diff --git a/your-code/main.ipynb b/your-code/main.ipynb
index f50ae3d..a4f9674 100755
--- a/your-code/main.ipynb
+++ b/your-code/main.ipynb
@@ -18,11 +18,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "import numpy as np\n",
+ "import pandas as pd"
]
},
{
@@ -34,7 +36,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -43,11 +45,17 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_series=pd.Series([],dtype=np.float64)\n",
+ "\n",
+ "new_series[\"Floats\"]=lst\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -61,11 +69,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 73,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 73,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_series[0][2]"
]
},
{
@@ -77,7 +97,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
@@ -95,11 +115,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "df = pd.DataFrame(b, columns = [\"a\", \"b\",\"c\",\"d\",\"e\"])"
]
},
{
@@ -111,7 +132,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
@@ -120,11 +141,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "df.columns=colnames"
]
},
{
@@ -136,11 +158,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 78,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n",
+ "5 49.0 0.1 89.1\n",
+ "6 23.3 95.0 26.9\n",
+ "7 27.6 53.8 68.5\n",
+ "8 96.6 53.4 50.1\n",
+ "9 73.7 43.2 34.7"
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "df_subset=df[['Score_1', 'Score_3', 'Score_5']]\n",
+ "df_subset"
]
},
{
@@ -152,11 +286,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 79,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 79,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "df[\"Score_3\"].mean()"
]
},
{
@@ -168,11 +314,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 80,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "df[\"Score_4\"].max()"
]
},
{
@@ -184,11 +342,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 81,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "df[\"Score_2\"].median()"
]
},
{
@@ -200,7 +370,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
@@ -221,11 +391,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "orders_df=pd.DataFrame(orders)\n"
]
},
{
@@ -237,11 +408,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 84,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total quantity is: 2978\n",
+ "Total Revenue is: 637.0\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "total_quantity=orders_df[\"Quantity\"].sum()\n",
+ "total_revenue=orders_df[\"Revenue\"].sum()\n",
+ "print(\"Total quantity is: \"+str(total_quantity)+\"\\nTotal Revenue is: \"+str(total_revenue))"
]
},
{
@@ -253,12 +436,36 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 133,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "11.77"
+ ]
+ },
+ "execution_count": 133,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "#most_expansive=orders_df[\"UnitPrice\"][orders_df[\"UnitPrice\"]>orders_df[\"UnitPrice\"].median()].sort_values()\n",
+ "#least_expansive=orders_df[\"UnitPrice\"][orders_df[\"UnitPrice\"]