-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathdemo_EDTalk_A.py
244 lines (193 loc) · 9.72 KB
/
demo_EDTalk_A.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os, sys
import torch
import torch.nn as nn
from networks.generator import Generator
from networks.audio_encoder import Audio2Lip
import argparse
import numpy as np
import torchvision
import os
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
import torch.nn.functional as F
from networks.utils import check_package_installed
from moviepy.editor import *
def load_image(filename, size):
img = Image.open(filename).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def vid_preprocessing(vid_path):
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0)
fps = vid_dict[2]['video_fps']
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
transform = transforms.Compose([
transforms.Resize((256, 256)),
])
resized_frames = torch.stack([transform(frame) for frame in vid_norm[0]], dim=0).unsqueeze(0)
return resized_frames, fps
def save_video(vid_target_recon, save_path, fps):
vid = vid_target_recon.permute(0, 2, 3, 4, 1)
vid = vid.clamp(-1, 1).cpu()
vid = ((vid - vid.min()) / (vid.max() - vid.min()) * 255).type('torch.ByteTensor')
torchvision.io.write_video(save_path, vid[0], fps=fps)
import audio
def parse_audio_length(audio_length, sr, fps):
bit_per_frames = sr / fps
num_frames = int(audio_length / bit_per_frames)
audio_length = int(num_frames * bit_per_frames)
return audio_length, num_frames
def crop_pad_audio(wav, audio_length):
if len(wav) > audio_length:
wav = wav[:audio_length]
elif len(wav) < audio_length:
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
return wav
def get_mel(audio_path):
wav = audio.load_wav(audio_path, 16000)
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
wav = crop_pad_audio(wav, wav_length)
orig_mel = audio.melspectrogram(wav).T
spec = orig_mel.copy() # nframes 80
indiv_mels = []
fps = 25
syncnet_mel_step_size = 16
for i in range(num_frames):
start_frame_num = i-2
start_idx = int(80. * (start_frame_num / float(fps)))
end_idx = start_idx + syncnet_mel_step_size
seq = list(range(start_idx, end_idx))
seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ]
m = spec[seq, :]
indiv_mels.append(m.T)
indiv_mels = np.asarray(indiv_mels) # T 80 16
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0).cuda()
source_audio_feature = indiv_mels.type(torch.FloatTensor).cuda()
mel_input = source_audio_feature # bs T 1 80 16
bs = mel_input.shape[0]
T = mel_input.shape[1]
audiox = mel_input.view(-1, 1, 80, 16) # bs*T 1 80 16
return audiox, bs, T
def audio_preprocessing(wav_path):
source_audio_feature, bs, T = get_mel(wav_path)
return source_audio_feature, bs, T
class Demo(nn.Module):
def __init__(self, args):
super(Demo, self).__init__()
self.args = args
model_path = args.model_path
audio2lip_model_path = args.audio2lip_model_path
print('==> loading model')
self.audio2lip = Audio2Lip().cuda()
weight = torch.load(audio2lip_model_path, map_location=lambda storage, loc: storage)['audio2lip']
self.audio2lip.load_state_dict(weight)
self.audio2lip.eval()
self.gen = Generator(args.size, args.latent_dim_style, args.latent_dim_lip, args.latent_dim_pose, args.latent_dim_exp, args.channel_multiplier).cuda()
weight = torch.load(model_path, map_location=lambda storage, loc: storage)['gen']
self.gen.load_state_dict(weight)
self.gen.eval()
print('==> loading data')
self.img_source = img_preprocessing(args.source_path, args.size).cuda()
self.audio, self.bs, self.T = audio_preprocessing(args.audio_driving_path)
if args.audio_driving_path.endswith(('.mp4', '.avi', '.mov', '.mkv')):
print("Warning: The provided audio_driving_path is in video format. Please provide an audio file.")
