the singleton S.Rationals.

Examples

@@ -1822,7 +1822,7 @@

Singleton Sets
-class sympy.sets.fancysets.Naturals[source]
+class sympy.sets.fancysets.Naturals[source]

Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the singleton S.Naturals.

@@ -1854,7 +1854,7 @@

Singleton Sets
-class sympy.sets.fancysets.Naturals0[source]
+class sympy.sets.fancysets.Naturals0[source]

Represents the whole numbers which are all the non-negative integers, inclusive of zero.

@@ -1870,7 +1870,7 @@

Singleton Sets
-class sympy.sets.fancysets.Integers[source]
+class sympy.sets.fancysets.Integers[source]

Represents all integers: positive, negative and zero. This set is also available as the singleton S.Integers.

Examples

@@ -1905,7 +1905,7 @@

Singleton Sets
-class sympy.sets.fancysets.Reals[source]
+class sympy.sets.fancysets.Reals[source]

Represents all real numbers from negative infinity to positive infinity, including all integer, rational and irrational numbers. @@ -1932,7 +1932,7 @@

Singleton Sets
-class sympy.sets.fancysets.Complexes[source]
+class sympy.sets.fancysets.Complexes[source]

The Set of all complex numbers

Examples

>>> from sympy import S, I
@@ -1950,7 +1950,7 @@ 

Singleton Sets
-class sympy.sets.fancysets.ImageSet(flambda, *sets)[source]
+class sympy.sets.fancysets.ImageSet(flambda, *sets)[source]

Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument @@ -2008,7 +2008,7 @@

Singleton Sets
-class sympy.sets.fancysets.Range(*args)[source]
+class sympy.sets.fancysets.Range(*args)[source]

Represents a range of integers. Can be called as Range(stop), Range(start, stop), or Range(start, stop, step); when step is not given it defaults to 1.

@@ -2090,7 +2090,7 @@

Singleton Sets
-as_relational(x)[source]
+as_relational(x)[source]

Rewrite a Range in terms of equalities and logic operators.

@@ -2110,7 +2110,7 @@

Singleton Sets
-class sympy.sets.fancysets.ComplexRegion(sets, polar=False)[source]
+class sympy.sets.fancysets.ComplexRegion(sets, polar=False)[source]

Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates.

@@ -2238,7 +2238,7 @@

Singleton Sets
-classmethod from_real(sets)[source]
+classmethod from_real(sets)[source]

Converts given subset of real numbers to a complex region.

Examples

>>> from sympy import Interval, ComplexRegion
@@ -2291,7 +2291,7 @@ 

Singleton Sets
-class sympy.sets.fancysets.CartesianComplexRegion(sets)[source]
+class sympy.sets.fancysets.CartesianComplexRegion(sets)[source]

Set representing a square region of the complex plane.

@@ -2314,7 +2314,7 @@

Singleton Sets
-class sympy.sets.fancysets.PolarComplexRegion(sets)[source]
+class sympy.sets.fancysets.PolarComplexRegion(sets)[source]

Set representing a polar region of the complex plane.

@@ -2339,7 +2339,7 @@

Singleton Sets
-sympy.sets.fancysets.normalize_theta_set(theta)[source]
+sympy.sets.fancysets.normalize_theta_set(theta)[source]

Normalize a Real Set \(theta\) in the interval \([0, 2\pi)\). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle \([0, 2\pi]\), is returned i.e. for theta equal to \([0, 10\pi]\), @@ -2386,7 +2386,7 @@

Singleton Sets

Power sets

-class sympy.sets.powerset.PowerSet(arg, evaluate=None)[source]
+class sympy.sets.powerset.PowerSet(arg, evaluate=None)[source]

A symbolic object representing a power set.

Parameters:
@@ -2460,7 +2460,7 @@

Singleton Setsbase_set=UniversalSet,

-)[source] +)[source]

Set of elements which satisfies a given condition.

@@ -2530,7 +2530,7 @@

Singleton Sets
-class sympy.sets.conditionset.Contains(x, s, evaluate=None)[source]
+class sympy.sets.conditionset.Contains(x, s, evaluate=None)[source]

Asserts that x is an element of the set S.

Examples

>>> from sympy import Symbol, Integer, S, Contains
@@ -2557,7 +2557,7 @@ 

Singleton Sets

-class sympy.sets.conditionset.SetKind(element_kind=None)[source]
+class sympy.sets.conditionset.SetKind(element_kind=None)[source]

SetKind is kind for all Sets

Every instance of Set will have kind SetKind parametrised by the kind of the elements of the Set. The kind of the elements might be diff --git a/dev/modules/simplify/fu.html b/dev/modules/simplify/fu.html index 2afc3e5e47e..0629176d4b4 100644 --- a/dev/modules/simplify/fu.html +++ b/dev/modules/simplify/fu.html @@ -972,14 +972,14 @@

Documentation Version

Rules

-sympy.simplify.fu.TR0(rv)[source]
+sympy.simplify.fu.TR0(rv)[source]

Simplification of rational polynomials, trying to simplify the expression, e.g. combine things like 3*x + 2*x, etc….

-sympy.simplify.fu.TR1(rv)[source]
+sympy.simplify.fu.TR1(rv)[source]

Replace sec, csc with 1/cos, 1/sin

Examples

>>> from sympy.simplify.fu import TR1, sec, csc
@@ -992,7 +992,7 @@ 

Rules
-sympy.simplify.fu.TR2(rv)[source]
+sympy.simplify.fu.TR2(rv)[source]

Replace tan and cot with sin/cos and cos/sin

Examples

>>> from sympy.simplify.fu import TR2
@@ -1010,7 +1010,7 @@ 

Rules
-sympy.simplify.fu.TR2i(rv, half=False)[source]
+sympy.simplify.fu.TR2i(rv, half=False)[source]
Converts ratios involving sin and cos as follows::

sin(x)/cos(x) -> tan(x) sin(x)/(cos(x) + 1) -> tan(x/2) if half=True

@@ -1040,7 +1040,7 @@

Rules
-sympy.simplify.fu.TR3(rv)[source]
+sympy.simplify.fu.TR3(rv)[source]

Induced formula: example sin(-a) = -sin(a)

Examples

>>> from sympy.simplify.fu import TR3
@@ -1059,7 +1059,7 @@ 

Rules
-sympy.simplify.fu.TR4(rv)[source]
+sympy.simplify.fu.TR4(rv)[source]

Identify values of special angles.

A= 0 Pi/6 Pi/4 Pi/3 Pi/2

sin(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1 @@ -1082,7 +1082,7 @@

Rules
-sympy.simplify.fu.TR5(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR5(rv, max=4, pow=False)[source]

Replacement of sin**2 with 1 - cos(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1101,7 +1101,7 @@

Rules
-sympy.simplify.fu.TR6(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR6(rv, max=4, pow=False)[source]

Replacement of cos**2 with 1 - sin(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1120,7 +1120,7 @@

Rules
-sympy.simplify.fu.TR7(rv)[source]
+sympy.simplify.fu.TR7(rv)[source]

Lowering the degree of cos(x)**2.

Examples

>>> from sympy.simplify.fu import TR7
@@ -1136,7 +1136,7 @@ 

Rules
-sympy.simplify.fu.TR8(rv, first=True)[source]
+sympy.simplify.fu.TR8(rv, first=True)[source]

Converting products of cos and/or sin to a sum or difference of cos and or sin terms.

Examples

@@ -1154,7 +1154,7 @@

Rules
-sympy.simplify.fu.TR9(rv)[source]
+sympy.simplify.fu.TR9(rv)[source]

Sum of cos or sin terms as a product of cos or sin.

Examples

>>> from sympy.simplify.fu import TR9
@@ -1177,7 +1177,7 @@ 

Rules
-sympy.simplify.fu.TR10(rv, first=True)[source]
+sympy.simplify.fu.TR10(rv, first=True)[source]

Separate sums in cos and sin.

Examples

>>> from sympy.simplify.fu import TR10
@@ -1195,7 +1195,7 @@ 

Rules
-sympy.simplify.fu.TR10i(rv)[source]
+sympy.simplify.fu.TR10i(rv)[source]

Sum of products to function of sum.

Examples

>>> from sympy.simplify.fu import TR10i
@@ -1215,7 +1215,7 @@ 

Rules
-sympy.simplify.fu.TR11(rv, base=None)[source]
+sympy.simplify.fu.TR11(rv, base=None)[source]

Function of double angle to product. The base argument can be used to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base then cosine and sine functions with argument 6*pi/7 will be replaced.

@@ -1257,7 +1257,7 @@

Rules
-sympy.simplify.fu.TR12(rv, first=True)[source]
+sympy.simplify.fu.TR12(rv, first=True)[source]

Separate sums in tan.

Examples

>>> from sympy.abc import x, y
@@ -1271,7 +1271,7 @@ 

Rules
-sympy.simplify.fu.TR12i(rv)[source]
+sympy.simplify.fu.TR12i(rv)[source]

Combine tan arguments as (tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y).

Examples

@@ -1294,7 +1294,7 @@

Rules
-sympy.simplify.fu.TR13(rv)[source]
+sympy.simplify.fu.TR13(rv)[source]

Change products of tan or cot.

Examples

>>> from sympy.simplify.fu import TR13
@@ -1309,7 +1309,7 @@ 

Rules
-sympy.simplify.fu.TRmorrie(rv)[source]
+sympy.simplify.fu.TRmorrie(rv)[source]

Returns cos(x)*cos(2*x)*…*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))

Examples

>>> from sympy.simplify.fu import TRmorrie, TR8, TR3
@@ -1370,7 +1370,7 @@ 

Rules
-sympy.simplify.fu.TR14(rv, first=True)[source]
+sympy.simplify.fu.TR14(rv, first=True)[source]

Convert factored powers of sin and cos identities into simpler expressions.

Examples

@@ -1392,7 +1392,7 @@

Rules
-sympy.simplify.fu.TR15(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR15(rv, max=4, pow=False)[source]

Convert sin(x)**-2 to 1 + cot(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1407,7 +1407,7 @@

Rules
-sympy.simplify.fu.TR16(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR16(rv, max=4, pow=False)[source]

Convert cos(x)**-2 to 1 + tan(x)**2.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1422,7 +1422,7 @@

Rules
-sympy.simplify.fu.TR111(rv)[source]
+sympy.simplify.fu.TR111(rv)[source]

Convert f(x)**-i to g(x)**i where either i is an integer or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.

Examples

@@ -1437,7 +1437,7 @@

Rules
-sympy.simplify.fu.TR22(rv, max=4, pow=False)[source]
+sympy.simplify.fu.TR22(rv, max=4, pow=False)[source]

Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.

See _TR56 docstring for advanced use of max and pow.

Examples

@@ -1454,7 +1454,7 @@

Rules
-sympy.simplify.fu.TRpower(rv)[source]
+sympy.simplify.fu.TRpower(rv)[source]

Convert sin(x)**n and cos(x)**n with positive n to sums.

Examples

>>> from sympy.simplify.fu import TRpower
@@ -1477,7 +1477,7 @@ 

Rules
-sympy.simplify.fu.fu(rv, measure=<function <lambda>>)[source]
+sympy.simplify.fu.fu(rv, measure=<function <lambda>>)[source]

Attempt to simplify expression by using transformation rules given in the algorithm by Fu et al.

fu() will try to minimize the objective function measure. diff --git a/dev/modules/simplify/simplify.html b/dev/modules/simplify/simplify.html index 3b4c999aeb5..514b68c27f6 100644 --- a/dev/modules/simplify/simplify.html +++ b/dev/modules/simplify/simplify.html @@ -812,7 +812,7 @@

Documentation Version
**kwargs,
-) Expr[source] +) Expr[source]
sympy.simplify.simplify.simplify( @@ -996,7 +996,7 @@
Documentation Version
force=False,

-)[source] +)[source]

Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are @@ -1056,7 +1056,7 @@

Documentation Version
-sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)[source]
+sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)[source]

Compute a real nth-root of a sum of surds.

Parameters:
@@ -1080,7 +1080,7 @@
Documentation Version
-sympy.simplify.simplify.kroneckersimp(expr)[source]
+sympy.simplify.simplify.kroneckersimp(expr)[source]

Simplify expressions with KroneckerDelta.

The only simplification currently attempted is to identify multiplicative cancellation:

Examples

@@ -1094,7 +1094,7 @@
Documentation Version
-sympy.simplify.simplify.besselsimp(expr)[source]
+sympy.simplify.simplify.besselsimp(expr)[source]

Simplify bessel-type functions.

Explanation

This routine tries to simplify bessel-type functions. Currently it only @@ -1121,7 +1121,7 @@

Documentation Version
-sympy.simplify.simplify.hypersimp(f, k)[source]
+sympy.simplify.simplify.hypersimp(f, k)[source]

Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms @@ -1149,7 +1149,7 @@

Documentation Version
-sympy.simplify.simplify.hypersimilar(f, g, k)[source]
+sympy.simplify.simplify.hypersimilar(f, g, k)[source]

Returns True if f and g are hyper-similar.

Explanation

Similarity in hypergeometric sense means that a quotient of @@ -1171,7 +1171,7 @@

Documentation Version
rational_conversion='base10',
-)[source] +)[source]

Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be @@ -1217,7 +1217,7 @@

Documentation Version
-sympy.simplify.simplify.posify(eq)[source]
+sympy.simplify.simplify.posify(eq)[source]

Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols.

@@ -1259,7 +1259,7 @@
Documentation Version
-sympy.simplify.simplify.logcombine(expr, force=False)[source]
+sympy.simplify.simplify.logcombine(expr, force=False)[source]

Takes logarithms and combines them using the following rules:

  • log(x) + log(y) == log(x*y) if both are positive

  • @@ -1306,7 +1306,7 @@
    Documentation Version
    -sympy.simplify.radsimp.radsimp(expr, symbolic=True, max_terms=4)[source]
    +sympy.simplify.radsimp.radsimp(expr, symbolic=True, max_terms=4)[source]

    Rationalize the denominator by removing square roots.

    Explanation

    The expression returned from radsimp must be used with caution @@ -1380,7 +1380,7 @@

    Documentation Version
    -sympy.simplify.radsimp.rad_rationalize(num, den)[source]
    +sympy.simplify.radsimp.rad_rationalize(num, den)[source]

    Rationalize num/den by removing square roots in the denominator; num and den are sum of terms whose squares are positive rationals.

    Examples

    @@ -1405,7 +1405,7 @@
    Documentation Version
    distribute_order_term=True,
    -)[source] +)[source]

    Collect additive terms of an expression.

    Explanation

    This function collects additive terms of an expression with respect @@ -1552,7 +1552,7 @@

    Documentation Version
    -sympy.simplify.radsimp.rcollect(expr, *vars)[source]
    +sympy.simplify.radsimp.rcollect(expr, *vars)[source]

    Recursively collect sums in an expression.

    Examples

    >>> from sympy.simplify import rcollect
    @@ -1574,7 +1574,7 @@ 
    Documentation Version
    -sympy.simplify.radsimp.collect_sqrt(expr, evaluate=None)[source]
    +sympy.simplify.radsimp.collect_sqrt(expr, evaluate=None)[source]

    Return expr with terms having common square roots collected together. If evaluate is False a count indicating the number of sqrt-containing terms will be returned and, if non-zero, the terms of the Add will be @@ -1616,7 +1616,7 @@

    Documentation Version
    -sympy.simplify.radsimp.collect_const(expr, *vars, Numbers=True)[source]
    +sympy.simplify.radsimp.collect_const(expr, *vars, Numbers=True)[source]

    A non-greedy collection of terms with similar number coefficients in an Add expr. If vars is given then only those constants will be targeted. Although any Number can also be targeted, if this is not @@ -1683,7 +1683,7 @@

    Documentation Version
    -sympy.simplify.radsimp.fraction(expr, exact=False)[source]
    +sympy.simplify.radsimp.fraction(expr, exact=False)[source]

    Returns a pair with expression’s numerator and denominator. If the given expression is not a fraction then this function will return the tuple (expr, 1).

    @@ -1746,7 +1746,7 @@
    Documentation Version
    -sympy.simplify.ratsimp.ratsimp(expr)[source]
    +sympy.simplify.ratsimp.ratsimp(expr)[source]

    Put an expression over a common denominator, cancel and reduce.

    Examples

    >>> from sympy import ratsimp
    @@ -1770,7 +1770,7 @@ 
    Documentation Version
    **args,
    -)[source] +)[source]

    Simplifies a rational expression expr modulo the prime ideal generated by G. G should be a Groebner basis of the ideal.

    @@ -1801,7 +1801,7 @@
    Documentation Version
    -sympy.simplify.trigsimp.trigsimp(expr, inverse=False, **opts)[source]
    +sympy.simplify.trigsimp.trigsimp(expr, inverse=False, **opts)[source]

    Returns a reduced expression by using known trig identities.

    Parameters:
    @@ -1879,7 +1879,7 @@
    Documentation Version
    measure=<function count_ops>,
    -)[source] +)[source]

    Reduce expression by combining powers with similar bases and exponents.

    Explanation

    If deep is True then powsimp() will also simplify arguments of @@ -1959,7 +1959,7 @@

    Documentation Version
    -sympy.simplify.powsimp.powdenest(eq, force=False, polar=False)[source]
    +sympy.simplify.powsimp.powdenest(eq, force=False, polar=False)[source]

    Collect exponents on powers as assumptions allow.

    Explanation

    @@ -2053,7 +2053,7 @@
    Documentation Version
    -sympy.simplify.combsimp.combsimp(expr)[source]
    +sympy.simplify.combsimp.combsimp(expr)[source]

    Simplify combinatorial expressions.

    Explanation

    This function takes as input an expression containing factorials, @@ -2085,7 +2085,7 @@

    Documentation Version
    -sympy.simplify.sqrtdenest.sqrtdenest(expr, max_iter=3)[source]
    +sympy.simplify.sqrtdenest.sqrtdenest(expr, max_iter=3)[source]

    Denests sqrts in an expression that contain other square roots if possible, otherwise returns the expr unchanged. This is based on the algorithms of [1].

    @@ -2128,7 +2128,7 @@
    Documentation Version
    list=True,
    -)[source] +)[source]

    Perform common subexpression elimination on an expression.

    Parameters:
    @@ -2224,7 +2224,7 @@
    Documentation Version
    -sympy.simplify.cse_main.opt_cse(exprs, order='canonical')[source]
    +sympy.simplify.cse_main.opt_cse(exprs, order='canonical')[source]

    Find optimization opportunities in Adds, Muls, Pows and negative coefficient Muls.

    @@ -2269,7 +2269,7 @@
    Documentation Version
    ignore=(),
    -)[source] +)[source]

    Perform raw CSE on expression tree, taking opt_subs into account.

    Parameters:
    @@ -2310,7 +2310,7 @@
    Documentation Version
    place=None,
    -)[source] +)[source]

    Expand hypergeometric functions. If allow_hyper is True, allow partial simplification (that is a result different from input, but still containing hypergeometric functions).

    @@ -2335,7 +2335,7 @@
    Documentation Version
    -class sympy.simplify.epathtools.EPath(path)[source]
    +class sympy.simplify.epathtools.EPath(path)[source]

    Manipulate expressions using paths.

    EPath grammar in EBNF notation:

    literal   ::= /[A-Za-z_][A-Za-z_0-9]*/
    @@ -2353,7 +2353,7 @@ 
    Documentation Version

    See the docstring of the epath() function.

    -apply(expr, func, args=None, kwargs=None)[source]
    +apply(expr, func, args=None, kwargs=None)[source]

    Modify parts of an expression selected by a path.

    Examples

    >>> from sympy.simplify.epathtools import EPath
    @@ -2381,7 +2381,7 @@ 
    Documentation Version
    -select(expr)[source]
    +select(expr)[source]

    Retrieve parts of an expression selected by a path.

    Examples

    >>> from sympy.simplify.epathtools import EPath
    @@ -2421,7 +2421,7 @@ 
    Documentation Version
    kwargs=None,
    -)[source] +)[source]

    Manipulate parts of an expression selected by a path.

    Parameters:
    diff --git a/dev/modules/solvers/diophantine.html b/dev/modules/solvers/diophantine.html index a218f624815..dae3908092a 100644 --- a/dev/modules/solvers/diophantine.html +++ b/dev/modules/solvers/diophantine.html @@ -1135,7 +1135,7 @@

    User Functionsfrom sympy import *:

    -sympy.solvers.diophantine.diophantine.diophantine(eq, param=t, syms=None, permute=False)[source]
    +sympy.solvers.diophantine.diophantine.diophantine(eq, param=t, syms=None, permute=False)[source]

    Simplify the solution procedure of diophantine equation eq by converting it into a product of terms which should equal zero.

    Explanation

    @@ -1193,7 +1193,7 @@

    User Functionsfrom sympy.solvers.diophantine import *:

    -sympy.solvers.diophantine.diophantine.classify_diop(eq, _dict=True)[source]
    +sympy.solvers.diophantine.diophantine.classify_diop(eq, _dict=True)[source]
    @@ -1202,7 +1202,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_solve(eq, param=t)[source]
    +sympy.solvers.diophantine.diophantine.diop_solve(eq, param=t)[source]

    Solves the diophantine equation eq.

    Explanation

    Unlike diophantine(), factoring of eq is not attempted. Uses @@ -1239,7 +1239,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_linear(eq, param=t)[source]
    +sympy.solvers.diophantine.diophantine.diop_linear(eq, param=t)[source]

    Solves linear diophantine equations.

    A linear diophantine equation is an equation of the form \(a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0\) where \(a_{1}, a_{2}, ..a_{n}\) are @@ -1271,7 +1271,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.base_solution_linear(c, a, b, t=None)[source]
    +sympy.solvers.diophantine.diophantine.base_solution_linear(c, a, b, t=None)[source]

    Return the base solution for the linear equation, \(ax + by = c\).

    Explanation

    Used by diop_linear() to find the base solution of a linear @@ -1297,7 +1297,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_quadratic(eq, param=t)[source]
    +sympy.solvers.diophantine.diophantine.diop_quadratic(eq, param=t)[source]

    Solves quadratic diophantine equations.

    i.e. equations of the form \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\). Returns a set containing the tuples \((x, y)\) which contains the solutions. If there @@ -1337,7 +1337,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_DN(D, N, t=t)[source]
    +sympy.solvers.diophantine.diophantine.diop_DN(D, N, t=t)[source]

    Solves the equation \(x^2 - Dy^2 = N\).

