-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
294 lines (241 loc) · 12.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""
File name: main.py
THis file will import data, call the optimization model, provide optimization result
Input data, then, run the optimization model
Outline:
1. Estimating input parameters
2.
3. Mdeling
4. Sensitivity analysis
5.
Developer: Tanmoy Das
Date: Dec 2022
"""
# %%
globals().clear() # Clear previous workspace
# import library
import pandas as pd
import geopandas as gpd
import custom_functions, data_visualization
import model_PAMIP, model_analysis
import shapely
import numpy as np
from sklearn.cluster import MiniBatchKMeans
# import data
spill_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='spills', header=0).copy()
station_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='stations', header=0).copy()
sensitivity_dataR = gpd.read_file('Inputs/ArcGIS_data/Sensitivity_data5.shp').copy()
# %% Input parameters of the model
# ++ think what is same across all model and scenes , move them at the top+++
# pre-determined inputs
NumberStMax = 5
DistanceMax = 10 # 5
coordinates_spill = custom_functions.extract_coordinate(spill_data)
coordinates_st = custom_functions.extract_coordinate(station_data)
num_customers = len(coordinates_spill)
num_facilities = len(coordinates_st)
# ++ convert 10 into km using google map (for reporting, not related to modeling in this code)
coor1 = (63.31720065616187, -90.65327442130385)
coor2 = (61.99735832040513, -92.36804572739923)
custom_functions.compute_distance(coor1, coor2)
#%%
pairings = {(c, f): custom_functions.compute_distance(coordinates_spill[c], coordinates_st[f])
for c in range(num_customers)
for f in range(num_facilities)
if custom_functions.compute_distance(tuple(coordinates_spill[c]), tuple(coordinates_st[f])) < DistanceMax}
print("Number of viable pairings: {0}".format(len(pairings.keys())))
# Weights and scaling
# W = [1, 2000, 1]
max_spill_size = max(spill_data['Spill size'])
max_sensitivity = max(sensitivity_dataR['Sensitivit'])
max_timeR = pairings[max(pairings, key=pairings.get )]
min_spill_size = min(spill_data['Spill size'])
min_sensitivity = min(sensitivity_dataR['Sensitivit'])
min_timeR = pairings[min(pairings, key=pairings.get )]
# x* = (x-x_min)/(x_max - x_min)
#Demand = list(spill_data['Resource needed']).copy()
SizeSpill_R = list(spill_data['Spill size']).copy()
Sensitivity_R = custom_functions.calculate_sensitivity(coordinates_spill, sensitivity_dataR)
TimeR_R = pairings.copy() # compute_TimeR +++
#%% Normalize terms in objective function
SizeSpill = []; Sensitivity = []; TimeR = []
SizeSpill = [((SizeSpill_R[i]-min_spill_size)/(max_spill_size-min_spill_size)) for i in range(len(SizeSpill_R))]
Sensitivity = [((Sensitivity_R[i]-min_sensitivity)/(max_sensitivity-min_sensitivity)) for i in range(len(Sensitivity_R))]
# TimeR = {((list(TimeR_R.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeR_R))}
TimeR_Scaled = [((list(TimeR_R.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeR_R))]
keysD = TimeR_R.keys()
TimeR = {}
for i in range(len(keysD)):
TimeR[list(keysD)[i]] = TimeR_Scaled[i]
# %% Predictive Analytics
# Tradeoff curve for number of stations
# ----------------------------------------------------------------------------------------------------------------------
NumberStMax_list = [1,2,3,4 ,5,6,7,8,9,10]
W1 = [[0.1, 0.2, 0.7], [0.8, 0.1, 0.1]] # from model configuration table
Tradeoff_output = []
for i in range(len(NumberStMax_list)):
Wi = W1[1]
NumberStMax = NumberStMax_list[i]
m = 'm1' # m2
model, cover, select, amount, mvars, names, values, \
cover_1s, select_1s, amountSt_groupby, coverage_percentage, \
ResponseTimeT, assignment3, spill_df, station_df, \
sol_y, assignment, assignment2, assignment_name= model_PAMIP.solve(Wi, coordinates_st, coordinates_spill,
