-
Notifications
You must be signed in to change notification settings - Fork 16
/
iris.l1.cluster.Rd
47 lines (45 loc) · 1.66 KB
/
iris.l1.cluster.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\name{iris.l1.cluster}
\alias{iris.l1.cluster}
\docType{data}
\title{Clustering of the iris data with the l1 clusterpath}
\description{ The l1 clustering algorithm from the clusterpath package
was applied to the iris dataset and the breakpoints in the solution
path are stored in this data frame.}
\usage{data(iris.l1.cluster)}
\format{
A data frame with 9643 observations on the following 8 variables.
\describe{
\item{\code{row}}{a numeric vector: row of the original iris data matrix}
\item{\code{Species}}{a factor with levels \code{setosa}
\code{versicolor} \code{virginica}: Species from corresponding row}
\item{\code{alpha}}{a numeric vector: the value of the optimal
solution.}
\item{\code{lambda}}{a numeric vector: the regularization parameter
(ie point in the path).}
\item{\code{col}}{a factor with levels \code{Sepal.Length}
\code{Sepal.Width} \code{Petal.Length} \code{Petal.Width}: column
from the original iris data.}
\item{\code{gamma}}{a factor with levels \code{0}: parameter from clustering.}
\item{\code{norm}}{a factor with levels \code{1} parameter from clustering.}
\item{\code{solver}}{a factor with levels \code{path} algorithm used for
clustering.}
}
}
\source{
clusterpath package
}
\references{
clusterpath article
}
\examples{
data(iris.l1.cluster,package="directlabels")
iris.l1.cluster$y <- iris.l1.cluster$alpha
if(require(ggplot2)){
p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+
geom_line(alpha=1/4)+
facet_grid(col~.)
p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda))
print(direct.label(p2,list(first.points,get.means)))
}
}
\keyword{datasets}