diff --git a/your-code/main.ipynb b/your-code/main.ipynb
index f50ae3d..d66ba10 100755
--- a/your-code/main.ipynb
+++ b/your-code/main.ipynb
@@ -18,11 +18,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "import numpy as np\n",
+ "import pandas as pd"
]
},
{
@@ -34,7 +36,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -43,11 +45,109 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set = pd.DataFrame(lst)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 5.7 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 75.2 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 74.4 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 84.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 66.5 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 66.3 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 55.8 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 75.7 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 29.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 43.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_set"
]
},
{
@@ -61,11 +161,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 74.4\n",
+ "Name: 2, dtype: float64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set.iloc[2]"
]
},
{
@@ -77,7 +190,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -95,11 +208,153 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set1 = pd.DataFrame(b, columns = [\"col1\", \"col2\", \"col3\", \"col4\", \"col5\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " col1 | \n",
+ " col2 | \n",
+ " col3 | \n",
+ " col4 | \n",
+ " col5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " col1 col2 col3 col4 col5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_set1"
]
},
{
@@ -111,7 +366,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
@@ -120,11 +375,153 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set1.columns = colnames"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_set1"
]
},
{
@@ -136,11 +533,111 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 24,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3\n",
+ "0 53.1 67.5\n",
+ "1 61.3 30.8\n",
+ "2 20.6 44.2\n",
+ "3 57.4 96.1\n",
+ "4 83.6 85.4\n",
+ "5 49.0 0.1\n",
+ "6 23.3 95.0\n",
+ "7 27.6 53.8\n",
+ "8 96.6 53.4\n",
+ "9 73.7 43.2"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here UNFINISHED!!!\n",
+ "new_set1[[\"Score_1\", \"Score_3\"]]"
]
},
{
@@ -152,11 +649,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 27,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set1[\"Score_3\"].mean()"
]
},
{
@@ -168,11 +677,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 28,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set1[\"Score_4\"].max()"
]
},
{
@@ -184,11 +705,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 29,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "new_set1[\"Score_2\"].median()"
]
},
{
@@ -221,11 +754,154 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "product_orders = pd.DataFrame ({'Description': ['LUNCH BAG APPLE DESIGN',\n",
+ " 'SET OF 60 VINTAGE LEAF CAKE CASES ',\n",
+ " 'RIBBON REEL STRIPES DESIGN ',\n",
+ " 'WORLD WAR 2 GLIDERS ASSTD DESIGNS',\n",
+ " 'PLAYING CARDS JUBILEE UNION JACK',\n",
+ " 'POPCORN HOLDER',\n",
+ " 'BOX OF VINTAGE ALPHABET BLOCKS',\n",
+ " 'PARTY BUNTING',\n",
+ " 'JAZZ HEARTS ADDRESS BOOK',\n",
+ " 'SET OF 4 SANTA PLACE SETTINGS'],\n",
+ " 'Quantity': [1, 24, 1, 2880, 2, 7, 1, 4, 10, 48],\n",
+ " 'UnitPrice': [1.65, 0.55, 1.65, 0.18, 1.25, 0.85, 11.95, 4.95, 0.19, 1.25],\n",
+ " 'Revenue': [1.65, 13.2, 1.65, 518.4, 2.5, 5.95, 11.95, 19.8, 1.9, 60.0]})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "product_orders"
]
},
{
@@ -237,11 +913,43 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 34,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2978"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# your code here\n",
+ "product_orders[\"Quantity\"].sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "637.0"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "product_orders[\"Revenue\"].sum()"
]
},
{
@@ -253,11 +961,90 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "expensive = product_orders[\"UnitPrice\"].max()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "11.95"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "expensive"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cheapest = product_orders[\"UnitPrice\"].min()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.18"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cheapest"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "difference_price = expensive - cheapest"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "11.77"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "difference_price"
]
}
],
@@ -277,7 +1064,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.2"
+ "version": "3.8.3"
}
},
"nbformat": 4,