-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_analysis.py
104 lines (85 loc) · 4.64 KB
/
model_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
File Name: model_analysis.py
Outline: Data visualization
1. Draw Network diagram: Fig4
Developer: Tanmoy Das
Date: Dec 2022
"""
# import libraries
import pandas as pd
import custom_functions
from matplotlib import collections as mc
import matplotlib.pyplot as plt
import folium
# %% Network Diagram
def draw_network_diagram(DistanceMax, NumberStMax, spill_df, station_df, ResponseTimeT, coverage_percentage,
assignment3, cover_1s, select_1s, amountSt_groupby, m, Wi, ArcticLand, ArcticWater):
# plot the line segments, indicent points, and base station points of the final network
fig, ax = plt.subplots()
ArcticLandPlot = ArcticLand.plot(ax=ax, color="seashell", alpha=.5) # ax=ax,
ArcticWaterPlot = ArcticWater.plot(ax=ax, color="lightskyblue", alpha=.5)
unique_stations = assignment3['Station no.'].unique()
for ust in range(len(unique_stations)):
d1 = assignment3.loc[assignment3['Station no.'] == unique_stations[ust]].reset_index()
new_list = []
for r in range(d1.shape[0]):
new_list.append([(d1.Spill_Longitude[r], d1.Spill_Latitude[r]), (d1.St_Longitude[r], d1.St_Latitude[r])])
lc = mc.LineCollection(new_list, colors=f'C{ust + 1}',
alpha=.9, lw=1.5) # alpha = (ust/len(unique_stations)), colors=ust,
ax.add_collection(lc)
#
x_max = max(spill_df[spill_df['Spill #'].isin([item[0] for item in cover_1s.index])]['Resource needed'])
x_min = min(spill_df[spill_df['Spill #'].isin([item[0] for item in cover_1s.index])]['Resource needed'])
x1_max = max(spill_df[~spill_df['Spill #'].isin([item[0] for item in cover_1s.index])]['Resource needed'])
x1_min = min(spill_df[~spill_df['Spill #'].isin([item[0] for item in cover_1s.index])]['Resource needed'])
# Spill related nodes
# Points of covered spills
spillC = plt.scatter(data=spill_df[spill_df['Spill #'].isin([item[0] for item in cover_1s.index])],
x='Spill_Longitude', y='Spill_Latitude',
s=((
spill_df[spill_df['Spill #'].isin([item[0] for item in cover_1s.index])][
'Resource needed'])
- x_min) * 400 / (x_max - x_min),
c='black', alpha=0.2)
# Points of un-covered spills
spillUnC = plt.scatter(data=spill_df[~spill_df['Spill #'].isin([item[0] for item in cover_1s.index])],
x='Spill_Longitude', y='Spill_Latitude',
s=((spill_df[~spill_df['Spill #'].isin([item[0] for item in cover_1s.index])][
'Resource needed'])
- x1_min) * 400 / (x1_max - x1_min),
facecolors='none', edgecolors='black', alpha=.5)
# Stations related nodes and edges
# Green Square showing stations
st = plt.scatter(data=station_df[station_df['Station no.'].isin(select_1s.index.tolist())],
x='St_Longitude', y='St_Latitude', marker='s',
alpha=0.9,
zorder=2,
s=120,
c='green')
# Showing station number as text
selected_supply_stations = station_df[
station_df['Station no.'].isin(select_1s.index.tolist())].reset_index()
#for i in range(selected_supply_stations.shape[0]):
# plt.text(x=selected_supply_stations.St_Longitude[i] + 2.5, y=selected_supply_stations.St_Latitude[i] - .25,
# s=selected_supply_stations.loc[:, 'Station no.'][i] + 1,
# fontdict=dict(color='red', size=9))
# Small purple squares to show non-selected stations
#stUns = plt.scatter(data=station_df[~station_df['Station no.'].isin(select_1s.index.tolist())],
# x='St_Longitude', y='St_Latitude', marker='s', alpha=.25, c='blue')
# legends of all shapes in this figure
plt.legend((spillC, spillUnC, st), # , stUns
('Oil Spill covered', 'Oil Spill uncovered', 'Stations selected'), # ,'Stations not selected
ncol=1, handlelength=5, borderpad=.5, markerscale=.4,
fontsize=7, loc='lower left'
)
ax.set_xlim([-140, -60])
ax.set_ylim([50, 80])
plt.axis('off')
# plt.xticks([])
# plt.yticks([])
#plt.xlabel('Longitude')
#plt.ylabel('Latitude')
plt.show()
fig.savefig(
f'Outputs/{m} {len(spill_df)}spills {NumberStMax}NumberSt_max {DistanceMax}Distance_max {coverage_percentage}%coverage.png'
, transparent=True) #