forked from Bisonai/mobilenetv3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mobilenetv3_factory.py
59 lines (47 loc) · 1.8 KB
/
mobilenetv3_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2019 Bisonai Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of paper Searching for MobileNetV3, https://arxiv.org/abs/1905.02244
MobileNetV3 Factory
"""
from typing import Tuple
import tensorflow as tf
from mobilenetv3_large import MobileNetV3 as mobilenetv3_large
from mobilenetv3_small import MobileNetV3 as mobilenetv3_small
_available_models = {
"small": mobilenetv3_small,
"large": mobilenetv3_large,
}
def build_mobilenetv3(
model_type: str,
input_shape: Tuple[int, int, int]=(224, 224, 3),
num_classes: int=1001,
width_multiplier: float=1.0,
l2_reg: float=1e-5,
):
assert len(input_shape) == 3, "`input_shape` should be a tuple representing input data shape (height, width, channels)"
if model_type not in _available_models.keys():
raise NotImplementedError
model = _available_models.get(model_type)(
num_classes=num_classes,
width_multiplier=width_multiplier,
l2_reg=l2_reg,
)
input_tensor = tf.keras.layers.Input(shape=input_shape)
output_tensor = model(input_tensor)
model = tf.keras.Model(
inputs=[model.input],
outputs=[model.output],
)
return model