-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathlinear_elasticity_even.py
158 lines (136 loc) · 6.48 KB
/
linear_elasticity_even.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import scipy.sparse.linalg as sp
import itertools
# True: use GPU computations. False: regular CPU computations
GPU = False
if GPU:
import cupy as cp
def create_bin_sphere(matrix_size, center, radius):
# function to create a sphere (defined by "center" and "radius")
# as ones in a grid (defined by "shape") of zeros
coords = np.ogrid[:matrix_size[0], :matrix_size[1], :matrix_size[2]]
distance = np.sqrt(
(coords[0] - center[0]) ** 2 + (coords[1] - center[1]) ** 2 + (
coords[2] - center[2]) ** 2)
return 1 * (distance <= radius)
def create_microstructure_spheres(cf):
# phase indicator: "nspheres" random spherical inclusions,
# with total volume fraction "cf" and maximum/minimum radius r_max / r_min.
# Algorithm will fail for large fiber volume fractions "cf" (>>0.4)
r_max = 1
r_min = 3
micro_phase = np.zeros((N, N, N), dtype=np.int)
while (micro_phase[micro_phase == 1].size / micro_phase.size) <= cf:
r = np.random.uniform(low=r_min, high=r_max, size=None)
sphere_center = np.random.randint(low=-1, high=N - 1, size=(3, 1))
sphere = create_bin_sphere(np.shape(micro_phase), sphere_center, r)
if np.any(micro_phase[sphere == 1]) == 1:
pass
else:
micro_phase[sphere == 1] = 1
return micro_phase
# ----------------------------------- GRID ------------------------------------
ndim = 3 # number of dimensions
N = 32 # number of voxels (assumed equal for all directions)
ndof = ndim ** 2 * N ** 3 # number of degrees-of-freedom
shape = [N, N, N] # number of voxels as list: [Nx,Ny,Nz]
# ---------------------- PROJECTION, TENSORS, OPERATIONS ----------------------
# tensor operations/products: np.einsum enables index notation, avoiding loops
# e.g. ddot42 performs $C_ij = A_ijkl B_lk$ for the entire grid
trans2 = lambda A2: np.einsum('ijxyz ->jixyz ', A2)
ddot42 = lambda A4, B2: np.einsum('ijklxyz,lkxyz ->ijxyz ', A4, B2)
ddot44 = lambda A4, B4: np.einsum('ijklxyz,lkmnxyz->ijmnxyz', A4, B4)
dot22 = lambda A2, B2: np.einsum('ijxyz ,jkxyz ->ikxyz ', A2, B2)
dot24 = lambda A2, B4: np.einsum('ijxyz ,jkmnxyz->ikmnxyz', A2, B4)
dot42 = lambda A4, B2: np.einsum('ijklxyz,lmxyz ->ijkmxyz', A4, B2)
dyad22 = lambda A2, B2: np.einsum('ijxyz ,klxyz ->ijklxyz', A2, B2)
dot11 = lambda A1, B1: np.einsum('ixyz ,ixyz ->xyz ', A1, B1)
# identity tensor [single tensor]
i = np.eye(ndim)
# identity tensors [grid of tensors]
I = np.einsum('ij,xyz', i, np.ones([N, N, N]))
I4 = np.einsum('ijkl,xyz->ijklxyz', np.einsum('il,jk', i, i),
np.ones([N, N, N]))
I4rt = np.einsum('ijkl,xyz->ijklxyz', np.einsum('ik,jl', i, i),
np.ones([N, N, N]))
I4s = (I4 + I4rt) / 2.
