-
Notifications
You must be signed in to change notification settings - Fork 18
/
uvdocBenchmark_metric.py
152 lines (124 loc) · 5.21 KB
/
uvdocBenchmark_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import json
import os
from os.path import join as pjoin
import hdf5storage as h5
import numpy as np
import torch
import torch.nn.functional as F
from skimage.morphology import binary_erosion
from tqdm import tqdm
from utils import bilinear_unwarping_from_numpy
WIDTH = 1000
HEIGHT = 1000
def create_vertical_stripe_texture(width, height, stripe_width=1, position=0):
"""
Create an image with a vertical stripe.
"""
im = np.ones((height, width, 3), dtype=np.uint8) * 255
im[:, position : position + stripe_width] = 0
return im
def create_horizontal_stripe_texture(width, height, stripe_width=1, position=0):
"""
Create an image with a horizontal stripe.
"""
im = np.ones((height, width, 3), dtype=np.uint8) * 255
im[position : position + stripe_width, :] = 0
return im
def warp_texture(texture, uvmap):
"""
Warp an input texture based on the provided uvmap.
"""
# Warp the texture based on the uv
torch_texture_unwarp = torch.from_numpy(np.expand_dims(texture.transpose(2, 0, 1), axis=0)).float()
uvmap_torch = torch.from_numpy(np.expand_dims(uvmap * 2 - 1, axis=0)).float()
warped_texture = F.grid_sample(torch_texture_unwarp, uvmap_torch, align_corners=False)
warped_texture = np.clip(warped_texture[0].numpy().transpose(1, 2, 0), 0, 255) / 255
# Postprocessing to have nicer results
grey = np.all(warped_texture == 0.5, axis=-1)
warped_texture[grey] = np.nan
mask = 1 - np.all(np.isnan(warped_texture), axis=-1).astype(int)
mask_small = binary_erosion(mask).astype(int)
mask_small = np.expand_dims(mask_small, axis=-1)
warped_texture[np.repeat(~mask_small.astype(bool), 3, axis=-1)] = 1
warped_texture = (warped_texture * 255).astype(np.uint8)
return warped_texture
def compute_metric_single_line(uvmap, bm, pos, direction="horizontal"):
"""
Compute the line metric for a single line.
args:
uvmap: uvmap of the document, shape (height, width, 2)
bm: predicted backward mapping, shape (height, width, 2)
pos: position of the line to compute the metric
direction: direction of the line to compute the metric (horizontal or vertical)
"""
# Create the original straight line
if direction == "horizontal":
stripe = create_horizontal_stripe_texture(WIDTH, HEIGHT, stripe_width=1, position=pos)
elif direction == "vertical":
stripe = create_vertical_stripe_texture(WIDTH, HEIGHT, stripe_width=1, position=pos)
else:
raise ValueError("Direction must be horizontal or vertical")
# Warp the stripe according to the ground truth uvmap and unwarp it according to the predicted bm
warped_stripe = warp_texture(stripe, uvmap)
unwarped_stripe = bilinear_unwarping_from_numpy(warped_stripe.astype(float) / 255.0, bm, (WIDTH, HEIGHT))
# Binarize the result
THRESH = 0.5
unwarped_stripe = unwarped_stripe[:, :, 0]
unwarped_stripe[unwarped_stripe < THRESH] = 0
unwarped_stripe[unwarped_stripe >= THRESH] = 1
# Find the black pixels
xs, ys = np.where(unwarped_stripe == 0)
if len(xs) == 0 or len(ys) == 0:
# No black pixels in the line, this means that the backward mapping is pretty bad
return np.nan
# Compute the metric
if direction == "horizontal":
return np.std(xs)
elif direction == "vertical":
return np.std(ys)
def compute_sample_line_metric(uvdoc_path, pred_path, sample, n_lines):
"""
Compute all lines metric for a given sample.
"""
# Load ground truth UVmap
metadata_path = pjoin(uvdoc_path, "metadata_sample", f"{sample}.json")
with open(metadata_path, "r") as f:
metadata = json.load(f)
uvmap_path = pjoin(uvdoc_path, "uvmap", f"{metadata['geom_name']}.mat")
uvmap = h5.loadmat(uvmap_path)["uv"]
# Load predicted backward mapping
bm_path = pjoin(pred_path, f"{sample}.mat")
bm = h5.loadmat(bm_path)["bm"]
# Compute metric
stds_hor = []
stds_ver = []
for pos in np.linspace(50, 950, n_lines, dtype=int):
uvmap = h5.loadmat(uvmap_path)["uv"]
stds_hor.append(compute_metric_single_line(uvmap, bm, pos, direction="horizontal"))
stds_ver.append(compute_metric_single_line(uvmap, bm, pos, direction="vertical"))
return np.nanmean(stds_hor), np.nanmean(stds_ver)
def compute_line_metric(uvdoc_path, pred_path, n_lines=25):
"""
Compute the line metric over the whole UVDoc dataset.
"""
# Find all samples
all_samples = sorted([x[:-4] for x in os.listdir(pjoin(uvdoc_path, "img"))])
# Compute the metric for each sample
lines = []
cols = []
for sample in tqdm(all_samples):
hor, ver = compute_sample_line_metric(uvdoc_path, pred_path, sample, n_lines)
lines.append(hor)
cols.append(ver)
# Saves all results including individual ones
with open(os.path.join(pred_path, "line_metric.json"), "w") as f:
json.dump(
{sample: {"hor": lines[i], "ver": cols[i]} for i, sample in enumerate(all_samples)},
f,
)
with open(os.path.join(pred_path, "line_metric_mean.json"), "w") as f:
json.dump(
{"hor": np.mean(lines), "ver": np.mean(cols)},
f,
)
return np.mean(lines), np.mean(cols)