    Explanation

    Mainly concerned with the case \(D > 0, D\) is not a perfect square, @@ -1392,7 +1392,7 @@

    Internal Functionsm: int,

    -) set[tuple[int, int]][source] +) set[tuple[int, int]][source]

    Solves \(ax^2 + by^2 = m\) where \(\gcd(a, b) = 1 = gcd(a, m)\) and \(a, b > 0\).

    Explanation

    Uses the algorithm due to Cornacchia. The method only finds primitive @@ -1431,7 +1431,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_bf_DN(D, N, t=t)[source]
    +sympy.solvers.diophantine.diophantine.diop_bf_DN(D, N, t=t)[source]

    Uses brute force to solve the equation, \(x^2 - Dy^2 = N\).

    Explanation

    Mainly concerned with the generalized Pell equation which is the case when @@ -1470,7 +1470,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.transformation_to_DN(eq)[source]
    +sympy.solvers.diophantine.diophantine.transformation_to_DN(eq)[source]

    This function transforms general quadratic, \(ax^2 + bxy + cy^2 + dx + ey + f = 0\) to more easy to deal with \(X^2 - DY^2 = N\) form.

    @@ -1542,7 +1542,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.transformation_to_normal(eq)[source]
    +sympy.solvers.diophantine.diophantine.transformation_to_normal(eq)[source]

    Returns the transformation Matrix that converts a general ternary quadratic equation eq (\(ax^2 + by^2 + cz^2 + dxy + eyz + fxz\)) to a form without cross terms: \(ax^2 + by^2 + cz^2 = 0\). This is @@ -1552,7 +1552,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.find_DN(eq)[source]
    +sympy.solvers.diophantine.diophantine.find_DN(eq)[source]

    This function returns a tuple, \((D, N)\) of the simplified form, \(x^2 - Dy^2 = N\), corresponding to the general quadratic, \(ax^2 + bxy + cy^2 + dx + ey + f = 0\).

    @@ -1588,7 +1588,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_ternary_quadratic(eq, parameterize=False)[source]
    +sympy.solvers.diophantine.diophantine.diop_ternary_quadratic(eq, parameterize=False)[source]

    Solves the general quadratic ternary form, \(ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0\).

    Returns a tuple \((x, y, z)\) which is a base solution for the above @@ -1616,7 +1616,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.square_factor(a)[source]
    +sympy.solvers.diophantine.diophantine.square_factor(a)[source]

    Returns an integer \(c\) s.t. \(a = c^2k, \ c,k \in Z\). Here \(k\) is square free. \(a\) can be given as an integer or a dictionary of factors.

    Examples

    @@ -1639,7 +1639,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.descent(A, B)[source]
    +sympy.solvers.diophantine.diophantine.descent(A, B)[source]

    Returns a non-trivial solution, (x, y, z), to \(x^2 = Ay^2 + Bz^2\) using Lagrange’s descent method with lattice-reduction. \(A\) and \(B\) are assumed to be valid for such a solution to exist.

    @@ -1669,7 +1669,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_general_pythagorean(eq, param=m)[source]
    +sympy.solvers.diophantine.diophantine.diop_general_pythagorean(eq, param=m)[source]

    Solves the general pythagorean equation, \(a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0\).

    Returns a tuple which contains a parametrized solution to the equation, @@ -1691,7 +1691,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares(eq, limit=1)[source]
    +sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares(eq, limit=1)[source]

    Solves the equation \(x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0\).

    Returns at most limit number of solutions.

    Usage

    @@ -1721,7 +1721,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers(eq, limit=1)[source]
    +sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers(eq, limit=1)[source]

    Solves the equation \(x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0\) where \(e\) is an even, integer power.

    Returns at most limit number of solutions.

    @@ -1744,7 +1744,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.power_representation(n, p, k, zeros=False)[source]
    +sympy.solvers.diophantine.diophantine.power_representation(n, p, k, zeros=False)[source]

    Returns a generator for finding k-tuples of integers, \((n_{1}, n_{2}, . . . n_{k})\), such that \(n = n_{1}^p + n_{2}^p + . . . n_{k}^p\).

    @@ -1788,7 +1788,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.partition(n, k=None, zeros=False)[source]
    +sympy.solvers.diophantine.diophantine.partition(n, k=None, zeros=False)[source]

    Returns a generator that can be used to generate partitions of an integer \(n\).

    Explanation

    @@ -1827,7 +1827,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.sum_of_three_squares(n)[source]
    +sympy.solvers.diophantine.diophantine.sum_of_three_squares(n)[source]

    Returns a 3-tuple \((a, b, c)\) such that \(a^2 + b^2 + c^2 = n\) and \(a, b, c \geq 0\).

    Returns None if \(n = 4^a(8m + 7)\) for some \(a, m \in \mathbb{Z}\). See @@ -1878,7 +1878,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.sum_of_four_squares(n)[source]
    +sympy.solvers.diophantine.diophantine.sum_of_four_squares(n)[source]

    Returns a 4-tuple \((a, b, c, d)\) such that \(a^2 + b^2 + c^2 + d^2 = n\). Here \(a, b, c, d \geq 0\).

    @@ -1928,7 +1928,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.sum_of_powers(n, p, k, zeros=False)[source]
    +sympy.solvers.diophantine.diophantine.sum_of_powers(n, p, k, zeros=False)[source]

    Returns a generator for finding k-tuples of integers, \((n_{1}, n_{2}, . . . n_{k})\), such that \(n = n_{1}^p + n_{2}^p + . . . n_{k}^p\).

    @@ -1972,7 +1972,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.sum_of_squares(n, k, zeros=False)[source]
    +sympy.solvers.diophantine.diophantine.sum_of_squares(n, k, zeros=False)[source]

    Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative @@ -2015,7 +2015,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.merge_solution(var, var_t, solution)[source]
    +sympy.solvers.diophantine.diophantine.merge_solution(var, var_t, solution)[source]

    This is used to construct the full solution from the solutions of sub equations.

    Explanation

    @@ -2029,13 +2029,13 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.divisible(a, b)[source]
    +sympy.solvers.diophantine.diophantine.divisible(a, b)[source]

    Returns \(True\) if a is divisible by b and \(False\) otherwise.

    -sympy.solvers.diophantine.diophantine.PQa(P_0, Q_0, D)[source]
    +sympy.solvers.diophantine.diophantine.PQa(P_0, Q_0, D)[source]

    Returns useful information needed to solve the Pell equation.

    Explanation

    There are six sequences of integers defined related to the continued @@ -2070,7 +2070,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.equivalent(u, v, r, s, D, N)[source]
    +sympy.solvers.diophantine.diophantine.equivalent(u, v, r, s, D, N)[source]

    Returns True if two solutions \((u, v)\) and \((r, s)\) of \(x^2 - Dy^2 = N\) belongs to the same equivalence class and False otherwise.

    Explanation

    @@ -2103,7 +2103,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic(eq)[source]
    +sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic(eq)[source]

    Returns the parametrized general solution for the ternary quadratic equation eq which has the form \(ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0\).

    @@ -2164,7 +2164,7 @@

    Internal Functionsparameterize=False,

    -)[source] +)[source]

    Solves the quadratic ternary diophantine equation, \(ax^2 + by^2 + cz^2 = 0\).

    Explanation

    @@ -2190,7 +2190,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.ldescent(A, B)[source]
    +sympy.solvers.diophantine.diophantine.ldescent(A, B)[source]

    Return a non-trivial solution to \(w^2 = Ax^2 + By^2\) using Lagrange’s method; return None if there is no such solution.

    @@ -2246,7 +2246,7 @@

    Internal Functionsb: int,

    -) tuple[int, int][source] +) tuple[int, int][source]

    Returns a reduced solution \((x, z)\) to the congruence \(X^2 - aZ^2 \equiv 0 \pmod{b}\) so that \(x^2 + |a|z^2\) is as small as possible. Here w is a solution of the congruence \(x^2 \equiv a \pmod{b}\).

    @@ -2321,7 +2321,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.holzer(x, y, z, a, b, c)[source]
    +sympy.solvers.diophantine.diophantine.holzer(x, y, z, a, b, c)[source]

    Simplify the solution \((x, y, z)\) of the equation \(ax^2 + by^2 = cz^2\) with \(a, b, c > 0\) and \(z^2 \geq \mid ab \mid\) to a new reduced solution \((x', y', z')\) such that \(z'^2 \leq \mid ab \mid\).

    @@ -2347,7 +2347,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares(p)[source]
    +sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares(p)[source]

    Represent a prime \(p\) as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4.

    @@ -2393,7 +2393,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.sqf_normal(a, b, c, steps=False)[source]
    +sympy.solvers.diophantine.diophantine.sqf_normal(a, b, c, steps=False)[source]

    Return \(a', b', c'\), the coefficients of the square-free normal form of \(ax^2 + by^2 + cz^2 = 0\), where \(a', b', c'\) are pairwise prime. If \(steps\) is True then also return three tuples: @@ -2427,7 +2427,7 @@

    Internal Functions
    -sympy.solvers.diophantine.diophantine.reconstruct(A, B, z)[source]
    +sympy.solvers.diophantine.diophantine.reconstruct(A, B, z)[source]

    Reconstruct the \(z\) value of an equivalent solution of \(ax^2 + by^2 + cz^2\) from the \(z\) value of a solution of the square-free normal form of the equation, \(a'*x^2 + b'*y^2 + c'*z^2\), where \(a'\), \(b'\) and \(c'\) are square @@ -2440,7 +2440,7 @@

    Internal Classes
    -class sympy.solvers.diophantine.diophantine.DiophantineSolutionSet(symbols_seq, parameters)[source]
    +class sympy.solvers.diophantine.diophantine.DiophantineSolutionSet(symbols_seq, parameters)[source]

    Container for a set of solutions to a particular diophantine equation.

    The base representation is a set of tuples representing each of the solutions.

    @@ -2511,7 +2511,7 @@

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Internal representation of a particular diophantine equation type.

    Parameters:
    @@ -2546,7 +2546,7 @@

    Internal Classes
    -matches()[source]
    +matches()[source]

    Determine whether the given equation can be matched to the particular equation type.

    @@ -2554,7 +2554,7 @@

    Internal Classes
    -class sympy.solvers.diophantine.diophantine.Univariate(equation, free_symbols=None)[source]
    +class sympy.solvers.diophantine.diophantine.Univariate(equation, free_symbols=None)[source]

    Representation of a univariate diophantine equation.

    A univariate diophantine equation is an equation of the form \(a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0\) where \(a_{1}, a_{2}, ..a_{n}\) are @@ -2570,7 +2570,7 @@

    Internal Classes
    -class sympy.solvers.diophantine.diophantine.Linear(equation, free_symbols=None)[source]
    +class sympy.solvers.diophantine.diophantine.Linear(equation, free_symbols=None)[source]

    Representation of a linear diophantine equation.

    A linear diophantine equation is an equation of the form \(a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0\) where \(a_{1}, a_{2}, ..a_{n}\) are @@ -2594,7 +2594,7 @@

    Internal Classes
    -class sympy.solvers.diophantine.diophantine.BinaryQuadratic(equation, free_symbols=None)[source]
    +class sympy.solvers.diophantine.diophantine.BinaryQuadratic(equation, free_symbols=None)[source]

    Representation of a binary quadratic diophantine equation.

    A binary quadratic diophantine equation is an equation of the form \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\), where \(A, B, C, D, E, @@ -2636,7 +2636,7 @@

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Representation of an inhomogeneous ternary quadratic.

    No solver is currently implemented for this equation type.

    @@ -2650,7 +2650,7 @@

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Representation of a homogeneous ternary quadratic normal diophantine equation.

    Examples

    >>> from sympy.abc import x, y, z
    @@ -2670,7 +2670,7 @@ 

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Representation of a homogeneous ternary quadratic diophantine equation.

    Examples

    >>> from sympy.abc import x, y, z
    @@ -2692,7 +2692,7 @@ 

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Representation of an inhomogeneous general quadratic.

    No solver is currently implemented for this equation type.

    @@ -2706,14 +2706,14 @@

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Representation of a homogeneous general quadratic.

    No solver is currently implemented for this equation type.

    -class sympy.solvers.diophantine.diophantine.GeneralSumOfSquares(equation, free_symbols=None)[source]
    +class sympy.solvers.diophantine.diophantine.GeneralSumOfSquares(equation, free_symbols=None)[source]

    Representation of the diophantine equation

    \(x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0\).

    Details

    @@ -2745,7 +2745,7 @@

    Internal Classes
    -class sympy.solvers.diophantine.diophantine.GeneralPythagorean(equation, free_symbols=None)[source]
    +class sympy.solvers.diophantine.diophantine.GeneralPythagorean(equation, free_symbols=None)[source]

    Representation of the general pythagorean equation, \(a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0\).

    Examples

    @@ -2761,7 +2761,7 @@

    Internal Classes
    -class sympy.solvers.diophantine.diophantine.CubicThue(equation, free_symbols=None)[source]
    +class sympy.solvers.diophantine.diophantine.CubicThue(equation, free_symbols=None)[source]

    Representation of a cubic Thue diophantine equation.

    A cubic Thue diophantine equation is a polynomial of the form \(f(x, y) = r\) of degree 3, where \(x\) and \(y\) are integers @@ -2786,7 +2786,7 @@

    Internal Classesfree_symbols=None,

    -)[source] +)[source]

    Representation of the diophantine equation

    \(x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0\)

    where \(e\) is an even, integer power.

    diff --git a/dev/modules/solvers/inequalities.html b/dev/modules/solvers/inequalities.html index 13b4ba226eb..e769298c7e8 100644 --- a/dev/modules/solvers/inequalities.html +++ b/dev/modules/solvers/inequalities.html @@ -819,7 +819,7 @@
    Documentation Version
    -sympy.solvers.inequalities.solve_rational_inequalities(eqs)[source]
    +sympy.solvers.inequalities.solve_rational_inequalities(eqs)[source]

    Solve a system of rational inequalities with rational coefficients.

    Examples

    >>> from sympy.abc import x
    @@ -846,7 +846,7 @@ 
    Documentation Version
    -sympy.solvers.inequalities.solve_poly_inequality(poly, rel)[source]
    +sympy.solvers.inequalities.solve_poly_inequality(poly, rel)[source]

    Solve a polynomial inequality with rational coefficients.

    Examples

    >>> from sympy import solve_poly_inequality, Poly
    @@ -873,7 +873,7 @@ 
    Documentation Version
    -sympy.solvers.inequalities.solve_poly_inequalities(polys)[source]
    +sympy.solvers.inequalities.solve_poly_inequalities(polys)[source]

    Solve polynomial inequalities with rational coefficients.

    Examples

    >>> from sympy import Poly
    @@ -897,7 +897,7 @@ 
    Documentation Version
    relational=True,
    -)[source] +)[source]

    Reduce a system of rational inequalities with rational coefficients.

    Examples

    >>> from sympy import Symbol
    @@ -931,7 +931,7 @@ 
    Documentation Version
    -sympy.solvers.inequalities.reduce_abs_inequality(expr, rel, gen)[source]
    +sympy.solvers.inequalities.reduce_abs_inequality(expr, rel, gen)[source]

    Reduce an inequality with nested absolute values.

    Examples

    >>> from sympy import reduce_abs_inequality, Abs, Symbol
    @@ -954,7 +954,7 @@ 
    Documentation Version
    -sympy.solvers.inequalities.reduce_abs_inequalities(exprs, gen)[source]
    +sympy.solvers.inequalities.reduce_abs_inequalities(exprs, gen)[source]

    Reduce a system of inequalities with nested absolute values.

    Examples

    >>> from sympy import reduce_abs_inequalities, Abs, Symbol
    @@ -978,7 +978,7 @@ 
    Documentation Version
    -sympy.solvers.inequalities.reduce_inequalities(inequalities, symbols=[])[source]
    +sympy.solvers.inequalities.reduce_inequalities(inequalities, symbols=[])[source]

    Reduce a system of inequalities with rational coefficients.

    Examples

    >>> from sympy.abc import x, y
    @@ -1007,7 +1007,7 @@ 
    Documentation Version
    continuous=False,
    -)[source] +)[source]

    Solves a real univariate inequality.

    Parameters:
    diff --git a/dev/modules/solvers/ode.html b/dev/modules/solvers/ode.html index 424ca0e6fbe..8bb77c39aa1 100644 --- a/dev/modules/solvers/ode.html +++ b/dev/modules/solvers/ode.html @@ -830,7 +830,7 @@
    Documentation Version
    **kwargs,
    -)[source] +)[source]

    Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations.

    For Single Ordinary Differential Equation

    @@ -1028,7 +1028,7 @@
    Documentation Version
    simplify=True,
    -)[source] +)[source]

    Solves any(supported) system of Ordinary Differential Equations

    Parameters:
    @@ -1142,7 +1142,7 @@
    Documentation Version
    **kwargs,
    -)[source] +)[source]

    Returns a tuple of possible dsolve() classifications for an ODE.

    The tuple is ordered so that first item is the classification that @@ -1270,7 +1270,7 @@

    Documentation Version
    solve_for_func=True,
    -)[source] +)[source]

    Substitutes sol into ode and checks that the result is 0.

    This works when func is one function, like \(f(x)\) or a list of functions like \([f(x), g(x)]\) when \(ode\) is a system of ODEs. sol can @@ -1331,7 +1331,7 @@

    Documentation Version
    -sympy.solvers.ode.homogeneous_order(eq, *symbols)[source]
    +sympy.solvers.ode.homogeneous_order(eq, *symbols)[source]

    Returns the order \(n\) if \(g\) is homogeneous and None if it is not homogeneous.

    Determines if a function is homogeneous and if so of what order. A @@ -1379,7 +1379,7 @@

    Documentation Version
    match=None,
    -)[source] +)[source]

    The infinitesimal functions of an ordinary differential equation, \(\xi(x,y)\) and \(\eta(x,y)\), are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE \(y'=f(x,y)\) @@ -1448,7 +1448,7 @@

    Documentation Version
    order=None,
    -)[source] +)[source]

    This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs.

    @@ -1472,7 +1472,7 @@
    Documentation Version
    -sympy.solvers.ode.constantsimp(expr, constants)[source]
    +sympy.solvers.ode.constantsimp(expr, constants)[source]

    Simplifies an expression with arbitrary constants in it.

    This function is written specifically to work with dsolve(), and is not intended for general use.

    @@ -1546,7 +1546,7 @@
    Documentation Version
    -sympy.solvers.ode.ode.odesimp(ode, eq, func, hint)[source]
    +sympy.solvers.ode.ode.odesimp(ode, eq, func, hint)[source]

    Simplifies solutions of ODEs, including trying to solve for func and running constantsimp().

    It may use knowledge of the type of solution that the hint returns to @@ -1610,7 +1610,7 @@

    Documentation Version
    newconstants=None,
    -)[source] +)[source]

    Renumber arbitrary constants in expr to use the symbol names as given in newconstants. In the process, this reorders expression terms in a standard way.

    @@ -1654,7 +1654,7 @@
    Documentation Version
    -sympy.solvers.ode.ode.ode_sol_simplicity(sol, func, trysolving=True)[source]
    +sympy.solvers.ode.ode.ode_sol_simplicity(sol, func, trysolving=True)[source]

    Returns an extended integer representing how simple a solution to an ODE is.

    The following things are considered, in order from most simple to least:

    @@ -1735,7 +1735,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.Factorable(ode_problem)[source]
    +class sympy.solvers.ode.single.Factorable(ode_problem)[source]

    Solves equations having a solvable factor.

    This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the @@ -1754,7 +1754,7 @@

    Documentation Version
    -class sympy.solvers.ode.single.FirstExact(ode_problem)[source]
    +class sympy.solvers.ode.single.FirstExact(ode_problem)[source]

    Solves 1st order exact ordinary differential equations.

    A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation

    @@ -1807,7 +1807,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.HomogeneousCoeffBest(ode_problem)[source]
    +class sympy.solvers.ode.single.HomogeneousCoeffBest(ode_problem)[source]

    Returns the best solution to an ODE from the two hints 1st_homogeneous_coeff_subs_dep_div_indep and 1st_homogeneous_coeff_subs_indep_div_dep.

    @@ -1844,7 +1844,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep(ode_problem)[source]
    +class sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep(ode_problem)[source]

    Solves a 1st order differential equation with homogeneous coefficients using the substitution \(u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}\).

    @@ -1917,7 +1917,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep(ode_problem)[source]
    +class sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep(ode_problem)[source]

    Solves a 1st order differential equation with homogeneous coefficients using the substitution \(u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}\).

    @@ -1993,7 +1993,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.FirstLinear(ode_problem)[source]
    +class sympy.solvers.ode.single.FirstLinear(ode_problem)[source]

    Solves 1st order linear differential equations.

    These are differential equations of the form

    @@ -2042,7 +2042,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.RationalRiccati(ode_problem)[source]
    +class sympy.solvers.ode.single.RationalRiccati(ode_problem)[source]

    Gives general solutions to the first order Riccati differential equations that have atleast one rational particular solution.

    @@ -2075,7 +2075,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.SecondLinearAiry(ode_problem)[source]
    +class sympy.solvers.ode.single.SecondLinearAiry(ode_problem)[source]

    Gives solution of the Airy differential equation

    @@ -2095,7 +2095,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.SecondLinearBessel(ode_problem)[source]
    +class sympy.solvers.ode.single.SecondLinearBessel(ode_problem)[source]

    Gives solution of the Bessel differential equation

    @@ -2124,7 +2124,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.Bernoulli(ode_problem)[source]
    +class sympy.solvers.ode.single.Bernoulli(ode_problem)[source]

    Solves Bernoulli differential equations.

    These are equations of the form

    @@ -2196,7 +2196,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.Liouville(ode_problem)[source]
    +class sympy.solvers.ode.single.Liouville(ode_problem)[source]

    Solves 2nd order Liouville differential equations.

    The general form of a Liouville ODE is

    @@ -2252,7 +2252,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.RiccatiSpecial(ode_problem)[source]
    +class sympy.solvers.ode.single.RiccatiSpecial(ode_problem)[source]

    The general Riccati equation has the form

    @@ -2294,7 +2294,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous(ode_problem)[source]
    +class sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous(ode_problem)[source]

    Solves an \(n\)th order linear homogeneous differential equation with constant coefficients.