pairings, SizeSpill, Sensitivity, TimeR, NumberStMax, m, spill_data)
Tradeoff_output.append([NumberStMax, coverage_percentage, int(ResponseTimeT*80)/11])
Tradeoff_Output_df = pd.DataFrame(Tradeoff_output)
Tradeoff_Output_df.columns = ['NumberStMax', 'Coverage %', 'Response time (in hours)']
Tradeoff_Output_df.to_csv('Outputs/Tradeoff_Output_df.csv')
#%% Draw the tradeoff line graph
NumberStMax_data = pd.read_csv('Outputs/Tradeoff_Output_df.csv').copy()
selected = 5
data_visualization.draw_tradeoff_plot(NumberStMax_data, selected)
#%% Model configurations and solutions table
# ----------------------------------------------------------------------------------------------------------------------
# Comparing models with different weight vectors
import random
values = [.1, .2, .3, .4, .5, .6, .7, .8]
Wd = []
for i in range(1000):
w1 = random.choice(values); w2 = random.choice(values); w3 = random.choice(values)
if w1+w2+w3 == 1.0:
Wd.append([w1, w2, w3])
# drop duplication values from list W
W_Set = set(tuple(element) for element in Wd)
W0 = [list(t) for t in set(tuple(element) for element in W_Set)]
W = [W0[i] for i in range(10)]
#%%
m = 'm2'
model_output = []
# Draw Network Diagram
for i in range(5):
Wi = W[i]
model, cover, select, amount, mvars, names, values, \
cover_1s, select_1s, amountSt_groupby, coverage_percentage, \
ResponseTimeT, assignment3, spill_df, station_df, \
sol_y, assignment, assignment2, assignment_name = model_PAMIP.solve(Wi, coordinates_st, coordinates_spill,
pairings, SizeSpill, Sensitivity, TimeR,
NumberStMax, m, spill_data)
print(f'coverage_percentage: {coverage_percentage}, i: {i}')
model_output.append([Wi, model.ObjVal, coverage_percentage, int(ResponseTimeT*80)/11])
print('-------------------------------------------------------------')
Model_Output = pd.DataFrame(model_output)
Model_Output.columns = ['Weights', 'Objective Value', 'Coverage %', 'Response time (in hours)']
Model_Output.to_csv('Outputs/Model_Output.csv')
# %% Draw Network Diagram
# ----------------------------------------------------------------------------------------------------------------------
# Examine model results
# Sensitivity analysis
W1 = [[0.1, 0.2, 0.7], [0.8, 0.1, 0.1]] # from model configuration table
for i in range(2):
Wi = W1[i]
m = 'm2' # m2
model, cover, select, amount, mvars, names, values, \
cover_1s, select_1s, amountSt_groupby, coverage_percentage, \
ResponseTimeT, assignment3, spill_df, station_df, \
sol_y, assignment, assignment2, assignment_name= model_PAMIP.solve(Wi, coordinates_st, coordinates_spill,
pairings, SizeSpill, Sensitivity, TimeR, NumberStMax, m, spill_data)
model_analysis.draw_network_diagram(DistanceMax, NumberStMax, spill_df, station_df, ResponseTimeT, coverage_percentage,
assignment3, cover_1s, select_1s, amountSt_groupby, m, Wi)
#%%
# Feb 20
import folium
gdb1 = gpd.read_file('C:/Users/tanmo/Downloads/lpr_000b21f_e/lpr_000b21f_e.gdb')
gdb1.plot()
# Draw empty map +++
# map_shipping_spill = folium.Map(location=spill_coordinates.iloc[0], zoom_start=4, min_zoom=2.5, max_zoom=7)
# Draw the Shipping route
# map_shipping_spill.choropleth(geo_data="Inputs/ArcGIS_data/Shipping_and_Hydrography.geojson")
# save this map as transparent .svg of jpg file , then import it as .svg file to matplotlib
#+++
#%% Data Scene 2
#%% Clustering
# ----------------------------------------------------------------------------------------------------------------------
# %%
globals().clear() # Clear previous workspace
# import library
import pandas as pd
import geopandas as gpd
import custom_functions, data_visualization
import model_PAMIP, model_analysis
import shapely
import numpy as np
from sklearn.cluster import MiniBatchKMeans
# import data
spill_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='spills', header=0).copy()
