diff --git a/your-code/main.ipynb b/your-code/main.ipynb
index f50ae3d..b7e9136 100755
--- a/your-code/main.ipynb
+++ b/your-code/main.ipynb
@@ -18,11 +18,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
- "# your code here"
+ "# your code here\n",
+ "import numpy as np\n",
+ "import pandas as pd"
]
},
{
@@ -34,7 +36,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -43,11 +45,34 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "lst_serie = pd.Series(lst)\n",
+ "lst_serie"
]
},
{
@@ -61,11 +86,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "lst_serie[2]"
]
},
{
@@ -77,7 +114,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -95,11 +132,35 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " colum1 column2 column3 column4 column5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "b = pd.DataFrame({'colum1' : [53.1, 61.3, 20.6, 57.4, 83.6, 49.0, 23.3, 27.6, 96.6, 73.7],\n",
+ " 'column2' : [ 95.0, 40.8, 73.2, 0.1, 20.5, 69.0, 40.7, 26.4, 96.4, 39.0],\n",
+ " 'column3' : [ 67.5, 30.8, 44.2, 96.1, 85.4, 0.1, 95.0, 53.8, 53.4, 43.2],\n",
+ " 'column4' : [35.0, 37.8, 14.6, 4.2, 22.8, 31.8, 83.8, 88.8, 72.4, 81.6],\n",
+ " 'column5' : [78.4, 87.6, 91.8, 69.5, 35.9, 89.1, 26.9, 68.5, 50.1, 34.7]})\n",
+ "b"
]
},
{
@@ -111,7 +172,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -120,11 +181,31 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "b.columns = ['Score_1', 'Score_2', 'Score_3', 'Score_4', 'Score_5']\n",
+ "b"
]
},
{
@@ -136,11 +217,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 9,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_5\n",
+ "0 53.1 95.0 78.4\n",
+ "1 61.3 40.8 87.6\n",
+ "2 20.6 73.2 91.8\n",
+ "3 57.4 0.1 69.5\n",
+ "4 83.6 20.5 35.9\n",
+ "5 49.0 69.0 89.1\n",
+ "6 23.3 40.7 26.9\n",
+ "7 27.6 26.4 68.5\n",
+ "8 96.6 96.4 50.1\n",
+ "9 73.7 39.0 34.7"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "score135 = b[['Score_1', 'Score_2', 'Score_5']]\n",
+ "score135"
]
},
{
@@ -152,11 +345,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "b['Score_3'].mean()"
]
},
{
@@ -168,11 +373,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "b['Score_4'].max()"
]
},
{
@@ -184,11 +401,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "b['Score_2'].median()"
]
},
{
@@ -200,7 +429,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@@ -221,11 +450,146 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "orders = pd.DataFrame({'Description': ['LUNCH BAG APPLE DESIGN',\n",
+ " 'SET OF 60 VINTAGE LEAF CAKE CASES ',\n",
+ " 'RIBBON REEL STRIPES DESIGN ',\n",
+ " 'WORLD WAR 2 GLIDERS ASSTD DESIGNS',\n",
+ " 'PLAYING CARDS JUBILEE UNION JACK',\n",
+ " 'POPCORN HOLDER',\n",
+ " 'BOX OF VINTAGE ALPHABET BLOCKS',\n",
+ " 'PARTY BUNTING',\n",
+ " 'JAZZ HEARTS ADDRESS BOOK',\n",
+ " 'SET OF 4 SANTA PLACE SETTINGS'],\n",
+ " 'Quantity': [1, 24, 1, 2880, 2, 7, 1, 4, 10, 48],\n",
+ " 'UnitPrice': [1.65, 0.55, 1.65, 0.18, 1.25, 0.85, 11.95, 4.95, 0.19, 1.25],\n",
+ " 'Revenue': [1.65, 13.2, 1.65, 518.4, 2.5, 5.95, 11.95, 19.8, 1.9, 60.0]})\n",
+ "orders"
]
},
{
@@ -237,11 +601,43 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2978"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "orders['Quantity'].sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "637.0"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "orders['Revenue'].sum()"
]
},
{
@@ -253,11 +649,25 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max = 11.95\n",
+ "min = 0.18\n",
+ "difference = 11.77\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "# your code here\n",
+ "print('max = ', orders['UnitPrice'].max())\n",
+ "print('min = ', orders['UnitPrice'].min())\n",
+ "difference = orders['UnitPrice'].max() - orders['UnitPrice'].min()\n",
+ "print('difference = ', difference)"
]
}
],
@@ -277,7 +687,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.2"
+ "version": "3.8.3"
}
},
"nbformat": 4,