    This is an equation of the form

    @@ -2361,7 +2361,7 @@
    Documentation Version
    ode_problem,
    -)[source] +)[source]

    Solves an \(n\)th order linear differential equation with constant coefficients using the method of undetermined coefficients.

    This method works on differential equations of the form

    @@ -2420,7 +2420,7 @@
    Documentation Version
    ode_problem,
    -)[source] +)[source]

    Solves an \(n\)th order linear differential equation with constant coefficients using the method of variation of parameters.

    This method works on any differential equations of the form

    @@ -2487,7 +2487,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.NthLinearEulerEqHomogeneous(ode_problem)[source]
    +class sympy.solvers.ode.single.NthLinearEulerEqHomogeneous(ode_problem)[source]

    Solves an \(n\)th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation.

    This is an equation with form \(0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) @@ -2556,7 +2556,7 @@

    Documentation Version
    ode_problem,
    -)[source] +)[source]

    Solves an \(n\)th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters.

    This is an equation with form \(g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) @@ -2614,7 +2614,7 @@

    Documentation Version
    ode_problem,
    -)[source] +)[source]

    Solves an \(n\)th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients.

    This is an equation with form \(g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) @@ -2656,7 +2656,7 @@

    Documentation Version
    -class sympy.solvers.ode.single.NthAlgebraic(ode_problem)[source]
    +class sympy.solvers.ode.single.NthAlgebraic(ode_problem)[source]

    Solves an \(n\)th order ordinary differential equation using algebra and integrals.

    There is no general form for the kind of equation that this can solve. The @@ -2677,7 +2677,7 @@

    Documentation Version
    -class sympy.solvers.ode.single.NthOrderReducible(ode_problem)[source]
    +class sympy.solvers.ode.single.NthOrderReducible(ode_problem)[source]

    Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form \(f^n(x) = g(x)\).

    For example any second order ODE of the form \(f''(x) = h(f'(x), x)\) can be @@ -2699,7 +2699,7 @@

    Documentation Version
    -class sympy.solvers.ode.single.Separable(ode_problem)[source]
    +class sympy.solvers.ode.single.Separable(ode_problem)[source]

    Solves separable 1st order differential equations.

    This is any differential equation that can be written as \(P(y) \tfrac{dy}{dx} = Q(x)\). The solution can then just be found by @@ -2752,7 +2752,7 @@

    Documentation Version
    -class sympy.solvers.ode.single.AlmostLinear(ode_problem)[source]
    +class sympy.solvers.ode.single.AlmostLinear(ode_problem)[source]

    Solves an almost-linear differential equation.

    The general form of an almost linear differential equation is

    @@ -2798,7 +2798,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.LinearCoefficients(ode_problem)[source]
    +class sympy.solvers.ode.single.LinearCoefficients(ode_problem)[source]

    Solves a differential equation with linear coefficients.

    The general form of a differential equation with linear coefficients is

    @@ -2843,7 +2843,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.SeparableReduced(ode_problem)[source]
    +class sympy.solvers.ode.single.SeparableReduced(ode_problem)[source]

    Solves a differential equation that can be reduced to the separable form.

    The general form of this equation is

    @@ -2904,7 +2904,7 @@
    Documentation Version
    -class sympy.solvers.ode.single.LieGroup(ode_problem)[source]
    +class sympy.solvers.ode.single.LieGroup(ode_problem)[source]

    This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate system into another coordinate system where it becomes @@ -2954,7 +2954,7 @@

    Documentation Version
    -class sympy.solvers.ode.single.SecondHypergeometric(ode_problem)[source]
    +class sympy.solvers.ode.single.SecondHypergeometric(ode_problem)[source]

    Solves 2nd order linear differential equations.

    It computes special function solutions which can be expressed using the 2F1, 1F1 or 0F1 hypergeometric functions.

    @@ -3003,7 +3003,7 @@
    Documentation Version
    -sympy.solvers.ode.ode.ode_1st_power_series(eq, func, order, match)[source]
    +sympy.solvers.ode.ode.ode_1st_power_series(eq, func, order, match)[source]

    The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation.

    For a first order differential equation \(\frac{dy}{dx} = h(x, y)\), a power @@ -3050,7 +3050,7 @@

    Documentation Version
    match,
    -)[source] +)[source]

    Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form

    @@ -3094,7 +3094,7 @@
    Documentation Version
    match,
    -)[source] +)[source]

    Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form

    @@ -3153,7 +3153,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple(match, comp=False)[source]

    The first heuristic uses the following four sets of assumptions on \(\xi\) and \(\eta\)

    @@ -3193,7 +3193,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product(match, comp=False)[source]

    The second heuristic uses the following two assumptions on \(\xi\) and \(\eta\)

    @@ -3226,7 +3226,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_bivariate(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_bivariate(match, comp=False)[source]

    The third heuristic assumes the infinitesimals \(\xi\) and \(\eta\) to be bi-variate polynomials in \(x\) and \(y\). The assumption made here for the logic below is that \(h\) is a rational function in \(x\) and \(y\) @@ -3245,7 +3245,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_chi(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_chi(match, comp=False)[source]

    The aim of the fourth heuristic is to find the function \(\chi(x, y)\) that satisfies the PDE \(\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0\).

    @@ -3266,7 +3266,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar(match, comp=False)[source]

    This heuristic uses the following two assumptions on \(\xi\) and \(\eta\)

    @@ -3304,7 +3304,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_function_sum(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_function_sum(match, comp=False)[source]

    This heuristic uses the following two assumptions on \(\xi\) and \(\eta\)

    @@ -3351,7 +3351,7 @@

    Lie heuristicscomp=False,

    -)[source] +)[source]

    This heuristic assumes the presence of unknown functions or known functions with non-integer powers.

      @@ -3387,7 +3387,7 @@

      Lie heuristicscomp=False,

    -)[source] +)[source]

    This heuristic finds if infinitesimals of the form \(\eta = f(x)\), \(\xi = g(y)\) without making any assumptions on \(h\).

    The complete sequence of steps is given in the paper mentioned below.

    @@ -3400,7 +3400,7 @@

    Lie heuristics
    -sympy.solvers.ode.lie_group.lie_heuristic_linear(match, comp=False)[source]
    +sympy.solvers.ode.lie_group.lie_heuristic_linear(match, comp=False)[source]

    This heuristic assumes

    1. \(\xi = ax + by + c\) and

    2. @@ -3431,7 +3431,7 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.riccati_normal(w, x, b1, b2)[source]
      +sympy.solvers.ode.riccati.riccati_normal(w, x, b1, b2)[source]

      Given a solution \(w(x)\) to the equation

      @@ -3454,28 +3454,28 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.riccati_inverse_normal(y, x, b1, b2, bp=None)[source]
      +sympy.solvers.ode.riccati.riccati_inverse_normal(y, x, b1, b2, bp=None)[source]

      Inverse transforming the solution to the normal Riccati ODE to get the solution to the Riccati ODE.

      -sympy.solvers.ode.riccati.riccati_reduced(eq, f, x)[source]
      +sympy.solvers.ode.riccati.riccati_reduced(eq, f, x)[source]

      Convert a Riccati ODE into its corresponding normal Riccati ODE.

      -sympy.solvers.ode.riccati.construct_c(num, den, x, poles, muls)[source]
      +sympy.solvers.ode.riccati.construct_c(num, den, x, poles, muls)[source]

      Helper function to calculate the coefficients in the c-vector for each pole.

      -sympy.solvers.ode.riccati.construct_d(num, den, x, val_inf)[source]
      +sympy.solvers.ode.riccati.construct_d(num, den, x, val_inf)[source]

      Helper function to calculate the coefficients in the d-vector based on the valuation of the function at oo.

      @@ -3483,7 +3483,7 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.rational_laurent_series(num, den, x, r, m, n)[source]
      +sympy.solvers.ode.riccati.rational_laurent_series(num, den, x, r, m, n)[source]

      The function computes the Laurent series coefficients of a rational function.

      @@ -3528,7 +3528,7 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.compute_m_ybar(x, poles, choice, N)[source]
      +sympy.solvers.ode.riccati.compute_m_ybar(x, poles, choice, N)[source]

      Helper function to calculate -

      1. m - The degree bound for the polynomial solution that must be found for the auxiliary @@ -3539,7 +3539,7 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.solve_aux_eq(numa, dena, numy, deny, x, m)[source]
      +sympy.solvers.ode.riccati.solve_aux_eq(numa, dena, numy, deny, x, m)[source]

      Helper function to find a polynomial solution of degree m for the auxiliary differential equation.

      @@ -3547,14 +3547,14 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.remove_redundant_sols(sol1, sol2, x)[source]
      +sympy.solvers.ode.riccati.remove_redundant_sols(sol1, sol2, x)[source]

      Helper function to remove redundant solutions to the differential equation.

      -sympy.solvers.ode.riccati.get_gen_sol_from_part_sol(part_sols, a, x)[source]
      +sympy.solvers.ode.riccati.get_gen_sol_from_part_sol(part_sols, a, x)[source]

      ” Helper function which computes the general solution for a Riccati ODE from its particular @@ -3570,7 +3570,7 @@

      Rational Riccati Solver
      -sympy.solvers.ode.riccati.solve_riccati(fx, x, b0, b1, b2, gensol=False)[source]
      +sympy.solvers.ode.riccati.solve_riccati(fx, x, b0, b1, b2, gensol=False)[source]

      The main function that gives particular/general solutions to Riccati ODEs that have atleast 1 rational particular solution.

      @@ -3583,7 +3583,7 @@

      System of ODEsdsolve() for system of differential equations.

      -sympy.solvers.ode.ode._linear_2eq_order1_type6(x, y, t, r, eq)[source]
      +sympy.solvers.ode.ode._linear_2eq_order1_type6(x, y, t, r, eq)[source]

      The equations of this type of ode are .

      @@ -3610,7 +3610,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._linear_2eq_order1_type7(x, y, t, r, eq)[source]
      +sympy.solvers.ode.ode._linear_2eq_order1_type7(x, y, t, r, eq)[source]

      The equations of this type of ode are .

      @@ -3653,7 +3653,7 @@

      System of ODEs
      -sympy.solvers.ode.systems.linear_ode_to_matrix(eqs, funcs, t, order)[source]
      +sympy.solvers.ode.systems.linear_ode_to_matrix(eqs, funcs, t, order)[source]

      Convert a linear system of ODEs to matrix form

      Parameters:
      @@ -3782,7 +3782,7 @@

      System of ODEs
      -sympy.solvers.ode.systems.canonical_odes(eqs, funcs, t)[source]
      +sympy.solvers.ode.systems.canonical_odes(eqs, funcs, t)[source]

      Function that solves for highest order derivatives in a system

      Parameters:
      @@ -3843,7 +3843,7 @@

      System of ODEs
      -sympy.solvers.ode.systems.linodesolve_type(A, t, b=None)[source]
      +sympy.solvers.ode.systems.linodesolve_type(A, t, b=None)[source]

      Helper function that determines the type of the system of ODEs for solving with sympy.solvers.ode.systems.linodesolve()

      Parameters:
      @@ -3932,7 +3932,7 @@

      System of ODEs
      -sympy.solvers.ode.systems.matrix_exp_jordan_form(A, t)[source]
      +sympy.solvers.ode.systems.matrix_exp_jordan_form(A, t)[source]

      Matrix exponential \(\exp(A*t)\) for the matrix A and scalar t.

      Parameters:
      @@ -3993,7 +3993,7 @@

      System of ODEs
      -sympy.solvers.ode.systems.matrix_exp(A, t)[source]
      +sympy.solvers.ode.systems.matrix_exp(A, t)[source]

      Matrix exponential \(\exp(A*t)\) for the matrix A and scalar t.

      Parameters:
      @@ -4089,7 +4089,7 @@

      System of ODEstau=None,

      -)[source] +)[source]

      System of n equations linear first-order differential equations

      Parameters:
      @@ -4308,7 +4308,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_2eq_order1_type1(x, y, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_2eq_order1_type1(x, y, t, eq)[source]

      Equations:

      @@ -4339,7 +4339,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_2eq_order1_type2(x, y, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_2eq_order1_type2(x, y, t, eq)[source]

      Equations:

      @@ -4370,7 +4370,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_2eq_order1_type3(x, y, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_2eq_order1_type3(x, y, t, eq)[source]

      Autonomous system of general form

      @@ -4395,7 +4395,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_2eq_order1_type4(x, y, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_2eq_order1_type4(x, y, t, eq)[source]

      Equation:

      @@ -4418,7 +4418,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_2eq_order1_type5(func, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_2eq_order1_type5(func, t, eq)[source]

      Clairaut system of ODEs

      @@ -4442,7 +4442,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_3eq_order1_type1(x, y, z, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_3eq_order1_type1(x, y, z, t, eq)[source]

      Equations:

      @@ -4467,7 +4467,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_3eq_order1_type2(x, y, z, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_3eq_order1_type2(x, y, z, t, eq)[source]

      Equations:

      @@ -4500,7 +4500,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_3eq_order1_type3(x, y, z, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_3eq_order1_type3(x, y, z, t, eq)[source]

      Equations:

      @@ -4530,7 +4530,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_3eq_order1_type4(x, y, z, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_3eq_order1_type4(x, y, z, t, eq)[source]

      Equations:

      @@ -4560,7 +4560,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._nonlinear_3eq_order1_type5(x, y, z, t, eq)[source]
      +sympy.solvers.ode.ode._nonlinear_3eq_order1_type5(x, y, z, t, eq)[source]
      \[x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2)\]
      @@ -4798,7 +4798,7 @@

      System of ODEs
      -sympy.solvers.ode.ode._handle_Integral(expr, func, hint)[source]
      +sympy.solvers.ode.ode._handle_Integral(expr, func, hint)[source]

      Converts a solution with Integrals in it into an actual solution.

      For most hints, this simply runs expr.doit().

      diff --git a/dev/modules/solvers/pde.html b/dev/modules/solvers/pde.html index 62f86214561..60ae9aacc93 100644 --- a/dev/modules/solvers/pde.html +++ b/dev/modules/solvers/pde.html @@ -808,7 +808,7 @@

      User Functionsfrom sympy import *. They are intended for user use.

      -sympy.solvers.pde.pde_separate(eq, fun, sep, strategy='mul')[source]
      +sympy.solvers.pde.pde_separate(eq, fun, sep, strategy='mul')[source]

      Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the @@ -849,7 +849,7 @@

      User Functions
      -sympy.solvers.pde.pde_separate_add(eq, fun, sep)[source]
      +sympy.solvers.pde.pde_separate_add(eq, fun, sep)[source]

      Helper function for searching additive separable solutions.

      Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different @@ -870,7 +870,7 @@

      User Functions
      -sympy.solvers.pde.pde_separate_mul(eq, fun, sep)[source]
      +sympy.solvers.pde.pde_separate_mul(eq, fun, sep)[source]

      Helper function for searching multiplicative separable solutions.

      Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different @@ -902,7 +902,7 @@

      User Functions**kwargs,

      -)[source] +)[source]

      Solves any (supported) kind of partial differential equation.

      Usage

      @@ -1015,7 +1015,7 @@

      User Functions**kwargs,

      -)[source] +)[source]

      Returns a tuple of possible pdsolve() classifications for a PDE.

      The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, @@ -1058,7 +1058,7 @@

      User Functionssolve_for_func=True,

      -)[source] +)[source]

      Checks if the given solution satisfies the partial differential equation.

      pde is the partial differential equation which can be given in the @@ -1112,7 +1112,7 @@

      Hint Methodssolvefun,

      -)[source] +)[source]

      Solves a first order linear homogeneous partial differential equation with constant coefficients.

      The general form of this partial differential equation is

      @@ -1182,7 +1182,7 @@

      Hint Methodssolvefun,

      -)[source] +)[source]

      Solves a first order linear partial differential equation with constant coefficients.

      The general form of this partial differential equation is

      @@ -1267,7 +1267,7 @@

      Hint Methodssolvefun,

      -)[source] +)[source]

      Solves a first order linear partial differential equation with variable coefficients. The general form of this partial differential equation is

      diff --git a/dev/modules/solvers/solvers.html b/dev/modules/solvers/solvers.html index 0ee64ff3bf6..eb6395759c9 100644 --- a/dev/modules/solvers/solvers.html +++ b/dev/modules/solvers/solvers.html @@ -835,7 +835,7 @@
      Documentation Version
      is the symbol that we want to solve the equation for.

      -sympy.solvers.solvers.solve(f, *symbols, **flags)[source]
      +sympy.solvers.solvers.solve(f, *symbols, **flags)[source]

      Algebraically solves equations and systems of equations.

      Parameters:
      @@ -1325,7 +1325,7 @@
      Documentation Version
      -sympy.solvers.solvers.solve_linear(lhs, rhs=0, symbols=[], exclude=[])[source]
      +sympy.solvers.solvers.solve_linear(lhs, rhs=0, symbols=[], exclude=[])[source]

      Return a tuple derived from f = lhs - rhs that is one of the following: (0, 1), (0, 0), (symbol, solution), (n, d).

      Explanation

      @@ -1425,7 +1425,7 @@
      Documentation Version
      -sympy.solvers.solvers.solve_linear_system(system, *symbols, **flags)[source]
      +sympy.solvers.solvers.solve_linear_system(system, *symbols, **flags)[source]

      Solve system of \(N\) linear equations with \(M\) variables, which means both under- and overdetermined systems are supported.

      Explanation

      @@ -1468,7 +1468,7 @@
      Documentation Version
      -sympy.solvers.solvers.solve_linear_system_LU(matrix, syms)[source]
      +sympy.solvers.solvers.solve_linear_system_LU(matrix, syms)[source]

      Solves the augmented matrix system using LUsolve and returns a dictionary in which solutions are keyed to the symbols of syms as ordered.

      Explanation

      @@ -1502,7 +1502,7 @@
      Documentation Version
      **flags,
      -)[source] +)[source]

      Solve a system of equations in \(k\) parameters that is formed by matching coefficients in variables coeffs that are on factors dependent on the remaining variables (or those given @@ -1565,7 +1565,7 @@

      Documentation Version
      -sympy.solvers.solvers.nsolve(*args, dict=False, **kwargs)[source]
      +sympy.solvers.solvers.nsolve(*args, dict=False, **kwargs)[source]

      Solve a nonlinear equation system numerically: nsolve(f, [args,] x0, modules=['mpmath'], **kwargs).

      Explanation

      @@ -1667,7 +1667,7 @@
      Documentation Version
      -sympy.solvers.solvers.checksol(f, symbol, sol=None, **flags)[source]
      +sympy.solvers.solvers.checksol(f, symbol, sol=None, **flags)[source]

      Checks whether sol is a solution of equation f == 0.

      Explanation

      Input can be either a single symbol and corresponding value @@ -1715,7 +1715,7 @@

      Documentation Version
      -sympy.solvers.solvers.unrad(eq, *syms, **flags)[source]
      +sympy.solvers.solvers.unrad(eq, *syms, **flags)[source]

      Remove radicals with symbolic arguments and return (eq, cov), None, or raise an error.

      Explanation

      @@ -1794,7 +1794,7 @@

      Partial Differential Equations (PDEs)

      -sympy.solvers.deutils.ode_order(expr, func)[source]
      +sympy.solvers.deutils.ode_order(expr, func)[source]

      Returns the order of a given differential equation with respect to func.

      This function is implemented recursively.

      @@ -1819,7 +1819,7 @@

      Deutils (Utilities for solving ODE’s and PDE’s)

      Recurrence Equations

      -sympy.solvers.recurr.rsolve(f, y, init=None)[source]
      +sympy.solvers.recurr.rsolve(f, y, init=None)[source]

      Solve univariate recurrence with rational coefficients.

      Given \(k\)-th order linear recurrence \(\operatorname{L} y = f\), or equivalently:

      @@ -1875,7 +1875,7 @@

      Deutils (Utilities for solving ODE’s and PDE’s)
      -sympy.solvers.recurr.rsolve_poly(coeffs, f, n, shift=0, **hints)[source]
      +sympy.solvers.recurr.rsolve_poly(coeffs, f, n, shift=0, **hints)[source]

      Given linear recurrence operator \(\operatorname{L}\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\operatorname{L} y = f\), where \(f\) is a polynomial, we seek for @@ -1936,7 +1936,7 @@

      Deutils (Utilities for solving ODE’s and PDE’s)
      -sympy.solvers.recurr.rsolve_ratio(coeffs, f, n, **hints)[source]
      +sympy.solvers.recurr.rsolve_ratio(coeffs, f, n, **hints)[source]

      Given linear recurrence operator \(\operatorname{L}\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\operatorname{L} y = f\), where \(f\) is a polynomial, we seek @@ -1989,7 +1989,7 @@

      Deutils (Utilities for solving ODE’s and PDE’s)
      -sympy.solvers.recurr.rsolve_hyper(coeffs, f, n, **hints)[source]
      +sympy.solvers.recurr.rsolve_hyper(coeffs, f, n, **hints)[source]

      Given linear recurrence operator \(\operatorname{L}\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\operatorname{L} y = f\) we seek for all hypergeometric solutions @@ -2061,7 +2061,7 @@

      Systems of Polynomial Equations**args,

      -)[source] +)[source]

      Return a list of solutions for the system of polynomial equations or else None.

      @@ -2117,7 +2117,7 @@

      Systems of Polynomial Equations
      -sympy.solvers.polysys.solve_triangulated(polys, *gens, **args)[source]
      +sympy.solvers.polysys.solve_triangulated(polys, *gens, **args)[source]

      Solve a polynomial system using Gianni-Kalkbrenner algorithm.

      The algorithm proceeds by computing one Groebner basis in the ground domain and then by iteratively computing polynomial factorizations in @@ -2177,7 +2177,7 @@

      Inequalities

      Linear Programming (Optimization)

      -sympy.solvers.simplex.lpmax(f, constr)[source]
      +sympy.solvers.simplex.lpmax(f, constr)[source]

      return maximum of linear equation f under linear constraints expressed using Ge, Le or Eq.

      All variables are unbounded unless constrained.

      @@ -2211,7 +2211,7 @@

      Inequalities
      -sympy.solvers.simplex.lpmin(f, constr)[source]
      +sympy.solvers.simplex.lpmin(f, constr)[source]

      return minimum of linear equation f under linear constraints expressed using Ge, Le or Eq.

      All variables are unbounded unless constrained.

