-
Notifications
You must be signed in to change notification settings - Fork 1
Development plan
Thomas Dent edited this page Oct 21, 2023
·
3 revisions
The majority of code is to be within Python modules and structured by using classes corresponding to the main concepts :
- density estimator
- optimization via cross-validation
- uncertainty estimation via bootstrap iteration
- reweighting of input measurement samples
Most basic element, can give a density estimate at any point in physical parameter space.
Information required: Physical parameter values (n-dimensional), bandwidths (n-dimensional), adaptive parameter ('alpha')
Auxiliary information: Parameter names, log parameter flags (is the parameter the log of a physical quantity), units
Initialization: Train base density estimator with the given parameter points and bandwidths/alpha
Attributes: Aux information, parameter values, bandwidths/alpha, base estimator
Method: Evaluate density at any parameter point or array of points
Method: Set bandwidths/alpha & retrain
...