-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathforecast_probs.sh
38 lines (35 loc) · 1.13 KB
/
forecast_probs.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/bin/bash
output_dir=$1
run_name=$2
policy_model_name_or_path=$3
config_file="./examples/accelerate_configs/fsdp_llama2_4gpu.yaml"
accelerate launch --main_process_port 1234 --config_file "${config_file}" examples/reward_modeling.py \
--fp16 False \
--bf16 True \
--optim paged_adamw_8bit \
--seed 42 \
--model_name_or_path "${policy_model_name_or_path}" \
--prompt_template_path "./src/linguistic_calibration/prompts/train/reward_model_forecastprobs_llama_finetuned.txt" \
--dataset_name "reward_model_training" \
--reward_model_type "forecast_probs" \
--output_dir "${output_dir}" \
--model_max_length 1024 \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 32 \
--eval_steps 25 \
--save_strategy "steps" \
--save_steps 25 \
--save_total_limit 50 \
--learning_rate 5e-6 \
--weight_decay 0.0 \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--evaluation_strategy "steps" \
--logging_steps 1 \
--wandb_project "linguistic_calibration" \
--run_name "${run_name}" \
--tf32 True \
--flash_attn False \
--save_only_model True