      @@ -2258,7 +2258,7 @@

      Inequalitiesbounds=None,

      -)[source] +)[source]

      Return the minimization of c*x with the given constraints A*x <= b and A_eq*x = b_eq. Unless bounds are given, variables will have nonnegative values in the solution.

      diff --git a/dev/modules/solvers/solveset.html b/dev/modules/solvers/solveset.html index f267d896e84..4ba34166a94 100644 --- a/dev/modules/solvers/solveset.html +++ b/dev/modules/solvers/solveset.html @@ -1341,7 +1341,7 @@

      Solveset Module Reference
      -sympy.solvers.solveset.solveset(f, symbol=None, domain=Complexes)[source]
      +sympy.solvers.solveset.solveset(f, symbol=None, domain=Complexes)[source]

      Solves a given inequality or equation with set as output

      Parameters:
      @@ -1457,24 +1457,24 @@

      Solveset Module Reference
      -sympy.solvers.solveset.solveset_real(f, symbol)[source]
      +sympy.solvers.solveset.solveset_real(f, symbol)[source]

      -sympy.solvers.solveset.solveset_complex(f, symbol)[source]
      +sympy.solvers.solveset.solveset_complex(f, symbol)[source]
      -sympy.solvers.solveset.invert_real(f_x, y, x)[source]
      +sympy.solvers.solveset.invert_real(f_x, y, x)[source]

      Inverts a real-valued function. Same as invert_complex(), but sets the domain to S.Reals before inverting.

      -sympy.solvers.solveset.invert_complex(f_x, y, x, domain=Complexes)[source]
      +sympy.solvers.solveset.invert_complex(f_x, y, x, domain=Complexes)[source]

      Reduce the complex valued equation \(f(x) = y\) to a set of equations

      @@ -1530,7 +1530,7 @@

      Solveset Module Reference
      -sympy.solvers.solveset.domain_check(f, symbol, p)[source]
      +sympy.solvers.solveset.domain_check(f, symbol, p)[source]

      Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned.

      @@ -1566,7 +1566,7 @@

      Solveset Module Reference
      -sympy.solvers.solveset.solvify(f, symbol, domain)[source]
      +sympy.solvers.solveset.solvify(f, symbol, domain)[source]

      Solves an equation using solveset and returns the solution in accordance with the \(solve\) output API.

      @@ -1608,7 +1608,7 @@

      Solveset Module Reference
      -sympy.solvers.solveset.linear_eq_to_matrix(equations, *symbols)[source]
      +sympy.solvers.solveset.linear_eq_to_matrix(equations, *symbols)[source]

      Converts a given System of Equations into Matrix form. Here equations must be a linear system of equations in symbols. Element M[i, j] corresponds to the coefficient of the jth symbol in the ith equation.

      @@ -1693,7 +1693,7 @@

      Solveset Module Reference
      -sympy.solvers.solveset.linsolve(system, *symbols)[source]
      +sympy.solvers.solveset.linsolve(system, *symbols)[source]

      Solve system of \(N\) linear equations with \(M\) variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. @@ -1889,7 +1889,7 @@

      Solveset Module Reference
      -sympy.solvers.solveset.nonlinsolve(system, *symbols)[source]
      +sympy.solvers.solveset.nonlinsolve(system, *symbols)[source]

      Solve system of \(N\) nonlinear equations with \(M\) variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said @@ -2047,7 +2047,7 @@

      Solveset Module Reference

      -sympy.solvers.solveset._transolve(f, symbol, domain)[source]
      +sympy.solvers.solveset._transolve(f, symbol, domain)[source]

      Function to solve transcendental equations. It is a helper to solveset and should be used internally. _transolve currently supports the following class of equations:

      @@ -2220,7 +2220,7 @@

      transolve
      -sympy.solvers.solveset._is_exponential(f, symbol)[source]
      +sympy.solvers.solveset._is_exponential(f, symbol)[source]

      Return True if one or more terms contain symbol only in exponents, else False.

      @@ -2260,7 +2260,7 @@

      transolve
      -sympy.solvers.solveset._solve_exponential(lhs, rhs, symbol, domain)[source]
      +sympy.solvers.solveset._solve_exponential(lhs, rhs, symbol, domain)[source]

      Helper function for solving (supported) exponential equations.

      Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a @@ -2340,7 +2340,7 @@

      transolve
      -sympy.solvers.solveset._solve_logarithm(lhs, rhs, symbol, domain)[source]
      +sympy.solvers.solveset._solve_logarithm(lhs, rhs, symbol, domain)[source]

      Helper to solve logarithmic equations which are reducible to a single instance of \(\log\).

      Logarithmic equations are (currently) the equations that contains @@ -2431,7 +2431,7 @@

      transolve
      -sympy.solvers.solveset._is_logarithmic(f, symbol)[source]
      +sympy.solvers.solveset._is_logarithmic(f, symbol)[source]

      Return True if the equation is in the form \(a\log(f(x)) + b\log(g(x)) + ... + c\) else False.

      diff --git a/dev/modules/stats.html b/dev/modules/stats.html index 3c4b279b31c..7e6eb53aebb 100644 --- a/dev/modules/stats.html +++ b/dev/modules/stats.html @@ -928,7 +928,7 @@

      Random Variable TypesFinite Types

      -sympy.stats.DiscreteUniform(name, items)[source]
      +sympy.stats.DiscreteUniform(name, items)[source]

      Create a Finite Random Variable representing a uniform distribution over the input set.

      @@ -972,7 +972,7 @@

      Finite Types
      -sympy.stats.Die(name, sides=6)[source]
      +sympy.stats.Die(name, sides=6)[source]

      Create a Finite Random Variable representing a fair die.

      Parameters:
      @@ -1012,7 +1012,7 @@

      Finite Types
      -sympy.stats.Bernoulli(name, p, succ=1, fail=0)[source]
      +sympy.stats.Bernoulli(name, p, succ=1, fail=0)[source]

      Create a Finite Random Variable representing a Bernoulli process.

      Parameters:
      @@ -1063,7 +1063,7 @@

      Finite Types
      -sympy.stats.Coin(name, p=1 / 2)[source]
      +sympy.stats.Coin(name, p=1 / 2)[source]

      Create a Finite Random Variable representing a Coin toss.

      This is an equivalent of a Bernoulli random variable with “H” and “T” as success and failure events respectively.

      @@ -1108,7 +1108,7 @@

      Finite Types
      -sympy.stats.Binomial(name, n, p, succ=1, fail=0)[source]
      +sympy.stats.Binomial(name, n, p, succ=1, fail=0)[source]

      Create a Finite Random Variable representing a binomial distribution.

      Parameters:
      @@ -1167,7 +1167,7 @@

      Finite Types
      -sympy.stats.BetaBinomial(name, n, alpha, beta)[source]
      +sympy.stats.BetaBinomial(name, n, alpha, beta)[source]

      Create a Finite Random Variable representing a Beta-binomial distribution.

      Parameters:
      @@ -1206,7 +1206,7 @@

      Finite Types
      -sympy.stats.Hypergeometric(name, N, m, n)[source]
      +sympy.stats.Hypergeometric(name, N, m, n)[source]

      Create a Finite Random Variable representing a hypergeometric distribution.

      Parameters:
      @@ -1251,7 +1251,7 @@

      Finite Types
      -sympy.stats.FiniteRV(name, density, **kwargs)[source]
      +sympy.stats.FiniteRV(name, density, **kwargs)[source]

      Create a Finite Random Variable given a dict representing the density.

      Parameters:
      @@ -1292,7 +1292,7 @@

      Finite Types
      -sympy.stats.Rademacher(name)[source]
      +sympy.stats.Rademacher(name)[source]

      Create a Finite Random Variable representing a Rademacher distribution.

      Returns:
      @@ -1326,7 +1326,7 @@

      Finite Types

      -sympy.stats.Geometric(name, p)[source]
      +sympy.stats.Geometric(name, p)[source]

      Create a discrete random variable with a Geometric distribution.

      Parameters:
      @@ -1381,7 +1381,7 @@

      Discrete Types
      -sympy.stats.Hermite(name, a1, a2)[source]
      +sympy.stats.Hermite(name, a1, a2)[source]

      Create a discrete random variable with a Hermite distribution.

      Parameters:
      @@ -1435,7 +1435,7 @@

      Discrete Types
      -sympy.stats.Poisson(name, lamda)[source]
      +sympy.stats.Poisson(name, lamda)[source]

      Create a discrete random variable with a Poisson distribution.

      Parameters:
      @@ -1490,7 +1490,7 @@

      Discrete Types
      -sympy.stats.Logarithmic(name, p)[source]
      +sympy.stats.Logarithmic(name, p)[source]

      Create a discrete random variable with a Logarithmic distribution.

      Parameters:
      @@ -1545,7 +1545,7 @@

      Discrete Types
      -sympy.stats.NegativeBinomial(name, r, p)[source]
      +sympy.stats.NegativeBinomial(name, r, p)[source]

      Create a discrete random variable with a Negative Binomial distribution.

      Parameters:
      @@ -1602,7 +1602,7 @@

      Discrete Types
      -sympy.stats.Skellam(name, mu1, mu2)[source]
      +sympy.stats.Skellam(name, mu1, mu2)[source]

      Create a discrete random variable with a Skellam distribution.

      Parameters:
      @@ -1657,7 +1657,7 @@

      Discrete Types
      -sympy.stats.YuleSimon(name, rho)[source]
      +sympy.stats.YuleSimon(name, rho)[source]

      Create a discrete random variable with a Yule-Simon distribution.

      Parameters:
      @@ -1708,7 +1708,7 @@

      Discrete Types
      -sympy.stats.Zeta(name, s)[source]
      +sympy.stats.Zeta(name, s)[source]

      Create a discrete random variable with a Zeta distribution.

      Parameters:
      @@ -1762,7 +1762,7 @@

      Discrete Types

      -sympy.stats.Arcsin(name, a=0, b=1)[source]
      +sympy.stats.Arcsin(name, a=0, b=1)[source]

      Create a Continuous Random Variable with an arcsin distribution.

      The density of the arcsin distribution is given by

      @@ -1813,7 +1813,7 @@

      Continuous Types
      -sympy.stats.Benini(name, alpha, beta, sigma)[source]
      +sympy.stats.Benini(name, alpha, beta, sigma)[source]

      Create a Continuous Random Variable with a Benini distribution.

      The density of the Benini distribution is given by

      @@ -1877,7 +1877,7 @@

      Continuous Types
      -sympy.stats.Beta(name, alpha, beta)[source]
      +sympy.stats.Beta(name, alpha, beta)[source]

      Create a Continuous Random Variable with a Beta distribution.

      The density of the Beta distribution is given by

      @@ -1938,7 +1938,7 @@

      Continuous Types
      -sympy.stats.BetaNoncentral(name, alpha, beta, lamda)[source]
      +sympy.stats.BetaNoncentral(name, alpha, beta, lamda)[source]

      Create a Continuous Random Variable with a Type I Noncentral Beta distribution.

      The density of the Noncentral Beta distribution is given by

      @@ -2009,7 +2009,7 @@

      Continuous Types
      -sympy.stats.BetaPrime(name, alpha, beta)[source]
      +sympy.stats.BetaPrime(name, alpha, beta)[source]

      Create a continuous random variable with a Beta prime distribution.

      The density of the Beta prime distribution is given by

      @@ -2062,7 +2062,7 @@

      Continuous Types
      -sympy.stats.BoundedPareto(name, alpha, left, right)[source]
      +sympy.stats.BoundedPareto(name, alpha, left, right)[source]

      Create a continuous random variable with a Bounded Pareto distribution.

      The density of the Bounded Pareto distribution is given by

      @@ -2113,7 +2113,7 @@

      Continuous Types
      -sympy.stats.Cauchy(name, x0, gamma)[source]
      +sympy.stats.Cauchy(name, x0, gamma)[source]

      Create a continuous random variable with a Cauchy distribution.

      The density of the Cauchy distribution is given by

      @@ -2161,7 +2161,7 @@

      Continuous Types
      -sympy.stats.Chi(name, k)[source]
      +sympy.stats.Chi(name, k)[source]

      Create a continuous random variable with a Chi distribution.

      The density of the Chi distribution is given by

      @@ -2212,7 +2212,7 @@

      Continuous Types
      -sympy.stats.ChiNoncentral(name, k, l)[source]
      +sympy.stats.ChiNoncentral(name, k, l)[source]

      Create a continuous random variable with a non-central Chi distribution.

      Parameters:
      @@ -2266,7 +2266,7 @@

      Continuous Types
      -sympy.stats.ChiSquared(name, k)[source]
      +sympy.stats.ChiSquared(name, k)[source]

      Create a continuous random variable with a Chi-squared distribution.

      Parameters:
      @@ -2330,7 +2330,7 @@

      Continuous Types
      -sympy.stats.Dagum(name, p, a, b)[source]
      +sympy.stats.Dagum(name, p, a, b)[source]

      Create a continuous random variable with a Dagum distribution.

      Parameters:
      @@ -2392,7 +2392,7 @@

      Continuous Types
      -sympy.stats.Davis(name, b, n, mu)[source]
      +sympy.stats.Davis(name, b, n, mu)[source]

      Create a continuous random variable with Davis distribution.

      Parameters:
      @@ -2448,7 +2448,7 @@

      Continuous Types
      -sympy.stats.Erlang(name, k, l)[source]
      +sympy.stats.Erlang(name, k, l)[source]

      Create a continuous random variable with an Erlang distribution.

      Parameters:
      @@ -2519,7 +2519,7 @@

      Continuous Types
      -sympy.stats.ExGaussian(name, mean, std, rate)[source]
      +sympy.stats.ExGaussian(name, mean, std, rate)[source]

      Create a continuous random variable with an Exponentially modified Gaussian (EMG) distribution.

      @@ -2606,7 +2606,7 @@

      Continuous Types
      -sympy.stats.Exponential(name, rate)[source]
      +sympy.stats.Exponential(name, rate)[source]

      Create a continuous random variable with an Exponential distribution.

      Parameters:
      @@ -2689,7 +2689,7 @@

      Continuous Types
      -sympy.stats.FDistribution(name, d1, d2)[source]
      +sympy.stats.FDistribution(name, d1, d2)[source]

      Create a continuous random variable with a F distribution.

      Parameters:
      @@ -2749,7 +2749,7 @@

      Continuous Types
      -sympy.stats.FisherZ(name, d1, d2)[source]
      +sympy.stats.FisherZ(name, d1, d2)[source]

      Create a Continuous Random Variable with an Fisher’s Z distribution.

      Parameters:
      @@ -2814,7 +2814,7 @@

      Continuous Types
      -sympy.stats.Frechet(name, a, s=1, m=0)[source]
      +sympy.stats.Frechet(name, a, s=1, m=0)[source]

      Create a continuous random variable with a Frechet distribution.

      Parameters:
      @@ -2867,7 +2867,7 @@

      Continuous Types
      -sympy.stats.Gamma(name, k, theta)[source]
      +sympy.stats.Gamma(name, k, theta)[source]

      Create a continuous random variable with a Gamma distribution.

      Parameters:
      @@ -2944,7 +2944,7 @@

      Continuous Types
      -sympy.stats.GammaInverse(name, a, b)[source]
      +sympy.stats.GammaInverse(name, a, b)[source]

      Create a continuous random variable with an inverse Gamma distribution.

      Parameters:
      @@ -3001,7 +3001,7 @@

      Continuous Types
      -sympy.stats.Gompertz(name, b, eta)[source]
      +sympy.stats.Gompertz(name, b, eta)[source]

      Create a Continuous Random Variable with Gompertz distribution.

      Parameters:
      @@ -3047,7 +3047,7 @@

      Continuous Types
      -sympy.stats.Gumbel(name, beta, mu, minimum=False)[source]
      +sympy.stats.Gumbel(name, beta, mu, minimum=False)[source]

      Create a Continuous Random Variable with Gumbel distribution.

      Parameters:
      @@ -3110,7 +3110,7 @@

      Continuous Types
      -sympy.stats.Kumaraswamy(name, a, b)[source]
      +sympy.stats.Kumaraswamy(name, a, b)[source]

      Create a Continuous Random Variable with a Kumaraswamy distribution.

      Parameters:
      @@ -3163,7 +3163,7 @@

      Continuous Types
      -sympy.stats.Laplace(name, mu, b)[source]
      +sympy.stats.Laplace(name, mu, b)[source]

      Create a continuous random variable with a Laplace distribution.

      Parameters:
      @@ -3230,7 +3230,7 @@

      Continuous Types
      -sympy.stats.Levy(name, mu, c)[source]
      +sympy.stats.Levy(name, mu, c)[source]

      Create a continuous random variable with a Levy distribution.

      The density of the Levy distribution is given by

      @@ -3288,7 +3288,7 @@

      Continuous Types
      -sympy.stats.Logistic(name, mu, s)[source]
      +sympy.stats.Logistic(name, mu, s)[source]

      Create a continuous random variable with a logistic distribution.

      Parameters:
      @@ -3341,7 +3341,7 @@

      Continuous Types
      -sympy.stats.LogLogistic(name, alpha, beta)[source]
      +sympy.stats.LogLogistic(name, alpha, beta)[source]

      Create a continuous random variable with a log-logistic distribution. The distribution is unimodal when beta > 1.

      @@ -3407,7 +3407,7 @@

      Continuous Types
      -sympy.stats.LogNormal(name, mean, std)[source]
      +sympy.stats.LogNormal(name, mean, std)[source]

      Create a continuous random variable with a log-normal distribution.

      Parameters:
      @@ -3480,7 +3480,7 @@

      Continuous Types
      -sympy.stats.Lomax(name, alpha, lamda)[source]
      +sympy.stats.Lomax(name, alpha, lamda)[source]

      Create a continuous random variable with a Lomax distribution.

      Parameters:
      @@ -3530,7 +3530,7 @@

      Continuous Types
      -sympy.stats.Maxwell(name, a)[source]
      +sympy.stats.Maxwell(name, a)[source]

      Create a continuous random variable with a Maxwell distribution.

      Parameters:
      @@ -3586,7 +3586,7 @@

      Continuous Types
      -sympy.stats.Moyal(name, mu, sigma)[source]
      +sympy.stats.Moyal(name, mu, sigma)[source]

      Create a continuous random variable with a Moyal distribution.

      Parameters:
      @@ -3638,7 +3638,7 @@

      Continuous Types
      -sympy.stats.Nakagami(name, mu, omega)[source]
      +sympy.stats.Nakagami(name, mu, omega)[source]

      Create a continuous random variable with a Nakagami distribution.

      Parameters:
      @@ -3709,7 +3709,7 @@

      Continuous Types
      -sympy.stats.Normal(name, mean, std)[source]
      +sympy.stats.Normal(name, mean, std)[source]

      Create a continuous random variable with a Normal distribution.

      Parameters:
      @@ -3807,7 +3807,7 @@

      Continuous Types
      -sympy.stats.Pareto(name, xm, alpha)[source]
      +sympy.stats.Pareto(name, xm, alpha)[source]

      Create a continuous random variable with the Pareto distribution.

      Parameters:
      @@ -3857,7 +3857,7 @@

      Continuous Types
      -sympy.stats.PowerFunction(name, alpha, a, b)[source]
      +sympy.stats.PowerFunction(name, alpha, a, b)[source]

      Creates a continuous random variable with a Power Function Distribution.

      Parameters:
      @@ -3922,7 +3922,7 @@

      Continuous Types
      -sympy.stats.QuadraticU(name, a, b)[source]
      +sympy.stats.QuadraticU(name, a, b)[source]

      Create a Continuous Random Variable with a U-quadratic distribution.

      Parameters:
      @@ -3977,7 +3977,7 @@

      Continuous Types
      -sympy.stats.RaisedCosine(name, mu, s)[source]
      +sympy.stats.RaisedCosine(name, mu, s)[source]

      Create a Continuous Random Variable with a raised cosine distribution.

      Parameters:
      @@ -4030,7 +4030,7 @@

      Continuous Types
      -sympy.stats.Rayleigh(name, sigma)[source]
      +sympy.stats.Rayleigh(name, sigma)[source]

      Create a continuous random variable with a Rayleigh distribution.

      Parameters:
      @@ -4086,7 +4086,7 @@

      Continuous Types
      -sympy.stats.Reciprocal(name, a, b)[source]
      +sympy.stats.Reciprocal(name, a, b)[source]

      Creates a continuous random variable with a reciprocal distribution.

      Parameters:
      @@ -4121,7 +4121,7 @@

      Continuous Types
      -sympy.stats.StudentT(name, nu)[source]
      +sympy.stats.StudentT(name, nu)[source]

      Create a continuous random variable with a student’s t distribution.

      Parameters:
      @@ -4186,7 +4186,7 @@

      Continuous Types
      -sympy.stats.ShiftedGompertz(name, b, eta)[source]
      +sympy.stats.ShiftedGompertz(name, b, eta)[source]

      Create a continuous random variable with a Shifted Gompertz distribution.

      Parameters:
      @@ -4232,7 +4232,7 @@

      Continuous Types
      -sympy.stats.Trapezoidal(name, a, b, c, d)[source]
      +sympy.stats.Trapezoidal(name, a, b, c, d)[source]

      Create a continuous random variable with a trapezoidal distribution.

      Parameters:
      @@ -4299,7 +4299,7 @@

      Continuous Types
      -sympy.stats.Triangular(name, a, b, c)[source]
      +sympy.stats.Triangular(name, a, b, c)[source]

      Create a continuous random variable with a triangular distribution.

      Parameters:
      @@ -4368,7 +4368,7 @@

      Continuous Types
      -sympy.stats.Uniform(name, left, right)[source]
      +sympy.stats.Uniform(name, left, right)[source]

      Create a continuous random variable with a uniform distribution.

      Parameters:
      @@ -4433,7 +4433,7 @@

      Continuous Types
      -sympy.stats.UniformSum(name, n)[source]
      +sympy.stats.UniformSum(name, n)[source]

      Create a continuous random variable with an Irwin-Hall distribution.

      Parameters:
      @@ -4503,7 +4503,7 @@

      Continuous Types
      -sympy.stats.VonMises(name, mu, k)[source]
      +sympy.stats.VonMises(name, mu, k)[source]

      Create a Continuous Random Variable with a von Mises distribution.

      Parameters:
      @@ -4563,7 +4563,7 @@

      Continuous Types
      -sympy.stats.Wald(name, mean, shape)[source]
      +sympy.stats.Wald(name, mean, shape)[source]

      Create a continuous random variable with an Inverse Gaussian distribution. Inverse Gaussian distribution is also known as Wald distribution.

