forked from Bisonai/mobilenetv3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
68 lines (56 loc) · 2.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2019 Bisonai Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of paper Searching for MobileNetV3, https://arxiv.org/abs/1905.02244
Utility functions
"""
import tensorflow as tf
def _make_divisible(v, divisor, min_value=None):
"""https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def get_layer(layer_name, layer_dict, default_layer):
if layer_name is None:
return default_layer
if layer_name in layer_dict.keys():
return layer_dict.get(layer_name)
else:
raise NotImplementedError(f"Layer [{layer_name}] is not implemented")
class LayerNamespaceWrapper(tf.keras.layers.Layer):
"""`NameWrapper` defines auxiliary layer that wraps given `layer`
with given `name`. This is useful for better visualization of network
in TensorBoard.
Default behavior of namespaces defined with nested `tf.keras.Sequential`
layers is to keep only the most high-level `tf.keras.Sequential` name.
"""
def __init__(
self,
layer: tf.keras.layers.Layer,
name: str,
):
super().__init__(name=name)
self.wrapped_layer = tf.keras.Sequential(
[
layer,
],
name=name,
)
def call(self, input):
return self.wrapped_layer(input)