self.audio_path = args.audio_driving_path
self.exp_vid_target, self.fps = vid_preprocessing(args.exp_driving_path)
self.exp_vid_target = self.exp_vid_target.cuda()
self.save_path = args.save_path
self.pose_vid_target, self.fps = vid_preprocessing(args.pose_driving_path)
self.pose_vid_target = self.pose_vid_target.cuda()
def run(self):
print('==> running')
with torch.no_grad():
# self.save_path = args.save_path
os.makedirs(os.path.dirname(self.save_path), exist_ok=True)
vid_target_recon = []
h_start = None
self.lip_vid_target = self.audio2lip(self.audio, self.bs, self.T)[0]
self.lip_vid_target = conv_feat(self.lip_vid_target, k_size=3, sigma=1) # torch.Size([372, 500])
self.exp_vid_target = self.exp_vid_target[:,:-20]
while self.exp_vid_target.shape[1]<self.lip_vid_target.size(0):
self.exp_vid_target = torch.cat([self.exp_vid_target, torch.flip(self.exp_vid_target, dims =[1])], dim=1)
self.exp_vid_target = self.exp_vid_target[:self.lip_vid_target.size(0)]
exp_len = self.exp_vid_target.shape[1]
len_pose = self.pose_vid_target.shape[1]
for i in tqdm(range(self.lip_vid_target.size(0))):
img_target_lip = self.lip_vid_target[i:i+1]
if i>=len_pose:
img_target_pose = self.pose_vid_target[:, -1, :, :, :]
else:
img_target_pose = self.pose_vid_target[:, i, :, :, :]
if i>=exp_len:
img_target_exp = self.exp_vid_target[:, -1, :, :, :]
else:
img_target_exp = self.exp_vid_target[:, i, :, :, :]
img_recon = self.gen.test_EDTalk_A(self.img_source, img_target_lip, img_target_pose, img_target_exp, h_start)
vid_target_recon.append(img_recon.unsqueeze(2))
vid_target_recon = torch.cat(vid_target_recon, dim=2)
temp_path = self.save_path.replace('.mp4','_temp.mp4')
save_video(vid_target_recon, temp_path, self.fps)
cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (temp_path, self.audio_path, self.save_path)
os.system(cmd)
os.remove(temp_path)
if args.face_sr and check_package_installed('gfpgan'):
from face_sr.face_enhancer import enhancer_list
import imageio
temp_512_path = self.save_path.replace('.mp4','_512.mp4')
# Super-resolution
imageio.mimsave(temp_512_path + '.tmp.mp4', enhancer_list(self.save_path, method='gfpgan', bg_upsampler=None), fps=float(25), codec='libx264')
# Merge audio and video
video_clip = VideoFileClip(temp_512_path + '.tmp.mp4')
audio_clip = AudioFileClip(self.save_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(temp_512_path, codec='libx264', audio_codec='aac')
os.remove(temp_512_path + '.tmp.mp4')
def conv_feat(features, k_size, weight=None, sigma=1.0):
c = features.shape[1] # torch.Size([101, 500])
if weight is None:
pad = k_size // 2
k = np.zeros(k_size).astype(np.float)
for x in range(-pad, k_size-pad):
k[x+pad] = np.exp(-x**2 / (2 * (sigma ** 2)))
k = k / k.sum()
print(k) # [0.27406862 0.45186276 0.27406862]
else:
k_size = len(weight)
k = np.array(weight)
pad = k_size // 2
print(k)
k = torch.from_numpy(k).to(features.device).float().unsqueeze(0).unsqueeze(0)
k = k.repeat(c, 1, 1)
features = features.unsqueeze(0).permute(0, 2, 1) # [1, 512, n]
features = F.conv1d(features, k, padding=pad, groups=c)
features = features.permute(0, 2, 1).squeeze(0)
return features
if __name__ == '__main__':
# training params
parser = argparse.ArgumentParser()
parser.add_argument("--size", type=int, default=256)
parser.add_argument("--channel_multiplier", type=int, default=1)
parser.add_argument("--model", type=str, choices=['vox', 'taichi', 'ted'], default='vox')
parser.add_argument("--latent_dim_style", type=int, default=512)
parser.add_argument("--latent_dim_lip", type=int, default=20)
parser.add_argument("--latent_dim_pose", type=int, default=6)
parser.add_argument("--latent_dim_exp", type=int, default=10)
parser.add_argument("--source_path", type=str, default='test_data/identity_source.jpg')
parser.add_argument("--audio_driving_path", type=str, default='test_data/mouth_source.wav')
parser.add_argument("--pose_driving_path", type=str, default='test_data/pose_source1.mp4')
parser.add_argument("--exp_driving_path", type=str, default='test_data/expression_source.mp4')
parser.add_argument("--save_path", type=str, default='res/demo_EDTalk_A.mp4')
parser.add_argument("--audio2lip_model_path", type=str, default='ckpts/Audio2Lip.pt')
parser.add_argument("--model_path", type=str, default='ckpts/EDTalk.pt')
parser.add_argument('--face_sr', action='store_true', help='Face super-resolution (Optional). Please install GFPGAN first')
args = parser.parse_args()
demo = Demo(args)
demo.run()