      @@ -4638,7 +4638,7 @@

      Continuous Types
      -sympy.stats.Weibull(name, alpha, beta)[source]
      +sympy.stats.Weibull(name, alpha, beta)[source]

      Create a continuous random variable with a Weibull distribution.

      Parameters:
      @@ -4699,7 +4699,7 @@

      Continuous Types
      -sympy.stats.WignerSemicircle(name, R)[source]
      +sympy.stats.WignerSemicircle(name, R)[source]

      Create a continuous random variable with a Wigner semicircle distribution.

      Parameters:
      @@ -4760,7 +4760,7 @@

      Continuous Types**kwargs,

      -)[source] +)[source]

      Create a Continuous Random Variable given the following:

      Parameters:
      @@ -4814,7 +4814,7 @@

      Continuous Types

      -sympy.stats.JointRV(symbol, pdf, _set=None)[source]
      +sympy.stats.JointRV(symbol, pdf, _set=None)[source]

      Create a Joint Random Variable where each of its component is continuous, given the following:

      @@ -4849,7 +4849,7 @@

      Joint Types
      -sympy.stats.marginal_distribution(rv, *indices)[source]
      +sympy.stats.marginal_distribution(rv, *indices)[source]

      Marginal distribution function of a joint random variable.

      Parameters:
      @@ -4874,7 +4874,7 @@

      Joint Types
      -sympy.stats.MultivariateNormal(name, mu, sigma)[source]
      +sympy.stats.MultivariateNormal(name, mu, sigma)[source]

      Creates a continuous random variable with Multivariate Normal Distribution.

      The density of the multivariate normal distribution can be found at [1].

      @@ -4932,7 +4932,7 @@

      Joint Types
      -sympy.stats.MultivariateLaplace(name, mu, sigma)[source]
      +sympy.stats.MultivariateLaplace(name, mu, sigma)[source]

      Creates a continuous random variable with Multivariate Laplace Distribution.

      The density of the multivariate Laplace distribution can be found at [1].

      @@ -4980,7 +4980,7 @@

      Joint Typesmu,

      -)[source] +)[source]

      Creates a joint random variable with generalized multivariate log gamma distribution.

      The joint pdf can be found at [1].

      @@ -5043,7 +5043,7 @@

      Joint Typesmu,

      -)[source] +)[source]

      Extends GeneralizedMultivariateLogGamma.

      Parameters:
      @@ -5099,7 +5099,7 @@

      Joint Types
      -sympy.stats.Multinomial(syms, n, *p)[source]
      +sympy.stats.Multinomial(syms, n, *p)[source]

      Creates a discrete random variable with Multinomial Distribution.

      The density of the said distribution can be found at [1].

      @@ -5145,7 +5145,7 @@

      Joint Types
      -sympy.stats.MultivariateBeta(syms, *alpha)[source]
      +sympy.stats.MultivariateBeta(syms, *alpha)[source]

      Creates a continuous random variable with Dirichlet/Multivariate Beta Distribution.

      The density of the Dirichlet distribution can be found at [1].

      @@ -5190,7 +5190,7 @@

      Joint Types
      -sympy.stats.MultivariateEwens(syms, n, theta)[source]
      +sympy.stats.MultivariateEwens(syms, n, theta)[source]

      Creates a discrete random variable with Multivariate Ewens Distribution.

      The density of the said distribution can be found at [1].

      @@ -5236,7 +5236,7 @@

      Joint Types
      -sympy.stats.MultivariateT(syms, mu, sigma, v)[source]
      +sympy.stats.MultivariateT(syms, mu, sigma, v)[source]

      Creates a joint random variable with multivariate T-distribution.

      Parameters:
      @@ -5271,7 +5271,7 @@

      Joint Types
      -sympy.stats.NegativeMultinomial(syms, k0, *p)[source]
      +sympy.stats.NegativeMultinomial(syms, k0, *p)[source]

      Creates a discrete random variable with Negative Multinomial Distribution.

      The density of the said distribution can be found at [1].

      @@ -5318,7 +5318,7 @@

      Joint Types
      -sympy.stats.NormalGamma(sym, mu, lamda, alpha, beta)[source]
      +sympy.stats.NormalGamma(sym, mu, lamda, alpha, beta)[source]

      Creates a bivariate joint random variable with multivariate Normal gamma distribution.

      @@ -5383,7 +5383,7 @@

      Joint Typestrans_probs=None,

      -)[source] +)[source]

      Represents a finite discrete time-homogeneous Markov chain.

      This type of Markov Chain can be uniquely characterised by its (ordered) state space and its one-step transition probability @@ -5510,7 +5510,7 @@

      Joint Types
      -absorbing_probabilities()[source]
      +absorbing_probabilities()[source]

      Computes the absorbing probabilities, i.e. the ij-th entry of the matrix denotes the probability of Markov chain being absorbed @@ -5519,7 +5519,7 @@

      Joint Types
      -canonical_form() Tuple[List[Basic], ImmutableDenseMatrix][source]
      +canonical_form() Tuple[List[Basic], ImmutableDenseMatrix][source]

      Reorders the one-step transition matrix so that recurrent states appear first and transient states appear last. Other representations include inserting @@ -5621,7 +5621,7 @@

      Joint Types
      -communication_classes() List[Tuple[List[Basic], Boolean, Integer]][source]
      +communication_classes() List[Tuple[List[Basic], Boolean, Integer]][source]

      Returns the list of communication classes that partition the states of the markov chain.

      A communication class is defined to be a set of states @@ -5693,7 +5693,7 @@

      Joint Types
      -decompose() Tuple[List[Basic], ImmutableDenseMatrix, ImmutableDenseMatrix, ImmutableDenseMatrix][source]
      +decompose() Tuple[List[Basic], ImmutableDenseMatrix, ImmutableDenseMatrix, ImmutableDenseMatrix][source]

      Decomposes the transition matrix into submatrices with special properties.

      The transition matrix can be decomposed into 4 submatrices: @@ -5776,13 +5776,13 @@

      Joint Types
      -fixed_row_vector()[source]
      +fixed_row_vector()[source]

      A wrapper for stationary_distribution().

      -fundamental_matrix()[source]
      +fundamental_matrix()[source]

      Each entry fundamental matrix can be interpreted as the expected number of times the chains is in state j if it started in state i.

      @@ -5804,7 +5804,7 @@

      Joint Types
      -sample()[source]
      +sample()[source]
      Returns:

      sample: iterator object

      @@ -5823,7 +5823,7 @@

      Joint Typescondition_set=False,

      -) ImmutableDenseMatrix | ConditionSet | Lambda[source] +) ImmutableDenseMatrix | ConditionSet | Lambda[source]

      The stationary distribution is any row vector, p, that solves p = pP, is row stochastic and each element in p must be nonnegative. That means in matrix form: \((P-I)^T p^T = 0\) and @@ -5911,7 +5911,7 @@

      Joint Typesgen_mat=None,

      -)[source] +)[source]

      Represents continuous time Markov chain.

      Parameters:
      @@ -5996,7 +5996,7 @@

      Joint Types
      -class sympy.stats.BernoulliProcess(sym, p, success=1, failure=0)[source]
      +class sympy.stats.BernoulliProcess(sym, p, success=1, failure=0)[source]

      The Bernoulli process consists of repeated independent Bernoulli process trials with the same parameter \(p\). It’s assumed that the probability \(p\) applies to every @@ -6075,7 +6075,7 @@

      Joint Types**kwargs,

      -)[source] +)[source]

      Computes expectation.

      Parameters:
      @@ -6106,7 +6106,7 @@

      Joint Types**kwargs,

      -)[source] +)[source]

      Computes probability.

      Parameters:
      @@ -6130,7 +6130,7 @@

      Joint Types
      -class sympy.stats.PoissonProcess(sym, lamda)[source]
      +class sympy.stats.PoissonProcess(sym, lamda)[source]

      The Poisson process is a counting process. It is usually used in scenarios where we are counting the occurrences of certain events that appear to happen at a certain rate, but completely at random.

      @@ -6200,7 +6200,7 @@

      Joint Types
      -class sympy.stats.WienerProcess(sym)[source]
      +class sympy.stats.WienerProcess(sym)[source]

      The Wiener process is a real valued continuous-time stochastic process. In physics it is used to study Brownian motion and it is often also called Brownian motion due to its historical connection with physical process of the @@ -6243,7 +6243,7 @@

      Joint Types
      -class sympy.stats.GammaProcess(sym, lamda, gamma)[source]
      +class sympy.stats.GammaProcess(sym, lamda, gamma)[source]

      A Gamma process is a random process with independent gamma distributed increments. It is a pure-jump increasing Levy process.

      @@ -6292,7 +6292,7 @@

      Joint Types

      -sympy.stats.MatrixGamma(symbol, alpha, beta, scale_matrix)[source]
      +sympy.stats.MatrixGamma(symbol, alpha, beta, scale_matrix)[source]

      Creates a random variable with Matrix Gamma Distribution.

      The density of the said distribution can be found at [1].

      @@ -6339,7 +6339,7 @@

      Matrix Distributions
      -sympy.stats.Wishart(symbol, n, scale_matrix)[source]
      +sympy.stats.Wishart(symbol, n, scale_matrix)[source]

      Creates a random variable with Wishart Distribution.

      The density of the said distribution can be found at [1].

      @@ -6391,7 +6391,7 @@

      Matrix Distributionsscale_matrix_2,

      -)[source] +)[source]

      Creates a random variable with Matrix Normal Distribution.

      The density of the said distribution can be found at [1].

      @@ -6440,7 +6440,7 @@

      Matrix DistributionsCompound Distribution

      -class sympy.stats.compound_rv.CompoundDistribution(dist)[source]
      +class sympy.stats.compound_rv.CompoundDistribution(dist)[source]

      Class for Compound Distributions.

      Parameters:
      @@ -6489,7 +6489,7 @@

      Interface**kwargs,

      -)[source] +)[source]

      Probability that a condition is true, optionally given a second condition.

      Parameters:
      @@ -6528,7 +6528,7 @@

      Interface
      -class sympy.stats.Probability(prob, condition=None, **kwargs)[source]
      +class sympy.stats.Probability(prob, condition=None, **kwargs)[source]

      Symbolic expression for the probability.

      Examples

      >>> from sympy.stats import Probability, Normal
      @@ -6563,7 +6563,7 @@ 

      Interface**kwargs,

      -)[source] +)[source]

      Returns the expected value of a random expression.

      Parameters:
      @@ -6606,7 +6606,7 @@

      Interface
      -class sympy.stats.Expectation(expr, condition=None, **kwargs)[source]
      +class sympy.stats.Expectation(expr, condition=None, **kwargs)[source]

      Symbolic expression for the expectation.

      Examples

      >>> from sympy.stats import Expectation, Normal, Probability, Poisson
      @@ -6685,7 +6685,7 @@ 

      Interface**kwargs,

      -)[source] +)[source]

      Probability density of a random expression, optionally given a second condition.

      @@ -6731,7 +6731,7 @@

      Interface
      -sympy.stats.entropy(expr, condition=None, **kwargs)[source]
      +sympy.stats.entropy(expr, condition=None, **kwargs)[source]

      Calculuates entropy of a probability distribution.

      Parameters:
      @@ -6777,7 +6777,7 @@

      Interface
      -sympy.stats.given(expr, condition=None, **kwargs)[source]
      +sympy.stats.given(expr, condition=None, **kwargs)[source]

      Conditional Random Expression.

      Explanation

      From a random expression and a condition on that expression creates a new @@ -6815,7 +6815,7 @@

      Interface
      -sympy.stats.where(condition, given_condition=None, **kwargs)[source]
      +sympy.stats.where(condition, given_condition=None, **kwargs)[source]

      Returns the domain where a condition is True.

      Examples

      >>> from sympy.stats import where, Die, Normal
      @@ -6843,7 +6843,7 @@ 

      Interface
      -sympy.stats.variance(X, condition=None, **kwargs)[source]
      +sympy.stats.variance(X, condition=None, **kwargs)[source]

      Variance of a random expression.

      @@ -6871,7 +6871,7 @@

      Interface
      -class sympy.stats.Variance(arg, condition=None, **kwargs)[source]
      +class sympy.stats.Variance(arg, condition=None, **kwargs)[source]

      Symbolic expression for the variance.

      Examples

      >>> from sympy import symbols, Integral
      @@ -6920,7 +6920,7 @@ 

      Interface
      -sympy.stats.covariance(X, Y, condition=None, **kwargs)[source]
      +sympy.stats.covariance(X, Y, condition=None, **kwargs)[source]

      Covariance of two random expressions.

      Explanation

      The expectation that the two variables will rise and fall together

      @@ -6950,7 +6950,7 @@

      Interface
      -class sympy.stats.Covariance(arg1, arg2, condition=None, **kwargs)[source]
      +class sympy.stats.Covariance(arg1, arg2, condition=None, **kwargs)[source]

      Symbolic expression for the covariance.

      Examples

      >>> from sympy.stats import Covariance
      @@ -6995,7 +6995,7 @@ 

      Interface
      -sympy.stats.coskewness(X, Y, Z, condition=None, **kwargs)[source]
      +sympy.stats.coskewness(X, Y, Z, condition=None, **kwargs)[source]

      Calculates the co-skewness of three random variables.

      Parameters:
      @@ -7055,7 +7055,7 @@

      Interface
      -sympy.stats.median(X, evaluate=True, **kwargs)[source]
      +sympy.stats.median(X, evaluate=True, **kwargs)[source]

      Calculuates the median of the probability distribution.

      Parameters:
      @@ -7094,7 +7094,7 @@

      Interface
      -sympy.stats.std(X, condition=None, **kwargs)[source]
      +sympy.stats.std(X, condition=None, **kwargs)[source]

      Standard Deviation of a random expression

      @@ -7117,7 +7117,7 @@

      Interface
      -sympy.stats.quantile(expr, evaluate=True, **kwargs)[source]
      +sympy.stats.quantile(expr, evaluate=True, **kwargs)[source]

      Return the \(p^{th}\) order quantile of a probability distribution.

      Explanation

      Quantile is defined as the value at which the probability of the random @@ -7171,7 +7171,7 @@

      Interface**kwargs,

      -)[source] +)[source]

      A realization of the random expression.

      Parameters:
      @@ -7292,7 +7292,7 @@

      Interface**kwargs,

      -)[source] +)[source]

      Returns an iterator of realizations from the expression given a condition.

      Parameters:
      @@ -7351,7 +7351,7 @@

      Interface
      -sympy.stats.factorial_moment(X, n, condition=None, **kwargs)[source]
      +sympy.stats.factorial_moment(X, n, condition=None, **kwargs)[source]

      The factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable.

      @@ -7396,7 +7396,7 @@

      Interface
      -sympy.stats.kurtosis(X, condition=None, **kwargs)[source]
      +sympy.stats.kurtosis(X, condition=None, **kwargs)[source]

      Characterizes the tails/outliers of a probability distribution.

      Parameters:
      @@ -7445,7 +7445,7 @@

      Interface
      -sympy.stats.skewness(X, condition=None, **kwargs)[source]
      +sympy.stats.skewness(X, condition=None, **kwargs)[source]

      Measure of the asymmetry of the probability distribution.

      Parameters:
      @@ -7482,7 +7482,7 @@

      Interface
      -sympy.stats.correlation(X, Y, condition=None, **kwargs)[source]
      +sympy.stats.correlation(X, Y, condition=None, **kwargs)[source]

      Correlation of two random expressions, also known as correlation coefficient or Pearson’s correlation.

      Explanation

      @@ -7525,7 +7525,7 @@

      Interface**kwargs,

      -)[source] +)[source]

      Sampling version of density.

      See also

      @@ -7547,7 +7547,7 @@

      Interface**kwargs,

      -)[source] +)[source]

      Sampling version of P.

      See also

      @@ -7569,7 +7569,7 @@

      Interface**kwargs,

      -)[source] +)[source]

      Sampling version of E.

      See also

      @@ -7579,7 +7579,7 @@

      Interface
      -class sympy.stats.Moment(X, n, c=0, condition=None, **kwargs)[source]
      +class sympy.stats.Moment(X, n, c=0, condition=None, **kwargs)[source]

      Symbolic class for Moment

      Examples

      >>> from sympy import Symbol, Integral
      @@ -7626,7 +7626,7 @@ 

      Interface**kwargs,

      -)[source] +)[source]

      Return the nth moment of a random expression about c.

      @@ -7648,7 +7648,7 @@

      Interface
      -class sympy.stats.CentralMoment(X, n, condition=None, **kwargs)[source]
      +class sympy.stats.CentralMoment(X, n, condition=None, **kwargs)[source]

      Symbolic class Central Moment

      Examples

      >>> from sympy import Symbol, Integral
      @@ -7694,7 +7694,7 @@ 

      Interface**kwargs,

      -)[source] +)[source]

      Return the nth central moment of a random expression about its mean.

      @@ -7715,7 +7715,7 @@

      Interface
      -class sympy.stats.ExpectationMatrix(expr, condition=None)[source]
      +class sympy.stats.ExpectationMatrix(expr, condition=None)[source]

      Expectation of a random matrix expression.

      Examples

      >>> from sympy.stats import ExpectationMatrix, Normal
      @@ -7754,7 +7754,7 @@ 

      Interface
      -class sympy.stats.VarianceMatrix(arg, condition=None)[source]
      +class sympy.stats.VarianceMatrix(arg, condition=None)[source]

      Variance of a random matrix probability expression. Also known as Covariance matrix, auto-covariance matrix, dispersion matrix, or variance-covariance matrix.

      @@ -7782,7 +7782,7 @@

      Interface
      -class sympy.stats.CrossCovarianceMatrix(arg1, arg2, condition=None)[source]
      +class sympy.stats.CrossCovarianceMatrix(arg1, arg2, condition=None)[source]

      Covariance of a random matrix probability expression.

      Examples

      >>> from sympy.stats import CrossCovarianceMatrix
      @@ -7821,7 +7821,7 @@ 

      Interface\(\{1,2,3,4,5,6\}\).

      -class sympy.stats.rv.RandomDomain[source]
      +class sympy.stats.rv.RandomDomain[source]

      A PSpace, or Probability Space, combines a RandomDomain @@ -7831,13 +7831,13 @@

      Interfacex.

      -class sympy.stats.rv.PSpace[source]
      +class sympy.stats.rv.PSpace[source]

      A RandomSymbol represents the PSpace’s symbol ‘x’ inside of SymPy expressions.

      -class sympy.stats.rv.RandomSymbol[source]
      +class sympy.stats.rv.RandomSymbol[source]

      The RandomDomain and PSpace classes are almost never directly instantiated. @@ -7849,12 +7849,12 @@

      Interface
      -class sympy.stats.rv.SinglePSpace[source]
      +class sympy.stats.rv.SinglePSpace[source]

      -class sympy.stats.rv.SingleDomain[source]
      +class sympy.stats.rv.SingleDomain[source]

      Another common case is to collect together a set of such univariate random @@ -7863,12 +7863,12 @@

      Interface
      -class sympy.stats.rv.ProductDomain[source]
      +class sympy.stats.rv.ProductDomain[source]

      -class sympy.stats.rv.ProductPSpace[source]
      +class sympy.stats.rv.ProductPSpace[source]

      The Conditional adjective is added whenever we add a global condition to a @@ -7876,7 +7876,7 @@

      Interface
      -class sympy.stats.rv.ConditionalDomain[source]
      +class sympy.stats.rv.ConditionalDomain[source]

      We specialize further into Finite and Continuous versions of these classes to @@ -7884,22 +7884,22 @@

      Interface
      -class sympy.stats.frv.FiniteDomain[source]
      +class sympy.stats.frv.FiniteDomain[source]

      -class sympy.stats.frv.FinitePSpace[source]
      +class sympy.stats.frv.FinitePSpace[source]
      -class sympy.stats.crv.ContinuousDomain[source]
      +class sympy.stats.crv.ContinuousDomain[source]
      -class sympy.stats.crv.ContinuousPSpace[source]
      +class sympy.stats.crv.ContinuousPSpace[source]

      Additionally there are a few specialized classes that implement certain common @@ -7943,13 +7943,13 @@

      Interface
      -sympy.stats.rv.random_symbols(expr)[source]
      +sympy.stats.rv.random_symbols(expr)[source]

      Returns all RandomSymbols within a SymPy Expression.

      -sympy.stats.rv.pspace(expr)[source]
      +sympy.stats.rv.pspace(expr)[source]

      Returns the underlying Probability Space of a random expression.

      For internal use.

      Examples

      @@ -7963,7 +7963,7 @@

      Interface
      -sympy.stats.rv.rs_swap(a, b)[source]
      +sympy.stats.rv.rs_swap(a, b)[source]

      Build a dictionary to swap RandomSymbols based on their underlying symbol.

      i.e. if X = ('x', pspace1) diff --git a/dev/modules/tensor/array.html b/dev/modules/tensor/array.html index 8a61149b3cb..30e4f4cfaf4 100644 --- a/dev/modules/tensor/array.html +++ b/dev/modules/tensor/array.html @@ -1045,7 +1045,7 @@

      Classes
      **kwargs,

      -)[source] +)[source]
      @@ -1058,7 +1058,7 @@

      Classes
      **kwargs,

      -)[source] +)[source]
      @@ -1071,7 +1071,7 @@

      Classes
      **kwargs,

      -)[source] +)[source]

      @@ -1084,7 +1084,7 @@

      Classes
      **kwargs,

      -)[source] +)[source]

      @@ -1092,7 +1092,7 @@

      Classes

      Functions

      -sympy.tensor.array.derive_by_array(expr, dx)[source]
      +sympy.tensor.array.derive_by_array(expr, dx)[source]

      Derivative by arrays. Supports both arrays and scalars.

      The equivalent operator for array expressions is array_derive.

      Explanation

      @@ -1124,7 +1124,7 @@

      Functionsindex_order_new=None,

      -)[source] +)[source]

      Permutes the indices of an array.

      Parameter specifies the permutation of the indices.

      The equivalent operator for array expressions is PermuteDims, which can @@ -1177,7 +1177,7 @@

      Functions
      -sympy.tensor.array.tensorcontraction(array, *contraction_axes)[source]
      +sympy.tensor.array.tensorcontraction(array, *contraction_axes)[source]

      Contraction of an array-like object on the specified axes.

