-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_functions.py
178 lines (145 loc) · 6.67 KB
/
custom_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
File Name: custom_functions.py
All the custom functions related to data processing and optimizaiton modeling are written here
& called as module in main.py script
Function list
1. Compute Distance
2. Compute Pairings
3. Normalize
4. Extract Coordinate
5. Calculate Sensitivity
"""
# Compute distance
import math
import pandas as pd
from shapely.geometry import Point
import shapely
import geopandas as gpd
def compute_distance(loc1, loc2):
dx = loc1[0] - loc2[0]
dy = loc1[1] - loc2[1]
return math.sqrt(dx * dx + dy * dy)
def compute_pairing(coordinates_spill, coordinates_st, DistanceMax):
pairings = {(c, f): compute_distance(coordinates_spill[c], coordinates_st[f])
for c in range(len(coordinates_spill))
for f in range(len(coordinates_st))
if compute_distance(tuple(coordinates_spill[c]), tuple(coordinates_st[f])) < DistanceMax}
return pairings
def normalize():
return 0
def compute_TimeR(pairings, spill_data):
TimeR = pairings
rank1 = spill_data[['1st Ranking']]
for i in range(len(rank1)):
if rank1[i] == "MCR":
TimeR[i, :] = pairings[i, :] # pairings values = distance
elif rank1[i] == "CDU" or "ISB":
TimeR[i, :] = pairings[i, :] / 10
return TimeR
# Extract coordinates in right format
def extract_coordinate(data):
# location of demands
coordinates_in = data[['Coordinates']] # .values.tolist()
# preprocessing (what exactly?)
temp_df2 = coordinates_in.Coordinates.str.split(",", expand=True, )
temp_df2['Extracted_1'] = temp_df2[0].str.extract('([-+]?\d*\.?\d+)')
temp_df2['Extracted_2'] = temp_df2[1].str.extract('([-+]?\d*\.?\d+)')
temp_df2["Extracted_1"] = pd.to_numeric(temp_df2["Extracted_1"], downcast="float")
temp_df2["Extracted_2"] = pd.to_numeric(temp_df2["Extracted_2"], downcast="float")
# Getting coordinates of stations in a format needed for Folium MAP
coordinates = temp_df2[['Extracted_1', 'Extracted_2']].values.tolist()
return coordinates
# Extract coordinates in right format
def extract_spill_coordinate(data):
# location of demands
coordinates_in = data[['Coordinates']] # .values.tolist()
# preprocessing (what exactly?)
temp_df2 = coordinates_in.Coordinates.str.split(",", expand=True, )
temp_df2['Extracted_1'] = temp_df2[0].str.extract('([-+]?\d*\.?\d+)')
temp_df2['Extracted_2'] = temp_df2[1].str.extract('([-+]?\d*\.?\d+)')
temp_df2["Extracted_1"] = pd.to_numeric(temp_df2["Extracted_1"], downcast="float")
temp_df2["Extracted_2"] = pd.to_numeric(temp_df2["Extracted_2"], downcast="float")
# Getting coordinates of stations in a format needed for Folium MAP
coordinates = temp_df2[['Extracted_1', 'Extracted_2']].values.tolist()
coordinates_dict = {}
for i in range(len(coordinates)):
coordinates_dict[data.reset_index().at[i, 'Spill #']] = coordinates[i]
return coordinates, coordinates_dict
# Extract coordinates in right format
def extract_station_coordinate(data):
# location of demands
coordinates_in = data[['Coordinates']] # .values.tolist()
# preprocessing (what exactly?)
temp_df2 = coordinates_in.Coordinates.str.split(",", expand=True, )
temp_df2['Extracted_1'] = temp_df2[0].str.extract('([-+]?\d*\.?\d+)')
temp_df2['Extracted_2'] = temp_df2[1].str.extract('([-+]?\d*\.?\d+)')
temp_df2["Extracted_1"] = pd.to_numeric(temp_df2["Extracted_1"], downcast="float")
temp_df2["Extracted_2"] = pd.to_numeric(temp_df2["Extracted_2"], downcast="float")
# Getting coordinates of stations in a format needed for Folium MAP
coordinates = temp_df2[['Extracted_1', 'Extracted_2']].values.tolist()
coordinates_dict = {}
for i in range(len(coordinates)):
coordinates_dict[data.reset_index().at[i, 'Station #']] = coordinates[i]
return coordinates, coordinates_dict
"""
def swapPositions(lis, pos1, pos2):
temp = lis[pos1] #++
lis[pos1] = lis[pos2]
lis[pos2] = temp
return lis
"""
def calculate_sensitivity(coordinates_spill, sensitivity_dataR):
G_series = sensitivity_dataR.geometry.map(lambda polygon: shapely.ops.transform(lambda x, y: (y, x), polygon))
sensitivity_data = gpd.GeoDataFrame(geometry=gpd.GeoSeries(G_series))
sensitivity_data['Sensitivity'] = sensitivity_dataR[['Sensitivit']]
Sensitivity = []
for i in range(len(coordinates_spill)):
# Coordinate of spill zone i
# demand_i_coord = swapPositions(coordinates_spill[i], 0, 1)
# print(i)
spill_zone_i = Point(
coordinates_spill[i]) # demand_i_coord coordinates_spill[i] # need to work on NAN in dataset
# list comprehension to determine which sensitive area this spill belongs
spill_zone_contains = [sensitivity_data.loc[g, 'geometry'].contains(spill_zone_i) for g in
range(len(sensitivity_data))]
# print(spill_zone_contains)
# Calculate sensitivity value of spill zone i
try:
SN_within1 = sensitivity_data.loc[spill_zone_contains.index(True), 'Sensitivity'] # +++
except:
SN_within1 = 0
# Create a circle around spill zone i
spill_zone_larger = spill_zone_i.buffer(10) # 10 is fine??
# Find all intersecting neighborhood of sensitive areas of spill zone i
spill_zone_within_neighbor = [spill_zone_larger.intersects(sensitivity_data.loc[j, 'geometry'])
for j in range(len(sensitivity_data))]
index_neighbor = [nei for nei in range(len(spill_zone_within_neighbor)) if
spill_zone_within_neighbor[nei] == True]
# Calculate total sensitivity value of neighborhood
SN_neighbor = sum(sensitivity_data.loc[index_neighbor, 'Sensitivity'])
# Total sensitivity value of spill i
sensitivity_i = 10 * SN_within1 + SN_neighbor
Sensitivity.append(sensitivity_i)
return Sensitivity
# %%
"""
# Converting units for km, knot
Dalplex = [44.63521075008297, -63.59257743952542];
Home = [44.63571446821034, -63.58029358022154]
# 980meters according to Google map
distance_googleMap = 0.98 # kilometer
distance_computeDistance = custom_functions.compute_distance(Dalplex, Home)
to_kms = (distance_googleMap / distance_computeDistance)
# 1 unit = 80 kms
# 11 km in 1 hours
# 1280 km in 116 hours
ResponseTimeT = 16
ResponseTimeT_inHours = (ResponseTimeT*80)/11
"""
# response time: ()
def convert_to_kms(unit):
return 0
def convert_to_hrs():
return 0
def extract_cluster_coordinates():
return 0