-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_mclp.py
279 lines (238 loc) · 12.2 KB
/
model_mclp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
""" Traditional MCLP model
Implementation of MCLP model (presented in equation [12] in the last paragraph of Section 2.2 and compared with proposed model in Section 3.2 of the paper).
Output: Figure 9 is the output of this model.
Outline:
1. Define Decision variables
2. Add Constraints
3. Add objective functions
4. Set some gurobi parameters, & write the model
5. Solve the model
6. Write log file
7. Get some variables out of the model for further analysis
Developer: Tanmoy Das
Date: Aug 18, 2023
"""
# %% Data
# data processing libraries
import pandas as pd
from datetime import datetime, date
# optimization
import gurobipy as gp
from gurobipy import GRB
# import custom functions or classes
import custom_func
import math
# %% Model 2: MIP-2
def solve(Stations, OilSpills, ResourcesD, coordinates_st, coordinates_spill, SizeSpill, SizeSpill_n,
Demand, Sensitivity_R, Sensitivity_n, Eff, Effectiveness_n, Availability, NumberStMax, Distance, Distance_n,
W, QuantityMin, DistanceMax, Cf_s, CostU, Budget,
BigM, MaxFO):
"""
:param Stations:
:param OilSpills:
:param ResourcesD:
:param coordinates_st:
:param coordinates_spill:
:param SizeSpill:
:param SizeSpill_n:
:param Demand:
:param Sensitivity_R:
:param Sensitivity_n:
:param Eff:
:param Effectiveness_n:
:param Availability:
:param NumberStMax:
:param Distance:
:param Distance_n:
:param W:
:param QuantityMin:
:param DistanceMax:
:param Cf_s:
:param CostU:
:param Budget:
:param BigM:
:param MaxFO:
:return:
"""
import gurobipy as gp
from gurobipy import GRB
from datetime import datetime, date
w1, w2, w3, w4, w5, w6 = W[0], W[1], W[2], W[3], W[4], W[5]
# ---------------------------------------- Set & Index -------------------------------------------------------------
os_pair = {(o, s): custom_func.compute_distance(coordinates_spill[1][o], coordinates_st[1][s])
for o in OilSpills
for s in Stations
if
custom_func.compute_distance(tuple(coordinates_spill[1][o]), tuple(coordinates_st[1][s])) < DistanceMax}
os_pair = tuple(os_pair.keys())
# sr_pair (based on unique stations in pair_os )
st_o = list(set([item[1] for item in os_pair]))
o_st = list(set([item[0] for item in os_pair])) # unique oil spills
print('len of OilSpills: ', len(OilSpills))
sr_pair = []
for s in st_o:
for r in ResourcesD:
sr_pair.append((s, r))
sr_pair = tuple(sr_pair)
osr_pair = {(o, s, r): custom_func.compute_distance(coordinates_spill[1][o], coordinates_st[1][s])
for o in OilSpills
for s in Stations
for r in ResourcesD
if
custom_func.compute_distance(tuple(coordinates_spill[1][o]), tuple(coordinates_st[1][s])) < DistanceMax}
osr_pair = tuple(osr_pair.keys())
print('--------------MIP-moo--------')
model = gp.Model("MIP-moo-LAMOSCAD")
# ---------------------------------------- Decision variable -------------------------------------------------------
cover = model.addVars(os_pair, vtype=GRB.BINARY, name='cover') # OilSpills
select = model.addVars(st_o, vtype=GRB.BINARY, name='select')
deploy = model.addVars(osr_pair, vtype=GRB.CONTINUOUS, lb=0,
name='deploy') # QuantityMin Minimum quantity constraint ++
# print('cover'); print(cover); print(''); print('select'); print(select); print(''); print('deploy'); print(deploy)
# %% ----------------------------------------------------------------------------------------------------------------
# ------------------------------------------------ Constraints -----------------------------------------------------
# ---------------------------------------- Coverage constraints (cover) --------------------------------------------
# C10: facility must be open to cover oil spill
C_open_facility_to_cover = model.addConstrs((cover[o, s] <= select[s]
for o, s in os_pair), name='C_open_facility_to_cover')
C_few_facility_per_spill = model.addConstrs((cover.sum(o, '*') <= 1
for o, s in os_pair), name='C_few_facility_per_spill')
## Although this constraint does not exist in traditional MCLP model, without this one, each demand is assigned to multiple facilites, which we dont want.