      The equivalent operator for array expressions is ArrayContraction, which can be used to keep the expression unevaluated.

      @@ -1218,7 +1218,7 @@

      Functions
      -sympy.tensor.array.tensorproduct(*args)[source]
      +sympy.tensor.array.tensorproduct(*args)[source]

      Tensor product among scalars or array-like objects.

      The equivalent operator for array expressions is ArrayTensorProduct, which can be used to keep the expression unevaluated.

      @@ -1251,7 +1251,7 @@

      Functions
      -sympy.tensor.array.tensordiagonal(array, *diagonal_axes)[source]
      +sympy.tensor.array.tensordiagonal(array, *diagonal_axes)[source]

      Diagonalization of an array-like object on the specified axes.

      This is equivalent to multiplying the expression by Kronecker deltas uniting the axes.

      diff --git a/dev/modules/tensor/array_expressions.html b/dev/modules/tensor/array_expressions.html index f8084f529c5..e764e21170e 100644 --- a/dev/modules/tensor/array_expressions.html +++ b/dev/modules/tensor/array_expressions.html @@ -968,7 +968,7 @@

      Compatibility with matrices
      -class sympy.tensor.array.expressions.ArrayTensorProduct(*args, **kwargs)[source]
      +class sympy.tensor.array.expressions.ArrayTensorProduct(*args, **kwargs)[source]

      Class to represent the tensor product of array-like objects.

      @@ -982,14 +982,14 @@

      Compatibility with matrices**kwargs,

      -)[source] +)[source]

      This class is meant to represent contractions of arrays in a form easily processable by the code printers.

      -class sympy.tensor.array.expressions.ArrayDiagonal(expr, *diagonal_indices, **kwargs)[source]
      +class sympy.tensor.array.expressions.ArrayDiagonal(expr, *diagonal_indices, **kwargs)[source]

      Class to represent the diagonal operator.

      Explanation

      In a 2-dimensional array it returns the diagonal, this looks like the @@ -1018,7 +1018,7 @@

      Compatibility with matrices**kwargs,

      -)[source] +)[source]

      Class to represent permutation of axes of arrays.

      Examples

      >>> from sympy.tensor.array import permutedims
      diff --git a/dev/modules/tensor/index_methods.html b/dev/modules/tensor/index_methods.html
      index 9f259283162..9e1e866d636 100644
      --- a/dev/modules/tensor/index_methods.html
      +++ b/dev/modules/tensor/index_methods.html
      @@ -814,7 +814,7 @@ 
      Documentation Version
      refactoring.

      -sympy.tensor.index_methods.get_contraction_structure(expr)[source]
      +sympy.tensor.index_methods.get_contraction_structure(expr)[source]

      Determine dummy indices of expr and describe its structure

      By dummy we mean indices that are summation indices.

      The structure of the expression is determined and described as follows:

      @@ -914,7 +914,7 @@
      Documentation Version
      -sympy.tensor.index_methods.get_indices(expr)[source]
      +sympy.tensor.index_methods.get_indices(expr)[source]

      Determine the outer indices of expression expr

      By outer we mean indices that are not summation indices. Returns a set and a dict. The set contains outer indices and the dict contains diff --git a/dev/modules/tensor/indexed.html b/dev/modules/tensor/indexed.html index 2e201a98db0..8421ab90f05 100644 --- a/dev/modules/tensor/indexed.html +++ b/dev/modules/tensor/indexed.html @@ -888,7 +888,7 @@

      Examples
      -class sympy.tensor.indexed.Idx(label, range=None, **kw_args)[source]
      +class sympy.tensor.indexed.Idx(label, range=None, **kw_args)[source]

      Represents an integer index as an Integer or integer expression.

      There are a number of ways to create an Idx object. The constructor takes two arguments:

      @@ -994,7 +994,7 @@

      Examples
      -class sympy.tensor.indexed.Indexed(base, *args, **kw_args)[source]
      +class sympy.tensor.indexed.Indexed(base, *args, **kw_args)[source]

      Represents a mathematical object with indices.

      >>> from sympy import Indexed, IndexedBase, Idx, symbols
       >>> i, j = symbols('i j', cls=Idx)
      @@ -1113,7 +1113,7 @@ 

      Examples
      **kw_args,

      -)[source] +)[source]

      Represent the base or stem of an indexed object

      The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed diff --git a/dev/modules/tensor/tensor.html b/dev/modules/tensor/tensor.html index 20fdbecce44..bcc2f488602 100644 --- a/dev/modules/tensor/tensor.html +++ b/dev/modules/tensor/tensor.html @@ -817,7 +817,7 @@

      Documentation Version
      **kwargs,

      -)[source] +)[source]

      A TensorIndexType is characterized by its name and its metric.

      Parameters:
      @@ -886,7 +886,7 @@
      Documentation Version
      -class sympy.tensor.tensor.TensorIndex(name, tensor_index_type, is_up=True)[source]
      +class sympy.tensor.tensor.TensorIndex(name, tensor_index_type, is_up=True)[source]

      Represents a tensor index

      Parameters:
      @@ -948,7 +948,7 @@
      Documentation Version
      comm=0,
      -)[source] +)[source]

      Tensor head of the tensor.

      Parameters:
      @@ -1067,7 +1067,7 @@
      Documentation Version

      -commutes_with(other)[source]
      +commutes_with(other)[source]

      Returns 0 if self and other commute, 1 if they anticommute.

      Returns None if self and other neither commute nor anticommute.

      @@ -1085,13 +1085,13 @@
      Documentation Version
      comm=0,

      -)[source] +)[source]

      Returns a sequence of TensorHeads from a string \(s\)

      -class sympy.tensor.tensor.TensExpr(*args)[source]
      +class sympy.tensor.tensor.TensExpr(*args)[source]

      Abstract base class for tensor expressions

      Notes

      A tensor expression is an expression formed by tensors; @@ -1106,7 +1106,7 @@

      Documentation Version

      Contracted indices are therefore nameless in the internal representation.

      -get_matrix()[source]
      +get_matrix()[source]

      DEPRECATED: do not use.

      Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2.

      @@ -1121,7 +1121,7 @@
      Documentation Version
      indices=None,
      -)[source] +)[source]

      Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to indices.

      @@ -1196,7 +1196,7 @@
      Documentation Version
      -class sympy.tensor.tensor.TensAdd(*args, **kw_args)[source]
      +class sympy.tensor.tensor.TensAdd(*args, **kw_args)[source]

      Sum of tensors.

      Parameters:
      @@ -1245,14 +1245,14 @@
      Documentation Version

      -canon_bp()[source]
      +canon_bp()[source]

      Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

      -contract_metric(g)[source]
      +contract_metric(g)[source]

      Raise or lower indices with the metric g.

      Parameters:
      @@ -1268,7 +1268,7 @@
      Documentation Version
      -class sympy.tensor.tensor.TensMul(*args, **kw_args)[source]
      +class sympy.tensor.tensor.TensMul(*args, **kw_args)[source]

      Product of tensors.

      Parameters:
      @@ -1322,7 +1322,7 @@
      Documentation Version

      -canon_bp()[source]
      +canon_bp()[source]

      Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

      Examples

      @@ -1342,7 +1342,7 @@
      Documentation Version
      -contract_metric(g)[source]
      +contract_metric(g)[source]

      Raise or lower indices with the metric g.

      Parameters:
      @@ -1368,7 +1368,7 @@
      Documentation Version
      -get_free_indices() list[TensorIndex][source]
      +get_free_indices() list[TensorIndex][source]

      Returns the list of free indices of the tensor.

      Explanation

      The indices are listed in the order in which they appear in the @@ -1391,7 +1391,7 @@

      Documentation Version
      -get_indices()[source]
      +get_indices()[source]

      Returns the list of indices of the tensor.

      Explanation

      The indices are listed in the order in which they appear in the @@ -1416,20 +1416,20 @@

      Documentation Version
      -perm2tensor(g, is_canon_bp=False)[source]
      +perm2tensor(g, is_canon_bp=False)[source]

      Returns the tensor corresponding to the permutation g

      For further details, see the method in TIDS with the same name.

      -sorted_components()[source]
      +sorted_components()[source]

      Returns a tensor product with sorted components.

      -split()[source]
      +split()[source]

      Returns a list of tensors, whose product is self.

      Explanation

      Dummy indices contracted among different tensor components @@ -1453,21 +1453,21 @@

      Documentation Version
      -sympy.tensor.tensor.canon_bp(p)[source]
      +sympy.tensor.tensor.canon_bp(p)[source]

      Butler-Portugal canonicalization. See tensor_can.py from the combinatorics module for the details.

      -sympy.tensor.tensor.riemann_cyclic_replace(t_r)[source]
      +sympy.tensor.tensor.riemann_cyclic_replace(t_r)[source]

      replace Riemann tensor with an equivalent expression

      R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)

      -sympy.tensor.tensor.riemann_cyclic(t2)[source]
      +sympy.tensor.tensor.riemann_cyclic(t2)[source]

      Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity.

      This trick is discussed in the reference guide to Cadabra.

      @@ -1485,7 +1485,7 @@
      Documentation Version
      -class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)[source]
      +class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)[source]

      Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see tensor_can.py section of the combinatorics module.

      @@ -1536,7 +1536,7 @@
      Documentation Version

      -classmethod direct_product(*args)[source]
      +classmethod direct_product(*args)[source]

      Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups.

      Notes

      @@ -1550,20 +1550,20 @@
      Documentation Version
      -classmethod fully_symmetric(rank)[source]
      +classmethod fully_symmetric(rank)[source]

      Returns a fully symmetric (antisymmetric if rank``<0) TensorSymmetry object for ``abs(rank) indices.

      -classmethod no_symmetry(rank)[source]
      +classmethod no_symmetry(rank)[source]

      TensorSymmetry object for rank indices with no symmetry

      -classmethod riemann()[source]
      +classmethod riemann()[source]

      Returns a monotorem symmetry of the Riemann tensor

      @@ -1571,7 +1571,7 @@
      Documentation Version
      -sympy.tensor.tensor.tensorsymmetry(*args)[source]
      +sympy.tensor.tensor.tensorsymmetry(*args)[source]

      Returns a TensorSymmetry object. This method is deprecated, use TensorSymmetry.direct_product() or .riemann() instead.

      Explanation

      @@ -1600,7 +1600,7 @@
      Documentation Version
      -class sympy.tensor.tensor.TensorType(*args, **kwargs)[source]
      +class sympy.tensor.tensor.TensorType(*args, **kwargs)[source]

      Class of tensor types. Deprecated, use tensor_heads() instead.

      Parameters:
      @@ -1628,7 +1628,7 @@
      Documentation Version
      -class sympy.tensor.tensor._TensorManager[source]
      +class sympy.tensor.tensor._TensorManager[source]

      Class to manage tensor properties.

      Notes

      Tensors belong to tensor commutation groups; each group has a label @@ -1641,19 +1641,19 @@

      Documentation Version
      do not commute with any other group.

      -clear()[source]
      +clear()[source]

      Clear the TensorManager.

      -comm_i2symbol(i)[source]
      +comm_i2symbol(i)[source]

      Returns the symbol corresponding to the commutation group number.

      -comm_symbols2i(i)[source]
      +comm_symbols2i(i)[source]

      Get the commutation group number corresponding to i.

      i can be a symbol or a number or a string.

      If i is not already defined its commutation group number @@ -1662,14 +1662,14 @@

      Documentation Version
      -get_comm(i, j)[source]
      +get_comm(i, j)[source]

      Return the commutation parameter for commutation group numbers i, j

      see _TensorManager.set_comm

      -set_comm(i, j, c)[source]
      +set_comm(i, j, c)[source]

      Set the commutation parameter c for commutation groups i, j.

      Parameters:
      @@ -1711,7 +1711,7 @@
      Documentation Version
      -set_comms(*args)[source]
      +set_comms(*args)[source]

      Set the commutation group numbers c for symbols i, j.

      Parameters:
      diff --git a/dev/modules/tensor/toperators.html b/dev/modules/tensor/toperators.html index 3811b0484c6..b035945f8cf 100644 --- a/dev/modules/tensor/toperators.html +++ b/dev/modules/tensor/toperators.html @@ -805,7 +805,7 @@
      Documentation Version

      Tensor Operators

      -class sympy.tensor.toperators.PartialDerivative(expr, *variables)[source]
      +class sympy.tensor.toperators.PartialDerivative(expr, *variables)[source]

      Partial derivative for tensor expressions.

      Examples

      >>> from sympy.tensor.tensor import TensorIndexType, TensorHead
      diff --git a/dev/modules/testing/pytest.html b/dev/modules/testing/pytest.html
      index aa8dca488f5..ed7b7df6624 100644
      --- a/dev/modules/testing/pytest.html
      +++ b/dev/modules/testing/pytest.html
      @@ -806,19 +806,19 @@ 
      Documentation Version

      py.test hacks to support XFAIL/XPASS

      -sympy.testing.pytest.SKIP(reason)[source]
      +sympy.testing.pytest.SKIP(reason)[source]

      Similar to skip(), but this is a decorator.

      -sympy.testing.pytest.nocache_fail(func)[source]
      +sympy.testing.pytest.nocache_fail(func)[source]

      Dummy decorator for marking tests that fail when cache is disabled

      -sympy.testing.pytest.raises(expectedException, code=None)[source]
      +sympy.testing.pytest.raises(expectedException, code=None)[source]

      Tests that code raises the exception expectedException.

      code may be a callable, such as a lambda expression or function name.

      @@ -870,7 +870,7 @@
      Documentation Version
      -sympy.testing.pytest.skip_under_pyodide(message)[source]
      +sympy.testing.pytest.skip_under_pyodide(message)[source]

      Decorator to skip a test if running under Pyodide/WASM.

      @@ -885,7 +885,7 @@
      Documentation Version
      test_stacklevel=True,
      -)[source] +)[source]

      Like raises but tests that warnings are emitted.

      >>> from sympy.testing.pytest import warns
       >>> import warnings
      @@ -914,7 +914,7 @@ 
      Documentation Version
      -sympy.testing.pytest.warns_deprecated_sympy()[source]
      +sympy.testing.pytest.warns_deprecated_sympy()[source]

      Shorthand for warns(SymPyDeprecationWarning)

      This is the recommended way to test that SymPyDeprecationWarning is emitted for deprecated features in SymPy. To test for other warnings use diff --git a/dev/modules/testing/runtests.html b/dev/modules/testing/runtests.html index c06011e1b49..d0a1fcddfaf 100644 --- a/dev/modules/testing/runtests.html +++ b/dev/modules/testing/runtests.html @@ -825,7 +825,7 @@

      Documentation Version
      split=None,
      -)[source] +)[source]

      Py.test like reporter. Should produce output identical to py.test.

      @@ -839,7 +839,7 @@
      Documentation Version
      force_colors=False,
      -)[source] +)[source]

      Prints a text on the screen.

      It uses sys.stdout.write(), so no readline library is necessary.

      @@ -859,7 +859,7 @@
      Documentation Version
      -class sympy.testing.runtests.Reporter[source]
      +class sympy.testing.runtests.Reporter[source]

      Parent class for all reporters.

      @@ -874,7 +874,7 @@
      Documentation Version
      exclude_empty=True,
      -)[source] +)[source]

      A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following @@ -896,7 +896,7 @@

      Documentation Version
      optionflags=0,
      -)[source] +)[source]

      A class used to run DocTest test cases, and accumulate statistics. The run method is used to process a single DocTest case. It returns a tuple (f, t), where t is the number of test cases @@ -915,7 +915,7 @@

      Documentation Version
      clear_globs=True,
      -)[source] +)[source]

      Run the examples in test, and display the results using the writer function out.

      The examples are run in the namespace test.globs. If @@ -936,7 +936,7 @@

      Documentation Version
      -class sympy.testing.runtests.SymPyOutputChecker[source]
      +class sympy.testing.runtests.SymPyOutputChecker[source]

      Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples

      @@ -950,7 +950,7 @@
      Documentation Version
      optionflags,
      -)[source] +)[source]

      Return True iff the actual output from an example (\(got\)) matches the expected output (\(want\)). These strings are always considered to match if they are identical; but @@ -964,7 +964,7 @@

      Documentation Version
      -class sympy.testing.runtests.SymPyTestResults(failed, attempted)[source]
      +class sympy.testing.runtests.SymPyTestResults(failed, attempted)[source]
      attempted
      @@ -981,7 +981,7 @@
      Documentation Version
      -sympy.testing.runtests.convert_to_native_paths(lst)[source]
      +sympy.testing.runtests.convert_to_native_paths(lst)[source]

      Converts a list of ‘/’ separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive.

      @@ -998,7 +998,7 @@
      Documentation Version
      **kwargs,
      -)[source] +)[source]

      Runs doctests in all *.py files in the SymPy directory which match any of the given strings in paths or all tests if paths=[].

      Notes:

      @@ -1047,14 +1047,14 @@
      Documentation Version
      -sympy.testing.runtests.get_sympy_dir()[source]
      +sympy.testing.runtests.get_sympy_dir()[source]

      Returns the root SymPy directory and set the global value indicating whether the system is case sensitive or not.

      -sympy.testing.runtests.raise_on_deprecated()[source]
      +sympy.testing.runtests.raise_on_deprecated()[source]

      Context manager to make DeprecationWarning raise an error

      This is to catch SymPyDeprecationWarning from library code while running tests and doctests. It is important to use this context manager around @@ -1075,7 +1075,7 @@

      Documentation Version
      examples_kwargs=None,
      -)[source] +)[source]

      Run all tests.

      Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), and the examples (examples/all.py).

      @@ -1104,7 +1104,7 @@
      Documentation Version
      force=False,
      -)[source] +)[source]

      Run a function in a Python subprocess with hash randomization enabled.

      If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The @@ -1147,7 +1147,7 @@

      Documentation Version
      -sympy.testing.runtests.split_list(l, split, density=None)[source]
      +sympy.testing.runtests.split_list(l, split, density=None)[source]

      Splits a list into part a of b

      split should be a string of the form ‘a/b’. For instance, ‘1/3’ would give the split one of three.

      @@ -1187,7 +1187,7 @@
      Documentation Version
      encoding=None,
      -)[source] +)[source]

      Test examples in the given file. Return (#failures, #tests).

      Optional keyword arg module_relative specifies how filenames should be interpreted:

      @@ -1255,7 +1255,7 @@
      Documentation Version
      -sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)[source]
      +sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)[source]

      Run tests in the specified test_*.py files.

      Tests in a particular test_*.py file are run if any of the given strings in paths matches a part of the test file’s path. If paths=[], diff --git a/dev/modules/utilities/autowrap.html b/dev/modules/utilities/autowrap.html index b4f27b5b2db..c3fa6745e1b 100644 --- a/dev/modules/utilities/autowrap.html +++ b/dev/modules/utilities/autowrap.html @@ -940,17 +940,17 @@

      Implementation detailsverbose=False,

      -)[source] +)[source]

      Base Class for code wrappers

      -class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)[source]
      +class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)[source]

      Wrapper that uses Cython

      -dump_pyx(routines, f, prefix)[source]
      +dump_pyx(routines, f, prefix)[source]

      Write a Cython file with Python wrappers

      This file contains all the definitions of the routines in c code and refers to the header file.

      @@ -979,19 +979,19 @@

      Implementation detailsverbose=False,

      -)[source] +)[source]

      Class used for testing independent of backends

      -class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)[source]
      +class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)[source]

      Wrapper that uses f2py

      -class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)[source]
      +class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)[source]

      Wrapper for Ufuncify

      @@ -1004,7 +1004,7 @@

      Implementation detailsfuncname=None,

      -)[source] +)[source]

      Write a C file with Python wrappers

      This file contains all the definitions of the routines in c code.

      Arguments

      @@ -1039,7 +1039,7 @@

      Implementation details**kwargs,

      -)[source] +)[source]

      Generates Python callable binaries based on the math expression.

      Parameters:
      @@ -1134,7 +1134,7 @@

      Implementation details
      -sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)[source]
      +sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)[source]

      Returns a SymPy function with expr as binary implementation

      This is a convenience function that automates the steps needed to autowrap the SymPy expression and attaching it to a Function object @@ -1186,7 +1186,7 @@

      Implementation details**kwargs,

      -)[source] +)[source]

      Generates a binary function that supports broadcasting on numpy arrays.

      Parameters:
      diff --git a/dev/modules/utilities/codegen.html b/dev/modules/utilities/codegen.html index a72c7c8ca0e..b71e9f7e6b9 100644 --- a/dev/modules/utilities/codegen.html +++ b/dev/modules/utilities/codegen.html @@ -927,7 +927,7 @@

      Routine
      precision=None,

      -)[source] +)[source]

      An abstract Argument data structure: a name and a data type.

      This structure is refined in the descendants below.

      @@ -943,7 +943,7 @@

      Routine
      cse=False,

      -)[source] +)[source]

      Generator for C code.

      The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.c and <prefix>.h respectively.

      @@ -959,7 +959,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Write the code by calling language specific methods.

      The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

      @@ -1004,7 +1004,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Writes the C header file.

      This file contains all the function declarations.

      @@ -1038,7 +1038,7 @@

      Routine
      -get_prototype(routine)[source]
      +get_prototype(routine)[source]

      Returns a string for the function prototype of the routine.

      If the routine has multiple result objects, an CodeGenError is raised.

      @@ -1049,7 +1049,7 @@

      Routine
      -class sympy.utilities.codegen.CodeGen(project='project', cse=False)[source]
      +class sympy.utilities.codegen.CodeGen(project='project', cse=False)[source]

      Abstract class for the code generators.

      @@ -1063,7 +1063,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Write the code by calling language specific methods.

      The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

      @@ -1107,7 +1107,7 @@

      Routine
      global_vars=None,

      -)[source] +)[source]

      Creates an Routine object that is appropriate for this language.

      This implementation is appropriate for at least C/Fortran. Subclasses can override this if necessary.

      @@ -1131,7 +1131,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Writes all the source code files for the given routines.

      The generated source is returned as a list of (filename, contents) tuples, or is written to files (see below). Each filename consists @@ -1180,13 +1180,13 @@

      Routine
      rsname,

      -)[source] +)[source]

      Holds strings for a certain datatype in different languages.