station_data = pd.read_excel('Inputs/data_PAMIP.xlsx', sheet_name='stations', header=0).copy()
sensitivity_dataR = gpd.read_file('Inputs/ArcGIS_data/Sensitivity_data5.shp').copy()
# %% Input parameters of the model
# ++ think what is same accross all model and scenes , move them at the top+++
# pre-determined inputs
NumberStMax = 5
DistanceMax = 10 # 5
coordinates_spill = custom_functions.extract_coordinate(spill_data)
coordinates_st = custom_functions.extract_coordinate(station_data)
num_customers = len(coordinates_spill)
num_facilities = len(coordinates_st)
import numpy as np
# Import excel file (containing 10k records)
spill_data_10000 = pd.read_excel('Inputs/Spill_info_4000.xlsx', header=0).copy()
# randomly select 2k records
spill_data_scene2 = spill_data_10000.sample(n=2000)
spill_size = spill_data_scene2[['Spill size']]
coordinates_spill = custom_functions.extract_coordinate(spill_data_scene2)
# Cluster them into 50 cluster
num_clusters = 50
kmeans = MiniBatchKMeans(n_clusters=num_clusters, init_size=3*num_clusters,
).fit(coordinates_spill)
memberships = list(kmeans.labels_)
centroids = list(kmeans.cluster_centers_) # Center point for each cluster
weights = list(np.histogram(memberships, bins=num_clusters)[0]) # Number of customers in each cluster
print('First cluster center:', centroids[0])
print('Weights for first 10 clusters:', weights[:10])
# Draw
icon_size_list = []
# Draw the oil spills
for point_spill in range(0, len(coordinates_spill)):
icon_size = int((spill_size.iloc[point_spill, 0]/spill_size.max())*20)
icon_size_list.append(icon_size)
data_visualization.draw_cluster(icon_size_list, coordinates_spill, memberships, centroids)
#%% Apply optimization model
# Input parameters
coordinates_spill = kmeans.cluster_centers_.tolist()
pairings = custom_functions.compute_pairing(coordinates_spill, coordinates_st, DistanceMax)
Size_DS1 = list(spill_data_scene2['Spill size']).copy()
#%%
cluster_index = {}
for j in range(len(centroids)):
cluster_index[j] = [i for i, x in enumerate(memberships) if x == j]
SizeSpill_Rc = [sum([e for i, e in enumerate(Size_DS1) if i in cluster_index[ii]]) for ii in range(len(cluster_index))]
Sensitivity_Rc = custom_functions.calculate_sensitivity(coordinates_spill, sensitivity_dataR)
TimeRc = pairings.copy()
max_spill_size = max(SizeSpill_Rc)
min_spill_size = min(SizeSpill_Rc)
max_sensitivity = max(Sensitivity_Rc)
min_sensitivity = min(Sensitivity_Rc)
max_timeR = pairings[max(pairings, key=pairings.get )]
min_timeR = pairings[min(pairings, key=pairings.get )]
SizeSpill = []; Sensitivity = []; TimeR = [];
SizeSpill = [((SizeSpill_Rc[i]-min_spill_size)/(max_spill_size-min_spill_size)) for i in range(len(SizeSpill_Rc))]
Sensitivity = [((Sensitivity_Rc[i]-min_sensitivity)/(max_sensitivity-min_sensitivity)) for i in range(len(Sensitivity_Rc))]
# TimeR = {((list(TimeR_R.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeR_R))}
TimeR_Scaled = [((list(TimeRc.values())[i]-min_timeR)/(max_timeR-min_timeR)) for i in range(len(TimeRc))]
keysD = TimeRc.keys()
TimeR = {}
for i in range(len(keysD)):
TimeR[list(keysD)[i]] = TimeR_Scaled[i]
m = 'm2'
spill_data = spill_data_scene2
#%%
# Solve the model
W1 = W #[[0.1, 0.2, 0.7], [0.2, 0.7, 0.1]] # from model configuration table
for i in range(10):
Wi = W1[i]
m = 'm2' # m2
model, cover, select, amount, mvars, names, values, \
cover_1s, select_1s, amountSt_groupby, coverage_percentage, \
ResponseTimeT, assignment3, spill_df, station_df, \
sol_y, assignment, assignment2, assignment_name= model_PAMIP.solve(Wi, coordinates_st, coordinates_spill,
pairings, SizeSpill, Sensitivity, TimeR, NumberStMax, m, spill_data_scene2)
model_analysis.draw_network_diagram(DistanceMax, NumberStMax, spill_df, station_df, ResponseTimeT, coverage_percentage,
assignment3, cover_1s, select_1s, amountSt_groupby, m, Wi)