-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialPyramidPooling.py
116 lines (93 loc) · 4.88 KB
/
SpatialPyramidPooling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from keras.engine.topology import Layer
import keras.backend as K
class SpatialPyramidPooling(Layer):
"""Spatial pyramid pooling layer for 2D inputs.
See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
K. He, X. Zhang, S. Ren, J. Sun
# Arguments
pool_list: list of int
List of pooling regions to use. The length of the list is the number of pooling regions,
each int in the list is the number of regions in that pool. For example [1,2,4] would be 3
regions with 1, 2x2 and 4x4 max pools, so 21 outputs per feature map
# Input shape
4D tensor with shape:
`(samples, channels, rows, cols)` if dim_ordering='th'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if dim_ordering='tf'.
# Output shape
2D tensor with shape:
`(samples, channels * sum([i * i for i in pool_list])`
"""
def __init__(self, pool_list, **kwargs):
self.dim_ordering = K.image_dim_ordering()
assert self.dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
self.pool_list = pool_list
self.num_outputs_per_channel = sum([i * i for i in pool_list])
super(SpatialPyramidPooling, self).__init__(**kwargs)
def build(self, input_shape):
if self.dim_ordering == 'th':
self.nb_channels = input_shape[1]
elif self.dim_ordering == 'tf':
self.nb_channels = input_shape[3]
def compute_output_shape(self, input_shape):
return (input_shape[0], self.nb_channels * self.num_outputs_per_channel)
def get_config(self):
config = {'pool_list': self.pool_list}
base_config = super(SpatialPyramidPooling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, x, mask=None):
input_shape = K.shape(x)
if self.dim_ordering == 'th':
num_rows = input_shape[2]
num_cols = input_shape[3]
elif self.dim_ordering == 'tf':
num_rows = input_shape[1]
num_cols = input_shape[2]
row_length = [K.cast(num_rows, 'float32') / i for i in self.pool_list]
col_length = [K.cast(num_cols, 'float32') / i for i in self.pool_list]
outputs = []
if self.dim_ordering == 'th':
for pool_num, num_pool_regions in enumerate(self.pool_list):
for jy in range(num_pool_regions):
for ix in range(num_pool_regions):
x1 = ix * col_length[pool_num]
x2 = ix * col_length[pool_num] + col_length[pool_num]
y1 = jy * row_length[pool_num]
y2 = jy * row_length[pool_num] + row_length[pool_num]
x1 = K.cast(K.round(x1), 'int32')
x2 = K.cast(K.round(x2), 'int32')
y1 = K.cast(K.round(y1), 'int32')
y2 = K.cast(K.round(y2), 'int32')
new_shape = [input_shape[0], input_shape[1],
y2 - y1, x2 - x1]
x_crop = x[:, :, y1:y2, x1:x2]
xm = K.reshape(x_crop, new_shape)
pooled_val = K.max(xm, axis=(2, 3))
outputs.append(pooled_val)
elif self.dim_ordering == 'tf':
for pool_num, num_pool_regions in enumerate(self.pool_list):
for jy in range(num_pool_regions):
for ix in range(num_pool_regions):
x1 = ix * col_length[pool_num]
x2 = ix * col_length[pool_num] + col_length[pool_num]
y1 = jy * row_length[pool_num]
y2 = jy * row_length[pool_num] + row_length[pool_num]
x1 = K.cast(K.round(x1), 'int32')
x2 = K.cast(K.round(x2), 'int32')
y1 = K.cast(K.round(y1), 'int32')
y2 = K.cast(K.round(y2), 'int32')
new_shape = [input_shape[0], y2 - y1,
x2 - x1, input_shape[3]]
x_crop = x[:, y1:y2, x1:x2, :]
xm = K.reshape(x_crop, new_shape)
pooled_val = K.max(xm, axis=(1, 2))
outputs.append(pooled_val)
if self.dim_ordering == 'th':
outputs = K.concatenate(outputs)
elif self.dim_ordering == 'tf':
#outputs = K.concatenate(outputs,axis = 1)
outputs = K.concatenate(outputs)
#outputs = K.reshape(outputs,(len(self.pool_list),self.num_outputs_per_channel,input_shape[0],input_shape[1]))
#outputs = K.permute_dimensions(outputs,(3,1,0,2))
#outputs = K.reshape(outputs,(input_shape[0], self.num_outputs_per_channel * self.nb_channels))
return outputs