      -class sympy.utilities.codegen.FCodeGen(project='project', printer=None)[source]
      +class sympy.utilities.codegen.FCodeGen(project='project', printer=None)[source]

      Generator for Fortran 95 code

      The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.f90 and <prefix>.h respectively.

      @@ -1202,7 +1202,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Write the code by calling language specific methods.

      The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

      @@ -1247,7 +1247,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Writes the interface to a header file.

      This file contains all the function declarations.

      @@ -1280,7 +1280,7 @@

      Routine
      -get_interface(routine)[source]
      +get_interface(routine)[source]

      Returns a string for the function interface.

      The routine should have a single result object, which can be None. If the routine has multiple result objects, a CodeGenError is @@ -1292,7 +1292,7 @@

      Routine
      -class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)[source]
      +class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)[source]

      Generator for Julia code.

      The .write() method inherited from CodeGen will output a code file <prefix>.jl.

      @@ -1308,7 +1308,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Write the code by calling language specific methods.

      The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

      @@ -1352,7 +1352,7 @@

      Routine
      global_vars,

      -)[source] +)[source]

      Specialized Routine creation for Julia.

      @@ -1360,7 +1360,7 @@

      Routine
      -class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)[source]
      +class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)[source]

      Generator for Octave code.

      The .write() method inherited from CodeGen will output a code file <prefix>.m.

      @@ -1383,7 +1383,7 @@

      Routine
      inline=True,

      -)[source] +)[source]

      Write the code by calling language specific methods.

      The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

      @@ -1427,7 +1427,7 @@

      Routine
      global_vars,

      -)[source] +)[source]

      Specialized Routine creation for Octave.

      @@ -1446,7 +1446,7 @@

      Routine
      precision=None,

      -)[source] +)[source]

      OutputArgument are always initialized in the routine.

      @@ -1463,7 +1463,7 @@

      Routine
      precision=None,

      -)[source] +)[source]

      An expression for a return value.

      The name result is used to avoid conflicts with the reserved word “return” in the Python language. It is also shorter than ReturnValue.

      @@ -1483,7 +1483,7 @@

      Routine
      global_vars,

      -)[source] +)[source]

      Generic description of evaluation routine for set of expressions.

      A CodeGen class can translate instances of this class into code in a particular language. The routine specification covers all the features @@ -1511,7 +1511,7 @@

      Routine
      -class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)[source]
      +class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)[source]

      Generator for Rust code.

      The .write() method inherited from CodeGen will output a code file <prefix>.rs

      @@ -1527,7 +1527,7 @@

      Routine
      empty=True,

      -)[source] +)[source]

      Write the code by calling language specific methods.

      The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

      @@ -1562,7 +1562,7 @@

      Routine
      -get_prototype(routine)[source]
      +get_prototype(routine)[source]

      Returns a string for the function prototype of the routine.

      If the routine has multiple result objects, an CodeGenError is raised.

      @@ -1580,7 +1580,7 @@

      Routine
      global_vars,

      -)[source] +)[source]

      Specialized Routine creation for Rust.

      @@ -1605,7 +1605,7 @@

      Routine
      printer=None,

      -)[source] +)[source]

      Generate source code for expressions in a given language.

      Parameters:
      @@ -1743,7 +1743,7 @@

      Routine
      -sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)[source]
      +sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)[source]

      Derives an appropriate datatype based on the expression.

      @@ -1759,7 +1759,7 @@

      Routine
      language='F95',

      -)[source] +)[source]

      A factory that makes an appropriate Routine from an expression.

      Parameters:
      diff --git a/dev/modules/utilities/decorator.html b/dev/modules/utilities/decorator.html index b0ac327bd44..cbfa058d279 100644 --- a/dev/modules/utilities/decorator.html +++ b/dev/modules/utilities/decorator.html @@ -816,7 +816,7 @@
      Documentation Version
      stacklevel=3,
      -)[source] +)[source]

      Mark a function as deprecated.

      This decorator should be used if an entire function or class is deprecated. If only a certain functionality is deprecated, you should use @@ -879,7 +879,7 @@

      Documentation Version
      -sympy.utilities.decorator.conserve_mpmath_dps(func)[source]
      +sympy.utilities.decorator.conserve_mpmath_dps(func)[source]

      After the function finishes, resets the value of mpmath.mp.dps to the value it had before the function was run.

      @@ -896,7 +896,7 @@
      Documentation Version
      ground_types=None,

      -)[source] +)[source]

      Adds metadata about the dependencies which need to be met for doctesting the docstrings of the decorated objects.

      exe should be a list of executables

      @@ -908,7 +908,7 @@
      Documentation Version
      -sympy.utilities.decorator.memoize_property(propfunc)[source]
      +sympy.utilities.decorator.memoize_property(propfunc)[source]

      Property decorator that caches the value of potentially expensive propfunc after the first evaluation. The cached value is stored in the corresponding property name with an attached underscore.

      @@ -916,7 +916,7 @@
      Documentation Version
      -class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)[source]
      +class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)[source]

      Don’t ‘inherit’ certain attributes from a base class

      >>> from sympy.utilities.decorator import no_attrs_in_subclass
       
      @@ -948,7 +948,7 @@
      Documentation Version
      obj: T,
      -) T[source] +) T[source]

      Append obj’s name to global __all__ variable (call site).

      By using this decorator on functions or classes you achieve the same goal as by filling __all__ variables manually, you just do not have to repeat @@ -981,7 +981,7 @@

      Documentation Version
      -sympy.utilities.decorator.threaded(func)[source]
      +sympy.utilities.decorator.threaded(func)[source]

      Apply func to sub–elements of an object, including Add.

      This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples @@ -998,13 +998,13 @@

      Documentation Version
      -sympy.utilities.decorator.threaded_factory(func, use_add)[source]
      +sympy.utilities.decorator.threaded_factory(func, use_add)[source]

      A factory for threaded decorators.

      -sympy.utilities.decorator.xthreaded(func)[source]
      +sympy.utilities.decorator.xthreaded(func)[source]

      Apply func to sub–elements of an object, excluding Add.

      This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples diff --git a/dev/modules/utilities/enumerative.html b/dev/modules/utilities/enumerative.html index 7040abc079d..64d69471102 100644 --- a/dev/modules/utilities/enumerative.html +++ b/dev/modules/utilities/enumerative.html @@ -807,7 +807,7 @@

      Documentation Version
      counting multiset partitions.

      -sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)[source]
      +sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)[source]

      Enumerates partitions of a multiset.

      Parameters:
      @@ -870,7 +870,7 @@
      Documentation Version
      -sympy.utilities.enumerative.factoring_visitor(state, primes)[source]
      +sympy.utilities.enumerative.factoring_visitor(state, primes)[source]

      Use with multiset_partitions_taocp to enumerate the ways a number can be expressed as a product of factors. For this usage, the exponents of the prime factors of a number are arguments to @@ -897,7 +897,7 @@

      Documentation Version
      -sympy.utilities.enumerative.list_visitor(state, components)[source]
      +sympy.utilities.enumerative.list_visitor(state, components)[source]

      Return a list of lists to represent the partition.

      Examples

      >>> from sympy.utilities.enumerative import list_visitor
      @@ -917,7 +917,7 @@ 
      Documentation Version
      and generalized by the class MultisetPartitionTraverser.

      -class sympy.utilities.enumerative.MultisetPartitionTraverser[source]
      +class sympy.utilities.enumerative.MultisetPartitionTraverser[source]

      Has methods to enumerate and count the partitions of a multiset.

      This implements a refactored and extended version of Knuth’s algorithm 7.1.2.5M [AOCP].”

      @@ -967,7 +967,7 @@
      Documentation Version
      multiplicities,
      -)[source] +)[source]

      Returns the number of partitions of a multiset whose components have the multiplicities given in multiplicities.

      For larger counts, this method is much faster than calling one @@ -1038,7 +1038,7 @@

      Documentation Version
      multiplicities,
      -)[source] +)[source]

      Enumerate the partitions of a multiset.

      Examples

      >>> from sympy.utilities.enumerative import list_visitor
      @@ -1075,7 +1075,7 @@ 
      Documentation Version
      lb,
      -)[source] +)[source]

      Enumerate the partitions of a multiset with lb < num(parts)

      Equivalent to enum_range(multiplicities, lb, sum(multiplicities))

      @@ -1119,7 +1119,7 @@
      Documentation Version
      ub,
      -)[source] +)[source]

      Enumerate the partitions of a multiset with lb < num(parts) <= ub.

      In particular, if partitions with exactly k parts are @@ -1148,7 +1148,7 @@

      Documentation Version
      ub,
      -)[source] +)[source]

      Enumerate multiset partitions with no more than ub parts.

      Equivalent to enum_range(multiplicities, 0, ub)

      diff --git a/dev/modules/utilities/exceptions.html b/dev/modules/utilities/exceptions.html index 4e0700b1f1a..a3adf90b8bc 100644 --- a/dev/modules/utilities/exceptions.html +++ b/dev/modules/utilities/exceptions.html @@ -815,7 +815,7 @@
      Documentation Version
      active_deprecations_target,
      -)[source] +)[source]

      A warning for deprecated features of SymPy.

      See the Deprecation Policy document for details on when and how things should be deprecated in SymPy.

      @@ -846,7 +846,7 @@
      Documentation Version
      -sympy.utilities.exceptions.ignore_warnings(warningcls)[source]
      +sympy.utilities.exceptions.ignore_warnings(warningcls)[source]

      Context manager to suppress warnings during tests.

      Note

      @@ -901,7 +901,7 @@
      Documentation Version
      stacklevel=3,
      -)[source] +)[source]

      Warn that a feature is deprecated in SymPy.

      See the Deprecation Policy document for details on when and how things should be deprecated in SymPy.

      diff --git a/dev/modules/utilities/iterables.html b/dev/modules/utilities/iterables.html index 72832164337..7b76158f15a 100644 --- a/dev/modules/utilities/iterables.html +++ b/dev/modules/utilities/iterables.html @@ -805,7 +805,7 @@
      Documentation Version

      Iterables

      -class sympy.utilities.iterables.NotIterable[source]
      +class sympy.utilities.iterables.NotIterable[source]

      Use this as mixin when creating a class which is not supposed to return true when iterable() is called on its instances because calling list() on the instance, for example, would result in @@ -814,7 +814,7 @@

      Documentation Version
      -sympy.utilities.iterables.binary_partitions(n)[source]
      +sympy.utilities.iterables.binary_partitions(n)[source]

      Generates the binary partition of n.

      A binary partition consists only of numbers that are powers of two. Each step reduces a \(2^{k+1}\) to \(2^k\) and @@ -841,13 +841,13 @@

      Documentation Version
      -sympy.utilities.iterables.bracelets(n, k)[source]
      +sympy.utilities.iterables.bracelets(n, k)[source]

      Wrapper to necklaces to return a free (unrestricted) necklace.

      -sympy.utilities.iterables.capture(func)[source]
      +sympy.utilities.iterables.capture(func)[source]

      Return the printed output of func().

      func should be a function without arguments that produces output with print statements.

      @@ -867,7 +867,7 @@
      Documentation Version
      -sympy.utilities.iterables.common_prefix(*seqs)[source]
      +sympy.utilities.iterables.common_prefix(*seqs)[source]

      Return the subsequence that is a common start of sequences in seqs.

      >>> from sympy.utilities.iterables import common_prefix
       >>> common_prefix(list(range(3)))
      @@ -884,7 +884,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.common_suffix(*seqs)[source]
      +sympy.utilities.iterables.common_suffix(*seqs)[source]

      Return the subsequence that is a common ending of sequences in seqs.

      >>> from sympy.utilities.iterables import common_suffix
       >>> common_suffix(list(range(3)))
      @@ -901,7 +901,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.connected_components(G)[source]
      +sympy.utilities.iterables.connected_components(G)[source]

      Connected components of an undirected graph or weakly connected components of a directed graph.

      @@ -962,13 +962,13 @@
      Documentation Version
      -sympy.utilities.iterables.dict_merge(*dicts)[source]
      +sympy.utilities.iterables.dict_merge(*dicts)[source]

      Merge dictionaries into a single dictionary.

      -sympy.utilities.iterables.filter_symbols(iterator, exclude)[source]
      +sympy.utilities.iterables.filter_symbols(iterator, exclude)[source]

      Only yield elements from \(iterator\) that do not occur in \(exclude\).

      Parameters:
      @@ -992,7 +992,7 @@
      Documentation Version
      -sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)[source]
      +sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)[source]

      Recursively denest iterable containers.

      >>> from sympy import flatten
       
      @@ -1032,7 +1032,7 @@
      Documentation Version
      -sympy.utilities.iterables.generate_bell(n)[source]
      +sympy.utilities.iterables.generate_bell(n)[source]

      Return permutations of [0, 1, …, n - 1] such that each permutation differs from the last by the exchange of a single pair of neighbors. The n! permutations are returned as an iterator. In order to obtain @@ -1106,7 +1106,7 @@

      Documentation Version
      -sympy.utilities.iterables.generate_derangements(s)[source]
      +sympy.utilities.iterables.generate_derangements(s)[source]

      Return unique derangements of the elements of iterable s.

      Examples

      >>> from sympy.utilities.iterables import generate_derangements
      @@ -1126,7 +1126,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.generate_involutions(n)[source]
      +sympy.utilities.iterables.generate_involutions(n)[source]

      Generates involutions.

      An involution is a permutation that when multiplied by itself equals the identity permutation. In this @@ -1154,7 +1154,7 @@

      Documentation Version
      -sympy.utilities.iterables.generate_oriented_forest(n)[source]
      +sympy.utilities.iterables.generate_oriented_forest(n)[source]

      This algorithm generates oriented forests.

      An oriented graph is a directed graph having no symmetric pair of directed edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can @@ -1182,7 +1182,7 @@

      Documentation Version
      -sympy.utilities.iterables.group(seq, multiple=True)[source]
      +sympy.utilities.iterables.group(seq, multiple=True)[source]

      Splits a sequence into a list of lists of equal, adjacent elements.

      Examples

      >>> from sympy import group
      @@ -1204,7 +1204,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.has_dups(seq)[source]
      +sympy.utilities.iterables.has_dups(seq)[source]

      Return True if there are any duplicate elements in seq.

      Examples

      >>> from sympy import has_dups, Dict, Set
      @@ -1220,7 +1220,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.has_variety(seq)[source]
      +sympy.utilities.iterables.has_variety(seq)[source]

      Return True if there are any different elements in seq.

      Examples

      >>> from sympy import has_variety
      @@ -1236,7 +1236,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.ibin(n, bits=None, str=False)[source]
      +sympy.utilities.iterables.ibin(n, bits=None, str=False)[source]

      Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are @@ -1279,7 +1279,7 @@

      Documentation Version
      -sympy.utilities.iterables.iproduct(*iterables)[source]
      +sympy.utilities.iterables.iproduct(*iterables)[source]

      Cartesian product of iterables.

      Generator of the Cartesian product of iterables. This is analogous to itertools.product except that it works with infinite iterables and will @@ -1306,7 +1306,7 @@

      Documentation Version
      -sympy.utilities.iterables.is_palindromic(s, i=0, j=None)[source]
      +sympy.utilities.iterables.is_palindromic(s, i=0, j=None)[source]

      Return True if the sequence is the same from left to right as it is from right to left in the whole sequence (default) or in the Python slice s[i: j]; else False.

      @@ -1339,7 +1339,7 @@
      Documentation Version
      -sympy.utilities.iterables.is_sequence(i, include=None)[source]
      +sympy.utilities.iterables.is_sequence(i, include=None)[source]

      Return a boolean indicating whether i is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set ‘include’ to that object’s @@ -1380,7 +1380,7 @@

      Documentation Version
      <class 'sympy.utilities.iterables.NotIterable'>),
      -)[source] +)[source]

      Return a boolean indicating whether i is SymPy iterable. True also indicates that the iterator is finite, e.g. you can call list(…) on the instance.

      @@ -1424,7 +1424,7 @@
      Documentation Version
      -sympy.utilities.iterables.kbins(l, k, ordered=None)[source]
      +sympy.utilities.iterables.kbins(l, k, ordered=None)[source]

      Return sequence l partitioned into k bins.

      Examples

      The default is to give the items in the same order, but grouped @@ -1504,7 +1504,7 @@

      Documentation Version
      -sympy.utilities.iterables.least_rotation(x, key=None)[source]
      +sympy.utilities.iterables.least_rotation(x, key=None)[source]

      Returns the number of steps of left rotation required to obtain lexicographically minimal string/list/tuple, etc.

      Examples

      @@ -1527,7 +1527,7 @@
      Documentation Version
      -sympy.utilities.iterables.minlex(seq, directed=True, key=None)[source]
      +sympy.utilities.iterables.minlex(seq, directed=True, key=None)[source]

      Return the rotation of the sequence in which the lexically smallest elements appear first, e.g. \(cba \rightarrow acb\).

      The sequence returned is a tuple, unless the input sequence is a string @@ -1561,7 +1561,7 @@

      Documentation Version
      -sympy.utilities.iterables.multiset(seq)[source]
      +sympy.utilities.iterables.multiset(seq)[source]

      Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence.

      Examples

      @@ -1578,7 +1578,7 @@
      Documentation Version
      -sympy.utilities.iterables.multiset_combinations(m, n, g=None)[source]
      +sympy.utilities.iterables.multiset_combinations(m, n, g=None)[source]

      Return the unique combinations of size n from multiset m.

      Examples

      >>> from sympy.utilities.iterables import multiset_combinations
      @@ -1605,7 +1605,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.multiset_derangements(s)[source]
      +sympy.utilities.iterables.multiset_derangements(s)[source]

      Generate derangements of the elements of s in place.

      Examples

      >>> from sympy.utilities.iterables import multiset_derangements, uniq
      @@ -1626,7 +1626,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.multiset_partitions(multiset, m=None)[source]
      +sympy.utilities.iterables.multiset_partitions(multiset, m=None)[source]

      Return unique partitions of the given multiset (in list form). If m is None, all multisets will be returned, otherwise only partitions with m parts will be returned.

      @@ -1690,7 +1690,7 @@
      Documentation Version
      -sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)[source]
      +sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)[source]

      Return the unique permutations of multiset m.

      Examples

      >>> from sympy.utilities.iterables import multiset_permutations
      @@ -1707,7 +1707,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.necklaces(n, k, free=False)[source]
      +sympy.utilities.iterables.necklaces(n, k, free=False)[source]

      A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The “necklaces” returned are comprised of n integers (beads) with k different @@ -1768,7 +1768,7 @@

      Documentation Version
      **assumptions,
      -)[source] +)[source]

      Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in exclude.

      @@ -1807,7 +1807,7 @@
      Documentation Version
      -sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)[source]
      +sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)[source]

      Generates ordered partitions of integer n.

      Parameters:
      @@ -1897,7 +1897,7 @@
      Documentation Version
      -sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)[source]
      +sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)[source]

      Generate all partitions of positive integer, n.

      Each partition is represented as a dictionary, mapping an integer to the number of copies of that integer in the partition. For example, @@ -1963,7 +1963,7 @@

      Documentation Version
      -sympy.utilities.iterables.permute_signs(t)[source]
      +sympy.utilities.iterables.permute_signs(t)[source]

      Return iterator in which the signs of non-zero elements of t are permuted.

      Examples

      @@ -1976,7 +1976,7 @@
      Documentation Version
      -sympy.utilities.iterables.postfixes(seq)[source]
      +sympy.utilities.iterables.postfixes(seq)[source]

      Generate all postfixes of a sequence.

      Examples

      >>> from sympy.utilities.iterables import postfixes
      @@ -1990,7 +1990,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.prefixes(seq)[source]
      +sympy.utilities.iterables.prefixes(seq)[source]

      Generate all prefixes of a sequence.

      Examples

      >>> from sympy.utilities.iterables import prefixes
      @@ -2004,7 +2004,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)[source]
      +sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)[source]

      Return a list of elements in which none are in the same positions as they were originally. If an element fills more than half of the positions then an error will be raised since no derangement is possible. To obtain @@ -2038,7 +2038,7 @@

      Documentation Version
      -sympy.utilities.iterables.reshape(seq, how)[source]
      +sympy.utilities.iterables.reshape(seq, how)[source]

      Reshape the sequence according to the template in how.

      Examples

      >>> from sympy.utilities import reshape
      @@ -2085,7 +2085,7 @@ 
      Documentation Version
      -sympy.utilities.iterables.rotate_left(x, y)[source]
      +sympy.utilities.iterables.rotate_left(x, y)[source]

      Left rotates a list x by the number of steps specified in y.

      Examples

      @@ -2099,7 +2099,7 @@
      Documentation Version
      -sympy.utilities.iterables.rotate_right(x, y)[source]
      +sympy.utilities.iterables.rotate_right(x, y)[source]

      Right rotates a list x by the number of steps specified in y.

      Examples

      @@ -2113,7 +2113,7 @@
      Documentation Version
      -sympy.utilities.iterables.rotations(s, dir=1)[source]
      +sympy.utilities.iterables.rotations(s, dir=1)[source]

      Return a generator giving the items in s as list where each subsequent list has the items rotated to the left (default) or right (dir=-1) relative to the previous list.

      @@ -2129,7 +2129,7 @@
      Documentation Version
      -sympy.utilities.iterables.roundrobin(*iterables)[source]
      +sympy.utilities.iterables.roundrobin(*iterables)[source]

      roundrobin recipe taken from itertools documentation: https://docs.python.org/3/library/itertools.html#itertools-recipes

      roundrobin(‘ABC’, ‘D’, ‘EF’) –> A D E B F C

      @@ -2138,7 +2138,7 @@
      Documentation Version
      -sympy.utilities.iterables.runs(seq, op=<built-in function gt>)[source]
      +sympy.utilities.iterables.runs(seq, op=<built-in function gt>)[source]

      Group the sequence into lists in which successive elements all compare the same with the comparison operator, op: op(seq[i + 1], seq[i]) is True from all elements in a run.

      @@ -2155,7 +2155,7 @@
      Documentation Version
      -sympy.utilities.iterables.sequence_partitions(l, n, /)[source]
      +sympy.utilities.iterables.sequence_partitions(l, n, /)[source]

      Returns the partition of sequence \(l\) into \(n\) bins

      Parameters:
      @@ -2205,7 +2205,7 @@
      Documentation Version
      -sympy.utilities.iterables.sequence_partitions_empty(l, n, /)[source]
      +sympy.utilities.iterables.sequence_partitions_empty(l, n, /)[source]

      Returns the partition of sequence \(l\) into \(n\) bins with empty sequence

      @@ -2258,7 +2258,7 @@
      Documentation Version
      -sympy.utilities.iterables.sift(seq, keyfunc, binary=False)[source]
      +sympy.utilities.iterables.sift(seq, keyfunc, binary=False)[source]

      Sift the sequence, seq according to keyfunc.