# C11: max number of facilities to be open
C_max_facility = model.addConstr((gp.quicksum(select[s]
for s in st_o) <= NumberStMax), name='C_max_facility')
## == condition in this constraint will make the model infeasible, <= has the expected outcome for the given problem.
# %% ----------------------------------------------------------------------------------------------------------------
# ----------------------------------------------- Objective function -----------------------------------------------
model.ModelSense = GRB.MAXIMIZE
objective_1 = gp.quicksum((w1 * SizeSpill_n[o]) * cover[o, s]
for o, s in os_pair)
model.setObjective(objective_1)
# %% Model parameters
# Organizing model
# Limit how many solutions to collect
model.setParam(GRB.Param.PoolSolutions, 1024)
# Limit the search space by setting a gap for the worst possible solution that will be accepted
model.setParam(GRB.Param.PoolGap, 0.80)
# do a systematic search for the k-best solutions
# model.setParam(GRB.Param.PoolSearchMode, 2)
today = date.today()
now = datetime.now()
date_time = str(date.today().strftime("%b %d,") + datetime.now().strftime("%H%M"))
filename = 'model (' + date_time + ')'
# Write the model
model.write(f'Outputs/Logfiles/model_moo.lp')
model.Params.LogFile = f"Outputs/Logfiles/model_moo({date_time}).log" # write the log file
# %% Solve the model
model.optimize()
# Debugging model
# model.computeIIS()
model.write('Outputs/Logfiles/model_moo.sol')
# %% Query number of multiple objectives, and number of solutions
x = model.getVars()
select_series = pd.Series(model.getAttr('X', select))
deploy_series = pd.Series(model.getAttr('X', deploy))
# select_series[select_series > 0.5] # +++
# deploy_series[deploy_series > 0.5]
nSolutions = model.SolCount
nObjectives = model.NumObj
print('Problem has', nObjectives, 'objectives')
print('Gurobi found', nSolutions, 'solutions')
solutions = []
for s in range(nSolutions):
# Set which solution we will query from now on
model.params.SolutionNumber = s
# Print objective value of this solution in each objective
print('Solution', s, ':', end='')
for j in range(len(x)):
if x[j].Xn > 0:
print(x[j].VarName, x[j].Xn, end=' ')
print(' ')
# %% Output the result
# Obtain model results & carry them outside the model scope
model.printAttr('X')
mvars = model.getVars() # these values are NOT accessible outside the model scope
names = model.getAttr('VarName', mvars)
values = model.getAttr('X', mvars) # X Xn https://www.gurobi.com/documentation/9.5/refman/working_with_multiple_obje.html
objValues = []
nSolutions = model.SolCount
nObjectives = model.NumObj
for s in range(nSolutions):
# Set which solution we will query from now on
model.params.SolutionNumber = s
print('Solution', s, ':', end='')
cover_series = pd.Series(model.getAttr('X', cover))
cover_1s = cover_series[cover_series > 0.5]
select_series = pd.Series(model.getAttr('X', select))
select_1s = select_series[select_series > 0.5]
# print('\nselect_1s\n', select_1s)
deploy_series = pd.Series(model.getAttr('X', deploy))
deploy_1s = deploy_series[deploy_series > 0.5]
# print('\ndeploy_1s\n', deploy_1s)
cover_series = pd.Series(model.getAttr('X', cover))
cover_1s = cover_series[cover_series > 0.5]
# print('\ncover_1s\n', cover_1s)
# Saving the file
modelStructure_output_code = python_code = logfile = model_structure = outputs = inputs = ""
# Reading data from files
with open('Outputs/Logfiles/model_moo.lp') as fp:
model_structure = fp.read()
with open('Outputs/Logfiles/model_moo.sol') as fp:
outputs = fp.read()
with open(f'Outputs/Logfiles/model_moo({date_time}).log') as fp:
logfile = fp.read()
with open('model.py') as fp:
python_code = fp.read()
# Merging 2 files
# To add the data of file2
# from next line
modelStructure_output_code += "------------------------------- Model Structure ----------------------------------\n"
modelStructure_output_code += model_structure
modelStructure_output_code += "\n------------------------------- Model Outputs ----------------------------------\n"
modelStructure_output_code += outputs
modelStructure_output_code += "\n------------------------------- Model logfile ----------------------------------\n"
modelStructure_output_code += logfile
modelStructure_output_code += "\n------------------------------- Python Code ------------------------------------\n"
modelStructure_output_code += python_code
with open(f'Outputs/Logfiles/Structure, outputs & python code of {filename}.txt', 'w') as fp:
fp.write(modelStructure_output_code)
# Extract assignment variables
sol_y = pd.Series(model.getAttr('X', cover)) #++ deploy is replaced with cover
sol_y.name = 'Assignments'
sol_y.index.names = ['Spill #', 'Station no.']
assignment4 = sol_y[sol_y > 0.5].to_frame()
assignment_name = assignment4.reset_index()
print('assignment_name', assignment_name)
# %%
# organize data # need to clean this section ++
spill_df = pd.DataFrame(coordinates_spill[1]).T.reset_index()
spill_df.columns = ['Spill #', 'Spill_Latitude', 'Spill_Longitude']
spill_df['Resource needed'] = pd.DataFrame(SizeSpill) # ++ update with spill size later
spill_df['Sensitivity'] = Sensitivity_R # ++
station_df = pd.DataFrame(coordinates_st[1]).T.reset_index()
station_df.columns = ['Station no.', 'St_Latitude', 'St_Longitude']
assignment2 = pd.merge(assignment_name[['Spill #', 'Station no.']],
station_df[['Station no.', 'St_Latitude', 'St_Longitude']])
assignment3 = pd.merge(assignment2, spill_df[['Spill #', 'Spill_Latitude', 'Spill_Longitude']])
cover_reset = cover_1s.reset_index()
cover_reset.columns = ['Spill #', 'Station no.', 'Quantity deployed']
assignment = pd.merge(assignment3, cover_reset)
assignment['Distance'] = [math.sqrt((assignment.loc[i]['St_Latitude'] - assignment.loc[i]['Spill_Latitude']) ** 2 \
+ (assignment.loc[i]['St_Longitude'] - assignment.loc[i][
'Spill_Longitude']) ** 2)
for i in assignment.index]
# Outputs from the model +++
# Calculate Coverage # chance later ++
coverage_percentage = int(100 * len(cover_1s)/ len(OilSpills)) # / len(cover_series)
# Calculate total distance travelled
DistanceTravelled = []
for i in range(len(assignment)):
st_coord = (assignment[['St_Latitude', 'St_Longitude']]).iloc[i, :].values
sp_coord = (assignment[['Spill_Latitude', 'Spill_Longitude']]).iloc[i, :].values
aaa = DistanceTravelled.append(custom_func.compute_distance(st_coord, sp_coord))
DistanceTravelled = sum(DistanceTravelled)*80 # 80 for convering GIS data into kilometer
ResponseTimeM = round((DistanceTravelled / 60) / len(assignment), 2) # len() +++ OilSpills
print(f'Coverage Percentage: {coverage_percentage}%')
print(f'Mean Response Time: {ResponseTimeM}')
return model, select, deploy, mvars, names, values, objValues, \
spill_df, station_df, cover_1s, select_1s, deploy_1s, ResponseTimeM, coverage_percentage, assignment