II = dyad22(I, I)
# projection operator (only for non-zero frequency, associated with the mean)
# NB: vectorized version of "hyper-elasticity_even.py"
# - allocate / support function
Ghat4 = np.zeros([3, 3, 3, 3, N, N, N]) # projection operator
x = np.zeros([3, N, N, N], dtype='int64') # position vectors
q = np.zeros([3, N, N, N], dtype='int64') # frequency vectors
delta = lambda i, j: np.float(i == j) # Dirac delta function
# - set "x" as position vector of all grid-points [grid of vector-components]
x[0], x[1], x[2] = np.mgrid[:N, :N, :N]
# - convert positions "x" to frequencies "q" [grid of vector-components]
for i in range(3):
freq = np.arange(-shape[i] / 2, +shape[i] / 2, dtype='int64')
q[i] = freq[x[i]]
# - compute "Q = ||q||",
# and "norm = 1/Q" being zero for Q==0 and Nyquist frequencies
q = q.astype(np.float)
Q = dot11(q, q)
Z = Q == 0
Q[Z] = 1.
norm = 1. / Q
norm[Z] = 0.
norm[0, :, :] = 0.
norm[:, 0, :] = 0.
norm[:, :, 0] = 0.
# - set projection operator [grid of tensors]
for i, j, l, m in itertools.product(range(3), repeat=4):
Ghat4[i, j, l, m] = norm * delta(i, m) * q[j] * q[l]
if GPU:
# (inverse) Fourier transform (for each tensor component in each direction)
fft = lambda x: cp.asnumpy(np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(
cp.asarray(x, x.dtype)), [N, N, N])))
ifft = lambda x: cp.asnumpy(np.fft.fftshift(np.fft.ifftn(
np.fft.ifftshift(cp.asarray(x, x.dtype)), [N, N, N])))
else:
# (inverse) Fourier transform (for each tensor component in each direction)
fft = lambda x: np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(x), [N, N, N]))
ifft = lambda x: np.fft.fftshift(
np.fft.ifftn(np.fft.ifftshift(x), [N, N, N]))
# functions for the projection 'G', and the product 'G : K : eps'
G = lambda A2: np.real(ifft(ddot42(Ghat4, fft(A2)))).reshape(-1)
K_deps = lambda depsm: ddot42(K4, depsm.reshape(ndim, ndim, N, N, N))
G_K_deps = lambda depsm: G(K_deps(depsm))
# ------------------- PROBLEM DEFINITION / CONSTITIVE MODEL -------------------
phase = create_microstructure_spheres(cf=0.2)
# material parameters + function to convert to grid of scalars
param = lambda M0, M1: M0 * np.ones([N, N, N]) * (1. - phase) + M1 * np.ones(
[N, N, N]) * phase
K = param(0.833, 8.33) # bulk modulus [grid of scalars]
mu = param(0.386, 3.86) # shear modulus [grid of scalars]
# stiffness tensor [grid of tensors]
K4 = K * II + 2. * mu * (I4s - 1. / 3. * II)
# ----------------------------- NEWTON ITERATIONS -----------------------------
# initialize stress and strain tensor [grid of tensors]
sig = np.zeros([ndim, ndim, N, N, N])
eps = np.zeros([ndim, ndim, N, N, N])
# set macroscopic loading
DE = np.zeros([ndim, ndim, N, N, N])
DE[0, 1] += 0.01
DE[1, 0] += 0.01
# initial residual: distribute "DE" over grid using "K4"
b = -G_K_deps(DE)
eps += DE
En = np.linalg.norm(eps)
iiter = 0
# iterate as long as the iterative update does not vanish
while True:
depsm, _ = sp.cg(tol=1.e-8,
A=sp.LinearOperator(shape=(ndof, ndof), matvec=G_K_deps,
dtype='float'),
b=b,
) # solve linear system using CG
eps += depsm.reshape(ndim, ndim, N, N,
N) # update DOFs (array -> tens.grid)
sig = ddot42(K4, eps) # new residual stress
b = -G(sig) # convert residual stress to residual
print('%10.2e' % (np.max(depsm) / En)) # print residual to the screen
if np.linalg.norm(
depsm) / En < 1.e-5 and iiter > 0: break # check convergence
iiter += 1