      Returns:
      @@ -2330,7 +2330,7 @@
      Documentation Version
      -sympy.utilities.iterables.signed_permutations(t)[source]
      +sympy.utilities.iterables.signed_permutations(t)[source]

      Return iterator in which the signs of non-zero elements of t and the order of the elements are permuted and all returned values are unique.

      @@ -2348,7 +2348,7 @@
      Documentation Version
      -sympy.utilities.iterables.strongly_connected_components(G)[source]
      +sympy.utilities.iterables.strongly_connected_components(G)[source]

      Strongly connected components of a directed graph in reverse topological order.

      @@ -2422,7 +2422,7 @@
      Documentation Version
      -sympy.utilities.iterables.subsets(seq, k=None, repetition=False)[source]
      +sympy.utilities.iterables.subsets(seq, k=None, repetition=False)[source]

      Generates all \(k\)-subsets (combinations) from an \(n\)-element set, seq.

      A \(k\)-subset of an \(n\)-element set is any subset of length exactly \(k\). The number of \(k\)-subsets of an \(n\)-element set is given by binomial(n, k), @@ -2463,13 +2463,13 @@

      Documentation Version
      -sympy.utilities.iterables.take(iter, n)[source]
      +sympy.utilities.iterables.take(iter, n)[source]

      Return n items from iter iterator.

      -sympy.utilities.iterables.topological_sort(graph, key=None)[source]
      +sympy.utilities.iterables.topological_sort(graph, key=None)[source]

      Topological sort of graph’s vertices.

      Parameters:
      @@ -2544,14 +2544,14 @@
      Documentation Version
      -sympy.utilities.iterables.unflatten(iter, n=2)[source]
      +sympy.utilities.iterables.unflatten(iter, n=2)[source]

      Group iter into tuples of length n. Raise an error if the length of iter is not a multiple of n.

      -sympy.utilities.iterables.uniq(seq, result=None)[source]
      +sympy.utilities.iterables.uniq(seq, result=None)[source]

      Yield unique elements from seq as an iterator. The second parameter result is used internally; it is not necessary to pass anything for this.

      @@ -2578,7 +2578,7 @@
      Documentation Version
      -sympy.utilities.iterables.variations(seq, n, repetition=False)[source]
      +sympy.utilities.iterables.variations(seq, n, repetition=False)[source]

      Returns an iterator over the n-sized variations of seq (size N). repetition controls whether items in seq can appear more than once;

      Examples

      diff --git a/dev/modules/utilities/lambdify.html b/dev/modules/utilities/lambdify.html index 04c93608645..ad0c39dd6de 100644 --- a/dev/modules/utilities/lambdify.html +++ b/dev/modules/utilities/lambdify.html @@ -807,7 +807,7 @@
      Documentation Version
      lambda functions which can be used to calculate numerical values very fast.

      -sympy.utilities.lambdify.implemented_function(symfunc, implementation)[source]
      +sympy.utilities.lambdify.implemented_function(symfunc, implementation)[source]

      Add numerical implementation to function symfunc.

      symfunc can be an UndefinedFunction instance, or a name string. In the latter case we create an UndefinedFunction instance with that @@ -850,7 +850,7 @@

      Documentation Version
      -sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)[source]
      +sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)[source]

      Returns a string that can be evaluated to a lambda function.

      Examples

      >>> from sympy.abc import x, y, z
      @@ -885,7 +885,7 @@ 
      Documentation Version
      docstring_limit=1000,
      -)[source] +)[source]

      Convert a SymPy expression into a function that allows for fast numeric evaluation.

      diff --git a/dev/modules/utilities/memoization.html b/dev/modules/utilities/memoization.html index 63bf3e7afd3..49203717773 100644 --- a/dev/modules/utilities/memoization.html +++ b/dev/modules/utilities/memoization.html @@ -805,7 +805,7 @@
      Documentation Version

      Memoization

      -sympy.utilities.memoization.assoc_recurrence_memo(base_seq)[source]
      +sympy.utilities.memoization.assoc_recurrence_memo(base_seq)[source]

      Memo decorator for associated sequences defined by recurrence starting from base

      base_seq(n) – callable to get base sequence elements

      XXX works only for Pn0 = base_seq(0) cases @@ -814,7 +814,7 @@

      Documentation Version
      -sympy.utilities.memoization.recurrence_memo(initial)[source]
      +sympy.utilities.memoization.recurrence_memo(initial)[source]

      Memo decorator for sequences defined by recurrence

      Examples

      >>> from sympy.utilities.memoization import recurrence_memo
      diff --git a/dev/modules/utilities/misc.html b/dev/modules/utilities/misc.html
      index 75625ec816a..02f533e0067 100644
      --- a/dev/modules/utilities/misc.html
      +++ b/dev/modules/utilities/misc.html
      @@ -806,7 +806,7 @@ 
      Documentation Version

      Miscellaneous stuff that does not really fit anywhere else.

      -sympy.utilities.misc.as_int(n, strict=True)[source]
      +sympy.utilities.misc.as_int(n, strict=True)[source]

      Convert the argument to a builtin integer.

      The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. When strict is True, this @@ -855,27 +855,27 @@

      Documentation Version
      -sympy.utilities.misc.debug(*args)[source]
      +sympy.utilities.misc.debug(*args)[source]

      Print *args if SYMPY_DEBUG is True, else do nothing.

      -sympy.utilities.misc.debug_decorator(func)[source]
      +sympy.utilities.misc.debug_decorator(func)[source]

      If SYMPY_DEBUG is True, it will print a nice execution tree with arguments and results of all decorated functions, else do nothing.

      -sympy.utilities.misc.debugf(string, args)[source]
      +sympy.utilities.misc.debugf(string, args)[source]

      Print string%args if SYMPY_DEBUG is True, else do nothing. This is intended for debug messages using formatted strings.

      -sympy.utilities.misc.filldedent(s, w=70, **kwargs)[source]
      +sympy.utilities.misc.filldedent(s, w=70, **kwargs)[source]

      Strips leading and trailing empty lines from a copy of s, then dedents, fills and returns it.

      Empty line stripping serves to deal with docstrings like this one that @@ -890,7 +890,7 @@

      Documentation Version
      -sympy.utilities.misc.find_executable(executable, path=None)[source]
      +sympy.utilities.misc.find_executable(executable, path=None)[source]

      Try to find ‘executable’ in the directories listed in ‘path’ (a string listing directories separated by ‘os.pathsep’; defaults to os.environ[‘PATH’]). Returns the complete filename or None if not @@ -899,7 +899,7 @@

      Documentation Version
      -sympy.utilities.misc.func_name(x, short=False)[source]
      +sympy.utilities.misc.func_name(x, short=False)[source]

      Return function name of \(x\) (if defined) else the \(type(x)\). If short is True and there is a shorter alias for the result, return the alias.

      @@ -919,13 +919,13 @@
      Documentation Version
      -sympy.utilities.misc.ordinal(num)[source]
      +sympy.utilities.misc.ordinal(num)[source]

      Return ordinal number string of num, e.g. 1 becomes 1st.

      -sympy.utilities.misc.rawlines(s)[source]
      +sympy.utilities.misc.rawlines(s)[source]

      Return a cut-and-pastable string that, when printed, is equivalent to the input. Use this when there is more than one line in the string. The string returned is formatted so it can be indented @@ -989,7 +989,7 @@

      Documentation Version
      -sympy.utilities.misc.replace(string, *reps)[source]
      +sympy.utilities.misc.replace(string, *reps)[source]

      Return string with all keys in reps replaced with their corresponding values, longer strings first, irrespective of the order they are given. reps may be passed as tuples @@ -1024,7 +1024,7 @@

      Documentation Version
      -sympy.utilities.misc.strlines(s, c=64, short=False)[source]
      +sympy.utilities.misc.strlines(s, c=64, short=False)[source]

      Return a cut-and-pastable string that, when printed, is equivalent to the input. The lines will be surrounded by parentheses and no line will be longer than c (default 64) @@ -1055,7 +1055,7 @@

      Documentation Version
      -sympy.utilities.misc.translate(s, a, b=None, c=None)[source]
      +sympy.utilities.misc.translate(s, a, b=None, c=None)[source]

      Return s where characters have been replaced or deleted.

      Syntax

      diff --git a/dev/modules/utilities/source.html b/dev/modules/utilities/source.html index f70de3084be..9f605aae915 100644 --- a/dev/modules/utilities/source.html +++ b/dev/modules/utilities/source.html @@ -806,7 +806,7 @@
      Documentation Version

      This module adds several functions for interactive source code inspection.

      -sympy.utilities.source.get_class(lookup_view)[source]
      +sympy.utilities.source.get_class(lookup_view)[source]

      Convert a string version of a class name to the object.

      For example, get_class(‘sympy.core.Basic’) will return class Basic located in module sympy.core

      @@ -814,7 +814,7 @@
      Documentation Version
      -sympy.utilities.source.get_mod_func(callback)[source]
      +sympy.utilities.source.get_mod_func(callback)[source]

      splits the string path to a class into a string path to the module and the name of the class.

      Examples

      diff --git a/dev/modules/utilities/timeutils.html b/dev/modules/utilities/timeutils.html index be03b174606..da7f54be272 100644 --- a/dev/modules/utilities/timeutils.html +++ b/dev/modules/utilities/timeutils.html @@ -806,7 +806,7 @@
      Documentation Version

      Simple tools for timing functions’ execution, when IPython is not available.

      -sympy.utilities.timeutils.timed(func, setup='pass', limit=None)[source]
      +sympy.utilities.timeutils.timed(func, setup='pass', limit=None)[source]

      Adaptively measure execution time of a function.

      diff --git a/dev/modules/vector/api/classes.html b/dev/modules/vector/api/classes.html index ccac40d344d..19f806d7915 100644 --- a/dev/modules/vector/api/classes.html +++ b/dev/modules/vector/api/classes.html @@ -817,7 +817,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Represents a coordinate system in 3-D space.

      @@ -837,7 +837,7 @@

      Essential Classes in sympy.vector (docstrings)transformation=None,

      -)[source] +)[source]

      The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another.

      @@ -888,7 +888,7 @@

      Essential Classes in sympy.vector (docstrings)vector_names=None,

      -)[source] +)[source]

      Returns a CoordSys3D which is connected to self by transformation.

      Parameters:
      @@ -932,7 +932,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Returns a CoordSys3D with its origin located at the given position wrt this coordinate system’s origin.

      @@ -976,7 +976,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Creates a new CoordSys3D oriented in the user-specified way with respect to this system.

      Please refer to the documentation of the orienter classes @@ -1056,7 +1056,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

      @@ -1113,7 +1113,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Body orientation takes this coordinate system through three successive simple rotations.

      Body fixed rotations include both Euler Angles and @@ -1193,7 +1193,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

      @@ -1252,7 +1252,7 @@

      Essential Classes in sympy.vector (docstrings)variable_names=None,

      -)[source] +)[source]

      Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

      @@ -1315,7 +1315,7 @@

      Essential Classes in sympy.vector (docstrings)
      -position_wrt(other)[source]
      +position_wrt(other)[source]

      Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSys3D.

      @@ -1340,7 +1340,7 @@

      Essential Classes in sympy.vector (docstrings)
      -rotation_matrix(other)[source]
      +rotation_matrix(other)[source]

      Returns the direction cosine matrix(DCM), also known as the ‘rotation matrix’ of this coordinate system with respect to another system.

      @@ -1373,7 +1373,7 @@

      Essential Classes in sympy.vector (docstrings)
      -scalar_map(other)[source]
      +scalar_map(other)[source]

      Returns a dictionary which expresses the coordinate variables (base scalars) of this frame in terms of the variables of otherframe.

      @@ -1401,7 +1401,7 @@

      Essential Classes in sympy.vector (docstrings)
      -class sympy.vector.vector.Vector(*args)[source]
      +class sympy.vector.vector.Vector(*args)[source]

      Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user.

      @@ -1423,7 +1423,7 @@

      Essential Classes in sympy.vector (docstrings)
      -cross(other)[source]
      +cross(other)[source]

      Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if ‘other’ is a Vector. If ‘other’ @@ -1455,7 +1455,7 @@

      Essential Classes in sympy.vector (docstrings)
      -dot(other)[source]
      +dot(other)[source]

      Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If ‘other’ is a Vector, returns the dot product scalar (SymPy @@ -1495,7 +1495,7 @@

      Essential Classes in sympy.vector (docstrings)
      -equals(other)[source]
      +equals(other)[source]

      Check if self and other are identically equal vectors.

      Parameters:
      @@ -1555,19 +1555,19 @@

      Essential Classes in sympy.vector (docstrings)
      -magnitude()[source]
      +magnitude()[source]

      Returns the magnitude of this vector.

      -normalize()[source]
      +normalize()[source]

      Returns the normalized version of this vector.

      -outer(other)[source]
      +outer(other)[source]

      Returns the outer product of this vector with another, in the form of a Dyadic instance.

      @@ -1590,7 +1590,7 @@

      Essential Classes in sympy.vector (docstrings)
      -projection(other, scalar=False)[source]
      +projection(other, scalar=False)[source]

      Returns the vector or scalar projection of the ‘other’ on ‘self’.

      Examples

      >>> from sympy.vector.coordsysrect import CoordSys3D
      @@ -1608,7 +1608,7 @@ 

      Essential Classes in sympy.vector (docstrings)
      -separate()[source]
      +separate()[source]

      The constituents of this vector in different coordinate systems, as per its definition.

      Returns a dict mapping each CoordSys3D to the corresponding @@ -1626,7 +1626,7 @@

      Essential Classes in sympy.vector (docstrings)
      -to_matrix(system)[source]
      +to_matrix(system)[source]

      Returns the matrix form of this vector with respect to the specified coordinate system.

      @@ -1655,7 +1655,7 @@

      Essential Classes in sympy.vector (docstrings)
      -class sympy.vector.dyadic.Dyadic(*args)[source]
      +class sympy.vector.dyadic.Dyadic(*args)[source]

      Super class for all Dyadic-classes.

      References

      @@ -1679,7 +1679,7 @@

      Essential Classes in sympy.vector (docstrings)
      -cross(other)[source]
      +cross(other)[source]

      Returns the cross product between this Dyadic, and a Vector, as a Vector instance.

      @@ -1702,7 +1702,7 @@

      Essential Classes in sympy.vector (docstrings)
      -dot(other)[source]
      +dot(other)[source]

      Returns the dot product(also called inner product) of this Dyadic, with another Dyadic or Vector. If ‘other’ is a Dyadic, this returns a Dyadic. Else, it returns @@ -1730,7 +1730,7 @@

      Essential Classes in sympy.vector (docstrings)
      -to_matrix(system, second_system=None)[source]
      +to_matrix(system, second_system=None)[source]

      Returns the matrix form of the dyadic with respect to one or two coordinate systems.

      @@ -1774,12 +1774,12 @@

      Essential Classes in sympy.vector (docstrings)
      -class sympy.vector.deloperator.Del[source]
      +class sympy.vector.deloperator.Del[source]

      Represents the vector differential operator, usually represented in mathematical expressions as the ‘nabla’ symbol.

      -cross(vect, doit=False)[source]
      +cross(vect, doit=False)[source]

      Represents the cross product between this operator and a given vector - equal to the curl of the vector field.

      @@ -1812,7 +1812,7 @@

      Essential Classes in sympy.vector (docstrings)
      -dot(vect, doit=False)[source]
      +dot(vect, doit=False)[source]

      Represents the dot product between this operator and a given vector - equal to the divergence of the vector field.

      @@ -1844,7 +1844,7 @@

      Essential Classes in sympy.vector (docstrings)
      -gradient(scalar_field, doit=False)[source]
      +gradient(scalar_field, doit=False)[source]

      Returns the gradient of the given scalar field, as a Vector instance.

      @@ -1877,7 +1877,7 @@

      Essential Classes in sympy.vector (docstrings)
      -class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[source]
      +class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[source]

      Represents a parametric region in space.

      Parameters:
      @@ -1920,7 +1920,7 @@

      Essential Classes in sympy.vector (docstrings)
      -class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[source]
      +class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[source]

      Represents an implicit region in space.

      Parameters:
      @@ -1960,7 +1960,7 @@

      Essential Classes in sympy.vector (docstrings)
      -multiplicity(point)[source]
      +multiplicity(point)[source]

      Returns the multiplicity of a singular point on the region.

      A singular point (x,y) of region is said to be of multiplicity m if all the partial derivatives off to order m - 1 vanish there.

      @@ -1985,7 +1985,7 @@

      Essential Classes in sympy.vector (docstrings)reg_point=None,

      -)[source] +)[source]

      Returns the rational parametrization of implicit region.

      Examples

      >>> from sympy import Eq
      @@ -2036,7 +2036,7 @@ 

      Essential Classes in sympy.vector (docstrings)
      -regular_point()[source]
      +regular_point()[source]

      Returns a point on the implicit region.

      Examples

      >>> from sympy.abc import x, y, z
      @@ -2062,7 +2062,7 @@ 

      Essential Classes in sympy.vector (docstrings)
      -singular_points()[source]
      +singular_points()[source]

      Returns a set of singular points of the region.

      The singular points are those points on the region where all partial derivatives vanish.

      @@ -2080,7 +2080,7 @@

      Essential Classes in sympy.vector (docstrings)
      -class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[source]
      +class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[source]

      Represents integral of a scalar or vector field over a Parametric Region

      Examples

      diff --git a/dev/modules/vector/api/orienterclasses.html b/dev/modules/vector/api/orienterclasses.html index 8ee17e4cf85..e369d809cd6 100644 --- a/dev/modules/vector/api/orienterclasses.html +++ b/dev/modules/vector/api/orienterclasses.html @@ -805,11 +805,11 @@
      Documentation Version

      Orienter classes (docstrings)

      -class sympy.vector.orienters.Orienter(*args)[source]
      +class sympy.vector.orienters.Orienter(*args)[source]

      Super-class for all orienter classes.

      -rotation_matrix()[source]
      +rotation_matrix()[source]

      The rotation matrix corresponding to this orienter instance.

      @@ -818,11 +818,11 @@

      Orienter classes (docstrings)
      -class sympy.vector.orienters.AxisOrienter(angle, axis)[source]
      +class sympy.vector.orienters.AxisOrienter(angle, axis)[source]

      Class to denote an axis orienter.

      -__init__(angle, axis)[source]
      +__init__(angle, axis)[source]

      Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

      @@ -852,7 +852,7 @@

      Orienter classes (docstrings)
      -rotation_matrix(system)[source]
      +rotation_matrix(system)[source]

      The rotation matrix corresponding to this orienter instance.

      @@ -870,7 +870,7 @@

      Orienter classes (docstrings)
      -class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)[source]
      +class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)[source]

      Class to denote a body-orienter.

      @@ -883,7 +883,7 @@

      Orienter classes (docstrings)rot_order,

      -)[source] +)[source]

      Body orientation takes this coordinate system through three successive simple rotations.

      Body fixed rotations include both Euler Angles and @@ -941,7 +941,7 @@

      Orienter classes (docstrings)
      -class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)[source]
      +class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)[source]

      Class to denote a space-orienter.

      @@ -954,7 +954,7 @@

      Orienter classes (docstrings)rot_order,

      -)[source] +)[source]

      Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

      @@ -1008,7 +1008,7 @@

      Orienter classes (docstrings)
      -class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)[source]
      +class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)[source]

      Class to denote a quaternion-orienter.

      @@ -1021,7 +1021,7 @@

      Orienter classes (docstrings)rot_order,

      -)[source] +)[source]

      Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

      diff --git a/dev/modules/vector/api/vectorfunctions.html b/dev/modules/vector/api/vectorfunctions.html index fd069a2f94b..0f45b4fc280 100644 --- a/dev/modules/vector/api/vectorfunctions.html +++ b/dev/modules/vector/api/vectorfunctions.html @@ -805,7 +805,7 @@
      Documentation Version

      Essential Functions in sympy.vector (docstrings)

      -sympy.vector.matrix_to_vector(matrix, system)[source]
      +sympy.vector.matrix_to_vector(matrix, system)[source]

      Converts a vector in matrix form to a Vector instance.

      It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis @@ -847,7 +847,7 @@

      Essential Functions in sympy.vector (docstrings)variables=False,

      -)[source] +)[source]

      Global function for ‘express’ functionality.

      Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given coordinate system.

      @@ -897,7 +897,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.curl(vect, doit=True)[source]
      +sympy.vector.curl(vect, doit=True)[source]

      Returns the curl of a vector field computed wrt the base scalars of the given coordinate system.

      @@ -929,7 +929,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.divergence(vect, doit=True)[source]
      +sympy.vector.divergence(vect, doit=True)[source]

      Returns the divergence of a vector field computed wrt the base scalars of the given coordinate system.

      @@ -963,7 +963,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.gradient(scalar_field, doit=True)[source]
      +sympy.vector.gradient(scalar_field, doit=True)[source]

      Returns the vector gradient of a scalar field computed wrt the base scalars of the given coordinate system.

      @@ -995,7 +995,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.is_conservative(field)[source]
      +sympy.vector.is_conservative(field)[source]

      Checks if a field is conservative.

      Parameters:
      @@ -1019,7 +1019,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.is_solenoidal(field)[source]
      +sympy.vector.is_solenoidal(field)[source]

      Checks if a field is solenoidal.

      Parameters:
      @@ -1043,7 +1043,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.scalar_potential(field, coord_sys)[source]
      +sympy.vector.scalar_potential(field, coord_sys)[source]

      Returns the scalar potential function of a field in a given coordinate system (without the added integration constant).

      @@ -1084,7 +1084,7 @@

      Essential Functions in sympy.vector (docstrings)point2,

      -)[source] +)[source]

      Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field.

      If a scalar field is provided, its values at the two points are @@ -1130,7 +1130,7 @@

      Essential Functions in sympy.vector (docstrings)
      -sympy.vector.integrals.vector_integrate(field, *region)[source]
      +sympy.vector.integrals.vector_integrate(field, *region)[source]

      Compute the integral of a vector/scalar field over a a region or a set of parameters.

      Examples