-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathevaluate.py
67 lines (51 loc) · 2.21 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import fire
import os
import pickle
from metrics.ms_jaccard import evaluate_ms_jaccard
from metrics.frechet_bert_distance import evaluate_frechet_bert_distance
from metrics.tfidf_distance import evaluate_tfidf_distance
from metrics.forward_backward_bleu import evaluate_forward_backward_bleu
def eval_all_metrics(ref_texts, hypo_texts, label):
os.makedirs('eval_logs/ms_jaccard', exist_ok=True)
msj_results = evaluate_ms_jaccard(
hypo_texts=hypo_texts, ref_texts=ref_texts)
pickle.dump(msj_results, open(
f'eval_logs/ms_jaccard/{label}.pickle', 'wb'))
os.makedirs('eval_logs/tfidf_distance', exist_ok=True)
wfd_results = evaluate_tfidf_distance(
hypo_texts=hypo_texts, ref_texts=ref_texts)
pickle.dump(wfd_results, open(
f'eval_logs/tfidf_distance/{label}.pickle', 'wb'))
os.makedirs('eval_logs/frechet_bert_distance', exist_ok=True)
fbd_results = evaluate_frechet_bert_distance(
hypo_texts=hypo_texts, ref_texts=ref_texts)
pickle.dump(fbd_results, open(
f'eval_logs/frechet_bert_distance/{label}.pickle', 'wb'))
os.makedirs('eval_logs/forward_backward_bleu', exist_ok=True)
bleu_results = evaluate_forward_backward_bleu(
hypo_texts=hypo_texts, ref_texts=ref_texts)
pickle.dump(bleu_results, open(
f'eval_logs/forward_backward_bleu/{label}.pickle', 'wb'))
def main(dataset,
first_model,
prog_steps,
top_k=-1,
top_p=0.95):
prog_vocabs = prog_steps.split('-')
assert prog_vocabs[0] == 'null' and prog_vocabs[-1] == 'full'
decoding = 'top_'
if top_k > 0:
decoding += f'k{top_k}'
if top_p > 0:
decoding += f'p{top_p}'
test_examples = pickle.load(open(f'data/{dataset}/test.pickle', 'rb'))
ref_texts = [example['text'] for example in test_examples]
gen_dir = f'generated_texts/' \
f'{dataset}_first-{first_model}_{prog_steps}/{decoding}'
hypo_texts = []
for example in pickle.load(open(f'{gen_dir}/gen.pickle', 'rb')):
hypo_texts.append(example['prog_gens'][-1])
label = f'{dataset}_first-{first_model}_{prog_steps}'
eval_all_metrics(ref_texts, hypo_texts, label=label)
if __name__ == '__main__':
fire.Fire(main)